
Chapter 2

Error Analysis For Polynomial Interpolation

As a continuation of Chapter 1, the notion of divided difference is applied to deduce the

uniform error bound for polynomial interpolation for any given finite sample point set.

In addition, an optimal sample point set, on which the minimum uniform error bound is

achieved among all sample point sets with the same cardinality, is derived.

2.1 General error estimate

Let [a,b] denote a bounded interval in R, and suppose f ∈ C[a,b], with C[a,b] denoting

the linear space of continuous functions f : [a,b]→ R. For any non-negative integer n, let

�n := {x0, . . . ,xn} be a sequence of n+ 1 distinct points such that

�n ⊂ [a,b], (2.1.1)

and, as in Theorem 1.1.2, denote by PI
n the unique polynomial in πn satisfying the interpo-

lation conditions

PI
n(x) = f (x), x ∈�n. (2.1.2)

The corresponding polynomial interpolation error function is then defined by

EI
n := f −PI

n. (2.1.3)

Hence EI
n ∈C[a,b], with

EI
n(x) = 0, x ∈�n. (2.1.4)

The function EI
n has the following explicit formulation in terms of a divided difference.

Theorem 2.1.1. The error function EI
n, as defined by (2.1.3), satisfies, for any non-negative

integer n,

EI
n(x) =

⎧⎨⎩0 , x ∈�n;

f [x,x0, . . . ,xn]Qn+1(x) , x ∈ [a,b]\�n,
(2.1.5)
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with Qn+1 ∈ πn+1 defined as in (1.3.11), that is,

Qn+1(x) :=
n

∏
j=0

(x− x j). (2.1.6)

Proof. The first line of (2.1.5) has already been noted in (2.1.4).

Let x ∈ [a,b] \�n be fixed, and denote by P the unique interpolation polynomial in πn+1

such that

P(t) = f (t), t ∈�n ∪{x}. (2.1.7)

It follows from (2.1.1) and (1.3.7) in Theorem 1.3.1 that

P(t) = PI
n(t)+ f [x0, . . . ,xn,x]Qn+1(t), (2.1.8)

with the polynomial QI
n+1 defined as in (2.1.6). By setting t = x in (2.1.8), and using (2.1.7),

we obtain

f (x) = PI
n(x)+ f [x0, . . . ,xn,x]Qn+1(x). (2.1.9)

The second line of (2.1.5) is now a consequence of (2.1.8), (2.1.3), as well as the symmetry

result of Theorem 1.3.6. �
In order to obtain a useful estimate for the error function EI

n, we first prove the following

property of divided differences.

Theorem 2.1.2. For any non-negative integer n, let �n := {x0, . . . ,xn} denote a sequence

of n+ 1 distinct points in R, and suppose f has n continuous derivatives in the smallest

interval containing the points {x0, . . . ,xn}. Then the divided difference f [x0, . . . ,xn], as

defined by (1.3.2), (1.3.3), satisfies

f [x0, . . . ,xn] =
f (n)(ξ )

n!
, (2.1.10)

for some point ξ in the smallest interval containing the points {x0, . . . ,xn}.

Proof. By applying (1.4.12), (1.4.13) in Theorem 1.4.3, and recalling the remark follow-

ing the statement of Theorem 1.4.3, we deduce by means of the mean value theorem for

integrals, together with (2.1.1), that there is a point ξ in the smallest interval containing the

points {x0, . . . ,xn} such that

f [x0, . . . ,xn] = f (n)(ξ )
∫ t0

0
· · ·
∫ tn−1

0
dtndtn−1 . . .dt1

= f (n)(ξ )
∫ t0

0
· · ·
∫ tn−2

0
tn−1dtn−1 . . .dt1
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= · · ·= f (n)(ξ )
n!

