
2. Quantum Attacks on IFP-Based
Cryptosystems

If you don’t work on important problems, it’s not likely that you’ll do
important work.

Richard Hamming (1915–1998)
The 1968 Turing Award Recipient

In this chapter we shall first study the integer factorization problem (IFP)
and the classical solutions to IFP, then we shall discuss the IFP-based cryp-
tography whose security relies on the infeasibility of the IFP problem, and
finally, we shall introduce some quantum algorithms for attacking both IFP
and IFP-based cryptography.

2.1 IFP and Classical Solutions to IFP

Fundamental Theorem of Arithmetic

In mathematics, there are many fundamental theorems such as fundamen-
tal theorem of geometry, fundamental theorem of algebra, and fundamental
theorem of calculus. The fundamental theorem of arithmetic (FTA) may be
regarded as the first and most important fundamental theorem in mathemat-
ics, stating as follows.

Theorem 2.1 (FTA). Any positive integer n ą 1 can be written uniquely
as the following standard prime factorization form:

n “ pα1
1 pα2

2 ¨ ¨ ¨ pαk

k , (2.1)

where p1 ă p2 ă ¨ ¨ ¨ ă pk are primes and α1, α2, ¨ ¨ ¨ , αk are positive integers.
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Integer Factorization Problem

The idea of FTA can be traced to Euclid’s Elements [25], but it was first
clearly stated and proved by Gauss [29] in his Disquisitiones. According to
FTA, any positive integer can be uniquely written as its prime decomposition
form, say, for example,

12345678987654321 “ 34 ¨ 372 ¨ 3336672.
So, we can define the prime factorization problem (PFP) as follows:

PFP
def“

$
&

%

Input : n P Zą1 and n R Primes

Output : n “ pα1
1 pα2

2 ¨ ¨ ¨ pαk

k

(2.2)

The solution to PFP is actually involved in the solutions of two other prob-
lems: the primality testing problem (PTP) and the IFP, which can be de-
scribed as follows:

PTP
def“

$
’’’&

’’’%

Input : n P Zą1

Output :

$
&

%

Yes, n P Primes

No, Otherwise

(2.3)

and

IFP
def“

$
&

%

Input : n P Zą1 and n R Primes

Output : 1 ă f ă n pf is a nontrivial factor of nq.
(2.4)

So, to solve PFP, one just needs to recursively execute the following two
algorithms:

1. Algorithm for PTP

2. Algorithm for IFP

That is,

PFP
def“ þ

PTP ‘ þ

IFP.

For example, if we wish to factor the integer 123457913315, the recursive pro-
cess may be shown in Fig. 2.1. Since PTP can be solved easily in polynomial
time [3], we shall only concentrate on the solutions to IFP.
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660202745187

11 17 1320405495

123457913315

Figure 2.1. Prime factorization of 123457913315

Methods for Integer Factorization

There are many methods and algorithms for factoring a large integer. If we
are concerned with the determinism of the algorithms, then there are two
types of factoring algorithms:

1. Deterministic factoring algorithms
2. Probabilistic factoring algorithms

However, if we are more concerned with the form and the property of the
integers to be factored, then there are two types factoring methods or algo-
rithms:

1. General-purpose factoring algorithms: The running time depends mainly
on the size ofN , the number to be factored, and is not strongly dependent
on the size of the factor p found. Examples are:

(a) Lehman’s method [44], which has a rigorous worst-case running time
bound O `

n1{3`ε
˘
.

(b) Euler’s factoring method [49], which has deterministic running time
O `

n1{3`ε
˘
.

(c) Shanks’ SQUare FOrm Factorization method [68] SQUFOF, which
has expected running time O `

n1{4˘
.

(d) The FFT-based factoring methods of Pollard and Strassen [58, 75]
which have deterministic running time O `

n1{4`ε
˘
.

(e) The lattice-based factoring methods of Coppersmith [18], which has
deterministic running time O `

n1{4`ε
˘
.

(f) Shanks’ class group method [67], which has running time O `
n1{5`ε

˘
,

assuming the extended Riemann’s hypothesis (ERH).

(g) Continued FRACtion (CFRAC) method [55], which under plausible
assumptions has expected running time

O
´
exp

´
c
a
logn log log n

¯¯
“ O

´
nc

?
log logn{ log n

¯
,

where c is a constant (depending on the details of the algorithm);
usually c “ ?

2 « 1.414213562.
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(h) Quadratic sieve/Multiple polynomial quadratic sieve (QS/MPQS)
[60], which under plausible assumptions has expected running time

O
´
exp

´
c
a
logn log log n

¯¯
“ O

´
nc

?
log logn{ log n

¯
,

where c is a constant (depending on the details of the algorithm);

usually c “ 3

2
?
2

« 1.060660172.

(i) Number field sieve (NFS) [46], which under plausible assumptions
has the expected running time

O
´
exp

´
c 3
a
logn 3

aplog lognq2
¯¯

,

where c “ p64{9q1{3 « 1.922999427 if GNFS (a general version of
NFS) is used to factor an arbitrary integer n, whereas c “ p32{9q1{3 «
1.526285657 if SNFS (a special version of NFS) is used to factor a
special integer n such as n “ re ˘ s, where r and s are small, r ą 1,
and e is large. This is substantially and asymptotically faster than
any other currently known factoring method.

2. Special purpose factoring algorithms: The running time depends mainly
on the size of p (the factor found) of n. (We can assume that p ď ?

n.)
Examples are:

(a) Trial division [41], which has running time O `
pplognq2˘

.

(b) Pollard’s ρ-method [10, 59] (also known as Pollard’s “rho” algo-
rithm), which under plausible assumptions has expected running time
O `

p1{2plognq2˘
.

(c) Pollard’s p´ 1 method [58], which runs in OpB logBplognq2q, where
B is the smooth bound; larger values of B make it run more slowly,
but are more likely to produce a factor of n.

(d) Lenstra’s elliptic curve method (ECM) [47], which under plausible
assumptions has expected running time

O
´
exp

´
c
a
log p log log p

¯
¨ plognq2

¯
,

where c « 2 is a constant (depending on the details of the algorithm).

The term O `plognq2˘
is for the cost of performing arithmetic operations

on numbers which are Oplog nq or O `plognq2˘
bits long; the second can

be theoretically replaced by O `plog nq1`ε
˘
for any ε ą 0.

Note that there is a quantum factoring algorithm, first proposed by Shor
[70], which can run in polynomial time

Opplog nq2`εq.
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However, this quantum algorithm requires to be run on a quantum computer,
which is not available at present.

In practice, algorithms in both categories are important. It is sometimes
very difficult to say whether one method is better than another, but it is gen-
erally worth attempting to find small factors with algorithms in the second
class before using the algorithms in the first class. That is, we could first try
the trial division algorithm, then use some other method such as NFS. This
fact shows that the trial division method is still useful for integer factoriza-
tion, even though it is simple. In this chapter we shall introduce some most
the useful and widely used factoring algorithms.

From a computational complexity point of view, the IFP is an infeasible
(intractable) problem, since there is no polynomial-time algorithm for solving
it; all the existing algorithms for IFP run in subexponential-time or above
(see Fig. 2.2). Note that there is a quantum algorithm proposed by Shor [70]

Figure 2.2. Algorithms/methods for IFP

for IFP that can be run in polynomial time, but it needs to be run on a
practical quantum computer which does not exist at present.

NFS Factoring

A fundamental idea of many modern general-purpose algorithms for factoring
n is to find a suitable pair if px, yq such that

x2 ” y2 pmod nq but x ı ˘y pmod nq
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then there is a good chance to factor n:

Probpgcdpx ˘ y, nq “ pf1, f2q, 1 ă f1, f2 ă nq ą 1

2
.

In practice, the asymptotically fastest general-purpose factoring algorithm
is the NFS, and it runs in expected subexponential-time:

Opexppcplognq1{3plog lognq2{3qq.
Definition 2.1. A complex number α is an algebraic number if it is a root
of a polynomial

fpxq “ a0x
k ` a1x

k´1 ` a2x
k´2 ¨ ¨ ¨ ` ak “ 0 (2.5)

where a0, a1, a2, . . . , ak P Q and a0 ‰ 0. If fpxq is irreducible over Q and
a0 ‰ 0, then k is the degree of x.

Example 2.1. Two examples of algebraic numbers are as follows:

1 Rational numbers, which are the algebraic numbers of degree 1

2
?
2, which is of degree 2 because we can take fpxq “ x2 ´ 2 “ 0 (

?
2 is

irrational)

Any complex number that is not algebraic is said to be transcendental such
as π and e.

Definition 2.2. A complex number β is an algebraic integer if it is a root
of a monic polynomial

xk ` b1x
k´1 ` b2x

k´2 ¨ ¨ ¨ ` bk “ 0 (2.6)

where b0, b1, b2, . . . , bk P Z.

Remark 2.1. A quadratic integer is an algebraic integer satisfying a monic
quadratic equation with integer coefficients. A cubic integer is an algebraic
integer satisfying a monic cubic equation with integer coefficients.

Example 2.2. Some examples of algebraic integers are as follows:

1 Ordinary (rational) integers, which are the algebraic integers of degree
1. That is, they satisfy the monic equations x ´ a “ 0 for a P Z.

2 3
?
2 and 5

?
3, because they satisfy the monic equations x3 ´ 2 “ 0 and

x3 ´ 5 “ 0, respectively.

3 p´1 ` ?´3q{2, because it satisfies x2 ` x ` 1 “ 0.

4 Gaussian integer a ` b
?´1, with a, b P Z.

Clearly, every algebraic integer is an algebraic number, but the converse
is not true.
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Proposition 2.1. A rational number r P Q is an algebraic integer if and
only if r P Z.

Proof. If r P Z, then r is a root of x´ r “ 0. Thus, r is an algebraic integer.
Now, suppose that r P Q and r is an algebraic integer (i.e., r “ c{d is a
root of (2.6), where c, d P Z; we may assume gcdpc, dq “ 1). Substituting c{d
into (2.6) and multiplying both sides by dn, we get

ck ` b1c
k´1d ` b2c

k´2d2 ¨ ¨ ¨ ` bkd
k “ 0.

It follows that d | ck and d | c (since gcdpc, dq “ 1). Again, since gcdpc, dq “ 1,
it follows that d “ ˘1. Hence, r “ c{d P Z. It follows, for example, that 2{5
is an algebraic number but not an algebraic integer. l

Remark 2.2. The elements of Z are the only rational numbers that are
algebraic integers. We shall refer to the elements of Z as rational integers
when we need to distinguish them from other algebraic integers that are not
rational. For example,

?
2 is an algebraic integer but not a rational integer.

The most interesting results concerned with the algebraic numbers and
algebraic integers are the following theorem.

Theorem 2.2. The set of algebraic numbers forms a field, and the set of
algebraic integers forms a ring.

