Origin, Migration, and Proliferation
of Human Primordial Germ Cells
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Abstract

The first histological observations about the origin of the precursors of
gametes termed primordial germ cells (PGCs) in extragonadal regions and
their subsequent migration into the developing gonads in human embryos
date back to the early twentieth century. Fuss (Anat Am 39:407—409,
1911, Anat EntwMech 81:1-23, 1912) and Felix (Die Entwicklung der
Harn- und Geschlechtsorgane. In: Keibel-Mall Handbuch der 1qEntwick-
lungageschichte des Menshen, vol 2. Leipzig, Hirzel, pp 732-955, 1911)
were apparently the first ones to describe the extragonadal location of
PGCs in human embryos. In the youngest, 2.5 mm long, embryo examined
(23-26 days postfertilization), These authors described PGCs in the endo-
derm of the yolk sac wall as cells identifiable by their large size and spher-
ical shape. Subsequently, Politzer (Z Anat Entw Gesch 87: 766-80, 1928,
7 Anat Entw Gesch 93:386—428, 1930, Z Anat EntwGesch 100:331-336,
1933) and Witschi (Contr Embryol Carnegie Inst 209:67—-80, 1948) studied
the distribution of PGCs in a considerable number of embryos from pre-
somite stages (0.3—0.8 mm, about 3 weeks) to 8.5 mm (5 weeks). Both
authors described the migration of PGCs from the yolk sac to the develop-
ing gonads. Following a hot debate, it is now generally accepted that after
their arrival into the gonadal anlage, PGCs give rise to the oogonia/oocytes
and gonocytes (or prespermatogonia) in the embryonic ovary and testis,
respectively. These germ cells enter a complex series of events that in the
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adult end with the formation of fertilizable oocytes and sperm. Because of
the inaccessibility of the human embryo to experimental investigations at
these early stages, we still know little about cellular and molecular mechanisms
controlling the formation, differentiation, and development of human
PGCs. This chapter describes the life history of human PGCs combining
old and new information and, where appropriate, making use of the most

recent results obtained in the mouse.
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Introduction

The differentiation and development of PGCs
is an early event of the mammalian embryo-
genesis, crucial for assuring normal fertility of
the individual and the correct transmission of
the genome to the next generation. The basic
principles governing these processes have been
clarified and can be summarized as follows.
Probably dictated by the necessity to protect
the cells of the germ line from signals inducing
somatic cell lineage differentiation, the precur-
sors of PGCs are early committed and specified
in the epiblast (one of the first two differenti-
ated tissue of the embryo proper, the other
being the hypoblast) before gastrulation and
rapidly moved into an extraembryonic region
where PGCs are determined. PGCs reenter into
the embryo proper during early gastrulation to
reach the developing gonads (gonadal ridges,
GRs). During this journey, while undergoing
proliferation, PGCs begin extensive nuclear
reprogramming (activation of genes for pluri-
potency and epigenetic changes of the genome
involving DNA demethylation and histone
code) to regain differentiation totipotency and
reset the genomic imprinting. These processes
are completed after their arrival into the GRs.
After some rounds of proliferation, PGCs
finally differentiate into oogonia or gonocytes
within ovaries and testes, respectively.

Despite the first morphological observations
on the extragonadal formation and movements
of PGCs in human embryos date back exactly

Fig.2.1 Reproduction of the original drawing by A. Fuss [2].
The German scientist was likely the first to identify PGCs
in the endoderm of the wall of the yolk sac in one human
embryo 2.5 mm long (23-26 days postfertilization); in the
center of the drawing, a PGC is clearly recognizable for its
large size and spherical shape among several somatic cells

100 years ago [1-3] (Fig. 2.1 and Table 2.1), the
inaccessibility of the human embryo to experi-
mental investigations at these early stages made
difficult, if not impossible, to obtain informa-
tion on the complex temporal and spatial series
of molecular events underlying these processes.
Thanks to recent studies carried out in the mouse
and the development of stem cell technologies,
however, we are now obtaining precious infor-
mation that can contribute to clarify crucial
aspects of these processes. The present review
is an attempt to summarize these results and the
future perspectives.
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Table 2.1 Chronology of human primordial germ cell development
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Comparing Mouse and Human
PGC Formation

In animals, the formation of PGCs basically occurs
by one of two distinct mechanisms: inheritance of
germ plasma or inductive signaling (for reviews,
see [4, 5]). In most organisms, including inverte-
brate species suchas Drosophilaand Caenorhabditis
and nonmammalian vertebrates such as frogs and
fishes, germ cell arises through the former mecha-
nism. Germ plasma is a maternally derived collec-
tion of cytoplasmic RNAs, RNA-binding proteins,
and various organelles assembled within the mature
oocyte and segregated during the first divisions of

the embryo to the cells fated to become PGCs.
In contrast, probably in all mammals, PGCs arise
shortly before or during gastrulation through a pro-
cess of inductive signaling. Specific signals secreted
by neighboring cells induce the commitment and
specification of PGC precursors among the epiblast
cells before gastrulation. Shortly afterward, such
precursors are determined as PGCs in an extraem-
bryonic region. But when and where do these sig-
nals exactly take place, and what molecules are
involved?

