Chapter 2

Error Analysis For Polynomial Interpolation

As a continuation of Chapter 1, the notion of divided difference is applied to deduce the
uniform error bound for polynomial interpolation for any given finite sample point set.
In addition, an optimal sample point set, on which the minimum uniform error bound is

achieved among all sample point sets with the same cardinality, is derived.

2.1 General error estimate

Let [a,b] denote a bounded interval in R, and suppose f € Cla,b|, with C[a,b] denoting
the linear space of continuous functions f : [a,b] — R. For any non-negative integer n, let

Ay :={xp,...,x,} be a sequence of n+ 1 distinct points such that
A C [a,b], 2.1.1)

and, as in Theorem 1.1.2, denote by P,{ the unique polynomial in 7, satisfying the interpo-

lation conditions

Pi(x) = f(x), x€ A, 2.1.2)
The corresponding polynomial interpolation error function is then defined by
E,:=f—F. (2.1.3)
Hence E! € C[a, b], with
El(x)=0, x€A,. (2.1.4)

The function E! has the following explicit formulation in terms of a divided difference.

Theorem 2.1.1. The error function E,,’, as defined by (2.1.3), satisfies, for any non-negative
integer n,

; 0 , X € Np;
El(x) = (2.1.5)
f[X7X0,. .. ,Xn]Qn+1(X) , X € [aab} \ Anv
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with Qn41 € ,+1 defined as in (1.3.11), that is,

n

Oni1(x) = [J(x—x)). (2.1.6)

j=0
Proof. The first line of (2.1.5) has already been noted in (2.1.4).

Let x € [a,b]\ A, be fixed, and denote by P the unique interpolation polynomial in 7,
such that

P(t)=f(t), tel,U{x}. (2.1.7)
It follows from (2.1.1) and (1.3.7) in Theorem 1.3.1 that

P(t) =Py (t) + fx0, - X, X] Qi1 (1), (2.1.8)

with the polynomial Q;11+1 defined as in (2.1.6). By setting # =x in (2.1.8), and using (2.1.7),

we obtain

F() = PLx) + X0, X0, %] Q1 (). (2.1.9)

The second line of (2.1.5) is now a consequence of (2.1.8), (2.1.3), as well as the symmetry
result of Theorem 1.3.6. |
In order to obtain a useful estimate for the error function E., we first prove the following

property of divided differences.

Theorem 2.1.2. For any non-negative integer n, let A\, := {xo,...,xn} denote a sequence
of n+ 1 distinct points in R, and suppose f has n continuous derivatives in the smallest
interval containing the points {xo,...,x,}. Then the divided difference f|xo,...,xn|, as
defined by (1.3.2), (1.3.3), satisfies

S1x05- - Xn] = (2.1.10)

&)

!

for some point & in the smallest interval containing the points {xq,. .., X, }.

Proof. By applying (1.4.12), (1.4.13) in Theorem 1.4.3, and recalling the remark follow-
ing the statement of Theorem 1.4.3, we deduce by means of the mean value theorem for
integrals, together with (2.1.1), that there is a point & in the smallest interval containing the

points {xo,...,x,} such that

FX0s- - 0] = f(">(§)/0t°---/ot"7'dr,,dr,l,l...dtl

"o "ty
— f(fl)(g;)/ / tydt,_1...dn
0 0
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analogously to the final argument in the proof of Theorem 1.4.5. |

We now combine Theorems 2.1.1 and 2.1.2, and use the fact that (2.1.6) implies
Opi1(x) =0, x€AN,, (2.1.11)

to immediately deduce the following result, in which, as throughout the book, we adopt,
for any non-negative integer m, the notation C"[a, b] to denote the linear space of functions
f: [a,b] = R such that f*) € Cla,b],k=0,...,m, according to which C°[a,b] = Cla,b).

Theorem 2.1.3. For a non-negative integer n, suppose f € C"*! [a,b]. Then, for any x €
[a,b), there is a point & € (a,b) such that the error function E! in (2.1.3) satisfies
Fe(E)
(n+1)!
with the polynomial Q, 41 € T, given by (2.1.6).

