
Chapter 2
Graphs

2.1 Basic Definitions

The most common and useful structure for encoding discrete information is the
graph, an abstract structure which is designed to record relationships between
objects. For simple undirected graphs, the following definition suffices. A graph
G is a pair G D .V;�/, where V D V.G/ is the vertex set and � is an irreflexive,
symmetric relation on V.G/, called adjacency. We let E.G/ denote the edge set, that
is, the set of unordered pairs of adjacent vertices of G. If it is more convenient, we
will indicate a graph G D .V;�/ by specifying its vertex and edge set, G D .V; E/.

For example, Fig. 2.1 illustrates the graph whose vertex set is the set of twelve
numbers V D f2; 3; : : : ; 13g in which two numbers are said to be adjacent if they
have a common prime divisor. The utility of graphs is their ability to facilitate the
discovery or description of properties of the defining relation, and to this end, a
large body of common vocabulary has been developed. For instance, a subset I of
the vertex set V of a graph is called independent if no edge of G has two endpoints
in I . Clearly, independent sets of the divisor graph will have significance in number
theory.

If G D .V;�/ with edge set E , the edge corresponding to adjacent vertices a and
b is denoted variously by .a; b/ D fa; bg D ab D ba. Vertices a and b are called
the endpoints (or endvertices) of the edge ab. The number of vertices adjacent to
a given vertex a is called the valence of a and denoted by val.a/. Note that many
graph theorists use degree of a vertex a instead of val.a/.

We say that an edge is incident to its endpoints. Since every edge is incident to
two endpoints, summing over the vertex valences yields twice the number of edges.
This simple but useful observation is called the handshaking lemma:X

a2V

val.a/ D 2jEj:

If the vertices of graph G are ordered, then G can be conveniently encoded by
its adjacency matrix, a jV j � jV j matrix of zeros and ones in which there is a 1

in position .i; j / if and only if the i th and j th vertices, in the given ordering, are
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Fig. 2.1 The divisor graph
on f2; 3; : : : ; 13g

adjacent. Also of interest is the incidence matrix, which requires an ordering of
both the vertices and the edges. It is an jEj � jV j matrix in which there is a 1 in
position .i; j / if and only if the i th edge is incident to the j th vertex.

It is natural to represent a graph with a diagram by using a “dot” to signify each
vertex and a (possibly curved) line segment connecting the two dots a and b if
a � b. The larger the number of vertices and more complex the adjacency relation,
the less will be our ability to visually gather useful information from such a figure.
Even with only 12 vertices, the drawing of the divisor graph in Fig. 2.1 does not
reveal to us very much of the structure. A graph is a purely abstract concept, and
its representation as a diagram leaves a great deal of freedom, so perhaps a more
judicious placement of the vertices would make apparent to us some property the
present drawing obscures.

2.2 Examples of Graphs

The simplest examples of graphs need no figures. They are the discrete graphs,
graphs in which no pair of vertices is adjacent. The discrete graph on n vertices is
no more or less complicated than a set of n vertices. At the other extreme, we have
the complete graph, Kn, on n vertices, in which every pair of vertices is adjacent:

Kn D .fv1; v2; : : : ; vng; f.vi ; vj / j i < j I i; j D 1; : : : ; ng/:
Although the complete graphs pictured in Fig. 2.2 have a certain charm, it is mainly
derived from the symmetrical placement of the vertices and the pleasant pattern
of the completely irrelevant edge crossings. Adjacency in the complete graph also
gives no information beyond the set of vertices.

Nevertheless, the complete and discrete graphs become important as subgraphs.
A subgraph of a graph G D .V; E/ is a graph G0 D .V 0; E 0/ such that V 0 � V ,
E 0 � E . Every graph will have many subgraphs which are discrete, but finding
subgraphs which are complete graphs is, quite literally, a hard problem; see, for
example, [29].
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Fig. 2.2 Complete graphs Kn; n D 4; 5; : : : ; 9
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Fig. 2.3 Paths Pn; n D 1; 2; : : : ; 6

A subgraph G0 of G is said to be induced if every pair of vertices in V 0 which
is adjacent in G is also adjacent in G0. An independent set in a graph is an induced
discrete subgraph, and finding independent sets in a graph is just as easy, and just as
hard, as finding complete subgraphs.

2.2.1 Paths

The path on n vertices, Pn D .V; E/, is defined by

V D fv1; v2; : : : ; vng E D fviviC1 j i D 1; : : : ; n � 1g:

As with an edge, the vertices v1 and vn in the above example are called endvertices
(Fig. 2.3) of Pn. The vertices which are not endvertices are called internal.
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C 3 C 4 C 5

C 6 C 7 C 8

Fig. 2.4 Small cycles Cn; n D 3; 4; : : : ; 8

While not trivial, the adjacency relation is still very simple, just a simple ordering
of the vertices, so as with the complete and discrete graphs, the main interest of Pn

lies in its role as a subgraph. The most important concept in graph theory is defined
via subgraphs which are paths: If each pair of vertices in a graph G is the endvertices
of some path, then we say the graph G is connected. A graph which is not connected
is said to be disconnected. A disconnected graph may be partitioned into maximal
connected subgraphs, called connected components. The graph in Fig. 2.1 has three
connected components which consist of a single vertex. Does it have any others?
See Exercise 2.3.

Paths are also used to define the distance between the two vertices v and u as the
fewest number of edges in any path in G connecting u and v.

2.2.2 Cycles

The cycle of length n, Cn D .V; E/, is defined by

V D fv1; v2; : : : ; vng; E D fv1v2; v2v3; : : : ; vn�1vn; vnv1g:
See Fig. 2.4, and again, the adjacency relation is very simple, and these graphs derive
their main interest as subgraphs. A graph with no subgraph which is a cycle is said
to be an acyclic graph. In an acyclic graph, two vertices can be endvertices of at
most one path. A connected acyclic graph is called a tree, and an acyclic graph is
also called a forest, since it is the union of its connected components, each of which
is a tree.
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K 2,2 K 3,3 K 2,5 K 3,4

Fig. 2.5 Small complete bipartite graphs Km;n

A subgraph G0 � G is said to be a spanning subgraph of G if V.G0/ D V.G/. It
is not hard to show that a graph is connected if and only if it contains a spanning tree.
Obviously, a graph with jV j vertices and jEj edges contains 2jV j- induced subgraphs
and 2jEj spanning subgraphs. These numbers indicate that it is sometimes difficult to
find subgraphs of a particular kind in a large graph. Nevertheless, finding a spanning
tree in a graph is computationally simple. By contrast, finding a spanning cycle,
called a Hamilton cycle, is intractable. A graph is called Hamiltonian graph if it
contains a Hamilton cycle as subgraph. To determine if a graph G is Hamiltonian,
we have to provide a one-to-one correspondence f between the vertices of Cn and
those of G which preserves adjacency.

2.2.3 Complete Bipartite Graphs and Multipartite Graphs

The complete bipartite graph, Km;n D .V; E/, is defined by

V D fa1; a2; : : : ; am; b1; b2; : : : bng E D fai bj j i D 1; : : : ; mI j D 1; : : : ; ng:

See Fig. 2.5. Alternatively, we can define a complete bipartite graph as a graph
whose vertex set is partitioned into two sets (the as and bs in the example above),
and two vertices are adjacent if they are in different sets of the bipartition. This
naturally generalizes to any partition of the set V . The complete multipartite graph,
Kn1;n2;:::;np D .V; E/, is defined by (Fig. 2.6)

V D faij j 1 � i � pI 1 � j � ni g
E D faij akl j i ¤ kg:

A complete multipartite graph has a vertex set partitioned into p sets, and two
vertices are adjacent if they belong to different sets of the partition. For the graph
Kn1;n2;:::;np with n1 D n2 D � � � D np D n, the more economical notation Kp.n/ is
occasionally used.
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Fig. 2.6 Small complete multipartite graphs

W 3 W 5 W 8

Fig. 2.7 Wheel graphs Wn, sometimes called pyramid graphs

2.2.4 Wheel Graphs

If you append to the vertex set of the cycle graph Cn a new vertex c and specify
that the new vertex is adjacent to all the vertices ui of the cycle, the graph created,
Wn D .V; E/

V D fc; u1; : : : ; ung E D fcui ; uiuiC1 j i D 1; : : : ; ng;
indices modulo n, is called the wheel graph; see Fig. 2.7. The adjacency relation on
the wheel graph indicates that the bijection on the vertices defined by f .c/ D c

and f .ui / D uiC1 takes adjacent pairs to adjacent pairs or, equivalently, defines a
bijection on the edge set E . This is an example of a graph automorphism.
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Π 3 Π 4 Π 5

Π 6 Π 7 Π 8

Fig. 2.8 Prisms …n; n D 3; 4; :::; 8

The symmetric drawing of the wheel graph Wn suggests a three-dimensional
object, specifically a three-dimensional pyramid with an n-sided base, viewed from
above. In the same way, any polyhedron made up of vertices, edges, and faces gives
rise to a graph by simply retaining the adjacency information between the vertices
and edges and forgetting the faces. This graph is called the skeleton or 1-skeleton
of the polyhedron. So the 1-skeleton of an n-sided pyramid is the wheel graph Wn.
For this reason, the wheel graph is known also as the pyramid graph.