Recent elegant research carried out in the
mouse (for a review, see [6]) has shown that in
the pregastrulation period, interactions between
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Fig. 2.2 Schematic drawings of the main tissues and
BMPs involved in PGC specification in the mouse embryo.
For comparison, ahypothetic scenario of PGC specification
in the human embryo is drawn. For details, see text. ExE

two extraembryonic tissues, the extraembryonic
ectoderm (ExXE), and visceral endoderm (VE)
are crucial for the germ-line commitment and
specification. In particular, in the mouse embryo
around 6.25 days post coitum (dpc), six PGC pre-
cursors are set aside in the posterior proximal
epiblast cells near the region where the primi-
tive streak will form (Fig. 2.2). Members of the
transforming growth factor BI1(TGFB1) super
family, namely, bone morphogenetic protein 8a
and 4 (BMP8a and BMP4) secreted by ExE and
BMP2 produced by the VE, induce these early
processes. The expression of the transcriptional
repressor  B-lymphocyte-induced maturation
protein 1 (BLIMP1) (also known as PR domain-
containing 1, PRDM1), closely followed by that
of the companion PRDM 14 and upregulation of
fragilis (also known as interferon-induced trans-
membrane protein 3 or [IFITM3), marks the emer-
gence of PGC precursors. These BLIMP1-positive
cells increase in number and begin to move out of
the embryo through the forming primitive streak.
During this period, PGCs are specified, and the
expression of the putative RNA/DNA bind-
ing protein stella (also known as developmental
pluripotency-associated 3, DPPA3, or primordial
germ cell 7, PGC7) marks the event. Around 7.25
dpc, the PGC precursors are determined as PGCs

M. De Felici

Amnios

Position of
primitive streak

Trophoblast

12—-14 dpc
human

extraembryonic ectoderm, ppE posterior proximal ectoderm,
pE proximal ectoderm, dE distal ectoderm, VE visceral
endoderm, AVE anterior visceral endoderm, pPGCs primordial
germ cell precursors

in the extraembryonic mesoderm at the basis of
allantois. PGCs form a cluster of about 40 cells
held together by E-cadherin and expressing high
levels of tissue nonspecific alkaline phosphatase
(TNAP) and stella (for reviews about the forma-
tion of mouse PGCs, see [7-9]).

The place where PGCs were first identified in
human embryos around the end of the third week
is the same as in the mouse: the wall of the yolk
sac at the angle with the allantois (Table 2.1).
Exactly 100 years ago, Fuss [1, 2] and Felix [3]
were apparently the first to describe the extrago-
nadal location of PGCs (or Urkeimzellen) in
human embryos. These cells were distinguished
by their large size, spherical shape, and the pres-
ence of abundant glycogen granules in the cyto-
plasm (Figs. 2.1 and 2.3). In the youngest, 2.5 mm
long, embryo examined (23-26 days postfertil-
ization, 13-20 somites), Fuss described PGCs in
the endoderm of the wall of the yolk sac. The
extragonadal origin of PGCs was confirmed by
the subsequent studies by Kohno [11] and Hamlett
[12] and above all, by Politzer [13-15] and
Witschi [16] who studied the distribution of
PGC:s in a considerable number of embryos from
presomite stages (0.3—0.8 mm, about 3 weeks, 17
embryos) to 8.5 mm (5 weeks, 23 embryos). Both
authors described the migration of PGCs from
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Fig. 2.3 Electron microphotographs of human PGCs
between 5 and 6 weeks of gestation. (a) A stationary PGC
in the hindgut around 5 weeks; note the presence of glyco-
gen (G) aggregates and a few mitochondria (M) in the
cytoplasm; Nu nucleolus. (b) An actively migrating PGC
among mesenchymal somatic cells around 6 weeks; note
its elongated shape and a pseudopodium (arrow) (Courtesy
of Prof. Stefania Nottola, Department of Human Anatomy,
University of Rome La Sapienza [10])

the yolk sac to the gonadal ridges. In an embryo
0.6 mm long (about 3 weeks), Politzer [13-15]
counted 40 PGCs which increased to 600 in the
4 mm long embryo (4 weeks). Similarly, Witschi
[16] counted 30-50 PGCs in the endoderm of the
yolk sac around the end of the third week and 109
PGCs in an embryo a couple of days older.
Histochemical methods for the identification of
PGCs were first applied successfully to human
PGCs for periodic acid- Schiff (PAS)-positive
materials and mainly TNAP activity by Mc Kay
and colleagues [17]. The presence in the cyto-
plasm of distinct morphological element called
“nuage” was another characteristic later described
in human PGCs [18]. This material is a conserved

feature of germ cells in species across the animal
kingdom. The ‘“nuage” is distinct from germ
plasma and under the electron microscope,
appears as electron-dense granules localized to
the cytoplasmic face of the nuclear envelope.
There is currently a lack of information about the
function of this material. In flies and mouse, an
interesting possibility is that it might be involved
in microRNA-pathways necessary for maintain-
ing the germ cell lineage and for transposon
repression [19, 20].