Ej(x) = Qi1 (%), 2.1.12)

Next, for any function g € C[a,b], we introduce the notation

l|g]|e := max |g(x)], (2.1.13)

a<x<b

in terms of which the following interpolation error estimate holds.

Theorem 2.1.4. The interpolation error function E} in Theorem 2.1.3 satisfies the estimate

17D

(n+1)!
Proof. Let x € [a,b] be fixed. It follows from (2.1.12) in Theorem 2.1.3, together with
(2.1.13), that

E}] | < Q1 ]eo- (2.1.14)

I 1|
BRI <y 10 e
from which the desired estimate (2.1.14) then immediately follows. [ |

Example 2.1.1. Consider the case f(x) = cosx, and [a,b] = [0, 7].

(a) Forn=2,let

T T
7472
Then, by using either of the interpolation formulas (1.2.5) or (1.3.17), we obtain

AQZ{XO,X17X2} = {0 } (2.1.15)

Pi(x) = :2(1—\/2)x2+ 725(2\/2—3)x+1.



28 Mathematics of Approximation

Moreover, the error estimate (2.1.14) yields

(=) )]

1
max_|cosx— P3(x)| < [max sinx|} max
0

0<x< % 3! Jo<a<® 0<x< ¥
1 3 3
_ LB _ VB e, (2.1.16)
6 288 1728

(b) For n =9, let Ag = {x,...,x9} denote any sequence of 10 distinct points in [0, 7].
Then the corresponding interpolation polynomial P} can be calculated by means of

either (1.2.5) or (1.3.17), and the error estimate (2.1.14) gives

9
_p! < — X
orgféz |cosx 9(x)| 10! Lg{agxg |cosx|} Orgcagxg j:0|x Xj]
1 T\ 10
< ~2.52%x107°. 2.1.17
10! (2) ( )

Observe that the upper bound on ||E! ||, as given by the right hand side of (2.1.14), depends
on f,nand A, := {xo,...,x,}, with the dependence on A, entirely restricted to the factor
[|Qnt1]lw- Moreover, ||Q,+1]| is independent of f. We shall proceed in Section 2.2 to

investigate the existence of a sequence A, which minimizes ||Q;+1]|e-

2.2 The Chebyshev interpolation points

The Chebyshev polynomials {7;: j=0,1,...} are defined recursively by
T(x) =1 5 Ti(x) :=x ;

(2.2.1)
Tii(x) = 2aTj(x) = Tj—1(x), j=1,2,....
By using (2.2.1), we obtain
D(x) = 22 —1 ; Ti(x) = 43 =3x ; Ty(x) = 8x* =8 +1;
(2.2.2)

Ts(x) = 16x° —20x° +5x ; Ty(x) = 32x0 —48x* + 182> — 1.
The following properties are satisfied by the Chebyshev polynomials.

Theorem 2.2.1. For j € N, the Chebyshev polynomial Tj, as defined in (2.2.1), satisfies:
(a) Tj is a polynomial of degree j such that the leading coefficient in
J
Ti(x) = Y cjp (2.2.3)
k=0

is given by
cjj=2"" (2.2.4)
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(b)
Tj(x) = cos(jarccosx), xe€[—1,1]; (2.2.5)
(c)
Ti(x)| <1, xel[-1,1]; (2.2.6)
(d)
T,-(cos(j;kn)):(—l)f*k, k=0,....J; (2.2.7)
(e)
T,(cos(zj_l,_zkn)): . k=0,....j—1; (2.2.8)
2j
(H
j-1 o
Tj(x):ZFIH{xfcos(zj 1_ anﬂ, x€R. (2.2.9)
k=0 2j