This brings us to several more interesting examples of graphs.

2.2.5 Prism Graphs

A regular prism is a polyhedron with two parallel opposite faces, called bases, that
are congruent regular polygons. All the other faces, called lateral faces, are squares
formed by the straight lines through corresponding vertices of the bases. ˘n D
.V; E/, the n-sided prism graph, is the skeleton of a prism whose base is an n-gon:

V D fu1; : : : ; un; v1; : : : ; vng E D fuiuiC1; vi viC1; uivi j i D 1; : : : ; ng:
with indices modulo n; see Fig. 2.8.

2.2.6 Antiprism Graphs

A regular antiprism of order n is a polyhedron with two regular n-gons as bases and
2n equilateral triangles as side faces. Its 1-skeleton is the graph An D .V; E/, the
n�sided antiprism graph,
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A 3 A 4 A 5

A 6 A 7 A 8

Fig. 2.9 Antiprism graphs An; n D 3; 4; : : : ; 8

V D fu1; : : : ; un; v1; : : : ; vng E D fuiuiC1; viviC1; uiviC1; uivi j i D 1; : : : ; ng;

with indices modulo n; see Fig. 2.9. Regular three-dimensional prisms and an-
tiprisms may be constructed as follows. Take two identical regular n-gons in the
plane. Translate one vertically out of the plane and, for the antiprism, rotate the
other by �=n in the plane. The vertical translation is continued until the nearest
neighbors between the two polygons have distance equal to the side length of the n-
gons. The three-dimensional solid determined by the points of these two n-gons has
symmetries generated by rotations and reflections. It may be expected that the graph,
whose vertices are not held rigidly in place by the solid and in fact are not actually
locations at all, will have other purely combinatorial automorphisms; however, we
will see later that the automorphisms of the prism and antiprism graphs are exactly
those which arise from the symmetries of the associated highly symmetric solid.

2.2.7 Platonic and Archimedean Graphs

The regular pyramids, prisms, and antiprisms each in general have two classes
of faces, the bases on the one hand and the side faces on the other. For small
cases, however, the side faces become indistinguishable from the bases, and new
symmetries occur. The regular triangular pyramid, the regular quadrilateral prism,
and the regular triangular antiprism become the regular tetrahedron, cube, and
octahedron, respectively. These solids are completely regular in the sense that
there is a symmetry between each pair of vertices, each pair of edges, and each
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Tetrahedron Octahedron Hexahedron

Dodecahedron Icosahedron

Fig. 2.10 Five platonic graphs: tetrahedron, octahedron, hexahedron (cube), dodecahedron, and
icosahedron

pair of faces. There are two other solids with this degree of symmetry, namely,
the dodecahedron and the icosahedron, and these five Platonic solids give us the
five Platonic graphs; see Fig. 2.10. If we require symmetry between each pair of
vertices but only require symmetry between pairs of regular polygonal faces of the
same type, then the resulting solids are the Archimedean solids and give rise to the
Archimedean graphs; see Fig. 2.11.

Platonic and Archimedean solids have a long and rich history and are well
studied [22].

2.2.8 Polyhedral Graphs

Directly using the 1-skeleton is only one way of generating a graph from a
polyhedron. More generally, we can consider the collection of all the vertices,
edges, and faces in the solid and consider the incidences between them. The
following example uses the cube graph to show how we can associate a graph to
any convex polyhedron. The cube has 8 vertices,

1; 2; 3; 4; 5; 6; 7; 8;

12 edges,

a; b; c; d; e; f; g; h; i; j; k; l;
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Fig. 2.11 Thirteen Archimedean graphs (The last one is shown in three different forms)
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Fig. 2.12 The incidence
graph of the cube as drawn by
VEGA

and 6 faces,
A; B; C; D; E; F:

Define a graph on 8C12C6 D 26 vertices with the property that two elements x and
y are adjacent in the graph if and only if they are incident on the cube. So each edge
is incident to two faces as well as its two endpoints, and each face is incident to the
vertices and edges on its boundary. In Fig. 2.12, the 12 vertices corresponding to the
edges of the cube are easily distinguished from the 8 vertices corresponding to the
vertices of the cube or the six corresponding to the faces of the cube by their valence:
Edge vertices have valence 4, vertex vertices have valence 6, and face vertices have
valence 8.

2.2.9 Generalized Petersen Graphs

All classes of graphs considered so far have arisen naturally from geometry or
illustrate relations so regularly that they really do not require the full generality
of graph theory. The next example, possibly the most celebrated graph, is a true
native to the subject. Clearly related to the simple prism graphs, it regularly appears
in statements of theorems in graph theory as an exceptional case. It is the Petersen
graph, GP.5; 2/; see Fig. 2.13 which gives the classic drawing of the Petersen graph,
the drawing which inspired the following generalization.

For a positive integer n � 3 and 0 < r < n=2, the generalized Petersen graph
GP.n; r/ has a vertex set fu1; : : : ; un; v1; : : : ; vng and edges of the form uivi , ui uiC1,
vi viCr for i 2 f1; : : : ; ng with indices modulo n, (i 2 Zn). In the diagrams, the
vertices ui form a cycle on the outside connected by the edges uivi to the vertices
vi arranged compatibly on the inside, where the n edges vi viCr form a pentagram in
the case of the classic Petersen graph and form one or several cycles in the general
case depending on whether r and n have a common divisor.
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Fig. 2.13 The Petersen graph
GP.5; 2/

Fig. 2.14 The Dürer graph
GP.6; 2/ obtained as the
skeleton of a truncated cube

All vertices in GP.n; r/ are of degree 3. The values of r are restricted to avoid,
in the case r 	 0 .mod n/, a vertex adjacent to itself or, for even n, the case
r 	 n=2 .mod n/ which would have the vertices vi having valence of only 2. The
other values of r , n=2 < r < n produce duplicates since viviCr D viCr vi D
viCrviCr�r D vi 0vi 0�r ; thus, we have that GP.n; r/ D GP.n; n � r/.

If r D 1, then GP.n; 1/ is the same as the prism graph ˘.n/, so n D 5 is the first
interesting case, and GP.5; 2/ is the only nonprism example. For n D 6, we also
have a single nonprism example, the so-called Dürer graph; see Fig. 2.14 which
gets its name from a solid, at first glance a truncated cube resting on one of the two
triangular faces which are produced when two antipodal corners of the cube have
been cut away. This mysterious solid appears in the famous medieval engraving
“Melancholia I” by the Nürnberg artist Albrecht Dürer.

Up until now, each of our graph examples could be distinguished from one
another by the numbers of vertices and edges. For the generalized Petersen graphs,
this is no longer the case. For fixed n, each graph GP.n; r/ has 2n vertices and 3n

edges, and each vertex is of valence 3. So the question arises as to whether they have
distinct graph structures. We say two graphs are isomorphic if there is a bijection
between the vertex sets which preserves the property of adjacency.

For each of n D 7 and n D 8, there are two generalized Petersen graphs on
our list; see Fig. 2.15. For GP.8; 2/, the interior figure is two 4-cycles, while for
GP.8; 3/, it is a single 8-cycle. Moreover, since we can easily check that GP.8; 3/

has no 4-cycles, GP.8; 2/ cannot be isomorphic to GP.8; 3/. For n D 7, both graphs
have several 7-cycles, and the situation is less obvious. It is not hard to show that
there is no isomorphism which sends the vertices of the outer 7-cycle of GP.7; 2/

to the outer cycle of GP.7; 3/, so let us consider an isomorphism which sends the
vertices of the outer 7-cycle of GP.7; 2/ to the inner 7-cycle of GP.7; 3/ and vice
versa.
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GP(7, 2) GP(7, 3) GP(8, 2) GP(8, 3)

Fig. 2.15 Generalized Petersen graphs GP.n; r/ for n D 7 and n D 8

We will consider the general case. Suppose that there is an isomorphism f

between GP.n; r/ and GP.n; s/:

GP.n; r/ D .fai ; bi j i 2 Zng; fai aiC1; ai bi ; bi biCr j i 2 Zng/
GP.n; s/ D .fci ; di j i 2 Zng; fciciC1; ci di ; didiCs j i 2 Zng/

which interchanges the inner and outer n-cycles. Without loss of generality, we may
say f .a0/ D d0. So, using the ring edges, f .a1/ D d˙s , say f .a1/ D ds , and then
inductively f .ai / D dis for all i , and using the spoke edges, f .bi / D cis for all i ,
and in particular f .biCr / D c.iCr/s and, since f is an isomorphism, cis and c.iCr/s

must be adjacent, so c.iCr/s D cis˙1. Thus, adjacency is preserved if and only if
rs 	 ˙1 .mod n/.