In humans, there is a lack of studies tracing
back the germ-line origin to the earliest stage of
development before gastrulation. In particular, no
information is available about the inductive pro-
cesses controlling PGC specification and deter-
mination. We can postulate that the basic
principles governing human PGC origin are simi-
lar to those in mouse and other mammals as well.
In humans, however, the timing and mode of for-
mation of the extraembryonic tissues is
significantly different from the mouse. This might
have some implications for the formation of
PGCs (Fig. 2.2).

Immediately before gastrulation (6.0 and 6.5 dpc),
the mouse embryo can be visualized as a thick-
walled cup of tissue (the epiblast or embryonic
ectoderm), which will give rise to the entire fetus
and some of the placental membranes. A second
thick-walled cup of tissue (the extraembryonic
ectoderm) placed overturned on the epiblast will
give rise to the main part of the placenta. Both
cups are enclosed in a thin bag of primitive endo-
derm. Taking into account only tissues involved
in the formation of the germ line, in the mouse
between 4.5 and 5.5 dpc, the primitive endoderm
gives rise to the visceral endoderm (VE). In this
epithelium, a specialized region termed anterior
visceral endoderm (AVE), crucial for determin-
ing anterior-posterior embryo polarity, forms.
During the same period, the extraembryonic
ectoderm (ExE) arises from the polar trophec-
toderm and makes contact with the underlying
epiblast. At 6.5 dpc, gastrulation starts with the
formation at the posterior region of the embryo
of the primitive streak. Epiblast cells migrat-
ing first through this structure include the PGC
precursors expressing BLIMP1/stella and form
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the extraembryonic mesoderm. In humans, at
the beginning of the second week, the embryo
consists of a bilaminar disc, the epiblast, and
the primitive endoderm (or hypoblast). Polar
trophectoderm above the epiblast differentiates
into the syncytiotrophoblast that invades the
uterine tissue and the cytotrophoblast contacting
the epiblast. Within the latter, the amniotic cav-
ity forms lined by the amnioblasts derived from
the epiblast cells. The primitive endoderm forms
the roof and the wall (Heuser’s membrane) of the
primary yolk sac. On day 10-11, extraembryonic
mesoderm of uncertain origin appears between
the cytotrophoblast and the yolk sac. Around the
end of the second week, the definitive yolk sac is
formed by a new wave of cells migrating from the
primitive endoderm and displacing the Heuser’s
membrane. At the beginning of the third week,
the primitive streak appears and the gastrula-
tion begins. In humans, the primitive endoderm
can be considered equivalent to the mouse VE,
while no structure equivalent to the mouse ExE
apparently exists (Fig. 2.2). Moreover, the forma-
tion of the extraembryonic mesoderm appears to
precede gastrulation. However, reexamining the
pregastrulation human embryos in the Carnegie
collection, Lucket [21] observed that the caudal
margin of the primitive streak develops preco-
ciously between 12 and 14 days and that this
appears to be the source of all the extraembryonic
mesoderm.

The significance of these differences for the
formation of human PGCs will remain unclear
until molecular markers for the human PGC pre-
cursors will be identified and a fate map of the
human epiblast will become available.

Bona Fide Human PGCs from Stem
Cells In Vitro

In order to compensate for the lack of informa-
tion about the molecular mechanisms of PGC
formation in the human embryo, in vitro culture
systems able to reproduce some of these pro-
cesses are now becoming available. These sys-
tems are based on the possibility to induce
embryonic stem cells (ESCs) derived from
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blastocysts or induced pluripotent stem (iPS)
cells produced from differentiated somatic cells
of various origin and to develop into specific cell
lineages including germ line. Identification of
markers and genes expressed in cells of the germ
line at the very early stages of their formation is
indispensable to trace back their origin and the
mechanisms underlying their formation. Beside
TNAP and PAS positivity, molecular markers for
human migratory PGCs now include the key
pluripotency transcription factors octamer-bind-
ing transcription factor 4 (OCT4, [22-24]),
Nanog [23, 24], and the tyrosine kinase receptor
¢-KIT [25] (Table 2.2). Moreover, the surface oli-
gosaccharide, the stage-specific embryonic anti-
gen 1 (SSEA1), and the RNA-binding protein
dead box polypeptide 4 (DDX4, also called Vasa)
have been reported to be expressed in migratory
(5-6 weeks) PGCs by some authors [23, 55], but
not by others [32, 56]. The chemokine receptor
type 4 receptor (CXCR4) might be also expressed
by human PGCs at this stage [60]. After penetrat-
ing into the GRs, PGCs continue to express these
markers at least until differentiation into oogonia
and prespermatogonia. In addition, they express
SSEA4 and possibly the RNA-binding proteins,
nanos homolog 2 and 3 (NANOS2 and NANOS3
[48]), deleted in the azoospermia (DAZ), and
DAZ-like (DAZL) [23, 56]. While SOX2, another
key pluripotency transcription factor expressed in
early mouse PGCs and ESCs [63], is quite sur-
prisingly not expressed in human PGCs [24],
other transcription factors crucial for the forma-
tion and specification of mouse PGCs, such as
BLIMPI1, PRDM14, NANOSI, and stella (see
above), have not yet been described in human
PGCs in vivo (Table 2.2). They might represent
suitable markers to trace back the PGC precur-
sors in the human embryo. At the moment, they
are being used to monitor the possible formation
of PGCs from stem cell lines in vitro. Intriguingly,
human ES and iPS cells express a panel of mark-
ers common to human and/or mouse PGCs such
as TNAP, SSEA4, OCT4, Nanog, stellar (stella-
related), BLIMP1, DAZ, DAZL, NANOSI,
NANOS3 (in some but not all ESC lines), and
¢-KIT, but not SSEA1, CXCR4, and DDX4 or
synaptonemal complex protein 1 and 3 (SCP1
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Table 2.2 Main markers of human PGCs, EG, ES, and EC cells