Proof. (a) The properties (2.2.3) and (2.2.4) follow inductively from the definition (2.2.1).
(b) Let the function sequence {g;: j=0,1,...} be defined by

gj(x) := cos(jarccosx), xe[-1,1], j=0,1,..., (2.2.10)
and introduce the one-to-one mapping between the intervals [0, ] and [—1, 1] as given by
x=cosf, 0¢el0,nx], (2.2.11)
or equivalently,
0 = arccosx, x¢€[—1,1], (2.2.12)
in terms of which (2.2.10) may be written as
gj(x) =cos(j0), 6€[0,m, ,j=0,1,.... (2.2.13)
The trigonometric identity
cos[(j+1)60] +cos[(j—1)0] =2(cosO)cos(j6),
together with (2.2.13) and (2.2.11), yields the identity
gir1(0)+gimi1(x) =2xg;(x), xe[-1,1], j=1,2,...,
and thus, by using also (2.2.13) for j =0 and j = 1, as well as (2.2.11), we obtain
go(x) =1 gilx) = x

xe[-1,1]. (2.2.14)
ngrl(x) = Zng(x)igjfl(x)v j:]727"'7
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It follows from (2.2.1) and (2.2.14) that g;(x) = Tj(x),x € [-1,1], j =0,1,..., which,
together with (2.2.10), proves the formula (2.2.5).

(c) The property (2.2.6) is an immediate consequence of (2.2.5).

(d) For j e Nand k=0,...,j, we have, from (2.2.5),

T; (cos (j;kﬂ:)) = Ccos <jarccos (cos (j;kﬂ>>>
= cos((j—k)m) = (—1)77*,

which proves (2.2.7).
(e) Similarly, for j e Nand k =0,...,j— 1, we deduce from (2.2.5) that

(con (757 5) ) = o s (s (755 ) )
T; | cos . T = cos | jarccos | cos . T
2j 2j
= Ccos i —k ! t|=0
= J 2 =4,

(f) The explicit formulation (2.2.9) is an immediate consequence of (2.2.3), (2.2.4) and
(2.2.8). [ |
Observe from Theorem 2.2.1(f) that, for j € N, the Chebyshev polynomial 7; of degree j

and thereby proving (2.2.8).

has precisely j distinct zeros in (—1, 1), with, more precisely,

Ti(tjx) =0, k=0,....j—1, (2.2.15)
where
2j—1-2k
tj,k::cos(J , n), k=0,....j—1, (2.2.16)
and thus
*l<lj,()<[j,1<"'<tj7j,1<l. (2.2.17)

Moreover, according to Theorem 2.2.1(d), the Chebyshev polynomial 7} attains, for j € N,

its maximum (= 1) and minimum (= —1) on [—1, 1] alternately, in the sense that
Ti(&) = (—1)7% k=0,....], (2.2.18)
where
J—k .
ik =cos o), k=0,...,]j, (2.2.19)
' J
and thus

_1:€j70<§j,1<"'<§/}j:1~ (2.2.20)
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k
For any non-negative integer k, if P(x Z c jx/ with leading coefficient ¢, = 1, we say
j=1
that P is a monic polynomial. The set of all monic polynomials in 7; will be denoted by the

symbol 7;. Observe from Theorem 2.2.1(a) that the normalized Chebyshev polynomials
Tp:=2"1, j=1,2,..., (2.2.21)
are monic polynomials, that is,
Tjem, jeN. (22.22)
We shall rely on the following minimization property of ]N’]

Theorem 2.2.2. For any j € N,

P(x)| = Ti(x)| =21 2223
glggg;ll (x)] = rlrg;ll ()] ; ( )

where i is the normalized Chebyshev polynomial defined by (2.2.21).

Proof. Let j € N. First, observe that (2.2.21), (2.2.6) and (2.2.7) imply the second equation
in(2.2.23).
We use a proof by contradiction to prove the first equation in (2.2.23). Suppose therefore

that there exists a polynomial Q € 7; such that

max |0(x)| <217, (2.2.24)

according to which Q # 7}, and define the polynomial
R:=(-1)/(Tj-0), (2.2.25)

for which it then follows that R is not the zero polynomial. Since f’j and Q are both monic

polynomials in 7; , it follows from (2.2.25) that
Rem_. (2.2.26)
Now observe from (2.2.21) and (2.2.18) that
Ti(Eix) = (—1)7 2" k=o0,...,], (2.2.27)

where the sequence {&; 1 k=0,..., j} is given by (2.2.19), and satisfies (2.2.20).
By using (2.2.25), (2.2.27) and (2.2.24), we deduce that