,

analogously to the final argument in the proof of Theorem 1.4.5. �
We now combine Theorems 2.1.1 and 2.1.2, and use the fact that (2.1.6) implies

Qn+1(x) = 0, x ∈�n, (2.1.11)

to immediately deduce the following result, in which, as throughout the book, we adopt,

for any non-negative integer m, the notation Cm[a,b] to denote the linear space of functions

f : [a,b]→ R such that f (k) ∈C[a,b],k = 0, . . . ,m, according to which C0[a,b] =C[a,b].

Theorem 2.1.3. For a non-negative integer n, suppose f ∈ Cn+1[a,b]. Then, for any x ∈
[a,b], there is a point ξ ∈ (a,b) such that the error function EI

n in (2.1.3) satisfies

EI
n(x) =

f (n+1)(ξ )
(n+ 1)!

Qn+1(x), (2.1.12)

with the polynomial Qn+1 ∈ πn+1 given by (2.1.6).

Next, for any function g ∈C[a,b], we introduce the notation

||g||∞ := max
a�x�b

|g(x)|, (2.1.13)

in terms of which the following interpolation error estimate holds.

Theorem 2.1.4. The interpolation error function EI
n in Theorem 2.1.3 satisfies the estimate

||EI
n||∞ � || f (n+1)||∞

(n+ 1)!
||Qn+1||∞. (2.1.14)

Proof. Let x ∈ [a,b] be fixed. It follows from (2.1.12) in Theorem 2.1.3, together with

(2.1.13), that

|EI
n(x)|�

|| f (n+1)||∞
(n+ 1)!

||Qn+1||∞,

from which the desired estimate (2.1.14) then immediately follows. �

Example 2.1.1. Consider the case f (x) = cosx, and [a,b] = [0, π
2 ].

(a) For n = 2, let

�2 = {x0,x1,x2} := {0,
π
4
,

π
2
}. (2.1.15)

Then, by using either of the interpolation formulas (1.2.5) or (1.3.17), we obtain

PI
2(x) =

8
π2 (1−

√
2)x2 +

2
π
(2
√

2− 3)x+ 1.
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Moreover, the error estimate (2.1.14) yields

max
0�x� π

2

∣∣cosx−PI
2(x)

∣∣ � 1
3!

[
max

0�x� π
2

|sin x|
]

max
0�x� π

2

∣∣∣x(x− π
4

)(
x− π

2

)∣∣∣
=

1
6

√
3π3

288
=

√
3π3

1728
≈ 0.031. (2.1.16)

(b) For n = 9, let �9 = {x0, . . . ,x9} denote any sequence of 10 distinct points in [0, π
2 ].

Then the corresponding interpolation polynomial PI
9 can be calculated by means of

either (1.2.5) or (1.3.17), and the error estimate (2.1.14) gives

max
0�x�2

∣∣cosx−PI
9(x)

∣∣ � 1
10!

[
max

0�x� π
2

|cosx|
]

max
0�x� π

2

9

∏
j=0

|x− x j|

� 1
10!

(π
2

)10
≈ 2.52× 10−5. (2.1.17)

�

Observe that the upper bound on ||EI
n||∞, as given by the right hand side of (2.1.14), depends

on f , n and �n := {x0, . . . ,xn}, with the dependence on �n entirely restricted to the factor

||Qn+1||∞. Moreover, ||Qn+1||∞ is independent of f . We shall proceed in Section 2.2 to

investigate the existence of a sequence �n which minimizes ||Qn+1||∞.

2.2 The Chebyshev interpolation points

The Chebyshev polynomials {Tj : j = 0,1, . . .} are defined recursively by

T0(x) := 1 ; T1(x) := x ;

Tj+1(x) := 2xTj(x)−Tj−1(x), j = 1,2, . . . .

⎫⎬⎭ (2.2.1)

By using (2.2.1), we obtain

T2(x) = 2x2 − 1 ; T3(x) = 4x3 − 3x ; T4(x) = 8x4 − 8x2 + 1;

T5(x) = 16x5 − 20x3+ 5x ; T6(x) = 32x6 − 48x4+ 18x2 − 1.