PGCs PGCs
Marker (3-5 weeks) (6-9 weeks)  EG cells ES cells EC cells
TNAP +++ [17] ++ [17] +++[26] +++ [27] +++ [28]
PAS histochemistry +++ [17] —[17] ++ [29] ++ [30] ND
SSEA1 Variable [23,  +++ [23] +++ [26, 32-34] —[27, 35] —[35, 36]
31]
SSEA3 ND Variable [31]  +++ [26, 32-34] +++[27, 35] +++ [35, 36]
SSEA4 +++[23] ++[23] +++ [26, 32-34] +++[27, 35] +++ [35, 36]
E-cadherin ND ND ND +++ [37] +++ [38]
Fragilis ND ND ND ++ [39] ND
TRA1-60 —-[23] - [23] +++ [26, 32-34] +++ [27, 35] +++ [40, 41]
TRA1-81 —[23] - [23] +++(26, 32-34]  +++[27, 35] +++ [40, 41]
OCT4 +++ [22-24]  ++ [22-24] +++ [26, 32-34] +++[27, 35] +++ [42, 43]
NANOG +++ [23, 24] ++[23, 24] ++ [33] ++ [43-45] ++ [44, 46]
NANOSI1 ND ND ND + [47] ND
NANOS3 ND ND ND ++ [48] ND
SOX2 —[24] —[24] ND +++ [49, 50] +++ [51]
Stella/stellar ND ND ND +/—[39, 44, 45,47, 52] +[52, 53]
(DPPA3, PGCT7)
BLIMPI (PRDM1) ND ++ [54] +/+ +/+*[39, 44, 45, 47,52] - [54]
DDX4 (Vasa) ++/—[55,56] +++[55,56] ND —[39, 44, 45, 47, 52] ++ [57]
DAZ/DAZL ND ++ [23, 56] ND +/—[39, 44, 45,47, 52] - [54, 58]
c-KIT ++ [25] ++ [25] ND +[59] —[59]
CXCR4 ++ [60] ND ND —/+ [61] ++ [62]

“Depending on the ES cell lines

and SCP3) markers of pre- and meiotic germ
cells [44, 48, 60, 64]. On the other hand, ES and
iPS cells express some markers that human PGCs
do not, such as SSEA3, tumor rejection antigen
1-60, 1-81 (TRA1-60, TRA1-81), and SOX2
[23, 24, 65] (Table 2.2). Using these in vitro sys-
tems, PGC differentiation has been diagnosed
primarily by the analysis of germ cell gene and
protein expression and more recently, by the use
of reporter constructs with the expression of
green fluorescent protein (GFP) under control of
the DDX4 or OCT4 promoters. Progressively
increasing numbers of studies show that human
ES and iPS cells can spontaneously differentiate
into PGC-like cells, albeit at a low frequency
(around 5 %) [47, 66—68]. Most interesting, the
efficiency of spontaneous differentiation to PGCs
can be increased with the addition of BMP4, 7,
and 8b [69, 70], the same growth factors govern-
ing the formation of mouse PGCs (see above).
Small changes in stem cell culture conditions

[60] or coculture with human fetal gonad stromal
cells [71], or mouse embryonic fibroblasts (MEF)
in the presence of basic fibroblast growth factor
(bFGF) [72], have been also reported to favor the
formation of putative human PGCs in vitro. In
addition, silencing the DAZ family [70] and
NANOS3 [48] genes in human ESCs resulted in a
marked reduction in the capability to give rise to
PGC-like cells. These PGCs show ongoing
removal of parental imprinting, erasure of global
DNA methylation, and histone modifications
typical of mouse PGCs [67, 70] supporting the
PGC identity.

These data have provided the first experimen-
tal evidence that BMPs, and probably bFGF, are
involved in the formation of human PGCs and
that DAZ and NANOS3 proteins function at some
stages of their development. Concerning DAZ
and NANOS3, recent studies in the mouse have
shown that disruption of DAZL gene resulted in
postmigratory, premeiotic reduction in PGC number
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accompanied by aberrant expression of pluripo-
tency genes and failure to erase and reestablish
genomic imprinting in germ cells [73]. Moreover,
Gill and colleagues [74] found that in the absence
of this gene, PGCs form and migrate to the GRs
but do not develop either male or female features.
Instead, they remain in a sexually undifferentiated
status similar to that of migrating PGCs. Other
studies have implicated NANOS3 in the mainte-
nance of mouse PGCs during migration via sup-
pression of apoptosis [75].