R(&j0) =27 = (=1)/Q(&0) > 0
R(&j1) = —2"7 = (=1)/Q(&;1) <0
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and it follows from the intermediate value theorem that there is a point 1, € (&;,0,&;.1)
such that R(1n;) = 0. Similarly it can be shown by means of (2.2.25), (2.2.27) and (2.2.24)

that R(§; ) alternates in sign for k = 1,...,j, and that there consequently exist points
M € (&jx—1,&jx), k=2,...,J, such that R(nx) =0, k =2,...,j. Hence R has j dis-
tinct real zeros at {1;,...,M;}. Since also (2.2.26) holds, it follows that R must be the zero

polynomial, which is a contradiction, and thereby concluding our proof of the first equation
in (2.2.23). |

We proceed to show how Theorem 2.2.2 can be used to minimize the factor

1Qu1]]o = max Q41 () (2.2.28)

a<x<b
in (2.1.14) with respect to the choice of the interpolation point sequence A, := {xg,..., X, }.
To this end, we introduce the one-to-one mapping between the intervals [—1,1] and [a, b]

as given by
1 1
x= 2(b—a)l+ 2(a+b), te-1,1], (2.2.29)

or equivalently,

2
b—a

Based on (2.2.15), (2.2.16) and (2.2.17), forn € N and j = n+ 1, we now define the Cheby-

shev interpolation points

t {x— ;(a—i—b)} , X€EJa,b]. (2.2.30)

1 mb1-2j \ 1 ,
C
= (b~ ~0,... 2231
=y oaeos (MU H ) o j=0m 23D
which then satisfy
a<x$y<xl) < <x, <b. (2.2.32)

Observe from (2.2.31) that the Chebyshev interpolation points are concentrated more
densely towards the endpoints of the interval [a,b]. The following minimization property

can now be proved by means of Theorem 2.2.2.

Theorem 2.2.3. The factor ||Qu+1|lw in the polynomial interpolation error estimate

(2.1.14) of Theorem 2.1.4 is minimized by
b— n+1
—on ( “) , (2.2.33)

H)(x—xij) 5

Jj=

min = max
X0y Xn E[a,b] ||Qn+1 Hoo a<x<b

with {xij : j=0,...,n} denoting the Chebyshev interpolation points, as defined in
(2.2.31).
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Proof. First, we use the one-to-one mapping (2.2.29), (2.2.30) between the intervals [a, b]
and [—1, 1] to deduce that

n

min max —Xj
X0so X €[a,b] a<x<h JI})(X Xj)
" b_a 2 1
xo,..igjrel[ayb] flné}él 111) 2 { b—a (x/ 2(a+ ))H
bh—ua n+1 n
_ . r—1)l. 2.2.34
( 2 > ettty 8 | LT o

For the sequence {#,41,j: j=0,...,n} as defined by means of (2.2.16), it follows from
Theorem 2.2.2, together with (2.2.21) and (2.2.9), that

n

H(t_tﬂ+1,j)

n

[T¢—-1)

Jj=0

27" = max
—1<<1

> min max
10,tn€[—1,1] —1<t<1

T, t’:
w1 (?) max,

> min max |P(r)]=27",
Perty —l<i<1

and thus
n n
i t—t;)| = f—t..q )| =2""
oo min max ([Te=e) = max [T =) =27
which, together with (2.2.34), and (2.1.6), yields the desired result (2.2.33). |

By combining Theorems 2.1.4 and 2.2.3, we immediately derive the following optimal

polynomial interpolation error estimate.

Theorem 2.2.4. In Theorem 2.1.3, for any positive integer n, let the interpolation points be
chosen as the Chebyshev interpolation points, that is,

C

Xj =X, s j=0,....n, (2.2.35)

as defined by (2.2.31). Then the error estimate
1 b—a n+1
I < gy (T3) 1P (2230

is satisfied.