Proof. See pp 67–68 of Ireland and Rosen [38]. l

Lemma 2.1. Let fpxq be an irreducible monic polynomial of degree d over
integers and m an integer such that fpmq ” 0 pmod nq. Let α be a complex
root of fpxq and Zrαs the set of all polynomials in α with integer coefficients.
Then there exists a unique mapping Φ : Zrαs ÞÑ Zn satisfying:

1 Φpabq “ ΦpaqΦpbq, @a, b P Zrαs.
2 Φpa ` bq “ Φpaq ` Φpbq, @a, b P Zrαs.
3 Φpzaq “ zΦpaq, @a P Zrαs, z P Z.

4 Φp1q “ 1.

5 Φpαq “ m pmod nq.
Now, we are in a position to introduce the NFS. Note that there are

two main types of NFS: NFS (general NFS) for general numbers and SNFS
(special NFS) for numbers with special forms. The idea, however, behind the
GNFS and SNFS is the same:

1. Find a monic irreducible polynomial fpxq of degree d in Zrxs and an integer
m such that fpmq ” 0 pmod nq.
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2. Let α P C be an algebraic number that is the root of fpxq, and denote the
set of polynomials in α with integer coefficients as Zrαs.

3. Define the mapping (ring homomorphism): Φ : Zrαs ÞÑ Zn via Φpαq “ m
which ensures that for any fpxq P Zrxs, we have Φpfpαqq ” fpmq p mod nq.

4. Find a finite set U of coprime integers pa, bq such that

ź

pa,bqPU
pa ´ bαq “ β2,

ź

pa,bqPU
pa ´ bmq “ y2

for β P Zrαs and y P Z. Let x “ Φpβq. Then
x2 ” ΦpβqΦpβq

” Φpβ2q

” Φ

¨

˝
ź

pa,bqPU
pa ´ bαq

˛

‚

”
ź

pa,bqPU
Φpa ´ bαq

”
ź

pa,bqPU
pa ´ bmq

” y2 pmod nq
which is of the required form of the factoring congruence, and hopefully, a
factor of n can be found by calculating gcdpx ˘ y, nq.
There are many ways to implement the above idea, all of which follow

the same pattern as we discussed previously in CFRAC and QS/MPQS: By
a sieving process, one first tries to find congruences modulo n by working
over a factor base, and then do a Gaussian elimination over Z{2Z to obtain
a congruence of squares x2 ” y2 pmod nq. We give in the following a brief
description of the NFS algorithm [54].

Algorithm 2.1. Given an odd positive integer n, the NFS algorithm has the
following four main steps in factoring n:

[1] (Polynomials Selection) Select two irreducible polynomials fpxq and gpxq
with small integer coefficients for which there exists an integer m such that

fpmq ” gpmq ” 0 pmod nq (2.7)

The polynomials should not have a common factor over Q.
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[2] (Sieving) Let α be a complex root of f and β a complex root of g. Find
pairs pa, bq with gcdpa, bq “ 1 such that the integral norms of a ´ bα and
a ´ bβ

Npa ´ bαq “ bdegpfqfpa{bq, Npa ´ bβq “ bdegpgqgpa{bq (2.8)

are smooth with respect to a chosen factor base. (The principal ideals a´bα
and a´bβ factor into products of prime ideals in the number field Qpαq and
Qpβq, respectively.)

[3] (Linear Algebra) Use techniques of linear algebra to find a set U “ tai, biu
of indices such that the two products

ź

U

pai ´ biαq,
ź

U

pai ´ biβq (2.9)

are both squares of products of prime ideals.

[4] (Square root) Use the set S in (2.9) to find an algebraic numbers α1 P Qpαq
and β1 P Qpβq such that

pα1q2 “
ź

U

pai ´ biαq, pβ1q2 “
ź

U

pai ´ biβq (2.10)

Define Φα : Qpαq Ñ Zn and Φβ : Qpβq Ñ Zn via Φαpαq “ Φβpβq “ m, where
m is the common root of both f and g. Then

x2 ” Φαpα1qΦαpα1q
” Φαppα1q2q

” Φα

˜
ź

iPU
pai ´ biαq

¸

”
ź

U

Φαpai ´ biαq

”
ź

U

pai ´ bimq

” Φβpβ1q2

” y2 pmod nq

which is of the required form of the factoring congruence, and hopefully, a factor
of N can be found by calculating gcdpx ˘ y, nq.
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Example 2.3. We first give a rather simple NFS factoring example. Let
n “ 14885 “ 5 ¨ 13 ¨ 229 “ 1222 ` 1. So we put fpxq “ x2 ` 1 and m “ 122,
such that

fpxq ” fpmq ” 0 pmod nq.
If we choose |a|, |b| ď 50, then we can easily find (by sieving) that

pa, bq Normpa ` biq a ` bm
...

...
...

p´49, 49q 4802 “ 2 ¨ 74 5929 “ 72 ¨ 112
...

...
...

p´41, 1q 1682 “ 2 ¨ 292 81 “ 34

...
...

...

(Readers should be able to find many such pairs of pai, biq in the interval that
are smooth up to, e.g., 29.) So, we have

p49 ` 49iqp´41 ` iq “ p49 ´ 21iq2,
fp49 ´ 21iq “ 49 ´ 21m

“ 49 ´ 21 ¨ 122
“ ´2513 Ñ x,

5929 ¨ 81 “ p22 ¨ 7 ¨ 11q2

“ 6932

Ñ y “ 693.

Thus,

gcdpx ˘ y, nq “ gcdp´2513 ˘ 693, 14885q
“ p65, 229q.

In the same way, if we wish to factor n “ 84101 “ 2902 ` 1, then we let
m “ 290 and fpxq “ x2 ` 1 so that

fpxq ” fpmq ” 0 pmod nq.

We tabulate the sieving process as follows:
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pa, bq Normpa ` biq a ` bm
...

...
...

´50, 1 2501 “ 41 ¨ 61 240 “ 24 ¨ 3 ¨ 5
...

...
...

´50, 3 2509 “ 13 ¨ 193 820 “ 22 ¨ 5 ¨ 41
...

...
...

´49, 43 4250 “ 2 ¨ 53 ¨ 17 12421 “ 12421
...

...
...

´38, 1 1445 “ 5 ¨ 172 252 “ 22 ¨ 32 ¨ 7
...

...
...

´22, 19 845 “ 5 ¨ 132 5488 “ 24 ¨ 73
...

...
...

´118, 11 14045 “ 5 ¨ 532 3072 “ 210 ¨ 3
...

...
...

218, 59 51005 “ 5 ¨ 1012 17328 “ 24 ¨ 3 ¨ 192
...

...
...

Clearly, ´38 ` i and ´22 ` 19i can produce a product square, since

p´38 ` iqp´22 ` 19iq “ p31 ´ 12iq2,
fp31 ´ 12iq “ 31 ´ 12m

“ ´3449 Ñ x,

252 ¨ 5488 “ p23 ¨ 3 ¨ 72q2
“ 11762,

Ñ y “ 1176,

gcdpx ˘ y, nq “ gcdp´3449 ˘ 1176, 84101q
“ p2273, 37q.

In fact, 84101 “ 2273 ˆ 37. Note that ´118 ` 11i and 218 ` 59i can also
produce a product square, since
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p´118 ` 11iqp218 ` 59iq “ p14 ´ 163iq2,
fp14 ´ 163iq “ 14 ´ 163m

“ ´47256 Ñ x,

3071 ¨ 173288 “ p27 ¨ 3 ¨ 19q2
“ 72962,

Ñ y “ 7296,

gcdpx ˘ y, nq “ gcdp´47256˘ 7296, 84101q
“ p37, 2273q.

Example 2.4. Next, we present a little bit more complicated example. Use
NFS to factor n “ 1098413. First, notice that n “ 1098413 “ 12 ¨ 453 ` 173,
which is in a special form and can be factored by using SNFS.

[1] (Polynomials Selection) Select the two irreducible polynomials fpxq and
gpxq and the integer m as follows:

m “ 17

45
,

fpxq “ x3 ` 12 ùñ fpmq “
ˆ
17

45

˙3

` 12 ” 0 pmod nq,

gpxq “ 45x ´ 17 ùñ gpmq “ 45

ˆ
17

45

˙

´ 17 ” 0 pmod nq.

[2] (Sieving) Suppose after sieving, we get U “ tai, biu as follows:

U “ tp6,´1q, p3, 2q, p´7, 3q, p1, 3q, p´2, 5q, p´3, 8q, p9, 10qu.

That is, the chosen polynomial that produces a product square can be
constructed as follows (as an exercise, readers may wish to choose some
other polynomial which can also produce a product square):

ź

U

pai`bixq “ p6´xqp3`2xqp´7`3xqp1`3xqp´2`5xqp´3`8xqp9`10xq.

Let α “ 3
?´12 and β “ 17

45. Then
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ź

U

pa ´ bαq “ 7400772` 1138236α ´ 10549α2

“ p2694 ` 213α ´ 28α2q2

“
ˆ
5610203

2025

˙

“ 2707292,

ź

U

pa ´ bβq “ 28 ¨ 112 ¨ 132 ¨ 232
312 ¨ 54

“
ˆ
52624

18225

˙2

“ 8755392.

So, we get the required square of congruence:

2707292 ” 8755392 pmod 1098413q.
Thus,

gcdp270729 ˘ 875539, 1098413q “ p563, 1951q.
That is,

1098413 “ 563 ¨ 1951.
Example 2.5. We give some large factoring examples using NFS.

1 SNFS examples: One of the largest numbers factored by SNFS is

n “ p12167 ` 1q{13 “ p75 ˆ p105

It was announced by P. Montgomery, S. Cavallar, and H. te Riele at CWI
in Amsterdam on 3 September 1997. They used the polynomials fpxq “
x5 ´ 144 and gpxq “ 1233x ` 1 with common root m ” 12134 pmod nq.
The factor base bound was 4.8 million for f and 12 million for g. Both
large prime bounds were 150 million, with two large primes allowed on
each side. They sieved over |a| ď 8.4 million and 0 ă b ď 2.5 million. The
sieving lasted 10.3 calendar days; 85 SGI machines at CWI contributed
a combined 13027719 relations in 560 machine-days. It took 1.6 more
calendar days to process the data. This processing included 16 CPU-hours
on a Cray C90 at SARA in Amsterdam to process a 1969262 ˆ 1986500
matrix with 57942503 nonzero entries. The other large number factorized
by using SNFS is the 9th Fermat number:

F9 “ 22
9 ` 1 “ 2512 ` 1 “ 2424833 ¨ p49 ¨ p99,
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a number with 155 digits; it was completely factored in April 1990. The
most wanted factoring number of special form at present is the 12th Fer-
mat number F12 “ 22

12 `1; we only know its partial prime factorization:

F12 “ 114689¨26017793¨63766529¨190274191361¨1256132134125569¨c1187
and we want to find the prime factors of the remaining 1187-digit com-
posite.