A Model for the Formation of Human
PGCs In Vivo

Taking into account the knowledge reported in
the previous sections, a hypothetical model for
the human PGC formation can be drawn. It seems
plausible that in the human embryo, the precursors
of PGCs are set aside within the epiblast between
day 10 and 11 following the action of BMP signals
coming from the primitive endoderm and cytotro-
phoblast and/or amnioblasts lining the epiblast.
On days 12-14, these precursors move together
to the forming extraembryonic mesoderm out the
embryo proper and reach the region of the wall of
the definitive yolk sac where the allantois origi-
nates around day 16. Here they are specified as
TNAP-expressing PGCs. Alternatively, these last
processes might be delayed for a couple of days.
In such a case, PGC precursors would leave the
epiblast at the beginning of gastrulation (on day
14 and 15) together with the first wave of cells
that replace the primitive endoderm and form the
definitive endoderm.

Migration of Human PGCs

During the fourth week, when the embryonic disc
undergoes a process of folding, PGCs are pas-
sively incorporated into the embryo together with
the yolk sac wall. They become transiently segre-
gated as single cells among the endodermal cells
of the primitive hind- and midgut epithelium,
near the aorta (Fig. 2.2a). The GRs are visible as
a distinct structure at the beginning of the fifth
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week. At this time, PGCs are seen to penetrate
the mesenchyme surrounding the gut epithelium
through breaks in the basal lamina. In the 5-week-
old embryo, PGCs reach the dorsal mesentery
and continue to move laterally around both sides
of the coelomic angle, pass beyond the primitive
mesonephros bodies, and eventually enter the
GRs [16, 17, 76-78] (Fig. 2.2b). PGCs colonize
the GRs during the latter part of the fifth week or
at the beginning of the sixth.

Electron microscopic studies describe human
PGCs in vivo as having an irregular appearance
and possessing pseudopodia during their journey
toward the GRs. These features are interpreted as
a manifestation of active migration [16, 77, 79]
(Fig. 2.2b). An interpretation confirmed by sev-
eral in vitro observations reporting that human
PGC:s, as those of mouse, show several features of
motile cells and are able to move actively both on
cellular and extracellular matrix substrates [80—83]
(Fig. 2.4). The in vivo time-lapse experiments
with confocal microscopy by Molyneaux and col-
leagues [84] in slices of mouse embryos appeared
to definitively confirm that in mammals, PGCs
reach the GRs by active migration. However,
Freman [85], reinterpreting these and other obser-
vations reported above, concludes that morphoge-
netic movements and local cell divisions rather
than active migration are mainly responsible for
PGC displacement in the different regions of the
embryo. Even Freman, however, admits that
human PGCs might migrate actively to cover a
distance of approximately 50 um separating the
preaortic region from the GRs.

The mechanisms by which not only human
PGCs but also those of other mammals are finally
delivered to and colonize specifically the GRs
remain largely unknown. Contact guidance with
somatic and/or extracellular molecules (ECM)
and attractive (chemotaxis) and repulsive signals
are two unmutually exclusive mechanisms sug-
gested by evidence in the mouse and other ver-
tebrate species (for a recent review, see [86]). In
the human embryo, migratory PGCs appear to
be surrounded by extracellular matrix compo-
nents in which mesenchymal cells are immersed.
PGCs seem to interact with the mesenchymal
cells through different type of junctions, such as
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Fig. 2.4 Human PGCs isolated from 6-7 week embryo and cultured in vitro for 2 days onto STO fibroblasts identified
by TNAP staining. PGCs usually appear elongate with pseudopodia and fine filopodial extensions (arrows)

desmosomes, gap junctions, and focal contacts
[77, 87]. Glucosaminoglycans have been his-
tochemically detected in the extracellular matrix
surrounding migratory human PGCs ([87] and
references here in). Moreover, several results dem-
onstrated that mouse PGCs may use various types
of integrins for dynamic adhesive interactions with
extracellular matrix molecules such as fibronectin,
laminin, and collagen IV (for a review, see [88]).
In this regard, it is important to report that mouse
PGC:s lacking B1 integrins fail to migrate normally
to the GRs [89].

In the opinion of Witschi [16], the coelomic epi-
thelium in the region of the GRs releases specific
molecules to attract PGCs. The use of migratory
cell assays similar to those used for mouse PGCs
[90, 91] could help to identify attractants for human
PGCs. The tumor growth factor-B (TGFf) [92],
stromal-derived factorl (SDF1) [93], and stem cell
factor (SCF, or c-Kit ligand, KL) [91] have been
proposed as chemoattractants for mouse PGCs. KL
and SDF1 could be also implicated in directing the
migration of human PGCs. The KL receptor c-KIT
is expressed by human PGCs [25], while putative
PGCs obtained from human ESCs express the
SDF1 receptor CXR4 [60].