Example 2.2.1. As in Example 2.1.1, we consider the case f(x) = cosx, and [a,b] = [0, 7],
in which case, for any n € N, the Chebyshev interpolation points are given, according to
(2.2.31), by
c T
nj = 4

2n4+1-2j .
1 =0,... 2237
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and the corresponding error estimate (2.2.36) is

It 1 T\ ntl
Ogagxg |cosx—Pn(x)| < (nt1)! (4) . (2.2.38)

(a) Forn =2, it follows from (2.2.37) that

2-V3 @1 24+V3
{XSO’xg,laxg,Z} = { 8 T, 4’ 8 7'5},

and (2.2.38) gives the estimate

1 /m\3
~A| <, () ~002,
Orgcagxﬂcosx ) (x)] M

which improves on the error estimate (2.1.16) in Example 2.1.1(a).

(b) Forn =9, the formula (2.2.37) yields the Chebyshev interpolation points

T 19-2j .
xgcﬁj:4{c0s( 20 Jn>+1], j=0,...,9,

and (2.2.38) gives the estimate

1 10
max_|cosx — Py(x)| < 9101 (”) ~4.81x 107"

0<x< ¥ 4
which is a considerable improvement on the error estimate (2.1.17) in Exam-
ple 2.1.1(b).
|

2.3 Exercises

Exercise 2.1 For the function

0= 0

find a point & € [é, 1], as guaranteed by Theorem 2.1.2, for which it holds that
flo3:11= 31" (8).
Exercise 2.2 Let
f(x)=In(x+2), xe€l0,2],
and, for n € {1,2}, denote by P! the interpolation polynomial in 7, such that
Pi(x)=f(x), x€Lly
where

A1 ::{;ag 5 AZ::{;alvg}’
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For n = 1 and n = 2, calculate the polynomial P!, as well as the interpolation error estimate
(2.1.14) in Theorem 2.1.4, with [a,b] = [0,2]. Also, for n = 1 and n = 2, investigate the
sharpness of these estimates by calculating the exact value of ||EZ||..

Exercise 2.3 As a continuation of Exercise 2.2, let n be any positive integer, and suppose
Dy = {x0,...,x,} C[0,2]

is an arbitrary point sequence in [0,2]. Apply the interpolation error estimate (2.1.14) in

Theorem 2.1.4 to show that
1

N *
. (%)
with P! denoting the interpolation polynomial in 7, with respect to the interpolation point

[
— <
(max [In(x+2) —F,(x)| <

sequence A\,,.
Exercise 2.4 Calculate the Chebyshev polynomials 77 and Tg, thereby extending the for-
mulas in (2.2.2).

Exercise 2.5 Calculate, for n = 1 and n = 2, the sequences AS defined by
JARES {x5707...,x5~n , neN,

with {xio, . ,xin} denoting the Chebyshev interpolation points, as given in (2.2.31), for
the inter§a1 [0,2].

Exercise 2.6 As a continuation of Exercise 2.5, repeat Exercises 2.2 and 2.3 with A\, re-
placed by AC, and with the interpolation error estimate (2.1.14) replaced by (2.2.36) in
Theorem 2.2.4. In particular, obtain the analogue of the estimate () in Exercise 2.3.
Exercise 2.7 As a continuation of Exercise 2.6, find, according to the error estimate ob-

tained there, the smallest possible value of n for which it holds that

_pl
gmax [In(x+2) = F,x)[ < | o

Exercise 2.8 Apply Theorem 2.2.2 to obtain the minimum value

min  max_|x’ 4+ ax’ +bx+c|,
ab,ceR —1<x<1

as well as the corresponding optimal values of the coefficients a,b and c.

Exercise 2.9 Prove that, for any fixed j € N, the sum of the coefficients of the Chebyshev
polynomial 7 is equal to one.

[Hint: Use Theorem 2.2.1(b).]

Exercise 2.10 Prove that the Chebyshev polynomials {7p,T7,...} satisfy the condition

/11 y 1x27}(x)Tk(x)dx —0, ifj#k

[Hint: Apply the transformation (2.2.11), (2.2.12).]
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