So, in particular, GP.7; 2/ is isomorphic to GP.7; 3/ by a ring-swapping isomor-
phism, and we write GP.7; 2/ Š GP.7; 3/.

For n D 9 and n D 10, there are three examples each of the generalized Petersen
graphs; see Fig. 2.16, and since 2 � 4 D 8 	 �1 .mod 9/, we have GP.9; 2/ Š
GP.9; 4/. In 2009, Staton and Steimle [93] proved the following result:

Theorem 2.1. For 2 � r; s � n � 2 with gcd.n; r/ D gcd.n; s/ D 1, the
generalized Petersen graphs GP.n; r/ and GP.n; s/ are isomorphic if and only if
either r 	 ˙s .mod n/ or r � s 	 ˙1 .mod n/.

So, in other words, the only way two generalized Petersen graphs with connected
inner rings can be isomorphic is either by an isomorphism which preserves the outer
ring or one which exchanges the inner and outer rings. For more details, see [9,75].

2.2.10 Cages

The next collection of examples may also be regarded as generalizations of the
Petersen graph. The Petersen graph has many 5-cycles, not simply the outer and
inner 5-cycles of the standard diagram. Moreover, it is easy to see that GP.5; 2/ has
no shorter cycles. There are smaller graphs than the Petersen graph with no 3-cycles



28 2 Graphs

GP(9, 2)

GP(10, 2) GP(10, 4)GP(10, 3)

GP(9, 3) GP(9, 4)

Fig. 2.16 More generalized Petersen graphs GP.n; r/

and no 4-cycles, but those also have few cycles of any kind since they are unions
of simple cycles, trees, etc., and they avoid multiple cycles by having low valence.
The Petersen graph, however, has many cycles since every vertex has valence 3. The
cages generalize this property.

The length of the shortest cycle in a graph is called the girth of the graph. The
girth of a graph without cycles, a tree or forest, is defined to be infinite, so the girth
of a simple graph is at least 3.

The girth depends only on the isomorphism class of the graph, that is, it is a graph
invariant. Computing the girth involves solving a nontrivial optimization problem.
For the example graphs presented so far, the complete graphs have girth three, and
the complete bipartite graphs have girth four (or infinity). It can be shown that the
graphs arising as the 1-skeleta of the three-dimensional polyhedra illustrated all have
girth equal to the number of edges in the smallest facial cycle, although this is not
true in general. The girth of GP.5; 2/, as remarked above, is 5.

A graph is said to be a g-cage if it is trivalent, has girth g, and there exists no
trivalent graph with girth g having fewer vertices. Note that the definition does not
preclude there being more than one cage of a particular size. The complete graph
K4 is the unique 3-cage, and the complete bipartite graph K3;3 is the only 4-cage.
The Petersen graph GP.5; 2/ is the only 5-cage.

The previous examples were defined by a predetermined structure, so we could
simply list examples. The g-cages are defined by the graph theoretic properties
which they must satisfy, so it is neither clear which graphs belong on the list nor,
given such a list, whether the graphs on the list do indeed belong on it. A complete
structure theorem for g-cages is unknown, although many examples have been
computed. At least we may establish a lower bound on the number of vertices a
g-cage must have:
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Fig. 2.17 A level 4 binary
tree with a root of valence 3

Theorem 2.2. A 2k cage must have at least 2kC1 � 2 vertices. A 2kC 1 cage must
have at least 3 � 2k � 2 vertices.

Proof. To establish a lower bound on the number of vertices of a g-cage, we start
with a single vertex, list its three neighbors, each of those has two neighbors, etc.
For the case g D 2k C 1 up to the k-level, each neighbor set gives rise to two new
unrecorded vertices, creating a binary tree whose root vertex is of valence 3; see
Fig. 2.17. Edges between vertices on the same level are only allowed on level k, so
we have at least 1C 3C 3 � 2C 3 � 4C � � � C 3 � 2k�1 vertices, yielding the desired
bound. For even girth, there is a similar construction; see Exercise 2.18. ut

It turns out that the 6-cage is the Heawood graph; see Chap. 5, Fig. 5.32. The
7-cage has 24 vertices and is depicted in Chap. 3, Fig. 3.35. The 8-cage is known
as the Cremona–Richmond graph; see Fig. 5.28; however, graph theorists prefer to
call it the Tutte 8-cage. We will learn more about the Heawood graph and the Tutte
8-cage later and the relationship of the former to projective planes and the latter to
the hexagrammum mysticum of Pascal.

It is interesting that the 9-cages were not found until quite recently. The search
for 9-cages involved a lot of computer checking, and the result came as a surprise.
There are 18 nonisomorphic 9-cages. All smaller cages have regular structure and
are unique. However, the 9-cages do not show any apparent structure; they are
computed in [13].

Balaban found one of the three 10-cages which is shown in Fig. 2.18. It is perhaps
of interest to note that the 10-cages were known, see [76], before all the 9-cages
were computed. The reason is simply that the gap between the easily proven lower
bound and the actual size of the cage is larger for the 9-cage than for the 10-cage.
By Theorem 2.2, there is no trivalent graph of girth 9 on fewer than 46 vertices and
there is no such graph of girth 10 on fewer than 62 vertices. Since the 9-cage has
58 vertices [13] and the 10-cage has 70 vertices, the respective gaps are 12 for the
9-cage and only 8 for the 10-cage. For a survey on cages, see [108] where Wong
states an interesting conjecture.

Conjecture 2.3. Every g-cage with g even is bipartite.
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Fig. 2.18 Balaban’s 10-cage

Fig. 2.19 A plane and a
nonplane embedding of K4

2.2.11 Planar Graphs

A graph that can be drawn in the plane so that edges intersect only at vertices is
called planar. By a drawing of a graph G, we mean a representation of G in the
plane such that vertices are represented by distinct points in the plane and edges
by (curved) line segments connecting their endpoints. We will be more precise in
Sect. 2.6.6. A drawing without edge crossings is called a plane embedding of the
graph. Clearly, any tree can be drawn without edge crossings. Let G be a connected
planar graph and consider a plane embedding of it. Such a drawing subdivides the
plane into regions, one of which is unbounded. To avoid this special case, it is better
to consider an embedding into the sphere, in which case we call the regions the faces
of G. For example, in the plane embedding of K4 in Fig. 2.19, we count four faces,
namely, three triangles and the infinite outer face. Often, when we have a plane
embedding of a graph and we count faces, we are implicitly regarding the plane as
part of a large sphere and the exterior region then counts as one face.
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Given a connected planar graph G on n vertices, together with a plane (sphere)
embedding, choose a spanning tree T in G. T has n � 1 edges. The plane drawing
of T , induced by the plane drawing of G, has only one face. Inserting an additional
edge of E.G/�E.T / will divide this region into two. Inductively, we get one more
face by inserting an additional edge. We started out with n vertices, n � 1 edges,
and 1 face. We add e � .n � 1/ edges to get f faces, so e � .n � 1/ D f � 1 or
n � e C f D 2. The alternating sum n � e C f is called the Euler characteristic.
It is a property of the surface in which the graph is embedded, and we say that the
Euler characteristic of the sphere equals 2.

2.3 Regularity

2.3.1 Regular Graphs

Cycles, complete graphs, prisms, and antiprisms are all examples of regular graphs.
A graph is k-regular or k-valent if all of its vertices have valence k. Cycles are
2-valent, and, conversely, 2-valent graphs are collections of disjoint cycles. Even
graphs which are 1-valent graphs are not without interest. A 1-valent graph is a
disconnected set of edges. One way of studying a large graph is to partition the
edge set into spanning 1-valent graphs, called 1-factors. A spanning subgraph which
is k-valent is called a k-factor. By contrast to the simple structure of 1-valent
and 2-valent graphs, 3-valent graphs exist in much greater variety. Please note the
important difference between the way the word “regular” is used in the contexts
of geometry and graph theory. In geometry, a regular figure has a high degree of
symmetry. The regular examples we have seen so far are irregular in the sense of
being atypical. A regular graph typically has no symmetry at all; see Fig. 2.20 in
which the outside 12-cycle has been rather haphazardly connected to interior cycles
of various sizes.

Fig. 2.20 A 3-regular but
asymmetric graph
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110Fig. 2.21 LCF code:
Œ�5; 2; 4; �2; �5; 4; �4; 5; 2; �4; �2; 5�

2.3.2 Cubic Graphs and LCF Notation

Three-valent graphs are also called cubic. Recall that a graph is Hamiltonian if it
has a spanning cycle. If a cubic graph is Hamiltonian, we can draw it as a jV j-cycle
with inserted chords, which leads to a convenient notation, the LCF notation, named
for developers Lederberg, Coxeter, and Frucht. See [20, 33].