2 GNFS examples:

RSA ´ 130 p130 digitsq
“ 18070820886874048059516561644059055662781025167694013491

70127021450056662540244048387341127590812303371781887966

563182013214880557

“ 396859994595974542901611261628837

86067576449112810064832555157243

ˆ
455344986467359721884036868972744

08864356301263205069600999044599.

RSA ´ 140 p140 digitsq
“ 2129024631825875754749788201627151749780670396327721627

8233383215381949984056495911366573853021918316783107387

995317230889569230873441936471

“ 33987174230284385545301236276138758

35633986495969597423490929302771479

ˆ
62642001874012850961516549482644422

19302037178623509019111660653946049.

RSA ´ 155 p512 digitsq
“ 1094173864157052742180970732204035761200373294544920599

0913842131476349984288934784717997257891267332497625752

899781833797076537244027146743531593354333897

“ 102639592829741105772054196573991675900

716567808038066803341933521790711307779

ˆ
106603488380168454820927220360012878679

207958575989291522270608237193062808643.
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RSA ´ 576 p576 bits, 174 digitsq
“ 18819881292060796383869723946165043980716356337941738

27007633564229888597152346654853190606065047430453173

88011303396716199692321205734031879550656996221305168

759307650257059

“ 3980750864240649373971255005503864911990643

62342526708406385189575946388957261768583317

ˆ
4727721461074353025362230719730482246329146

95302097116459852171130520711256363590397527.

RSA ´ 640 p193 digits, 640 bitsq
“ 31074182404900437213507500358885679300373460228427275

45720161948823206440518081504556346829671723286782437

91627283803341547107310

“ 163473364580925384844313388386509085984178367003

3092312181110852389333100104508151212118167511579

ˆ
“ 190087128166482211312685157393541397547189678996

8515493666638539088027103802104498957191261465571.

RSA ´ 663 p200 digits, 663 bitsq
“ 27997833911221327870829467638722601621070446786955428

53756000992932612840010760934567105295536085606182235

19109513657886371059544820065767750985805576135790987

34950144178863178946295187237869221823983

“ 35324619344027701212726049781984643686711974001976

25023649303468776121253679423200058547956528088349

ˆ
79258699544783330333470858414800596877379758573642

19960734330341455767872818152135381409304740185467.
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RSA ´ 704 p704 bits, 212 digitsq
“ 7403756347956171282804679609742957314259318888923128

9084936232638972765034028266276891996419625117843995

8943305021275853701189680982867331732731089309005525

0511687706329907239638078671008609696253793465056379

6359

“ 90912135295978188784406583026004374858926

08310328358720428512168960411528640933367

824950788367956756806141

ˆ
81438592591100452657278091262844293358778

99002167627883200914172429324360133004116

702003240828777970252499.

RSA ´ 768 p768 bits, 232 digitsq
“ 123018668453011775513049495838496272077285356959533

479219732245215172640050726365751874520219978646938

995647494277406384592519255732630345373154826850791

702612214291346167042921431160222124047927473779408

0665351419597459856902143413

“ 334780716989568987860441698482126908177047

949837137685689124313889828837938780022876

14711652531743087737814467999489

ˆ
36746043666799590428244633799627952632279

15816434308764267603228381573966651127923

3373417143396810270092798736308917.

Remark 2.3. Prior to the NFS, all modern factoring methods had an ex-
pected running time of at best

O
´
exp

´
pc ` op1qqa

logn log logn
¯¯

.

For example, Dixon’s random square method has the expected running time

O
´
exp

´
p?

2 ` op1qqa
log n log logn

¯¯
,
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whereas the MPQS takes time

O
´
exp

´
p1 ` op1qqa

log logn{ logn
¯¯

.

Because of the Canfield–Erdös–Pomerance theorem, some people even be-
lieved that this could not be improved, except maybe for the term pc` op1qq,
but the invention of the NFS has changed this belief.

Conjecture 2.1 (Complexity of NFS). Under some reasonable heuristic
assumptions, the NFS method can factor an integer N in time

O
´
exp

´
pc ` op1qq 3

a
logn 3

aplog lognq2
¯¯

(2.11)

where c “ p64{9q1{3 « 1.922999427 if GNFS is used to factor an arbitrary
integer N , whereas c “ p32{9q1{3 « 1.526285657 if SNFS is used to factor a
special integer N .

ρ-Factoring Method

Although NFS is the fastest method of factoring at present, other methods
are also useful, one of the particular method is the ρ-factoring method [59];
surprisingly it is the method that is applicable for all the three infeasible
problems, IFP, DLP, and ECDLP discussed in this book.

ρ uses an iteration of the form

x0 “ randomp0, n ´ 1q,
xi ” fpxi´1q pmod nq, i “ 1, 2, 3, . . .

+

(2.12)

where x0 is a random starting value, n is the number to be factored, and
f P Zrxs is a polynomial with integer coefficients; usually, we just simply
choose fpxq “ x2 ˘ a with a ‰ ´2, 0. If p is prime, then the sequence
txi mod puią0 must eventually repeat. Let fpxq “ x2 ` 1, x0 “ 0, p “ 563.
Then we get the sequence txi mod puią0 as follows (Fig. 2.3):

x0 “ 0,
x1 “ x2

0 ` 1 “ 1,

x2 “ x2
1 ` 1 “ 2,

x3 “ x2
2 ` 1 “ 5,

x4 “ x2
3 ` 1 “ 26,

x5 “ x2
4 ` 1 “ 114,

x6 “ x2
5 ` 1 “ 48,
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x7 “ x2
6 ` 1 “ 53,

x8 “ x2
7 ` 1 “ 558,

x9 “ x2
8 ` 1 “ 26.

That is,
0, 1, 2, 5, 26, 114, 48, 53, 558.

This sequence symbols a diagram, looks like the Greek letter ρ: As an exercise,

0

. .

26

.

48

114

53558

1

2

5

Figure 2.3. ρ cycle modulo 563 using fpxq “ x2 ` 1 and x0 “ 0

readers may wish to find the ρ cycle modulo 1951 using fpxq “ x2 ` 1 and
x0 “ 0. Of course, to factor n, we do not know its prime factors before hand,
but we can simply modulo n (justified by the Chinese Remainder Theorem).
For example, to factor n “ 1098413 “ 563 ¨ 1951, we perform (all modulo
1098413):

x0 “ 0, yi “ x2i gcdpxi ´ yi, nq
x1 “ x2

0 ` 1 “ 1,

x2 “ x2
1 ` 1 “ 2, y1 “ x2 “ 2 gcdp1 ´ 2, nq “ 1

x3 “ x2
2 ` 1 “ 5,

x4 “ x2
3 ` 1 “ 26, y2 “ x4 “ 26 gcdp2 ´ 26, nq “ 1
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x5 “ x2
4 ` 1 “ 677

” 114,

x6 “ x2
5 ` 1 “ 458330

” 48, y3 “ x6 “ 458330 gcdp5 ´ 458330, nq “ 1

x7 “ x2
6 ` 1 “ 394716

” 53,

x8 “ x2
7 ` 1 “ 722324

” 558, y4 “ x8 “ 722324 gcdp26 ´ 722324, nq “ 1

x9 “ x2
8 ` 1 “ 293912

” 26

.x10 “ x2
9 ` 1 “ 671773

” 114 y5 “ x10 “ 671773 gcdp677 ´ 671773, nq “ 563.

The following algorithm is an improved version of Brent [10] over Pollard’s
original ρ-method.

Algorithm 2.2 (Brent–Pollard’s ρ-method). Let n be a composite inte-
ger greater than 1. This algorithm tries to find a nontrivial factor d of n, which
is small compared with

?
n. Suppose the polynomial to use is fpxq “ x2 ` 1.

[1] (Initialization) Choose a seed, say x0 “ 2, a generating function, say
fpxq “ x2 ` 1 pmod nq. Choose also a value for t not much bigger than?
d, perhaps t ă 100

?
d.

[2] (Iteration and Computation) Compute xi and yi in the following way:

x1 “ fpx0q,
x2 “ fpfpx0qq “ fpx1q,
x3 “ fpfpfpx0qqq “ fpfpx1qq “ fpx2q,

...

xi “ fpxi´1q.

y1 “ x2 “ fpx1q “ fpfpx0qq “ fpfpy0qq,
y2 “ x4 “ fpx3q “ fpfpx2qq “ fpfpy1qq,
y3 “ x6 “ fpx5q “ fpfpx4qq “ fpfpy2qq,

...

yi “ x2i “ fpfpyi´1qq.
and simultaneously compare xi and yi by computing d “ gcdpxi ´yi, nq.
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[3] (Factor Found?) If 1 ă d ă n, then d is a nontrivial factor of n, print d,
and go to Step [5].

[4] (Another Search?) If xi “ yi pmod nq for some i or i ě ?
t, then go to

Step [1] to choose a new seed and a new generator and repeat.

[5] (Exit) Terminate the algorithm.

The ρ algorithm has the conjectured complexity:

Conjecture 2.2 (Complexity of the ρ-method). Let p be a prime di-
viding n and p “ Op?

p q, then the ρ-algorithm has expected running time

Op?
p q “ Op?

p plognq2q “ Opn1{4plognq2q (2.13)

to find the prime factor p of n.

Remark 2.4. The ρ-method is an improvement over trial division, because
in trial division, Oppq “ Opn1{4q divisions is needed to find a small factor p
of n. But of course, one disadvantage of the ρ-algorithm is that its running
time is only a conjectured expected value, not a rigorous bound.

Exercises and Problems for Sect. 2.1

1. Explain why general-purpose factoring algorithms are slower than special
purpose factoring algorithms, or why the special numbers are easy to
factor than general numbers.

2. Show that:
(a) Addition of two logn bit integers can be performed in Oplog nq bit

operations.

(b) Multiplication of two logn bit integers can be performed in
Opplog nq1`εq bit operations.

3. Show that:
(a) Assume the ERH, there is deterministic algorithm that factors n in

Opn1{5`εq steps.

(b) FFT (fast Fourier transform) can be utilized to factor an integer n
in Opn1{4`εq steps.

(c) Give two deterministic algorithms that factor integer n in Opn1{3`εq
steps.

4. Show that if P “ NP , then IFP P P .

5. Prove or disprove that IFP P NP-complete.
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6. Extend the NFS to FFS (function field sieve). Give a complete description
of the FFS for factoring large integers.

7. Let xi “ fpxi´1q, i “ 1, 2, 3, . . .. Let also t, u ą 0 be the smallest num-
bers in the sequence xt`i “ xt`u`i, i “ 0, 1, 2, . . ., where t and u are
called the lengths of the ρ tail and cycle, respectively. Give an efficient
algorithm to determine t and u exactly, and analyze the running time of
your algorithm.