The difficulty in identifying specific chemoat-
tractants in PGCs suggests that the underlying

mechanisms of migration are complex and are
likely to involve morphogenetic movements,
interactions with ECM molecules and the sur-
rounding cells, and attractive and repulsive sig-
nals as well. PGCs might recognize more than
one attractive and repulsive signal at particular
locations of their pathways and/or recognize dif-
ferent signals at different locations. The expres-
sion of transcripts for member of the olfactory
receptor gene family in human PGCs from
10-week-old embryos makes this class of recep-
tor additional candidates for PGC attractants
[94]. Finally, in a recent study, Mgllgard and col-
leagues [78] observed that human PGCs prefer-
entially ascended from the mesentery of the
hindgut to the gonadal anlage by migration along
autonomic nerve fibers close to the Schwann cells
and proposed that these nerve fibers and/or
Schwann cells may release chemoattractants sup-
porting PGC migration.

During migration, human PGCs contain a
large PAS-positive cytoplasmic store of glycogen
and several lipid droplets [16, 76, 77]. In other
species, these cytoplasmic inclusions were not
observed. Following their arrival in the GRs, the
glycogen content is diminished. Round mito-
chondria with a pale matrix and small tubular
vesicular cristae were observed near the nucleus.
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They significantly increase in number during
PGC migration and settlement in the GRs.
Migratory PGCs have less than 10 mitochondria,
while 100 mitochondria are present in ovarian
PGCs and 200 in oogonia [95]. These observa-
tions suggest that PGCs might prevalently employ
an anaerobic metabolism during migration and
undergo a transition in their energy metabolism
after reaching the GRs.

An interesting issue concerning PGC migra-
tion is the fate of the misallocated cells which fail
to reach the gonads. While those remaining nearer
the gonads were observed to enter meiosis irre-
spective of the sex [96-98], most of the other mis-
allocated cells are believed to undergo apoptosis
[98, 99] or to give rise to germ cell tumors (GCTs)
after birth. Human GCTs are a heterogeneous
group of tumors that may occur both in the gonads
and at extragonadal midline sites such as the coc-
cyx, the pineal gland, and the mediastinum [100,
101]. Runyan and colleagues [102] have recently
identified in the caudal region of the mouse
embryo a population of undifferentiated ectopic
PGCs that might be the population of origin for
sacrococcygeal tumors. The possible causes of
the PGC transformation into tumorigenic cells
will be discussed in the next section. Another pos-
sibility is that ectopic PGCs enter near the aorta
and are distributed to various tissues throughout
the embryo. In birds and reptiles, the vascular sys-
tem is a normal way to deliver PGCs to the GRs
[103]. In mouse [104] and bovine [105] embryos,
electron microscope observations showed cells
morphologically identifiable as PGCs entering or
circulating in the bloodstream. Because of their
intrinsic  pluripotency, under certain circum-
stances, these cells might participate to normal
tissue differentiation or enter a quiescent status to
later give rise to tumors. In my view, such a pos-
sibility represents an intriguing working hypoth-
esis for future investigations.

Proliferation of Human PGCs
Human PGCs proliferate during migration,

mostly after reaching the GRs. Once relocated in
the GRs, PGCs are rapidly surrounded by cords

M. De Felici

of somatic cells. The differentiation of PGCs into
oogonia occurs apparent during the ninth week.
Oogonia show a higher mitotic activity and pos-
sess a regular and smooth cellular profile. In the
cytoplasm, lipid inclusion and glycogen granules
are markedly reduced while the number of mito-
chondria is increased (see above) [106, 107]. In
addition, oogonia tend to form clusters of divid-
ing cells joined by rims of cytoplasm, termed
intercellular bridges, originated by incomplete
division of the cell body during cytodieresis
[108, 109]. The mitotic proliferation of oogonia
lasts several weeks and overlaps the period of
their entry into meiosis (10—11 weeks). In fact,
until the fifth month of fetal life, mitotic oogonia
and primary oocytes in different stages of meio-
sis coexist [110, 111].

In the male, after reaching the developing tes-
tis, PGCs are usually termed gonocytes. While
being enclosed within seminiferous sex cords,
gonocytes assume some distinct morphological
features, such as a large nucleus and a promi-
nent nucleolus [112]. Male sex determination
is marked by the expression of sex determining
region Y (SRY) and SRY-box 9 (SOX9) genes at
5-6 weeks [113]. Thereafter, sex cords, formed
from Sertoli cells and gonocytes, become increas-
ingly evident within the testis from the seventh
week during late embryonic life. During the
first trimester, gonocytes are mitotically active
(they correspond to the M-prospermatogonia of
Wartenberg’s classification [114]). They appear
to form a quite homogenous single, round cell
population both morphologically and histochem-
ically [115]. Of relevance, gonocytes continue to
express markers typical of pluripotent cells and
PGCs such as OCT4, SSEA1, DDX4 (Vasa),
Nanog, and c-KIT [23, 114]. This means that
despite some morphological differences, gono-
cytes are basically equivalent to PGCs. During
the second trimester, most but not all gonocytes
progressively lose mitotic activity together with
the pluripotency and PGC markers. At this
time, two new types of germ cells have been
described, intermediate germ cells still able to
proliferate and mitotic quiescent prespermatogo-
nia or T (transition)-spermatogonia. The former
are mostly in pairs, while the latter form groups
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of cells interconnected by cytoplasmic bridges
[114-116]. Interestingly, a few cells maintaining
gonocyte characteristics seem to remain among
the prespermatogonia [23, 115]. Similar results
have been recently reported in the mouse [117].
The fate of these undifferentiated cells could be
relevant in establishing the spermatogonia stem
cell population in the postnatal testis and for the
development of testis tumors.