Given the Hamilton cycle, all we have to do to specify the graph is to list the
lengths of chords measured in jumps when we traverse the vertices along the Hamil-
ton cycle. Such a list is called the LCF notation. For instance, K4 can be described
by Œ2; 2; 2; 2�. K3;3 is Œ3; 3; 3; 3; 3; 3�, and the cube Q3 is Œ3; 5; 3; 5; 3; 5; 3; 5� or
Œ3;�3; 3;�3; 3;�3; 3;�3� if we let a negative jump denote a chord measured in the
opposite direction. We can also use exponent notation in order to shorten repeated
subsequences. Here is an equivalent shorthand notation for the above examples:
LCF.K4/ D Œ24�; LCF.K3;3/ D Œ36�; LCF.Q3/ D Œ.3;�3/4�.

Example 2.4. The graph G with

LCF.G/ D Œ�5; 2; 4;�2;�5; 4;�4; 5; 2;�4;�2; 5�

is depicted in Fig. 2.21.

2.3.3 Regularity and Bipartite Graphs

In Sect. 2.2.3, we examined the complete bipartite graphs. In general, a graph
G D .V; E/ is bipartite if V can be partitioned into two nonempty sets V1 and V2

such that each edge has one of its endvertices in V1, the other in V2. Note that if G

is connected and bipartite, the bipartition of the vertex set is uniquely determined,
namely, two vertices are in the same set of the bipartition if and only if their distance
in G is even. For disconnected graphs, bipartiteness clearly implies bipartiteness of
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a bFig. 2.22 Bipartite graphs
with black and white
bipartition

each of its connected components. There are several standard ways to indicate in a
diagram that a graph is bipartite, for example, to arrange the vertex sets V1 and V2

on two different lines; see Fig. 2.22b. Except for very small graphs, a better method
to indicate the bipartition is to color the vertices, say, black and white. It is easy to
visually check if every edge has one black and one white endpoint; see, for example,
Fig. 2.22a.

We have already seen that the incidences of a configuration can be encoded as
a graph, see Fig. 1.12, and in this graph, the points and the lines form a vertex
partition, so naturally bipartite graphs are of particular interest, and in particular
regular bipartite graphs.

If every vertex of the bipartite graph G D .V1 [ V2; E/ has valence k, then
kjV1j D kjV2j, so unless k D 0, we have jV1j D jV2j, i.e. V must be partitioned
into two sets of equal cardinality. In particular, jV j must be even. For k D 1,
we get a set of mutually nonincident edges. The following graph theoretic result
was first formulated and proved in terms of configurations by Steinitz in his Ph.D.
dissertation, [94].

Theorem 2.5. Every k-valent bipartite graph G can be written as the edge disjoint
union of k 1-factors.

Proof. We use induction on k. For k D 1, there is nothing to show. We assume
k > 1 and want to show that a k-valent bipartite graph G contains a 1-factor F . We
then use the induction hypothesis on G � F to obtain the desired decomposition of
the edge set.

To construct a 1-factor, select mutually nonincident edges until every edge not
yet selected is incident with at least one of the edges selected so far. Let us call
this maximal set of mutually nonincident edges M . If M is not spanning, let v be
a vertex not covered by M and consider the set A of all paths starting at v, then
using an edge of M , an edge not in M , then an edge in M , etc. We can find a set of
mutually nonincident edges which is of larger cardinality than M if there is at least
one path in A that ends at another uncovered vertex u by removing from M all edges
of M on this u � v-path and adding its edges not in M . If A does not contain such



34 2 Graphs

w1 w2 w3 w4

b1 b2 b3 b4

Fig. 2.23 The graph from
Example 2.6

a path, then the subgraph of G induced by A, I.A/, has only one vertex, namely,
u, which is not covered by M . Thus, the vertices of I.A/ in the same bipartition
as u have valence k, and there is one vertex fewer in the other bipartition class, a
contradiction. ut

This theorem enables us to encode regular bipartite graphs on 2n vertices by k

permutations of the set f1; 2; : : : ; ng. Given n black vertices B D fb1; : : : ; bng and
n white vertices, W D fw1; : : : ; wng and a k-regular graph on these 2n vertices
with a bipartition respecting the colors. Suppose the edges are decomposed into
k 1-factors. For each 1-factor, let the black endpoints adjacent to w1; : : : ; wn be
bi1 ; : : : ; bin respectively, then set the permutation of 1; : : : ; n corresponding to the
1-factor to be i1; : : : ; in.

Example 2.6. Suppose we have the simple 8-cycle of Fig. 2.23 with vertex set
fw1; w2; w3; w4; b1; b2; b3; b4g and edge set

f.w1; b1/; .b1; w2/; .w2; b4/; .b4; w4/; .w4; b2/; .b2; w3/; .w3; b3/; .b3; w1/g:
There is a unique partition of the edges into two 1-factors:

f.w1; b1/; .w2; b4/; .w3; b3/; .w4; b2/g [ f.b3; w1/; .b1; w2/; .b2; w3/; .b4; w4/g
and the two permutations

1 4 3 2

3 1 2 4

encode the graph. If we wish to augment the 8-cycle to a 3-valent bipartite graph, we
need to add another 1-factor. Not any one factor will do, however, since many will
correspond to sets of edges some of which we already have. The permutations we
can allow must not have the same value in the i th position as either of the previous
two; in other words, if we add the permutation as a row in the array above, there
must be distinct elements in each column. So,

1 4 3 2

3 1 2 4

2 3 4 1

4 2 1 3

would be one way to complete the example to a complete bipartite graph.

In general, k permutations on n symbols give rise to a k-valent bipartite (simple)
graph, provided that distinct permutations move a symbol to distinct symbols.
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2.3.4 Semiregular Bipartite Graphs

If we want to relax the condition of regularity to allow unequal bipartition, we can
at least require that all vertices of the same color have the same valence. In this
case, we call the bipartite graph semiregular. We write G D .V1 [ V2I k1; k2/

to indicate bipartition and vertex valences. Prescribing the size of the bipartition
imposes restrictions on the values of k1 and k2. Certainly, if G is simple, the k1

and k2 are bounded by jV2j and jV1j respectively. Moreover, a semiregular bipartite
graph G D .V1 [ V2I k1; k2/ must satisfy

jV1jk1 D jV2jk2:

Given jV1j and jV2j, we might ask for all possible values of k1 and k2 so that
a semiregular bipartite G D .V1 [ V2I k1; k2/ exists. jV1j D 5 and jV2j D 3, for
example, allow the only possible solution k1 D 3 and k2 D 5, yielding the complete
bipartite graph K3;5 as the unique connected structure satisfying the requirements.

Given k1 and k2, we may ask for the smallest vertex set on which there is a
semiregular bipartite graph with the prescribed regularity. Again, we get as a unique
answer the complete bipartite graph.

It is not difficult to show, see Exercise 2.32, that the obvious necessary conditions
on the parameters, namely, jV1jk1 D jV2jk2, k1 � jV2j and k2 � jV1j, are
also sufficient for the existence of a simple semiregular bipartite graph G D
.V1 [ V2I k1; k2/.

The situation for constructibility changes drastically if we add as extra require-
ment that G must have girth larger than 4. This is not an arbitrary condition. A
quadrilateral in the incidence graph corresponds to two distinct lines having two
distinct points in common.

To construct a graph G D .V1 [ V2I k1; k2/ of girth larger than 4, we need to
insure that all k1 neighbors of a vertex in jV1j have disjoint sets of k2�1 neighbors in
jV1j, and we get the necessary condition jV1j � 1Ck1.k2�1/. By symmetry, we have
the corresponding requirement on the size of jV2j, namely, jV2j � 1C k2.k1 � 1/.
Unfortunately, these obvious necessary conditions are not sufficient to ensure the
existence of G. According to Gropp [38], there does not exist any 5-valent bipartite
graph on 44 vertices of girth larger than 6. The smallest parameter set satisfying the
necessary conditions, but for which the existence of a bipartite semiregular graph
is not known, is jV1j D 30, jV2j D 20, k1 D 4, k2 D 6. [38] gives several more
examples.

2.3.5 Permutations

We have seen how permutations are useful to construct regular bipartite graphs,
so we would like to recall a few facts about them. A permutation on the set V

is a bijection p of V onto itself, p W V ! V . The set of all permutations on V
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is denoted by Sym.V /. Usually, we consider permutations of the “standard set”
V D f1; 2; : : : ; ng. In this case, we write Sym.V / D Sym.n/ D Sn and call it the
symmetric group.

Example 2.7. Each row of the configuration table of the Pappus configuration, see
Fig. 1.9, is a permutation of the nine points:

1 2 3 4 5 6 7 8 9

8 7 2 1 6 9 3 4 5

6 1 8 9 7 3 4 5 2

The i th column gives the images of vertex i under the three permutations. Since the
images are distinct, the three rows define three 1-factors of a regular bipartite graph
which is, in fact, the incidence graph of the Pappus configuration.