8. Find the prime factorization of the following RSA numbers, each of these
numbers has two prime factors:

(a) RSA-896 (270 digits, 896 bits)
4120234369866595438555313653325759481798116998443279828454556
2643387644556524842619809887042316184187926142024718886949256
0931776375033421130982397485150944909106910269861031862704114
8808669705649029036536588674337317208131041051908642547932826
01391257624033946373269391

(b) RSA-1024 (309 digits, 1024 bits)
1350664108659952233496032162788059699388814756056670275244851
4385152651060485953383394028715057190944179820728216447155137
3680419703964191743046496589274256239341020864383202110372958
7257623585096431105640735015081875106765946292055636855294752
1350085287941637732853390610975054433499981115005697723689092
7563

(c) RSA-1536 (463 digits, 1536 bits)
1847699703211741474306835620200164403018549338663410171471785
7749106516967111612498593376843054357445856160615445717940522
2971773252466096064694607124962372044202226975675668737842756
2389508764678440933285157496578843415088475528298186726451339
8633649319080846719904318743812833635027954702826532978029349
1615581188104984490831954500984839377522725705257859194499387
0073695755688436933812779613089230392569695253261620823676490
316036551371447913932347169566988069

(d) RSA-2048 (617 digits, 2048 bits)
2519590847565789349402718324004839857142928212620403202777713
7836043662020707595556264018525880784406918290641249515082189
2985591491761845028084891200728449926873928072877767359714183
4727026189637501497182469116507761337985909570009733045974880
8428401797429100642458691817195118746121515172654632282216869
9875491824224336372590851418654620435767984233871847744479207
3993423658482382428119816381501067481045166037730605620161967
6256133844143603833904414952634432190114657544454178424020924
6165157233507787077498171257724679629263863563732899121548314
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3816789988504044536402352738195137863656439121201039712282212
0720357

9. Try to complete the following prime factorization of the smallest unfac-
tored (not completely factored) Fermat numbers:

F12 “ 114689 ¨ 26017793 ¨ 63766529 ¨ 190274191361 ¨
1256132134125569 ¨ c1187

F13 “ 2710954639361 ¨ 2663848877152141313 ¨ 36031098445229199 ¨
319546020820551643220672513 ¨ c2391

F14 “ c4933

F15 “ 1214251009 ¨ 2327042503868417 ¨
168768817029516972383024127016961 ¨ c9808

F16 “ 825753601 ¨ 188981757975021318420037633 ¨ c19694
F17 “ 31065037602817 ¨ c39444
F18 “ 13631489 ¨ 81274690703860512587777 ¨ c78884
F19 “ 70525124609 ¨ 646730219521 ¨ c157804
F20 “ c315653

F21 “ 4485296422913 ¨ c631294
F22 “ c1262612

F23 “ 167772161 ¨ c2525215
F24 “ c5050446

Basically, you are asked to factor the unfactored composite numbers,
denoted by cx, of the Fermat numbers. For example, in F12, c1187 is the
unfactored 1187 digit composite.

2.2 IFP-Based Cryptography

Basic Idea of IFP-Based Cryptography

IFP-based cryptography is a class of cryptographic systems whose security
relies on the intractability of the IFP problem:
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IFP
can be used to constructùùùùùùùùùùùùùùùùñ IFP-Based Cryptography§

§
§
§
đ

§
§
§
§
đ

Infeasible Secure
Hard UnbreakableK O

No Efficient Classical Attacks
on both IFP and IFP-Based Cryptography

Typical cryptographic systems in this class include RSA [64], Rabin [62],
and Goldwasser–Micali probabilistic encryption [32] and Goldwasser–Micali–
Rackoff zero-knowledge interactive proof [33]. We shall first give an account
of the RSA cryptographic system. In a general cryptographic setting, we
assume Alice wishes to send a ciphertext C of the plaintext M to Bob (or
vice versa), Eve, the eavesdropper, wishes to understand the communication
between Alice and Bob:

Alice M
CÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ M Bob

İ
§
§
§
đ

M1

Eve

RSA Cryptography

RSA is the most famous, first practical, widely used, and still unbreakable
public-key cryptography, for which its three inventors, Rivest, Shamir, and
Adleman, received the 2002 Turing Award. The security of RSA relies com-
pletely on the infeasibility of the IFP problem.

Definition 2.3. The RSA public-key cryptosystem may be formally defined
as follows (Depicted in Fig. 2.4):

RSA “ pM, C,K,M,C, e, d,N,E,Dq (2.14)

where:

1. M is the set of plaintexts, called the plaintext space.

2. C is the set of cipherexts, called the ciphertext space.

3. K is the set of keys, called the key space.

4. M P M is a piece of particular plaintext.
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MM

Alice
(Receiver)

Public/Insecure Channel Eve (Cryptanalyst)

Ciphertext

Plaintext

Bob
(Sender)

Plaintext Encryption Decryption

C M′
?

M

C

Key Source Key Source

M ≡ Cd (mod N)C ≡ Me (mod N)

(e,N) (d,N)

(e, d, N) k

∋

→ =

Figure 2.4. RSA public-key cryptography

5. C P C is a piece of particular ciphertext.

6. N “ pq is the modulus with p, q prime numbers, usually each with at
least 100 digits.

7. tpe,Nq, pd,Nqu P K with e ‰ d are the encryption and encryption keys,
respectively, satisfying

ed ” 1 pmod φpNqq (2.15)

where φpNq “ pp ´ 1qpq ´ 1q is the Euler φ-function and defined by
φpNq “ #pZN̊ q, the number of elements in the multiplicative group ZN̊ .

8. E is the encryption function

Ee,N : M ÞÑ C

That is, M P M maps to C P C, using the public-key pe,Nq, such that

C ” M e pmod Nq. (2.16)

9. D is the decryption function

Dd,N : C ÞÑ M

That is, C P C maps to M P M, using the private-key pd,Nq, such that

M ” Cd ” pM eqd pmod Nq. (2.17)

The idea of RSA can be best depicted in Fig. 2.5.

Theorem 2.3 (The Correctness of RSA). LetM,C,N, e, d be plaintext,
ciphertext, encryption exponent, decryption exponent, and modulus, respec-
tively. Then

pM eqd ” M pmod Nq.
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C ≡ Me (mod N)

(e, N) public

M ≡ Cd (mod N)

and ed 1 (mod (p − 1) (q − 1))
such that N pq

Alice chooses primes p, q

Alice Bob

(e, N, C) → M′
Eve

=
≡

Figure 2.5. RSA encryption and decryption

Proof. Notice first that

Cd ” pM eqd pmod Nq psince C ” M e pmod Nqq
” M1`kφpNq pmod Nq psince ed ” 1 pmod φpNqqq
” M ¨ MkφpNq pmod Nq
” M ¨ pMφpNqqk pmod Nq
” M ¨ p1qk pmod Nq pby Euler1s Theorem aφpnq ” 1 pmod Nqq
” M

The result thus follows. l
Both encryption C ” M e pmod Nq and decryption M ” Cd pmod Nq

of RSA can be implemented in polynomial time by the fast exponentiation
method. For example, the RSA encryption can be implemented as follows:

Algorithm 2.3. Given pe,M,Nq, this algorithm finds C ” M e pmod Nq, or
given pd, C,Nq, finds M ” Cd pmod Nq in time polynomial in log e or log d,
respectively.

Encryption: Decryption:
Given pe,M,Nq to find C Given pd, C,Nq to find M
Set C Ð 1 Set M Ð 1
While e ě 1 do While d ě 1 do

if e mod 2 “ 1 if d mod 2 “ 1
then C Ð C ¨ M mod N then M Ð M ¨ C mod N

M Ð M2 mod N C Ð C2 mod N
e Ð te{2u d Ð td{2u

Print C Print M
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Remark 2.5. For the decryption process in RSA, as the authorized user
knows d and hence knows p and q, thus instead of directly working on M ”
Cd pmod Nq, he can speed-up the computation by working on the following
two congruences:

Mp ” Cd ” Cd mod p´1 pmod pq
Mq ” Cd ” Cd mod q´1 pmod qq

and then use the Chinese Remainder Theorem to get

M ” Mp ¨ q ¨ q´1 mod p ` Mq ¨ p ¨ p´1 mod q pmod Nq. (2.18)

The Chinese Remainder Theorem is a two-edged sword. On the one hand,
it provides a good way to speed-up the computation/performance of the
RSA decryption, which can even be easily implemented by a low-cost crypto-
chip [34]. On the other hand, it may introduce some serious security prob-
lems vulnerable to some side-channel attacks, particularly the random fault
attacks;

Example 2.6. Let the letter-digit encoding be as follows:

space “ 00, A “ 01, B “ 02, ¨ ¨ ¨ , Z “ 26.

(We will use this digital representation of letters throughout the book.) Let
also

e “ 9007,

M “ 200805001301070903002315180419000118050019172105011309

190800151919090618010705,

N “ 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075

147599290026879543541.

Then the encryption can be done by using Algorithm 2.3:

C ” M e

” 968696137546220614771409222543558829057599911245743198

746951209308162982251457083569314766228839896280133919

90551829945157815154 pmod Nq.
For the decryption, since the two prime factors p and q of N are known to
the authorized person who does the decryption:

p “ 34905295108476509491478496199038981334177646384933878

43990820577

q “ 32769132993266709549961988190834461413177642967992942

539798288533
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then

d ” 1{e
” 106698614368578024442868771328920154780709906633937862

” 801226224496631063125911774470873340168597462306553968

” 544513277109053606095 pmod pp ´ 1qpq ´ 1qq.
Thus, the original plaintext M can be recovered either directly by using
Algorithm 2.3 or indirectly by a combined use of Algorithm 2.3 and the
Chinese Remainder Theorem (2.18):

M ” Cd

“ 200805001301070903002315180419000118050019172105011309

190800151919090618010705 pmod Nq
which is “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.”

Remark 2.6. Prior to RSA, Pohlig and Hellman in 1978 [57] proposed a
secret-key cryptography based on arithmetic modulo p, rather than N “ pq.
The Pohlig–Hellman system works as follows: Let M and C be the plain
and cipher texts, respectively. Choose a prime p, usually with more than 200
digits, and a secret encryption key e such that e P Z

` and e ď p´2. Compute
d ” 1{e pmod pp ´ 1qq. pe, pq and of course d must be kept as a secret.

[1] Encryption:

C ” M e pmod pq. (2.19)

This process is easy for the authorized user:

tM, e, pu findÝÝÝÝÝÑ
easy

tC ” M e pmod pqu. (2.20)

[2] Decryption:

M ” Cd pmod pq. (2.21)

For the authorized user who knows pe, pq, this process is easy, since d can
be easily computed from e.

[3] Cryptanalysis: The security of this system is based on the infeasibility
of the discrete logarithm problem. For example, for a cryptanalyst who
does not know e or d would have to compute:

e ” logM C pmod pq.
Remark 2.7. One of the most important features of RSA encryption is that
it can also be used for digital signatures. Let M be a document to be signed,
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and N “ pq with p, q primes, pe, dq the public and private exponents as
in RSA encryption scheme. Then the processes of RSA signature signing
and signature verification are just the same as that of the decryption and
encryption; that is, use d for signature signing and e signature verification as
follows (see also Fig. 2.6):

M ≡ Se (mod N)

S ≡ Md (mod N)
Alice Bob

and ed ≡ 1 (mod f(N)
such that N = pq

Alice chooses primes p, q

(e, N) public

Figure 2.6. RSA digital signature

[1] Signature signing:

S ” Md pmod Nq (2.22)

The signing process can only be done by the authorized person who has
the private exponent d.