⎫⎬⎭ (2.2.2)

The following properties are satisfied by the Chebyshev polynomials.

Theorem 2.2.1. For j ∈N, the Chebyshev polynomial Tj, as defined in (2.2.1), satisfies:

(a) Tj is a polynomial of degree j such that the leading coefficient in

Tj(x) =
j

∑
k=0

c j,kxk (2.2.3)

is given by

c j, j = 2 j−1; (2.2.4)
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(b)

Tj(x) = cos( j arccosx), x ∈ [−1,1]; (2.2.5)

(c)

|Tj(x)|� 1, x ∈ [−1,1]; (2.2.6)

(d)

Tj

(
cos
(

j− k
j

π
))

= (−1) j−k, k = 0, . . . , j; (2.2.7)

(e)

Tj

(
cos
(

2 j− 1− 2k
2 j

π
))

= 0, k = 0, . . . , j− 1; (2.2.8)

(f)

Tj(x) = 2 j−1
j−1

∏
k=0

[
x− cos

(
2 j− 1− 2k

2 j
π
)]

, x ∈ R. (2.2.9)

Proof. (a) The properties (2.2.3) and (2.2.4) follow inductively from the definition (2.2.1).

(b) Let the function sequence {g j : j = 0,1, . . .} be defined by

g j(x) := cos( j arccosx), x ∈ [−1,1], j = 0,1, . . . , (2.2.10)

and introduce the one-to-one mapping between the intervals [0,π ] and [−1,1] as given by

x = cosθ , θ ∈ [0,π ], (2.2.11)

or equivalently,

θ = arccosx, x ∈ [−1,1], (2.2.12)

in terms of which (2.2.10) may be written as

g j(x) = cos( jθ ), θ ∈ [0,π ], j = 0,1, . . . . (2.2.13)

The trigonometric identity

cos[( j+ 1)θ ]+ cos[( j− 1)θ ] = 2(cosθ )cos( jθ ),

together with (2.2.13) and (2.2.11), yields the identity

g j+1(x)+ g j−1(x) = 2xg j(x), x ∈ [−1,1], j = 1,2, . . . ,

and thus, by using also (2.2.13) for j = 0 and j = 1, as well as (2.2.11), we obtain

g0(x) = 1; g1(x) = x;

g j+1(x) = 2xg j(x)− g j−1(x), j = 1,2, . . . ,

⎫⎬⎭ x ∈ [−1,1]. (2.2.14)
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It follows from (2.2.1) and (2.2.14) that g j(x) = Tj(x),x ∈ [−1,1], j = 0,1, . . ., which,

together with (2.2.10), proves the formula (2.2.5).

(c) The property (2.2.6) is an immediate consequence of (2.2.5).

(d) For j ∈ N and k = 0, . . . , j, we have, from (2.2.5),

Tj

(
cos
(

j− k
j

π
))

= cos
(

j arccos
(

cos
(

j− k
j

π
)))

= cos(( j− k)π) = (−1) j−k,

which proves (2.2.7).

(e) Similarly, for j ∈N and k = 0, . . . , j− 1, we deduce from (2.2.5) that

Tj

(
cos
(

2 j− 1− 2k
2 j

π
))

= cos
(

j arccos
(

cos
(

2 j− 2k− 1
2 j

π
)))

= cos
((

j− k− 1
2

)
π
)
= 0,

and thereby proving (2.2.8).