Since a permutation maps V onto itself, it may be composed with itself, and
listing the successive images of elements in cyclic order gives us the cycle notation
for a permutation:

a1 D .1/.2/.3/.4/.5/.6/.7/.8/.9/

a2 D .184/.273/.569/

a3 D .163857492/

A permutation, such as a3, which consists of a single cycle is called cyclic per-
mutation. Permutation a2 has all cycles of the same length, and such a permutation
is called polycyclic or semiregular. Permutation a1, the identity permutation, is
polycyclic in the trivial sense that all cycles are of length 1. Each of its cycles
specifies element x for which a.x/ D x called a fixed point of the permutation.
Let Fix.p/ denote Fix.p/ D fx 2 V jp.x/ D xg and let fix.p/ D jFix.p/j: Hence,
fix.a1/ D 9; fix.a2/ D fix.a3/ D 0: A fixed-point free permutation is also called a
derangement. The set of derangements over V is denoted by Der.V /: If seen as a
subset of Sn, it is denoted by Der.n/:

A permutation whose longest cycle has length 2 is called an involution. If, in
addition, it has no fixed points, it is called a fixed-point free involution. The order
of the permutation p 2 Sym.n/ is the least integer k, such that pk is identity. The
number n is called the degree of permutation p.

Each permutation can be depicted in graphic form with each element x 2 V

represented by a vertex and with vertices x and p.x/ adjacent. Such a graph does
not encode the directions of the cycles, so it is more common to draw an arrow from
x to p.x/. This is a directed graph. The graph so drawn is not in general a simple
graph. Any fixed point will give an element adjacent to itself, and every cycle of
length two will give two vertices joined by two arrows, one in each direction. See
Fig. 2.24. The connected components of the graph of the permutation are called
orbits.



2.3 Regularity 37

a1 a2 a3

Fig. 2.24 Permutations a1; a2; a3

2.3.6 Directed Graphs and Multigraphs

A graph which allows for loops and multiple edges is often called a multigraph.
In order to accomplish a mathematical description of multigraphs, we consider two
disjoint sets V and E , the vertex set, and the edge set, as well as a function that
assigns each edge e 2 E a subset of V consisting of at least one and most two
vertices which are, as before, called the endvertices of e. A loop is an edge whose
image set has a single element, and two edges assigned to the same set are said to
be parallel. If a direction is required, each edge is assigned an ordered pair of two
vertices.

Let S � V � E denote the collection of vertex–edge incident pairs. We have
s 2 S if and only if s D .v; e/ and e is an edge one of whose end-vertices is v. S is
called the set of semiedges or arcs.

The most general definition that we will use defines a graph G as a quadruple
.V; S; i; r/ such that V and S are sets, i is a map i W S ! V that assigns each arc
s 2 S its end-vertex i.s/ 2 V , and r W S ! S is an involution r2 D 1 mapping
each arc to its opposite arc. In this model, the set of edges E is given as the set
of orbits of r . If r is allowed to have fixed points, the corresponding orbits have a
single element and the corresponding edge is called a half-edge. Structures with half
edges are sometimes called pregraphs.

If not clear from the context, for any graph X , we will use the sets V.X/,
E.X/, S.X/, the adjacency relation �X , the mapping iX , and the involution rX .
Note that our definition of graph isomorphism was only given for simple graphs. In
Exercise 2.50, we discuss this notion for general graphs.
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2.4 Operations on Graphs

We shall now describe several operations on graphs that can be used to generate
new, large graphs from old, simple ones.

For the following list of operations, the reader is encouraged to take pencil and
paper and produce several drawings combining examples from Sect. 2.2.

2.4.1 Graph Complement

The graph complement Y D X c has V.Y / D V.X/ and x � y in Y if an only if x

is not adjacent to y in X .

2.4.2 Graph Union

We define the graph union X [ Y as the disjoint union of two graphs. So the
vertex set is the disjoint union of V.X/ and V.Y /, and two vertices are adjacent
if they are adjacent in X or adjacent in Y . Even if X and Y are connected, X [ Y

is disconnected, having X and Y as connected components. On the other hand, a
connected graph cannot be written as the graph union of any proper subgraphs.

If two graphs are isomorphic, we write 2X for X [ X , 3X for X [ X [ X , etc.

2.4.3 Graph Join, Cone, and Suspension

The graph join X 
 Y of graphs X and Y can be defined in terms of graph union
and graph complement:

X 
 Y D .X c [ Y c/c:

Joining X to a single vertex, the apex, is called coning. We denote by C.X/ the cone
over X . This operation generalizes to a k-fold cone C .k/.X/ in which k new vertices
are introduced. A twofold cone is known as suspension. Finally, Km;n D Kc

m 
Kc
n:

(see Exercise 2.63.)

2.4.4 One-Point Union and Connectivity

Given a graph X with vertex u and graph Y with vertex v, the one-point union of
X and Y with respect to u and v, X [u;v Y , is obtained from the disjoint union by
identifying the vertices u and v. So G D X[u;v Y then jV.G/j D jV.X/jCjV.Y /j�
1. Every path in X [u;v Y from a vertex in X to a vertex in Y must pass through the
identified vertex. It is a cut vertex.
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Q1 Q2 Q3 Q4

Fig. 2.25 Small hypercube graphs QnI n D 1; 2; 3; 4

If a graph G cannot be written as a disjoint union of subgraphs nor as a one-point
union of subgraphs, it is said to be 2-connected, and between any pair of vertices,
there must be two internally disjoint paths.

In general, a graph is called n-connected if it contains n internally disjoint paths
between any pair of its vertices. The connectivity of a graph X is the largest k for
which X is k-connected. Connectivity is a graph invariant. The connectivity of Cn,
for example, is 2, Pn has connectivity 1, while Kn has connectivity n� 1. Note that
in an n-connected graph, every vertex must have valence at least n.

2.4.5 Cartesian Product

Let X and Y be any two simple graphs. The Cartesian product, X�Y , has vertex
set

V.X�Y / D V.X/ � V.Y /:

Vertices .x; y/ and .x0; y0/ from V.X�Y / are adjacent if and only if either x D x0
and y � y0 or x � x0 and y D y0.

Clearly, C4 D K2�K2 and the hexahedron or cube Q3 is the threefold Cartesian
product of K2 with itself, i.e., Q3 D C4�K2.

The prism …n, for example, can be expressed as the Cartesian product of a cycle
of length n and the complete graph on 2 vertices, …n D Cn�K2.

Since � is associative (see Exercise 2.57), we can consider the Cartesian product
of several factors. Taking n factors equal to K2, we obtain the hypercube graph Qn.
Qn D K2�K2� � � ��K2. Small hypercube graphs are depicted in Fig. 2.25. Note
that Q2 is used as the symbol � to denote the Cartesian product.

In Exercise 2.58, an alternate definition of Qn is given.
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2.4.6 Tensor Product

Let X and Y be any two simple graphs. The tensor product X � Y has vertex set

V.X � Y / D V.X/ � V.Y /:

Vertices .x; y/ and .x0; y0/ from V.X � Y / are adjacent if and only if x � x0 and
y � y0: The tensor product of two K2’s is the disjoint union of two edges and is
used as symbol � for the tensor product.

2.4.7 Strong Product

Let X and Y be any two simple graphs. The strong product X � Y has the vertex
set

V.X � Y / D V.X/ � V.Y /:

Vertices .x; y/ and .x0; y0/ from V.X � Y / are adjacent if and only if either x � x0
and y � y0 or x D x0 and y � y0 or x � x0 and y D y0: Again, the strong product
of two K2’s is used as multiplication symbol.

2.4.8 Line Graph

For any simple graph X , let L.X/ denote the graph whose vertex set V.L.X// is
E.X/ and two vertices e and e0 from V.L.X// are adjacent if and only if e and e0
are incident (as edges of X ) with a common vertex of X . The line graph of K4, for
example, is the octahedron graph.

2.4.9 Subdivision Graph

The subdivision graph S.X/ has V.S.X// D V.X/[E.X/, and two vertices x and
e of S.X/ are adjacent if and only if x 2 V.X/ and e 2 E.X/ and x is incident to
e in X . A drawing of the subdivision graph is obtained from a drawing of the graph
by inserting one new vertex in the interior of each edge.

2.4.10 Graph Square

For a given graph X , its square X2 is a graph on the same vertex set with two
vertices adjacent if and only if they are at distance at most 2 in X . Each vertex in
X2 is contained in a clique of size degX .v/C 1.

The pure square X2 � E.X/ is a graph on the same vertex set as X , with two
vertices adjacent if and only if they are at distance 2 in X .
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2.5 Graph Colorings

2.5.1 Vertex Colorings

A mapping c from V.X/ to any finite set of colors C is called a vertex coloring
if no two adjacent vertices are assigned the same color of C . The smallest number
of colors needed for a (proper) vertex coloring of a graph G is called a chromatic
number of a graph and is denoted by �.G/:

Example 2.8. It is not hard to see that the chromatic number of a cycle Cn is 2 if n

is even and 3 if n is odd.