[2] Signature verification:

M ” Se pmod Nq (2.23)

This verification process can be done by anyone since pe,Nq is public.

Of course, RSA encryption and RSA signature can be used together to obtain
a signed encrypted document to be sent over an insecure network.

RSA Problem and RSA Assumption

As can be seen from the previous section, the whole idea of the RSA encryp-
tion and decryption is as follows:

C ” M e pmod Nq,
M ” Cd pmod Nq

*

(2.24)
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where

ed ” 1 pmod φpNqq
N “ pq with p, q P Primes.

*

(2.25)

Thus, the RSA function can be defined by

fRSA : M ÞÑ M e mod N. (2.26)

The inverse of the RSA function is then defined by

f´1
RSA : M e ÞÑ M mod N. (2.27)

Clearly, the RSA function is a one-way trap-door function, with

td, p, q, φpNqu (2.28)

the RSA trap-door informationmitrap-door information. For security pur-
poses, this set of information must be kept as a secret and should never be
disclosed in anyway even in part. Now, suppose that Bob sends C to Alice,
but Eve intercepts it and wants to understand it. Since Eve only has pe,N,Cq
and does not have any piece of the trap-door information in (2.28), then it
should be infeasible/intractable for her to recover M from C:

te,N,C ” M e pmod Nqu hardÝÝÝÝÝÑ tM ” Cd pmod Nqu. (2.29)

On the other hand, for Alice, since she knows d, which implies that she knows
all the pieces of trap-door information in (2.28), since

tdu Pðñ tpu Pðñ tqu Pðñ tφpNqu (2.30)

Thus, it is easy for Alice to recover M from C:

tN,C ” M e pmod Nqu td,p,q,φpNquÝÝÝÝÝÝÝÝÝÝÑ
easy

tM ” Cd pmod Nqu. (2.31)

Why is it hard for Eve to recoverM from C? This is because Eve is facing
a hard computational problem, namely, the RSA problem [65]:

The RSA problem: Given the RSA public-key pe,Nq and the RSA
ciphertext C, find the corresponding RSA plaintext M . That is,

te,N,Cu ÝÝÝÝÑ tMu.
It is conjectured although it has never been proved or disproved that:

The RSA conjecture: Given the RSA public-key pe,Nq and the
RSA ciphertext C, it is hard to find the corresponding RSA plaintext
M . That is,

te,N,Cu hardÝÝÝÝÝÑ tMu.
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But how hard is it for Alice to recover M from C? This is another version of
the RSA conjecture, often called the RSA assumption, which again has never
been proved or disproved:

The RSA assumption: Given the RSA public-key pe,Nq and the
RSA ciphertext C, then finding M is as hard as factoring the RSA
modulus N . That is,

IFPpNq ðñ RSApMq
provided that N is sufficiently large and randomly generated, and M
and C are random integers between 0 and N ´ 1. More precisely, it
is conjectured (or assumed) that

IFPpNq Pðñ RSApMq.
That is, if N can be factorized in polynomial time, then M can be recovered
from C in polynomial time. In other words, cryptoanalyzing RSA must be
as difficult as solving the IFP problem. But the problem is, as we discussed
previously, that no one knows whether or not IFP can be solved in polynomial
time, so RSA is only assumed to be secure, not proved to be secure:

IFPpNq is hard ÝÑ RSApMq is secure.

The real situation is that

IFPpNq
‘

ùñ RSApMq,
IFPpNq ?ðù RSApMq.

Now, we can return to answer the question of how hard is it for Alice to
recover M from C? By the RSA assumption, cryptanalyzing C is as hard
as factoring N . The fastest known integer factorization algorithm, the NFS,
runs in time

OpexppcplogNq1{3plog logNq2{3qq
where c “ p64{9q1{3 if a general version of NFS, GNFS, is used for factoring an
arbitrary integer N whereas c “ p32{9q1{3 if a special version of NFS, SNFS,
is used for factoring a special form of integer N . As in RSA, the modulus
N “ pq is often chosen to be a large general composite integer N “ pq with
p and q of the same bit size, which makes SNFS not useful. This means that
RSA cannot be broken in polynomial time but in subexponential-time, which
makes RSA secure, again, by assumption. Thus, readers should note that the
RSA problem is assumed to be hard, and the RSA cryptosystem is conjectured
to be secure .
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In the RSA cryptosystem, it is assumed that the cryptanalyst, Eve:

1. Knows the public-key te,Nu with N “ pq and also the ciphertext C

2. Does not know any one piece of the trap-door information tp, q, φpNq, du
3. Wants to know tMu
That is,

te,N,C ” M e pmod Nqu Eve wants to findÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ tMu.
Obviously, there are several ways to recover M from C (i.e., to break the

RSA system):

1. Factor N to get tp, qu so as to compute

M ” C1{e p mod pp´1qpq´1qq pmod Nq.
2. Find φpNq so as to compute

M ” C1{e p mod φpNqq pmod Nq.
3. Find orderpa,Nq, the order of a random integer a P r2, N ´ 2s modulo

N , then try to find

tp, qu “ gcdpar{2 ˘ 1, Nq and M ” C1{e p mod pp´1qpq´1qq pmod Nq.
4. Find orderpC,Nq, the order of C modulo N , so as to compute

M ” C1{e p mod orderpC,Nqq pmod Nq.
5. Compute logC M pmod Nq, the discrete logarithm M to the base C

modulo N in order to find

M ” C logC M p mod Nq pmod Nq

Rabin Cryptography

As can be seen from the previous sections, RSA uses M e for encryption,
with e ě 3 (3 is the smallest possible public exponent in RSA); in this way,
we might call RSA encryption M e encryption. In 1979, Michael Rabin [62]
proposed a scheme based on M2 encryption, rather than the M e for e ě 3
encryption used in RSA. A brief description of the Rabin cryptosystem is as
follows (see also Fig. 2.7).

1. Key generation: Let n “ pq with p, q odd primes satisfying

p ” q ” 3 pmod 4q. (2.32)
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M = {±Mp, ±Mq}

p ≡ q ≡ 3 (mod 4)
(p, q) secret

C
Mq ≡
Mp≡

C (mod q)
(mod p)

Alice chooses primes p, q such that

C ≡ M2 (mod n)

n public

BobAlice

√
√

Figure 2.7. Rabin cryptosystem

2. Encryption:

C ” M2 pmod nq. (2.33)

3. Decryption: Use the Chinese Remainder Theorem to solve the system
of congruences:

#
Mp ” ?

C pmod pq
Mq ” ?

C pmod qq
(2.34)

to get the four solutions: t˘Mp,˘Mqu. The true plaintext M will be one
of these four values.

4. Cryptanalysis: A cryptanalyst who can factor n can compute the four
square roots of C modulo n and hence can recover M from C. Thus,
breaking the Rabin system is equivalent to factoring n.

Example 2.7. Let M “ 31.

[1] Key generation: Let n “ 11 ¨ 19 be the public-key, but keep the prime
factors p “ 11 and q “ 19 of n as a secret.

[2] Encryption:

C ” 312 ” 125 pmod 209q.
[3] Decryption: Compute

#
Mp ” ?

125 ” ˘2 pmod pq
Mq ” ?

125 ” ˘7 pmod qq.
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Now, use the Chinese Remainder Theorem to solve

#
M ” 2 pmod 11q
M ” 7 pmod 19q ùñ M “ 178

#
M ” ´2 pmod 11q
M ” 7 pmod 19q ùñ M “ 64

#
M ” ´2 pmod 11q
M ” 7 pmod 19q ùñ M “ 145

#
M ” ´2 pmod 11q
M ” ´7 pmod 19q ùñ M “ 31

The true plaintext M will be one of the above four values, and in fact,
M “ 31 is the true value.

Unlike the RSA cryptosystem whose security was only conjectured to be
equivalent to the intractability of IFP, the security of Rabin system and its
variant such as Rabin–Williams system is proved to be equivalent to the in-
tractability of IFP. First, notice that there is a fast algorithm to compute the
square roots modulo N if n “ pq is known. Consider the following quadratic
congruence

x2 ” y pmod pq (2.35)

there are essentially three cases for the prime p:

(1) p ” 3 pmod 4q.
(2) p ” 5 pmod 8q.
(3) p ” 1 pmod 8q.
All three cases may be solved by the following process:

$
’’’’’’&

’’’’’’%

if p ” 3 pmod 4q, x ” ˘y
p ` 1
4 pmod pq,

if p ” 5 pmod 8q,

$
’’&

’’%

if y
p ` 1
4 “ 1, x ” ˘y

p ` 3
8 pmod pq

if y
p ` 1
4 ‰ 1, x ” ˘2yp4yq

p ´ 5
8 pmod pq.

(2.36)

Algorithm 2.4 (Computing square roots modulo pq). Let n “ pq with
p and q odd prime and y P QRn. This algorithm will find all the four solutions
in x to congruence x2 ” y pmod pqq in time Opplog pq4q.
[1] Use (2.36) to find a solution r to x2 ” y pmod pq.
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[2] Use (2.36) to find a solution s to x2 ” y pmod qq.
[3] Use the Extended Euclid’s algorithm to find integers c and d such that

cp ` dq “ 1.

[4] Compute x ” ˘prdq ˘ scpq pmod pqq.
On the other hand, if there exists an algorithm to find the four solutions

in x to x2 ” y pmod nq, then there exists an algorithm to find the prime
factorization of n. The following is the algorithm.

Algorithm 2.5 (Factoring via square roots). This algorithm seeks to
find a factor of n by using an existing square root finding algorithm (namely,
Algorithm 2.4).

[1] Choose at random an integer x such that gcdpx, nq “ 1, and compute
x2 ” a pmod nq.

[2] Use Algorithm 2.4 to find four solutions in x to x2 ” a pmod nq.
[3] Choose one of the four solutions, say y such that y ı ˘x pmod nq, then

compute gcdpx ˘ y, nq.
[4] If gcdpx ˘ y, nq reveals p or q, then go to Step [5], or otherwise, go to

Step [1].

[5] Exit.

Theorem 2.4. Let N “ pq with p, q odd prime. If there exists a polynomial-
time algorithm A to factor n “ pq, then there exists an algorithm B to find
a solution to x2 ” y pmod nq, for any y P QRN .

Proof. If there exists an algorithm A to factor n “ pq, then there exists an
algorithm (in fact, Algorithm 2.4), which determines x “ ˘prdq ˘ scpq pmod
pqq, as defined in Algorithm 2.4, for x2 ” y pmod nq. Clearly, Algorithm 2.4
runs in polynomial time. l

Theorem 2.5. Let n “ pq with p, q odd prime. If there exists a polynomial-
time algorithm A to find a solution to x2 ” a pmod nq, for any a P QRn,
then there exists a probabilistic polynomial-time algorithm B to find a factor
of n.