Considering the observations and the results
reported above, we can estimate that the period of
human PGC proliferation in the female lasts from
the beginning of the fourth week to about the ninth
week, when oogonia become clearly recognizable
within the fetal ovary. In the male, if we consider
the gonocytes equivalent to PGCs, proliferation
continues probably for a little longer period until
about the end of the first trimester (10-12 weeks),
when the most part of gonocytes differentiate into
prespermatogonia. Significantly, in both sexes, the
occurrence of intercellular bridges appears to mark
the differentiation of PGCs into oogonia and gono-
cytes into intermediate germ cells and presper-
matogonia. In the ovaries, oogonia continue to
proliferate until the fifth month. During the same
time in the testes, intermediate germ cells prolifer-
ate while prespermatogonia become progressively
mitotically quiescent.

Counting the number of PGCs at different
stages of development provides estimation of
their proliferation capability and possible sex dif-
ferences. As reported in a previous section, in an
embryo of 3 weeks, Politzer counted 40 PGCs
that increased to 600 in an embryo of 4 weeks.
Similarly, Witschi [16] counted 30-50 PGCs
around the end of the third week and 109 in an
embryo a couple of days older. The same authors
also counted about 450 and 1,400 PGCs in two
embryos of 4 weeks. In his classical study, Baker
[110] estimated the number of female germ cells
in a total of 12 ovaries covering 2—7 months post-
conception. He estimated a mean of a total
600,000 oogonia in two 9-week-old ovaries and a
peak of about 6,000,000 at the fifth month. Six
recent publications presenting stereological esti-
mations of the number of germ cells in much
higher numbers of ovaries and testes (overall
103) for the first two trimesters have been recently

analyzed by Mamsen and colleagues [118-124].
Extrapolating the old and the new data covering
the 4- to 9-week period, it results that the total
number of PGCs increases from about 1,000 to
about 450,000 in female and 150,000 in male
(Fig. 2.5).

The regulation of human PGC proliferation in
both sexes is poorly understood. The scant avail-
able information comes mainly from in vitro
studies of human PGCs cultured on cell mono-
layers. These studies indicate that human PGCs
appear to respond to the same compounds (for-
skolin, retinoic acid) and growth factors (SCF,
bFGF, leukemia inhibitor factor, LIF) reported to
stimulate the survival and/or proliferation of
mouse PGCs ([26], our unpublished observa-
tions). Most importantly, like mouse PGCs,
human PGCs give rise to pluripotent embryonic
germ cells (EGCs) (see also next section), when
cultured in vitro in the presence of a cocktail of
compounds and growth factors [26], suggesting
that the mechanisms controlling PGC growth in
mammals are largely conserved. Hiller and col-
leagues [125] recently reported that the addition
of recombinant BMP4 increased the number of
human PGCs after 1 week of in vitro culture in a
dose-responsive manner. The efficiency of EGC
derivation and maintenance in culture was also
enhanced.

Analysis of gene expression in human PGCs
and the study of spontaneous mutations resulting
in reduction or absence of fertility may help to
confirm or disprove such similarities. For exam-
ple, as reported above, c-KIT is expressed by both
male and female PGCs. Mutations in the c-KIT
gene affect both hematopoietic and melanocyte
lineages in humans, but to date, no association of
mutations in this gene with human infertility has
been documented, contrary to the mouse model.
However, while no mutations have been detected
in codon encoding Y721 (analogous to Y719 in
the murine c-kit gene, a residue known to be
essential for a normal mouse spermatogonial pro-
liferation) of the human c¢-KIT gene of infertile
idiopathic patients [126], other results indicate
that genetic variants within the genomic sequences
of the c-KIT and KITLG genes are associated with
idiopathic male infertility [127]. On the other
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Weeks of gestation

Fig.2.5 The number of human PGCs in female and male
embryos from 3 to 9 weeks of gestation extrapolated by
the data of papers [14-16, 110, 118-122]. Note that from
5 weeks onward, the number of PGCs is much higher in
female than in male embryos. This difference continues

hand, c-KIT is strongly upregulated in some types
of germ cell testicular tumor that are believed to
originate from PGCs (for a review, see [128]),
suggesting that it plays a crucial role in the control
of human PGC survival/proliferation as in mice.
In this regard, OCT4 was found to be expressed in
all human germ cell tumors containing undiffer-
entiated cells [129]. In Fanconi’s anemia (FA),
individuals are characterized by several congeni-
tal abnormalities including decreased fertility (for
a review, see [130]). Interestingly, targeted muta-
tion of Francc in mice results in significantly
slower proliferation of PGC [131], suggesting
again shared control mechanisms of PGC prolif-
eration in these species. Finally, in Trisomy 16 of
mouse, an animal model of the human Down’s

also when PGCs differentiate into oogonia or gonocytes/
prespermatogonia. At the end of the proliferation period
(around fifth month), the estimated number of oogonia is
around 10,000,000 and of prespermatogonia between
3,000,000 and 4,000,000 per embryo [110, 118]

syndrome leading frequently to sub- or infertility,
a delay in migration and reduction of PGC num-
ber was observed [132]. Gene expression studies
on single human PGC obtained from 10-week-old
embryos have been reported [133, 134]. The prep-
aration of cDNA libraries and microarrays from
human PGC should be valuable resources for
researchers in this field.