Example 2.9. Clearly, the chromatic number of the tetrahedron graph is 4. Since
the octahedron graph is K2;2;2, its chromatic number is 3. The cube is bipartite;
therefore, it has a chromatic number equal to 2. Since the dodecahedron graph
contains an odd cycle, its chromatic number is at least 3. It is not hard to find a
proper 3-coloring of GP.10; 2/: We leave the determination of the chromatic number
of the icosahedron to the exercises.

The study of colorings of graphs constitutes an important branch of graph theory.
The problem of determining the exact upper bound on the chromatic number of
planar graphs was an outstanding open problem in graph theory for over a 100 years
until it was solved by the aid of a computer in 1976 by Appel and Haken [1], yielding
the four color theorem. Clearly, colorings of graphs have played an important role
in the development of topological graph theory.

Theorem 2.10 (Brooks). Let G be a connected graph. The chromatic number of G

is less than or equal to the maximum valence of any vertex in G unless G is complete
or an odd cycle.

Proof. Let �.G/ denote the maximum valence of any vertex in G. If � � 2 then
G is K2, a path or a cycle, and we know that paths and even cycles are bipartite.
We now assume � � 3 and proceed by induction on the number of vertices of G.
Clearly, a graph on 4 vertices which is not complete is 3-colorable. Let G be a graph
on more than 4 vertices and �.G/ � 3. For any vertex v in G, note that G � v has
maximum valence at most � and cannot have K�C1 as a component; hence, G � v
is �-colorable by the induction hypothesis. If v is a vertex of valence less than �,
then any � coloring of the components of G � v easily extends to a �-coloring of
G. So if G is not �-colorable, every vertex of G must have valence �. Moreover, in
every �-coloring of G�v, all colors are used coloring the neighbors of v; otherwise,
we could extend the coloring to G using the missing color. Fix a coloring of G � v
that does not extend to G and consider the subgraph Xi;j induced by the vertices
colored with color i or color j . The two neighbors of v colored i and j must be
in the same component X 0

i;j of Xi;j because, otherwise, we could interchange the
roles of i and j in one of these components to obtain a �-coloring of G � v where
two neighbors of v have the same color. Consider now a path in X 0

i;j connecting two
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neighbors of v. Let u be the closest to v along this path so that u has valence larger
than 2 in X 0

i;j . Then u can be recolored, but this recoloring disconnects the Xi;j so
that the neighbors of v are in different parts, contradicting our earlier observation.
Therefore, X 0

i;j is simply a path. In two such paths, X 0
i;j and X 0

i;k , i ¤ j ¤ k

can only intersect in an endpoint, namely, the neighbor of v with color i , since any
interior intersection point could be recolored leading as before to disconnect X 0

i;j . If
all neighbors of v are pairwise adjacent, G is complete and there is nothing to show,
so assume without loss of generality that given a �-coloring of G�v, the neighbors
of v colored i and j are not adjacent so that X 0

i;j D vi u:::vj is a path of length at
least 3. We now change colors i and k on the path X 0

i;k. In this new coloring, the
vertex u is both on X 0

i;j and on X 0
j;k contradicting the established fact that these

paths only intersect at their endpoint vj . ut
In Example 2.2.8, we obtained a graph together with a vertex coloring from a

geometric object. Conversely, we will see in Chap. 5 that a graph together with a
proper vertex coloring with k colors is sufficient to describe a geometric object,
specifically a rank k incidence structure.

2.5.2 Edge Colorings

A mapping c W E.G/! C from the edge set E.G/ to some finite set C is called an
(admissible or proper) edge coloring if for any two incident edges g and f we have
c.g/ ¤ c.f /. The least number of colors needed to properly color the edges of g is
called the chromatic index and is denoted by �0.G/.

Clearly, the maximum valence � is a lower bound for the chromatic index. Any
edge coloring problem can be translated into a vertex coloring problem on L.G/; the
line graph of G and Brooks’ Theorem 2.10 provides an upper bound by observing
that �.L.G// � 2�.G/�2. However, this bound is not tight; in fact, the difference
between upper and lower bound in terms of � is surprisingly small.

Theorem 2.11 (Vizing). The chromatic index of a simple graph G satisfies the
following inequalities:

�.G/ � �0.G/ � �.G/C 1:

Proof. The first inequality is trivial, so the second one is the only thing we have to
prove. We use induction on the number of edges. Consider a graph G with maximum
degree �. If G has fewer than � edges, there is nothing to show. Assume that, by
induction hypothesis, G�e has a �C1-coloring for every edge e, but none of these
colorings can be extended to a coloring of G.

Consider an edge e D vw0 and fix a �C 1-coloring c0 of G0 D G � vw0. Since
the maximum degree of any vertex is � and c0 is a �C 1-coloring, there is at least
one color missing at every vertex. If the same color is missing from both v and w0,
we are done. Let ˛ be the color missing at v with respect to c0 and ˇ the color
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missing at w0. So there is an edge of color ˇ incident with v. We call a path whose
edges are alternately colored ˛ and ˇ an ˛�ˇ-path and observe that any ˛�ˇ-path
starting at w0 must end in v; otherwise, we could exchange ˛ and ˇ along this path
and extend c0 to a coloring of G by coloring vw0 with ˛ after that switch.

Now choose a maximal sequence w0; w1; : : : ; wk of distinct neighbors of v such
that the color of the edge xwi is missing at wi�1. For each of the graphs Gi D
G � vwi , we define a coloring ci derived from ci�1 by coloring the edge v; wi�1,
which does not exist in Gi�1, by the color of vwi in ci�1. All these colorings differ
only in edges incident to v, but the set of colors used for edges incident to v is the
same for all these colorings.

Let ˇ be a color missing at wk with respect to the coloring c0 (and subsequently
with respect to ck). By the maximality of k, there is an index i 2 f1; : : : ; kg such
that c0.vwi / D ˇ. An ˛ � ˇ-path, P , from wk with respect to ck must end in v; in
fact, it must end with the edge vwi�1. With respect to the coloring, c0 ˇ is missing
at wi�1. Let P 0 be an ˛ � ˇ-path with respect to ci�1 starting at wi�1 in Gi�1. P

and P 0 are identical except for edges incident to v, so P 0 contains wk . Since there is
no ˇ edge at wk with respect to ci�1, P 0 ends in wk , contradicting the assumption
that ci�1 cannot be extended to G. ut

2.6 From Geometry to Graphs and Back

There are numerous paths leading from geometry to graphs and back. We have
already met the skeleta of polyhedra as a rich source of interesting graphs. Here,
we mention some more of such interesting connections. But first, let us recall
the concept of metric space. This structure lies somewhere between geometry and
topology. It captures those properties of usual Euclidean space that measure distance
between any two points in space.

2.6.1 Metric Space and Distance Function

A set M together with a function d W M �M ! R is called a metric space if the
following are true:

1. d.x; y/ � 0 for any two points x; y 2M , and d.x; y/ D 0 if and only if x D y:

2. d.x; y/ D d.y; x/ for any two points x; y 2 M .
3. (Triangle inequality) d.x; y/ � d.x; z/Cd.z; y/ for any three points x; y; z 2M .

The function d is called the distance function of M .

Example 2.12. The Euclidean plane, R2 D f.x; y/jx; y 2 Rg, is a metric space for
d..x; y/; .x0; y0// D p.x � x0/2 C .y � y0/2
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Given a metric space, we define a closed ball B.x; r/ with center x 2 M and
radius r > 0 as follows:

B.x; r/ D fy 2 M jd.x; y/ � rg:

2.6.2 Distances in Graphs

In a connected graph G, we define the distance dG.u; v/ between vertices u; v 2
V.G/ to be the length of the shortest path between u and v. Clearly, dG defines a
metric space on the vertex set V.G/: This metric space is usually described by the
distance matrix D.G/ with entry Di;j D dG.vi ; vj / for a given ordering v1; v2; :::; vn

of the vertices of G: For an arbitrary vertex v 2 V.G/, we define the distance
sequence dG;v D .1; d1; d2; : : :/ where dk denotes the number of vertices at distance
k from v. Usually, we only consider dk > 0:

Example 2.13. Prism graphs are but one example of graphs in which every vertex
has the same distance sequence because for any pair of vertices u and v, there is an
automorphism mapping u to v. For instance, for ˘3, we have d.˘3;v/ D .1; 3; 2/:

Similarly, we get d.˘4;v/ D .1; 3; 3; 1/; d.˘5;v/ D .1; 3; 4; 2/:

2.6.3 Intersection Graphs

Given a family of sets B D fB1; B2; : : : ; Bng, we may define its intersection graph.
The vertex set is B, and two vertices are adjacent if and only if the corresponding sets
have nonempty intersection. We note that there is a variation to this construction,
namely, we may construct a general graph by putting jBi \ Bj j edges between Bi

and Bj .

Example 2.14. Consider the following seven sets in the plane: the three sides of a
regular triangle, the three heights, and the inscribed circle. It is not hard to see that
the corresponding intersection graph is K7.