Proof. First, note that for n composite, x and y integer, if x2 ” y2 p mod nq
but x ı ˘y pmod nq, then gcdpx ` y, nq are proper factors of n. If there
exists an algorithm A to find a solution to x2 ” a pmod nq for any a P
QRn, then there exists an algorithm (in fact, Algorithm 2.5), which uses
algorithm A to find four solutions in x to x2 ” a pmod nq for a random x
with gcdpx, nq “ 1. Select one of the solutions, say, y ı ˘x pmod nq, then
by computing gcdpx ˘ y, nq, the probability of finding a factor of N will be
ě 1{2. If Algorithm 2.5 runs for k times and each time randomly chooses a
different x, then the probability of not factoring n is ď 1{2k. l

So, finally, we have
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Theorem 2.6. Factoring integers, computing the modular square roots, and
breaking the Rabin cryptosystem are computationally equivalent. That is,

IFPpnq Pðñ RabinpMq. (2.37)

Residuosity-Based Cryptography

Recall that an integer a is a quadratic residue modulo n, denoted by a P Qn, if
gcdpa, nq “ 1 and there exists a solution x to the congruence x2 ” a p mod nq,
otherwise a is a quadratic non-residue modulo n, denoted by a P Qn. The
quadratic residuosity problem (QRP) may be stated as:

Given positive integers a and n, decide whether or not a P Qn.

It is believed that solving QRP is equivalent to computing the prime factor-
ization of n, so it is computationally infeasible. If n is prime then

a P Qn ðñ
´ a

n

¯
“ 1, (2.38)

and if n is composite, then

a P Qn ùñ
´ a

n

¯
“ 1, (2.39)

but
a P Qn ð̂ùù

´a

n

¯
“ 1, (2.40)

however,

a P Qn ðù
´a

n

¯
“ ´1. (2.41)

Let Jn “ ta P pZ{nZq˚ :
`a
n

˘ “ 1u, then Q̃n “ Jn ´ Qn. Thus, Q̃n is the
set of all pseudosquares modulo n; it contains those elements of Jn that do
not belong to Qn. Readers may wish to compare this result to Fermat’s little
theorem, namely (assuming gcdpa, nq “ 1),

n is prime ùñ an´1 ” 1 pmod nq, (2.42)

but
n is prime ð̂ùù an´1 ” 1 pmod nq, (2.43)

however,
n is composite ðù an´1 ı 1 pmod nq. (2.44)

The QRP can then be further restricted to:

Given a composite n and an integer a P Jn, decide whether or not
a P Qn.



66 2. Quantum Attacks on IFP-Based Cryptosystems

For example, when n “ 21, we have J21 “ t1, 4, 5, 16, 17, 20u and Q21 “
t1, 4, 16u, thus Q̃21 “ t5, 17, 20u. So, the QRP problem for n “ 21 is actu-
ally to distinguish squares t1, 4, 16u from pseudosquares t5, 17, 20u. The only
method we know for distinguishing squares from pseudosquares is to factor n;
since integer factorization is computationally infeasible, the QRP problem is
computationally infeasible. In what follows, we shall present a cryptosystem
whose security is based on the infeasibility of the QRP; it was first proposed
by Goldwasser and Micali in 1984 [32] in 1984, under the term probabilistic
encryption.

Algorithm 2.6 (Quadratic residuosity-based cryptography). This al-
gorithm uses the randomized method to encrypt messages and is based on
the QRP. The algorithm divides into three parts: key generation, message
encryption, and decryption.

[1] Key generation: Both Alice and Bob should do the following to generate
their public and secret keys:

[a] Select two large distinct primes p and q, each with roughly the same
size, say, each with β bits.

[b] Compute n “ pq.

Select a y P Z{nZ, such that y P Qn and
´ y

n

¯
“ 1. (y is thus a pseu-

dosquare modulo n).

[c] Make pn, yq public, but keep pp, qq secret.

[2] Encryption: To send a message to Alice, Bob should do the following:
[a] Obtain Alice’s public-key pn, yq.
[c] Represent the message m as a binary string m “ m1m2 ¨ ¨ ¨mk of

length k.

[d] For i from 1 to k do
[d-1] Choose at random an x P pZ{nZq˚ and call it xi.

[d-2] Compute ci:

ci “
#

x2
i mod n, if mi “ 0, pr.s.q

yx2
i mod n, if mi “ 1, pr.p.s.q, (2.45)

where r.s. and r.p.s. represent random square and random pseu-
dosquare, respectively.

Send the k-tuple c “ pc1, c2, . . . , ckq to Alice. (Note first that each
ci is an integer with 1 ď ci ă n. Note also that since n is a 2β-bit
integer, it is clear that the cipher-text c is a much longer string
than the original plain-text m.)

[3] Decryption: To decrypt Bob’s message, Alice should do the following:
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[a] For i from 1 to k do

[a-1] Evaluate the Legendre symbol:

e1
i “

ˆ
ci
p

˙

. (2.46)

[a-2] Compute mi:

mi “
#

0, if e1
i “ 1

1, if otherwise.
(2.47)

That is, mi “ 0 if ci P Qn, otherwise, mi “ 1.

Finally, get the decrypted message m “ m1m2 ¨ ¨ ¨mk.

Remark 2.8. The above encryption scheme has the following interesting
features:

1) The encryption is random in the sense that the same bit is transformed
into different strings depending on the choice of the random number x.
For this reason, it is called probabilistic (or randomized) encryption.

2) Each bit is encrypted as an integer modulo n and hence is transformed
into a 2β-bit string.

3) It is semantically secure against any threat from a polynomially bounded
attacker, provided that the QRP is hard.

Example 2.8. In what follows we shall give an example of how Bob can send
the message “HELP ME” to Alice using the above cryptographic method. We
use the binary equivalents of letters as defined in Table 2.1. Now, both Alice

Table 2.1. The binary equivalents of letters

Letter Binary code Letter Binary code Letter Binary code

A 00000 B 00001 C 00010

D 00011 E 00100 F 00101

G 00110 H 00111 I 01000

J 01001 K 01010 L 01011

J 01001 K 01010 L 01011

M 01100 N 01101 O 01110

P 01111 Q 10000 R 10001

S 10010 T 10011 U 10100

V 10101 W 10110 X 10111

Y 11000 Z 11001 \ 11010

and Bob proceed as follows:
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[1] Key generation:
– Alice chooses pn, yq “ p21, 17q as a public-key, where n “ 21 “ 3 ¨ 7
is a composite and y “ 17 P Q̃21 (since 17 P J21 but 17 R Q21), so
that Bob can use the public-key to encrypt his message and send it to
Alice.

– Alice keeps the prime factorization p3, 7q of 21 as a secret; since p3, 7q
will be used as a private decryption key. (Of course, here we just show
an example; in practice, the prime factors p and q should be at last
100 digits.)

[2] Encryption:
– Bob converts his plaintext HELP ME to the binary stream M “
m1m2 ¨ ¨ ¨m35:

00111 00100 01011 01111 11010 01100 00100.

(To save space, we only consider how to encrypt and decrypt m2 “ 0
and m3 “ 1; readers are suggested to encrypt and decrypt the whole
binary stream.)

– Bob randomly chooses integers xi P pZ{21Zq˚. Suppose he chooses
x2 “ 10 and x3 “ 19 which are elements of pZ{21Zq˚.

– Bob computes the encrypted messageC “ c1c2 ¨ ¨ ¨ ck from the plaintext
M “ m1m2 ¨ ¨ ¨mk using (2.45). To get, for example, c2 and c3, Bob
performs:

c2 “ x2
2 mod 21 “ 102 mod 21 “ 16, since m2 “ 0,

c3 “ y ¨ x2
3 mod 21 “ 17 ¨ 192 mod 21 “ 5, since m3 “ 1.

(Note that each ci is an integer reduced to 21, i.e., mi is a bit, but its
corresponding ci is not a bit but an integer, which is a string of bits,
determined by Table 2.1.)

– Bob then sends c2 and c3 along with all other ci’s to Alice.

[3] Decryption: To decrypt Bob’s message, Alice evaluates the Legendre sym-

bols

ˆ
ci
p

˙

and

ˆ
ci
q

˙

. Since Alice knows the prime factorization pp, qq of

n, it should be easy for her to evaluate these Legendre symbols. For

example, for c2 and c3, Alice first evaluates the Legendre symbols

ˆ
ci
p

˙

:

e1
2 “

ˆ
c2
p

˙

“
ˆ
16

3

˙

“
ˆ
42

3

˙

“ 1,

e1
3 “

ˆ
c3
p

˙

“
ˆ
5

3

˙

“
ˆ
2

3

˙

“ ´1.
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then she gets
m2 “ 0, since e1

2 “ 1,

m3 “ 1, since e1
3 “ ´1.

Remark 2.9. The scheme introduced above is a good extension of the
public-key idea but encrypts messages bit by bit. It is completely secure
with respect to semantic security as well as bit security.1 However, a major
disadvantage of the scheme is the message expansion by a factor of logn bit.
To improve the efficiency of the scheme, Blum and Goldwasser [8] proposed
in 1984 another randomized encryption scheme, in which the ciphertext is
only longer than the plaintext by a constant number of bits; this scheme is
comparable to the RSA scheme, both in terms of speed and message expan-
sion.

Problems and Exercises for Sect. 2.2

1. The RSA function M ÞÑ C mod n is a trap-door one-way, as it is com-
putationally intractable to invert the function if the prime factorization
n “ pq is unknown. Give your own trap-door one-way functions that can
be used to construct public-key cryptosystems. Justify your answer.

2. Show that
M ” M ed pmod nq,

where ed ” 1 pmod φpnqq.
3. Let the ciphertexts C1 ” M e

1 pmod nq and C2 ” M e
2 pmod nq be as

follows, where e “ 9137 and n is the following RSA-129 number:

46604906435060096392391122387112023736039163470082768
24341038329668507346202721798200029792506708833728356
7804532383891140719579,

65064096938511069741528313342475396648978551735813836
77796350373814720928779386178787818974157439185718360
8196124160093438830158.

Find M1 and M2.

1Bit security is a special case of semantic security. Informally, bit security is
concerned with not only that the whole message is not recoverable but also that
individual bits of the message are not recoverable. The main drawback of the scheme
is that the encrypted message is much longer than its original plaintext.
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4. Let

e1 “ 9007,

e2 “ 65537,

n “ 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075

147599290026879543541,

C1 ” M e1 pmod nq,
” 10420225094119623841363838260797412577444908472492959

12574337458892652977717171824130246429380783519790899

45343407464161377977212,

C2 ” M e2 mod n

” 76452750729188700180719970517544574710944757317909896

04134098748828557319028078348030908497802156339649075

9750600519496071304348.

Find the plaintext M .