(f) The explicit formulation (2.2.9) is an immediate consequence of (2.2.3), (2.2.4) and

(2.2.8). �
Observe from Theorem 2.2.1(f) that, for j ∈ N, the Chebyshev polynomial Tj of degree j

has precisely j distinct zeros in (−1,1), with, more precisely,

Tj(t j,k) = 0, k = 0, . . . , j− 1, (2.2.15)

where

t j,k := cos
(

2 j− 1− 2k
2 j

π
)
, k = 0, . . . , j− 1, (2.2.16)

and thus

−1 < t j,0 < t j,1 < · · ·< t j, j−1 < 1. (2.2.17)

Moreover, according to Theorem 2.2.1(d), the Chebyshev polynomial Tj attains, for j ∈N,

its maximum (= 1) and minimum (=−1) on [−1,1] alternately, in the sense that

Tj(ξ j,k) = (−1) j−k, k = 0, . . . , j, (2.2.18)

where

ξ j,k := cos
(

j− k
j

π
)
, k = 0, . . . , j, (2.2.19)

and thus

−1 = ξ j,0 < ξ j,1 < · · ·< ξ j, j = 1. (2.2.20)
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For any non-negative integer k, if P(x) =
k

∑
j=1

c jx j , with leading coefficient ck = 1, we say

that P is a monic polynomial. The set of all monic polynomials in πk will be denoted by the

symbol π̃k. Observe from Theorem 2.2.1(a) that the normalized Chebyshev polynomials

T̃j := 21− jTj, j = 1,2, . . . , (2.2.21)

are monic polynomials, that is,

T̃j ∈ π̃ j, j ∈ N. (2.2.22)

We shall rely on the following minimization property of T̃j.

Theorem 2.2.2. For any j ∈ N,

min
P∈π̃ j

max
−1�x�1

|P(x)|= max
−1�x�1

|T̃j(x)|= 21− j, (2.2.23)

where T̃j is the normalized Chebyshev polynomial defined by (2.2.21).

Proof. Let j ∈N. First, observe that (2.2.21), (2.2.6) and (2.2.7) imply the second equation

in(2.2.23).

We use a proof by contradiction to prove the first equation in (2.2.23). Suppose therefore

that there exists a polynomial Q ∈ π̃ j such that

max
−1�x�1

|Q(x)|< 21− j, (2.2.24)

according to which Q �= T̃j, and define the polynomial

R := (−1) j(T̃j −Q), (2.2.25)

for which it then follows that R is not the zero polynomial. Since T̃j and Q are both monic

polynomials in π̃ j , it follows from (2.2.25) that

R ∈ π j−1. (2.2.26)

Now observe from (2.2.21) and (2.2.18) that

T̃j(ξ j,k) = (−1) j−k21− j, k = 0, . . . , j, (2.2.27)

where the sequence {ξ j,k : k = 0, . . . , j} is given by (2.2.19), and satisfies (2.2.20).

By using (2.2.25), (2.2.27) and (2.2.24), we deduce that

R(ξ j,0) = 21− j − (−1) jQ(ξ j,0)> 0;

R(ξ j,1) = −21− j − (−1) jQ(ξ j,1)< 0,
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and it follows from the intermediate value theorem that there is a point η1 ∈ (ξ j,0,ξ j,1)

such that R(η1) = 0. Similarly it can be shown by means of (2.2.25), (2.2.27) and (2.2.24)

that R(ξ j,k) alternates in sign for k = 1, . . . , j, and that there consequently exist points

ηk ∈ (ξ j,k−1,ξ j,k), k = 2, . . . , j, such that R(ηk) = 0, k = 2, . . . , j. Hence R has j dis-

tinct real zeros at {η1, . . . ,η j}. Since also (2.2.26) holds, it follows that R must be the zero

polynomial, which is a contradiction, and thereby concluding our proof of the first equation

in (2.2.23). �
We proceed to show how Theorem 2.2.2 can be used to minimize the factor

||Qn+1||∞ := max
a�x�b

|Qn+1(x)| (2.2.28)

in (2.1.14) with respect to the choice of the interpolation point sequence�n := {x0, . . . ,xn}.