Intersection graphs are universal in the sense that any graph can be represented
as an intersection graph. However, by selecting various geometric objects as sets,
we get interesting families of graphs. For instance, the so-called interval graphs are
intersection graphs of finite families of line segments in the R

1 line.

2.6.4 Intersection Graphs of a Family of Balls

Given a set of n points V D fv1; v2; : : : ; vng in some metric space and a positive
number r > 0, we may draw n closed balls Bi WD B.vi ; r/; i D 1; 2; : : : ; n, each
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a b

Fig. 2.26 The grid graph Gr.3; 5/ D P3�P5 and P3 � P5 as unit sphere graphs

ball Bi centered at vi and having radius r . Define a graph G.V; r/ as follows: The
vertices are the n selected points. Two vertices vi and vj are adjacent if and only if
the corresponding balls intersect, i.e., if Bi \ Bj ¤ ;. The radius r will be called
the unit and the graph a unit sphere graph.

Here are some specific examples:

Example 2.15. Let us select the following points in the Euclidean plane: .x; y/,
x 2 f1; 2; : : : ; ag, y 2 f1; 2; : : : ; bg. Hence, n D ab. Let r D 0:5. The unit sphere
graph is the well-known a � b grid graph Gr.a; b/, which we can simply describe
as the Cartesian product of the paths Pa and Pb . Figure 2.26a shows the case for
a D 3 and b D 5. If r is increased, there is no change in the structure of the graph
until r D p2=2, when the diagonals of the 4-cycles appear; see Fig. 2.26b.

It would be interesting and useful to characterize the unit sphere graphs in R
2

and R
3. For instance, all platonic graphs arise as unit sphere graphs in R

3. One has
to take the vertices of the corresponding platonic solid and radius r to be one half
of the edge length.

Example 2.16. In order to obtain the cube graph Q3, one can take

V D f.0; 0; 0/; .0; 0; 1/; .0; 1; 0/; .0; 1; 1/; .1; 0; 0/; .1; 0; 1/; .1; 1; 0/; .1; 1; 1/g

and r D 1=2.
This example shows that the cube graph can be described by a careful choice

of 8 points in some metric space. There is another approach to this construction. It
involves convex sets.

2.6.5 Convex Sets

A set of points K � R
3 is convex, if for any two points x; y 2 K , every point z on

the line segment from x to y belongs to K . For any set S � R
3, we can find the

smallest convex set S � conv .S/ � R
3, called the convex closure or convex hull

of S .
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Example 2.17. The convex closure of the set

V D f.0; 0; 0/; .0; 0; 1/; .0; 1; 0/; .0; 1; 1/; .1; 0; 0/; .1; 0; 1/; .1; 1; 0/; .1; 1; 1/g

is a cube.

This gives us another general mechanism for constructing graphs from simple
geometric objects:

Finite set S ! conv .S/! skeleton

Starting with a finite set of points in R
3, its convex closure is a convex polyhedron

whose 1-skeleton is a graph.
The intersection graph of the seven projective lines Bi of the Fano configuration,

see Sect. 1.1.1 of Chap. 1, is K7 and does not capture the whole combinatorial
structure of the configuration. Taking in addition to the sets Bi also all the sets
Ci;j D Bi \ Bj that are not empty, the resulting intersection graph captures all the
combinatorial structure of the Fano plane. Deleting all edges Bi Bj yields a cubic
bipartite graph on 14 vertices still containing all combinatorial information about
the Fano configuration. The vertices labeled C may be considered the vertices of
the configuration, while the B’s are the lines. Edges of the graph indicate what
point is on what line or which line goes through which point.

2.6.6 Representations and Drawings of Graphs

Let G be a graph and let S be a set, and let P.S/ denote the power set of S , that is,
the set of all subsets of S . A pair of mappings

�V W V.G/! S; �E W E.G/! P.S/

is called a graph representation or an S -representation of the graph G if �V .v/ 2
�E.e/ provided v is incident with e. If there is no fear for confusion, we omit the
subscripts of � since the argument determines which mapping is considered. We
only consider representations for which no pair of vertices is mapped to the same
element of S .

Sometimes, we only specify �V and have no need for �E . In such a case, we may
tacitly assume that for each e D uv 2 E.G/, we have �E.uv/ WD f�V .u/; �V .v/g:

If S is a vector space, the representation is called a vector representation. If S

is a metric space, the representation is called a metric representation. In a metric
representation, we define the length of each edge e D uv relative to representation
� as jjejj� D d.�.u/; �.v// > 0. In a simple graph G, the length of each edge is
strictly positive.
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Fig. 2.27 Each generalized
Petersen graph is a unit
distance graph. In particular,
this is true for the Dürer
graph GP.6; 2/

S DR
n is of particular importance to us because real n-space is both a metric and

a vector space. An R
2 representation is called planar and an R

3 representation is
called spacial representation. In both cases, we define �E.uv/ WD conv.�.u/; �.v//:

Each edge is therefore represented as the line segment connecting the two repre-
sented vertices. Such a representation is called graph drawing.

Each figure depicting a graph in this book has now a formal description as a
graph drawing defined above. We have to define when two drawings are equal
(or equivalent). Obviously, we may consider two drawings that differ by an isometry
equivalent. But we may also neglect the difference in scale. This means, for instance,
we can always set the barycenter to be the origin and set the shortest edge length
to be 1 to obtain a “standard” drawing. We define the energy of a drawing to be the
sum of the lengths of all line segments representing the edges.

The dilation coefficient is the quotient between the longest and shortest edge of
the drawing.

Graph drawings with dilation coefficient 1 are known as unit distance graphs.

2.6.7 Generalized Petersen Graphs as Unit Distance Graphs

All generalized Petersen graphs GP.n; k/ can be drawn in the plane as unit distance
graphs. We embed the outer rim as a regular polygon with side length 1. We also
embed the inner rim as a collection of star polygons of side length 1. If k D 1, the
inner polygon is congruent with the outer polygon. Translating one polygon by a
unit vector yields the appropriate coordinates for the representation. Note that every
prism graph ˘n can be drawn in the plane as a unit distance graph. If k ¤ 1, the
radius of the inner rim is different from the radius of the outer rim. This means that if
the radii differ by less than 1, we can rotate the inner rim so that the distance between
the two adjacent vertices along a spoke becomes 1. The vertices of the outer rim are
given the coordinates �.vi / D .R cos.i�=n/; R sin.i�=n//, and the vertices in the
inner rim are given the coordinates �.ui / D .r cos.� C i�=n/; r sin.� C i�=n/,
where R D 1=.2 sin.�=n//; r D 1=.2 sin.r�=n//, and � D arccos..R2 C r2 �
1/=.2rR//. This method works if R � r < 1. In particular, the case of the Dürer
graph GP.6; 2/ is shown in Fig. 2.27.
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M2 M3 M4

M5 M6 M7

Fig. 2.28 Small Möbius ladders Mn

2.7 Exercises

Exercise 2.1. Consider a regular polygon with n sides in the plane. Use it to define
a graph Xn whose vertex set consists of vertices of the polygon and two vertices are
adjacent if and only if they belong to the same edge of your polygon. Prove that Xn

is isomorphic to the cycle Cn.

Exercise 2.2. Find all independent sets of size greater than 3 in the divisor graph
on f2; 3; : : : ; 13g.
Exercise 2.3. How many connected components does the common divisor graph of
Fig. 2.1 have?

Exercise 2.4. The Möbius ladder Mn is obtained from the cycle C2n by adding n

main diagonals:

V D fv1; v2; : : : ; v2ng
E D fv1v2; v2v3; : : : ; v2n�1v2n; v2nv1; v1vnC1; v2vnC2; : : : ; vnv2ng:

Prove that the Möbius ladder Mn can be obtained from the prism graph ˘n by
deleting and reattaching only two edges (Fig. 2.28).

Exercise 2.5. Draw all nonisomorphic trees on n vertices for n D 1; 2; 3; 4; 5.

Exercise 2.6. Show that a graph is a forest if and only if each of its connected
components is a tree.
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Exercise 2.7. Prove the following “two out of three” theorem for trees.
Let G be a graph on n vertices. Then, any two of the following conditions imply

the third:

• G is acyclic.
• G is connected.
• G has n � 1 edges.

Exercise 2.8. A fullerene is a trivalent convex polyhedron whose faces are only
pentagons and hexagons. We also call its skeleton by the same name. Prove that the
smallest fullerene has 20 vertices.

Exercise 2.9. Prove that any fullerene (see Exercise 2.8) has exactly 12 pentagons.

Exercise 2.10. Prove that there are no fullerenes (see Exercise 2.8) on 22 vertices.

Exercise 2.11. Find all fullerenes (see Exercise 2.8) among the generalized Pe-
tersen graphs.

Exercise 2.12. Find all fullerenes (see Exercise 2.8) among the Platonic and
Archimedean graphs.

Exercise 2.13. Consider the vertices and edges of the tetrahedron graph. Say that
a vertex v is across from any edge which is part of a 3-cycle not containing v.
Further, say that two edges are across from one another if they do not belong to any
common 3-cycle. Define a graph on the ten vertices and edges of the tetrahedron
where adjacency is determined by across. Show that this graph is isomorphic to the
Petersen graph.