5. (Rivest) Let

k “ 22
t pmod nq

where

n “ 63144660830728888937993571261312923323632988
18330841375588990772701957128924885547308446
05575320651361834662884894808866350036848039
65881713619876605218972678101622805574753938
38308261759713218926668611776954526391570120
69093997368008972127446466642331918780683055
20679512530700820202412462339824107377537051
27344494169501180975241890667963858754856319
80550727370990439711973361466670154390536015
25433739825245793135753176536463319890646514
02133985265800341991903982192844710212464887
45938885358207031808428902320971090703239693
49199627789953233201840645224764639663559373
67009369212758092086293198727008292431243681,

t “ 79685186856218.

Find k. (Note that to find k, one needs to find 2t pmod φpnqq first; how-
ever, to find φpnq one needs to factor n first.)

6. (Knuth) Let
tC1, C2u ” tM3

1 ,M
3
2 u mod n
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where

C1 “ 687502836437089289878995350604407990716898140258583443

035535588237479271080090293049630566651268112334056274

332612142823187203731181519639442616568998924368271227

5123771458797372299204125753023665954875641382171

C2 “ 713013988616927464542046650358646224728216664013755778

567223219797011593220849557864249703775331317377532696

534879739201868887567829519032681632688812750060251822

3884462866157583604931628056686699683334519294663

n “ 779030228851015954236247565470557836248576762097398394

108440222213572872511709998585048387648131944340510932

265136815168574119934775586854274094225644500087912723

2585749337061853958340278434058208881085485078737.

Find tM1, M2u. (Note that there are two known ways to find tM1, M2u:
Mi ” 3

a
Ci pmod nq,

Mi ” Cd
i pmod nq,

where i “ 1, 2. But in either way, one needs to find n first.

7. The original version of the RSA cryptosystem:

C ” M e pmod nq, M ” Cd pmod nq,
with

ed ” 1 pmod φpnqq
is a type of deterministic cryptosystem, in which the same ciphertext is
obtained for the same plaintext even at a different time. That is,

M1
Encryption at Time 1ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C1 ,

M1
Encryption at Time 2ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C1 ,

...

M1
Encryption at Time tÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C1 .

A randomized cryptosystem is one in which different ciphertext is ob-
tained at a different time even for the same plaintext

M1
Encryption at Time 1ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C1 ,
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M1
Encryption at Time 2ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ C2 ,

...

M1
Encryption at Time tÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Ct ,

with C1 ‰ C2 ‰ ¨ ¨ ¨ ‰ Ct. Describe a method to make RSA a randomized
cryptosystem.

8. Describe a man-in-the-middle attack on the original version of the RSA
cryptosystem.

9. Show that cracking RSA or any IFP-based cryptography is generally
equivalent to solving the IFP problem.

10. Let

n “ 21290246318258757547497882016271517497806703963277216278233

3832153847057041325010289010897698254819258255135092526096

02369983944024335907529

C ” M2 pmod nq
“ 51285205060243481188122109876540661122140906807437327290641

6063392024247974145084119668714936527203510642341164827936

3932042884271651389234

Find the plaintext M .

2.3 Quantum Attacks on IFP and IFP-Based
Cryptography

As the security of RSA or any IFP-related cryptography relies on the in-
tractability of the IFP problem, if IFP can be solved in polynomial time, all
the IFP-related cryptography can be broken efficiently in polynomial time.
In this section, we discuss quantum attacks on IFP and IFP-related cryptog-
raphy.
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Relationships Between IFP and IFP-Based Cryptography

As can be seen, IFP is a conjectured (i.e., unproved) infeasible problem
in computational number theory; this would imply that the cryptographic
system-based DLP is secure and unbreakable in polynomial time:

IFP
can be used to constructùùùùùùùùùùùùùùùùñ IFP-Based Cryptographyİ

§
§
§
§

§
§
§
§
đ

Infeasible Secure
Hard UnbreakableK O

Efficient Quantum Attacks
on both IFP and IFP-Based Cryptography

Thus, anyone who can solve IFP can break IFP-based cryptography. With
this regard, solving IFP is equivalent to breaking IFP-based cryptography.
As everybody knows at present, no efficient algorithm is known for solving
IFP, therefore, no efficient algorithm for cracking IFP-based cryptography.
However, Shor [73] showed that IFP can be solved in BQP, where BQP is the
class of problem that is efficiently solvable in polynomial time on a quantum
Turing machine (see Fig. 2.8).

Hence, all IFP-based cryptographic systems can be broken in polynomial
time on a quantum computer. Incidentally, the quantum factoring attack is
intimately connected to the order finding problem which can be done in poly-
nomial time on a quantum computer. More specifically, using the quantum
order finding algorithm, the quantum factoring attack can break all IFP-
based cryptographic systems, such as RSA and Rabin, which can be broken
completely in polynomial time on a quantum computer :

Quantum Period Finding Algorithm§
§
§
§
đ

Quantum IFP Algorithm§
§
§
§
đ

Quantum Attacks on IFP-Based Cryptography
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Figure 2.8. David Deutsch and the first page of his 1985 paper

Order Finding Problem

We first present some basic concept of the order of an element in a mul-
tiplicative group.

Definition 2.4. Let G “ ZN̊ be a finite multiplicative group, and x P G a
randomly chosen integer (element). Then order of x in G, or order of an ele-
ment a modulo N , sometimes denoted by orderpx,Nq, is the smallest positive
integer r such that

xr ” 1 pmod Nq.
Example 2.9. Let 5 P Z1̊04. Then orderp5, 104q “ 4, since 4 is the smallest
positive integer satisfying

54 ” 1 pmod 104q.
Theorem 2.7. Let G be a finite group and suppose that x P G has finite
order r. If xk “ 1, then r | k.
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Example 2.10. Let 5 P Z1̊04. As 5
24 ” 1 pmod 104q, so, 4 | 24.

Definition 2.5. Let G be a finite group, then the number of elements in G,
denoted by |G|, is called the order of G.

Example 2.11. Let G “ Z1̊04. Then there are 48 elements in G that are
relatively prime to 104 (two numbers a and b are relatively prime if gcdpa, bq “
1), namely,

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81
83, 85, 87, 89, 93, 95, 97, 99, 101, 103

Thus, |G| “ 48. That is, the order of the group G is 48.

Theorem 2.8 (Lagrange). Let G be a finite group. Then the order of an
element x P G divides the order of the group G.

Example 2.12. Let G “ Z1̊04. Then the order of G is 48, whereas the order
of the element 5 P G is 4. Clearly 4 | 24.
Corollary 2.1. If a finite group G has order r, then xr “ 1 for all x P G.

Example 2.13. Let G “ Z1̊04 and |G| “ 48. Then

148 ” 1 pmod 104q
348 ” 1 pmod 104q
548 ” 1 pmod 104q
748 ” 1 pmod 104q

...

10148 ” 1 pmod 104q
10348 ” 1 pmod 104q.

Now, we are in a position to present our two main theorems as follows.

Theorem 2.9. Let C be the RSA ciphertext, and orderpC,Nq the order of
C P ZN̊ . Then

d ” 1{e pmod orderpC,Nqq.
Corollary 2.2. Let C be the RSA ciphertext, and orderpC,Nq the order of
C P ZN̊ . Then

M ” C1{e p mod orderpC,Nqq pmod Nq
Thus, to recover the RSA M from C, it suffices to just find the order of

C modulo N .
Now, we return to the actual computation of the order of an element

x in G “ ZN̊ . Finding the order of an element x in G is, in theory, not a
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problem: Just keep multiplying until we get to “1,” the identity element of the
multiplicative group G. For example, let N “ 179359, x “ 3 P G, and G “
Z1̊79359, such that gcdp3, 179359q “ 1. To find the order r “ orderp3, 179359q,
we just keep multiplying until we get to “1”:

31 mod 179359 “ 3
32 mod 179359 “ 9
33 mod 179359 “ 27

...

31000 mod 179359 “ 31981
31001 mod 179359 “ 95943
31002 mod 179359 “ 108470

...

314716 mod 179359 “ 99644
314717 mod 179359 “ 119573
314718 mod 179359 “ 1.

Thus, the order r of 3 in the multiplicative group G “ pZ{179359Zq˚ is 14718,
that is, ord179359p3q “ 14718.

Example 2.14. Let

N “ 5515596313
e “ 1757316971
C “ 763222127
r “ orderpC,Nq “ 114905160

Then

M ” C1{e mod r pmod Nq
” 7632221271{1757316971 mod 114905160 pmod 5515596313q
” 1612050119

Clearly, this result is correct, since

M e ” 16120501191757316971

” 763222127

” C pmod 5515596313q
It must also be noted, however, that in practice, the above computation

for finding the order of x P pZ{NZq˚ may not work, since for an element x in a
large group G with N having more than 200 digits, the computation of r may
require more than 10150 multiplications. Even if these multiplications could
be carried out at the rate of 1, 000billion/s on a supercomputer, it would take
approximately 3 ¨ 1080 years to arrive at the answer. Thus, the order finding
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problem is intractable on conventional digital computers. The problem is,
however, tractable on quantum computers, provided that a practical quantum
computer is available.

It is worthwhile pointing out that although the order is hard to find, the
exponentiation is easy to compute. Suppose we want to compute xe mod n
with x, e, n P N. Suppose moreover that the binary form of e is as follows:

e “ βk2
k ` βk´12

k´1 ` ¨ ¨ ¨ ` β12
1 ` β02

0, (2.48)

where each βi pi “ 0, 1, 2, ¨ ¨ ¨kq is either 0 or 1. Then we have

xe “ xβk2
k`βk´12

k´1`¨¨¨`β12
1`β02

0

“
kź

i“0

xβi2
i

“
kź

i“0

´
x2i

¯βi

. (2.49)

Furthermore, by the exponentiation law,

x2i`1 “ px2iq2, (2.50)

and so the final value of the exponentiation can be obtained by repeated
squaring and multiplication operations. For example, to compute a100, we
first write 10010 “ 11001002 :“ e6e5e4e3e2e1e0, and then compute

a100 “ ppppppaq2 ¨ aq2q2q2 ¨ aq2q2 (2.51)

ñ a, a3, a6, a12, a24, a25, a50, a100.

Note that for each ei, if ei “ 1, we perform a squaring and a multiplication
operation (except “e6 “ 1,” for which we just write down a, as indicated in
the first bracket); otherwise, we perform only a squaring operation. That is,

e6 1 a a initialization
e5 1 paq2 ¨ a a3 squaring and multiplication
e4 0 ppaq2 ¨ aq2 a6 squaring
e3 0 pppaq2 ¨ aq2q2 a12 squaring
e2 1 ppppaq2 ¨ aq2q2q2 ¨ a a25 squaring and multiplication
e1 0 pppppaq2 ¨ aq2q2q2 ¨ aq2 a50 squaring
e0 0 ppppppaq2 ¨ aq2q2q2 ¨ aq2q2 a100 squaring

‖
a100

The following is the algorithm, which runs in in Oplog eq arithmetic op-
erations and O `plog eqplog nq2˘

bit operations.