To this end, we introduce the one-to-one mapping between the intervals [−1,1] and [a,b]

as given by

x =
1
2
(b− a)t+

1
2
(a+ b), t ∈ [−1,1], (2.2.29)

or equivalently,

t =
2

b− a

[
x− 1

2
(a+ b)

]
, x ∈ [a,b]. (2.2.30)

Based on (2.2.15), (2.2.16) and (2.2.17), for n ∈N and j = n+1, we now define the Cheby-

shev interpolation points

xC
n, j :=

1
2
(b− a)cos

(
2n+ 1− 2 j

2n+ 2
π
)
+

1
2
(a+ b), j = 0, . . . ,n, (2.2.31)

which then satisfy

a < xC
n,0 < xC

n,1 < · · ·< xC
n,n < b. (2.2.32)

Observe from (2.2.31) that the Chebyshev interpolation points are concentrated more

densely towards the endpoints of the interval [a,b]. The following minimization property

can now be proved by means of Theorem 2.2.2.

Theorem 2.2.3. The factor ||Qn+1||∞ in the polynomial interpolation error estimate

(2.1.14) of Theorem 2.1.4 is minimized by

min
x0,...,xn∈[a,b]

||Qn+1||∞ = max
a�x�b

∣∣∣∣∣ n

∏
j=0

(x− xC
n, j)

∣∣∣∣∣= 2−n
(

b− a
2

)n+1

, (2.2.33)

with {xC
n, j : j = 0, . . . ,n} denoting the Chebyshev interpolation points, as defined in

(2.2.31).
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Proof. First, we use the one-to-one mapping (2.2.29), (2.2.30) between the intervals [a,b]

and [−1,1] to deduce that

min
x0,...,xn∈[a,b]

max
a�x�b

∣∣∣∣∣ n

∏
j=0

(x− x j)

∣∣∣∣∣
= min

x0,...,xn∈[a,b]
max

−1�t�1

∣∣∣∣∣ n

∏
j=0

b− a
2

[
t − 2

b− a

(
x j − 1

2
(a+ b)

)]∣∣∣∣∣
=

(
b− a

2

)n+1

min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣ . (2.2.34)

For the sequence {tn+1, j : j = 0, . . . ,n} as defined by means of (2.2.16), it follows from

Theorem 2.2.2, together with (2.2.21) and (2.2.9), that

2−n = max
−1�t�1

∣∣∣T̃n+1(t)
∣∣∣= max

−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − tn+1, j)

∣∣∣∣∣ � min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣
� min

P∈π̃n+1
max

−1�t�1
|P(t)|= 2−n,

and thus

min
t0,...,tn∈[−1,1]

max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − t j)

∣∣∣∣∣= max
−1�t�1

∣∣∣∣∣ n

∏
j=0

(t − tn+1, j)

∣∣∣∣∣= 2−n,

which, together with (2.2.34), and (2.1.6), yields the desired result (2.2.33). �
By combining Theorems 2.1.4 and 2.2.3, we immediately derive the following optimal

polynomial interpolation error estimate.

Theorem 2.2.4. In Theorem 2.1.3, for any positive integer n, let the interpolation points be

chosen as the Chebyshev interpolation points, that is,

x j = xC
n, j, j = 0, . . . ,n, (2.2.35)

as defined by (2.2.31). Then the error estimate

||EI
n||∞ � 1

2n(n+ 1)!

(
b− a

2

)n+1

|| f (n+1)||∞ (2.2.36)

is satisfied.

Example 2.2.1. As in Example 2.1.1, we consider the case f (x) = cosx, and [a,b] = [0, π
2 ],

in which case, for any n ∈ N, the Chebyshev interpolation points are given, according to

(2.2.31), by

xC
n, j =

π
4

[
cos
(

2n+ 1− 2 j
2n+ 2

π
)
+ 1
]
, j = 0, . . . ,n, (2.2.37)
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and the corresponding error estimate (2.2.36) is

max
0�x� π

2

∣∣cosx−PI
n(x)

∣∣� 1
2n(n+ 1)!

(π
4

)n+1
. (2.2.38)

(a) For n = 2, it follows from (2.2.37) that

{xC
2,0,x

C
2,1,x

C
2,2}=

{
2−√

3
8

π ,
π
4
,

2+
√

3
8

π

}
,

and (2.2.38) gives the estimate

max
0�x� π

2

∣∣cosx−PI
2(x)

∣∣� 1
24

(π
4

)3
≈ 0.02,

which improves on the error estimate (2.1.16) in Example 2.1.1(a).