Exercise 2.14. Prove directly that the generalized Petersen graphs GP.7; 2/ and
GP.7; 3/ are isomorphic.

Exercise 2.15. Prove that there is an isomorphism between GP.n; r/ and GP.n; s/

preserving the outer n-gon if and only if r 	 ˙s .mod n/.

Exercise 2.16. Prove that the generalized Petersen graphs GP.8; 2/ and GP.8; 3/

are not isomorphic.

Exercise 2.17. Decide whether each of the generalized Petersen graphs pictured in
Figs. 2.15 and 2.16 is planar.

Exercise 2.18. Complete the argument in Theorem 2.2 in the case of even girth.
Note that the base of the construction does not have to be a single vertex.

Exercise 2.19. What is the girth of the graph in Exercise 2.34?

Exercise 2.20. Determine the size of the smallest cubic bipartite graph of girth
larger than 4 and construct an example.

Exercise 2.21. Prove that the girth of the Petersen graph GP.5; 2/ is 5:

Exercise 2.22. Determine all generalized Petersen graphs GP.n; r/ of girth 5:
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Exercise 2.23. Prove the following result. A graph is bipartite if and only if it
contains no cycles of odd length.

Exercise 2.24. Show that if G has cC1 nonempty bipartite connected components,
there are 2c bipartitions of the vertex set.

Exercise 2.25. Write an LCF code for the Dürer graph.

Exercise 2.26. Write an LCF code for K4.

Exercise 2.27. Show that Mn (defined in Exercise 2.4) admits a description via
LCF notation. Show that it is isomorphic to the graph Œ.n/2n�.

Exercise 2.28. Show that the Heawood graph admits a description via LCF nota-
tion. Show that it is isomorphic to the graph Œ.5;�5/7�.

Exercise 2.29. Prove that the Heawood graph has no cycles of length less than 6.

Exercise 2.30. Show that the Tutte 8-cage is isomorphic to the graph

Œ.�7; 9; 13;�13;�9; 7/5�:

Exercise 2.31. Show that the Balaban 10-cage is Hamiltonian and find an LCF
notation for it.

Exercise 2.32. Given the parameters jV1j; jV2j; k1; k2, satisfying jV1jk1 D jV2jk2,
k1 � jV2j, and k2 � jV1j, construct a semiregular bipartite graph G D .V1 [
V2I k1; k2/. Hint: Let the i th vertex of V1 be adjacent to vertices fi; i C 1; : : : ; i C
k1 � 1 .mod jV2j/g.
Exercise 2.33. Formulate and prove a structure theorem analogous to Theorem 2.5
for semiregular bipartite graphs.

Exercise 2.34. Here is a table for the Fano configuration:

1 1 1 2 2 3 3

2 4 6 4 5 4 5

3 5 7 6 7 7 6

Draw the corresponding regular bipartite graph and rewrite the table to reflect the
partition into 1-factors.

Exercise 2.35. Prove that the Möbius ladder Mn is bipartite if and only if n is odd.

Exercise 2.36. Redraw the polyhedral graph of the cube, Fig. 2.12, coloring the
vertices to indicate the tripartition. Make your drawing as symmetrical as possible.

Exercise 2.37. Write down all permutations in Sym.3/.

Exercise 2.38. Write down all involutions in Sym.4/.

Exercise 2.39. Write down all fixed-point free permutations in Sym.5/. In other
words, determine the set Der.5/:
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Exercise 2.40. Write down all fixed-point free involutions in Sym.4/ and in
Sym.5/.

Exercise 2.41. Determine the number of semiregular permutations in Sym.2006/.

Exercise 2.42. Let p be a prime. Show that the number of semiregular permuta-
tions in Sym.p/ equals .p � 1/Š

Exercise* 2.43. Determine the number of semiregular permutations in Sym.n/:

Exercise* 2.44. Determine the number of derangements in Der.n/:

Exercise* 2.45. Determine the number of involutions in Sym.n/:

Exercise* 2.46. Determine the number of fixed-point free involutions in Sym.n/:

Exercise 2.47. Express the order of a permutation in terms of its cycle structure.

Exercise 2.48. The definition of a cycle Cn in Sect. 2.2.2 applies to cycles with
n � 3. Define C1 (the loop) and C2 as general graphs (see 2.3.6).

Exercise 2.49. Prove that there is—up to isomorphism—only one cubic graph on
4 vertices with 3 loops.

Exercise 2.50. Define the notion of isomorphism for general graphs and pregraphs.

Exercise 2.51. Show that the wheel graph Wn is isomorphic to the cone over Cn.

Exercise 2.52. Show that K2;2;2 is isomorphic to the suspension over C4.

Exercise 2.53. Show that KnC1 is isomorphic to the cone over Kn.

Exercise 2.54. Show that the prism graph …n is isomorphic to the Cartesian
product K2�Cn.

Exercise 2.55. Show that C4 can be expressed using only single vertex graphs and
the operations of graph union [ and graph join 
.

Exercise 2.56. Show that a graph G can be expressed using only single vertex
graphs and the operations of [ and 
 if and only if G has no induced subgraph
isomorphic to P4.

Exercise 2.57. Show that the Cartesian product � is associative.

Exercise 2.58. We defined Qn, the hypercube in dimension n, as Cartesian product
of n factors equal to K2. Show that Qn may also be defined as follows: The vertex
set of Qn consists of n-tuples of 0’s and 1’s. Two vertices are adjacent if they differ
in exactly one coordinate.

Exercise 2.59. Show that G1�G2 is connected if and only if both G1 and G2 are
connected.

Exercise 2.60. Show that if G1 and G2 are both connected, then G1�G2 is
2-connected.
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Fig. 2.29 .GP.6; 2/2/c

Exercise 2.61. Given the valence of a vertex v1 2 V.G1/ and the valence of
v2 2 V.G2/; what can you say about the valence of .v1; v2/ 2 V.G1�G2/?

Exercise 2.62. Prove that the strong product of any two paths is a unit sphere graph.

Exercise 2.63. Show that Km;n D Kc
n 
Kc

m.

Exercise 2.64. Show that K4, K2;2;2, Q3, and GP.10; 2/ are four out of the five
Platonic graphs. Design a graph theoretical method for constructing the missing
icosahedron graph.

Exercise 2.65. Show that the graph in Fig. 2.29 is indeed the complement of the
square of the Dürer graph.

Exercise 2.66. Show that all hypercube graphs are Hamiltonian.

Exercise 2.67. A graph is called a benzenoid graph if it can be obtained by
selecting a connected subset of hexagons in an infinite planar hexagonal lattice
(representing graphene). Show that all benzenoid graphs can be described as unit
sphere graphs in the plane.

Note that in theoretical chemistry, a benzenoid graph is sometimes defined in
various slightly different ways. Benzenoid graphs represent molecules of polyhexes,
i.e., polycyclic aromatic hydrocarbons. Vertices correspond to carbon atoms, edges
to the carbon–carbon bonds, while hydrogen atoms are not shown.

Exercise 2.68. Let K.X/ denote the number of 1-factors in a graph G. Show that
benzene has two 1-factors: K.B1/ D 2.

Exercise 2.69. Prove that a bipartite graph with bipartition sets of unequal size has
no 1-factor. Use this result to show that K.B5/ D 0. Note that in chemistry, a 1-
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B1 - Benzene B2 - Naphthalene B3 - Anthracene

B4 - Phenanthrene B5 - Phenalene B6 - Chrysene

Fig. 2.30 Small benzenoid graphs

Fig. 2.31 The Moser graph

factor is called a Kekulé structure. It is known that polyhex hydrocarbons without
Kekulé structures are extremely unstable, for instance, phenalene.

Exercise 2.70. Determine the number of Kekulé structures K.Bn/ for the ben-
zenoid graphs in Fig. 2.30.

Exercise 2.71. Prove that every graph is an intersection graph of some family of
sets. In particular, determine a family of sets whose intersection graph is isomorphic
to GP.5; 2/:

Exercise 2.72. Determine the coordinates for the vertices of a 4-valent convex
polyhedron whose skeleton is isomorphic to the cubeoctahedron graph.

Exercise 2.73. Determine the chromatic number for each Archimedean graph.

Exercise 2.74. Find the minimal dilation coefficient of any planar representation of
the Moser graph in Fig. 2.31.

Exercise 2.75. It is easy to verify that K4 is not a unit distance graph in the plane.
Consider a drawing of K4 in the plane with only two distinct edge lengths. How
many such nonisomorphic drawings are there? (Hint: there are six). Compute the
dilation coefficient for all such drawings.

Exercise 2.76. Show that there exists a spatial drawing of Q3 with dilation
coefficient 1. Is it unique?

Exercise* 2.47. Find a planar drawing of a generalized Petersen graph GP.n; r/

with dilation coefficient 1.
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