Human EGCs and Their Potential Uses

Derivation of human embryonic germ cell (EGCs)
has been reported by several groups from PGCs
obtained from 5- to 9-week-old embryos [26, 32—
34]. The differentiation capability both in vitro and



2 Origin, Migration, and Proliferation of Human Primordial Germ Cells 31

in vivo of these cells into several types of tissues
has been reported, and important studies toward
therapeutic use of human EGCs are in progress
([135] and references therein). An important dif-
ference with mouse is that human EGCs maintain
the methylated status of imprinted genes, those
genes that are expressed from either the maternal
or paternal allele, without undergoing the erasure
of these epigenetic marks that normally occurs in
PGCs [136]. Genomic imprinting is an epigenetic
process that involves DNA methylation in order to
achieve monoallelic gene expression without alter-
ing the genetic sequence. These epigenetic marks
are established in the germ line and are maintained
throughout all somatic cells of an organism.
Appropriate expression of imprinted genes is
important for normal development, with numerous
genetic diseases associated with imprinting
defects. Imprinting is erased during the PGC
development and reestablished in germ cells dur-
ing gametogenesis according to the sex of indi-
viduals (for a review, see [137]). In mouse, gene
imprinting is progressively erased in migratory
PGC:s and lost almost completely by the time they
complete the colonization of the GRs (for a review,
see [138]). The timing of this erasure is not known
in humans. In the mouse, deregulation of imprinted
genes in EGCs has been reported to cause imprint-
ing-related developmental abnormalities [139].
Similarly, mouse ESC:s fail to properly control the
expression of imprinted genes [140]. In humans
ESCs, gene-specific differences in the stability of
imprinted loci have been reported [141]. The sta-
bility of imprinting in human EGCs suggests that
there may be no significant epigenetic barrier to
human EGC-derived tissue transplantation. The
difference between human and mouse EGCs in the
imprinting status also suggests that the timing of
the crucial epigenetic changes involving gene
imprinting erasure might be different in human
and mouse PGCs. In the latter, as reported above,
gene imprinting is progressively erased and lost
almost completely by the time of GR colonization
by PGC (for a review, see [138]). This pattern is
reflected in the variability of the imprinting status
reported in mouse EGCs derived from PGCs at
different developmental stages [139, 142, 143].
Deregulation of imprinted genes can be associated
with tumorigenesis and altered cell differentiation

Fig.2.6 A group of carcinoma in situ (CIS) cells inside a
seminiferous tubule of a human testis. The derivation of
these tumorigenic cells from PGCs or gonocytes or sper-
matogonia and the molecular mechanisms of their formation
are still debated

capacity. Noteworthy, human EGCs have a normal
karyotype and do not form tumors at least when
transplanted into immunocompromised mouse
hosts ([33] and references therein).

Besides the use in tissue therapy, studies on
human EGCs can offer clues about important
aspects of cell stemness and on the mechanisms
underlying the transformation of PGCs into tum-
origenic cells. For a long time, as reported above,
human PGCs have been believed to give rise to
germ cell tumors (GCTs) both in the testis and
extragonadal sites, but an experimental model was
lacking. GCTs can be classified in three catego-
ries. The first group includes teratomas and terato-
carcinoma and yolk sac, which occur in fetus and
infants. Teratocarcinomas are malignant tumors
containing undifferentiated cells known as embry-
onal carcinoma (EC) cells, able to propagate the
tumors after host transplantation. The second
group consists of adult tumors and includes both
seminomas and nonseminomas. The third class
characterizes spermatocytic tumors which occur in
elderly men. In the mouse, early studies have dem-
onstrated that teratomas and EC cells originate
directly from PGCs [144] so that the same origin is
plausible for these type of tumor cells in humans.
Seminomas and nonseminomas derive from a
common precursor cell, called carcinoma in situ
(CIS) cells. It has been hypothesized that CIS cells
originate from fetal germ cells [145] (Fig. 2.6).
Comparative microarray studies have shown that
CIS cells show a high degree of pluripotency and
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are indeed very similar to PGCs and gonocytes.
CIS cells are consistently aneuploidy. Moreover,
CIS cells possess an abnormal chromosome
described as isochromosome 12p, or i(12p), formed
from two fused short arms (p arms) of chromosome

12

[146]. The arrest of PGC differentiation and

their nuclear reprogramming that in mouse have
been convincingly reported to occur during PGC
transformation into EGCs (for a review, see [138]),
might be the key first events, that may be followed
by malignant transformation into EC or CIS cells
associated to the acquisition of an abnormal karyo-
type and overt germ cell cancer later in life.
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