(b) For n = 9, the formula (2.2.37) yields the Chebyshev interpolation points

xC
9, j =

π
4

[
cos
(

19− 2 j
20

π
)
+ 1
]
, j = 0, . . . ,9,

and (2.2.38) gives the estimate

max
0�x� π

2

∣∣cosx−PI
9(x)

∣∣� 1
2910!

(π
4

)10
≈ 4.81× 10−11,

which is a considerable improvement on the error estimate (2.1.17) in Exam-

ple 2.1.1(b).

�

2.3 Exercises

Exercise 2.1 For the function

f (x) =
1√
x
,

find a point ξ ∈ [ 1
9 ,1], as guaranteed by Theorem 2.1.2, for which it holds that

f [ 1
9 ,

1
4 ,1] =

1
2 f ′′(ξ ).

Exercise 2.2 Let

f (x) = ln(x+ 2), x ∈ [0,2],

and, for n ∈ {1,2}, denote by PI
n the interpolation polynomial in πn such that

PI
n(x) = f (x), x ∈�n,

where

�1 := { 1
2 ,

3
2} ; �2 := { 1

2 ,1,
3
2}.
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For n = 1 and n = 2, calculate the polynomial PI
n , as well as the interpolation error estimate

(2.1.14) in Theorem 2.1.4, with [a,b] = [0,2]. Also, for n = 1 and n = 2, investigate the

sharpness of these estimates by calculating the exact value of ||EI
n||∞.

Exercise 2.3 As a continuation of Exercise 2.2, let n be any positive integer, and suppose

�n := {x0, . . . ,xn} ⊂ [0,2]

is an arbitrary point sequence in [0,2]. Apply the interpolation error estimate (2.1.14) in

Theorem 2.1.4 to show that

max
0�x�2

| ln(x+ 2)−PI
n(x)|�

1
n+ 1

, (∗)
with PI

n denoting the interpolation polynomial in πn with respect to the interpolation point

sequence �n.

Exercise 2.4 Calculate the Chebyshev polynomials T7 and T8, thereby extending the for-

mulas in (2.2.2).

Exercise 2.5 Calculate, for n = 1 and n = 2, the sequences �C
n defined by

�C
n := {xC

n,0, . . . ,x
C
n,n}, n ∈N,

with {xC
n,0, . . . ,x

C
n,n} denoting the Chebyshev interpolation points, as given in (2.2.31), for

the interval [0,2].

Exercise 2.6 As a continuation of Exercise 2.5, repeat Exercises 2.2 and 2.3 with �n re-

placed by �C
n , and with the interpolation error estimate (2.1.14) replaced by (2.2.36) in

Theorem 2.2.4. In particular, obtain the analogue of the estimate (∗) in Exercise 2.3.

Exercise 2.7 As a continuation of Exercise 2.6, find, according to the error estimate ob-

tained there, the smallest possible value of n for which it holds that

max
0�x�2

| ln(x+ 2)−PI
n(x)|<

1
100

.

Exercise 2.8 Apply Theorem 2.2.2 to obtain the minimum value

min
a,b,c∈R

max
−1�x�1

|x3 + ax2 + bx+ c|,

as well as the corresponding optimal values of the coefficients a,b and c.

Exercise 2.9 Prove that, for any fixed j ∈ N, the sum of the coefficients of the Chebyshev

polynomial Tj is equal to one.

[Hint: Use Theorem 2.2.1(b).]

Exercise 2.10 Prove that the Chebyshev polynomials {T0,T1, . . .} satisfy the condition∫ 1

−1

1√
1− x2

Tj(x)Tk(x)dx = 0, if j �= k.

[Hint: Apply the transformation (2.2.11), (2.2.12).]
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