78 2. Quantum Attacks on IFP-Based Cryptosystems

Algorithm 2.7 (Fast modular exponentiation xe mod n). This algori-
thm will compute the modular exponentiation

c ” xe pmod nq,
where x, e, n P N with n ą 1. It requires at most 2 log e and 2 log e divisions
(divisions are only needed for modular operations; they can be removed if only
c “ xe are required to be computed).

[1] [Precomputation] Let
eβ´1eβ´2 ¨ ¨ ¨ e1e0 (2.52)

be the binary representation of e (i.e., e has β bits). For example, for 562 “
1000110010, we have β “ 10 and

1 0 0 0 1 1 0 0 1 0
Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò
e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

[2] [Initialization] Set c Ð 1.

[3] [Modular Exponentiation] Compute c “ xe mod n in the following way:

for i from β ´ 1 down to 0 do
c Ð c2 mod n (squaring)
if ei “ 1 then
c Ð c ¨ x mod n (multiplication)

[4] [Exit] Print c and terminate the algorithm.

Quantum Order Computing

It may be the case that, as the famous physicist Feynman mentioned, nobody
understands quantum mechanics, some progress has been made in quantum
mechanics, particularly in quantum computing and quantum cryptography.
In this section, we present a quantum algorithm for computing the order of an
element x in the multiplicative group ZN̊ , due to Shor [69]. The main idea of
Shor’s algorithm is as follows. First of all, we create two quantum registers for
our quantum computer: Register-1 and Register-2. Of course, we can create
just one single quantum memory register partitioned into two parts. Secondly,
we create in Register-1 a superposition of the integers a “ 0, 1, 2, 3, ¨ ¨ ¨ which
will be the arguments of fpaq “ xa pmod Nq, and load Register-2 with all
zeros. Thirdly, we compute in Register-2 fpaq “ xa pmod Nq for each input
a. (Since the values of a are kept in Register-1, this can be done reversibly.)
Fourthly, we perform the discrete Fourier transform on Register-1. Finally, we
observe both registers of the machine and find the order r that satisfies xr ”
1 pmod Nq. The following is a brief description of the quantum algorithm
for the order finding problem.
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Algorithm 2.8 (Quantum order finding attack). Given RSA ciphertext
C and modulus N , this attack will first find the order, r, of C in Z

8
N , such that

Cr ” 1 pmod Nq, then recover the plaintext M from the ciphertext C. Assume
the quantum computer has two quantum registers: Register-1 and Register-2,
which hold integers in binary form.

[1] (Initialization) Find a number q, a power of 2, say 2t, with N2 ă q ă 2N2.

[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-
1, the uniform superposition of states representing numbers a pmod qq, and
load Register-2 with all zeros. This leaves the machine in the state |Ψ1y:

|Ψ1y “ 1?
q

q´1ÿ

a“0

| ay | 0y .

(Note that the joint state of both registers are represented by |Register-1y
and |Register-2y). What this step does is put each qubit in Register-1 into
the superposition

1?
2

p| 0y ` | 1yq .

[3] (Power Creation) Fill in the second t-qubit register, Register-2, with powers
Ca pmod Nq. This leaves the machine in state |Ψ2y:

|Ψ2y “ 1?
q

q´1ÿ

a“0

|ay |Ca pmod Nqy .

This step can be done reversibly since all the a’s were kept in Register-1.

[4] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | ay to

1?
q

q´1ÿ

c“0

expp2πiac{qq | cy .

That is, we apply the unitary matrix with the pa, cq entry equal to
1?
q expp2πiac{qq. This leaves the machine in the state |Ψ3y:

|Ψ3y “ 1

q

q´1ÿ

a“0

q´1ÿ

c“0

expp2πiac{qq | cy |Ca pmod Nqy .

[5] (Periodicity Detection in xa) Observe both | cy in Register-1 and
|Ca pmod Nqy in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of | cy in the first argument and
some

ˇ
ˇxk pmod nqD

as the answer for the second one (0 ă k ă r).
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[6] (Extract r) Extract the required value of r. Given the pure state |Ψ3y, the
probabilities of different results for this measurement will be given by the
probability distribution:

Probpc, Ck pmod Nqq “
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

q´1ÿ

a“0
Ca”ak p mod Nq

expp2πiac{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

“
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

tpq´k´1q{ruÿ

B“0

expp2πipbr ` kqc{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

“
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

tpq´k´1q{ruÿ

B“0

expp2πibtrcu{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

where trcu is rc mod N . As shown in [69],

´r

2
ď trcu ď ´r

2
ùñ ´r

2
ď rc ´ dq ď ´r

2
, for some d

ùñ Probpc, Ck pmod Nqq ą 1

3r2
.

then we have
ˇ
ˇ
ˇ
ˇ
c

q
´ d

r

ˇ
ˇ
ˇ
ˇ ď 1

2q
.

Since c
q were known, r can be obtained by the continued fraction expansion

of c
q .

[7] (Code Breaking) Once the order r, r “ orderpC,Nq, is found, then compute:

M ” C1{e mod r pmod Nq.
Hence, decodes the RSA code C.

Theorem 2.10. (Complexity of Quantum Order Finding Attack).
Quantum order attack can find orderpC,Nq and recover M from C in time
OpplogNq2`εq.
Remark 2.10. This quantum attack is for particular RSA ciphertexts C.
In this special case, the factorization of the RSA modulus N is not needed.
In the next section, we shall consider the more general quantum attack by
factoring N .
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Quantum Integer Factorization

Instead of finding the order of C in ZN̊ , one can take this further to a more
general case: find the order of an element x in ZN̊ , denoted by orderpx,Nq,
where N is the RSA modulus. Once the order of an element x in ZN̊ is found,
and it is even, it will have a good chance to factor N , of course in polynomial
time, by just calculating

!
gcdpxr{2 ` 1, Nq, gcdpxr{2 ´ 1, Nq

)
.

For instance, for x “ 3, r “ 14718, and N “ 179359, we have

!
gcdp314718{2 ` 1, 179359q, gcdp314718{2 ´ 1, 179359q

)
“ p67, 2677q,

and hence the factorization of N :

N “ 179359 “ 67 ¨ 2677.
The following theorem shows that the probability for r to work is high.

Theorem 2.11. Let the odd integer N ą 1 have exactly k distinct prime
factors. For a randomly chosen x P ZN̊ with multiplicative order r, the prob-
ability that r is even and that

xr{2 ı ´1 pmod Nq
is least 1 ´ 1{2k´1. More specifically, if N has just two prime factors (this is
often the case for the RSA modulus N), then the probability is at least 1{2.
Algorithm 2.9 (Quantum algorithm for integer factorization).
Given integers x and N , the algorithm will

– find the order of x, i.e., the smallest positive integer r such that

xr ” 1 pmod Nq,
– find the prime factors of N and compute the decryption exponent d,
– decode the RSA message.

Assume the machine has two quantum registers: Register-1 and Register-2, which
hold integers in binary form.

[1] (Initialization) Find a number q, a power of 2, say 2t, with N2 ă q ă 2N2.

[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-
1, the uniform superposition of states representing numbers a pmod qq, and
load Register-2 with all zeros. This leaves the machine in the state |Ψ1y:
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|Ψ1y “ 1?
q

q´1ÿ

a“0

| ay | 0y .

(Note that the joint state of both registers are represented by |Register-1y
and |Register-2y). What this step does is put each qubit in Register-1 into
the superposition

1?
2

p| 0y ` | 1yq .
[3] (Base Selection) Choose a random x P r2, N ´ 2s such that gcdpx,Nq “ 1.

[4] (Power Creation) Fill in the second t-qubit register, Register-2, with powers
xa pmod Nq. This leaves the machine in state |Ψ2y:

|Ψ2y “ 1?
q

q´1ÿ

a“0

| ay |xa pmod Nqy .

This step can be done reversibly since all the a’s were kept in Register-1.

[5] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | ay to

1?
q

q´1ÿ

c“0

expp2πiac{qq | cy .

That is, we apply the unitary matrix with the pa, cq entry equal to
1?
q expp2πiac{qq. This leaves the machine in the state |Ψ3y:

|Ψ3y “ 1

q

q´1ÿ

a“0

q´1ÿ

c“0

expp2πiac{qq | cy |xa pmod Nqy .

[6] (Periodicity Detection in xa) Observe both | cy in Register-1 and
|xa pmod Nqy in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of | cy in the first argument and
some

ˇ
ˇxk pmod nqD

as the answer for the second one (0 ă k ă r).

[7] (Extract r) Extract the required value of r. Given the pure state |Ψ3y, the
probabilities of different results for this measurement will be given by the
probability distribution:

Probpc, xk pmod Nqq “
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

q´1ÿ

a“0
xa”ak p mod Nq

expp2πiac{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

“
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

tpq´k´1q{ruÿ

B“0

expp2πipbr ` kqc{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

“
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

q

tpq´k´1q{ruÿ

B“0

expp2πibtrcu{qq
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2
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where trcu is rc mod N . As showed in [69],

´r

2
ď trcu ď ´r

2
ùñ ´r

2
ď rc ´ dq ď ´r

2
, for some d

ùñ Probpc, xk pmod Nqq ą 1

3r2
.

then we have
ˇ
ˇ
ˇ
ˇ
c

q
´ d

r

ˇ
ˇ
ˇ
ˇ ď 1

2q
.

Since c
q were known, r can be obtained by the continued fraction expansion

of c
q .

[8] (Resolution) If r is odd, go to Step [3] to start a new base. If r is even, then
try to compute Once r is found, the factors of N can be possibly

tgcdpxr{2 ´ 1, Nq, gcdpxr{2 ` 1, Nqu
Hopefully, this will produce two factors of N .

[9] (Computing d) Once N is factored and p and q are found, then compute

d ” 1{e pmod pp ´ 1qpq ´ 1qq.
[10] (Code Break) As soon as d is found, and RSA ciphertext encrypted by the
public-key pe,Nq, can be decrypted by this d as follows:

M ” Cd pmod Nq.
Theorem 2.12 (Complexity of Quantum Factoring). Quantum factor-
ing algorithm can factor the RSA modulus N and break the RSA system in
time OpplogNq2`εq.
Remark 2.11. The attack discussed in Algorithm 2.9 is more general than
that in Algorithm 2.8. Algorithm 2.9 also implies that if a practical quantum
computer can be built, then the RSA cryptosystem can be completely broken,
and a quantum resistant cryptosystem must be developed and used to replace
the RSA cryptosystem.

Example 2.15. On 19 December 2001, IBM made the first demonstration
of the quantum factoring algorithm [77] that correctly identified 3 and 5 as
the factors of 15. Although the answer may appear to be trivial, it may have
good potential and practical implication. In this example, we show how to
factor 15 quantum-mechanically [56]:

[1] Choose at random x “ 7 such that gcdpx,Nq “ 1. We aim to find
r “ order157 such that 7r ” 1 pmod 15q.
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[2] Initialize two four-qubit registers to state 0:

|Ψ0y “ | 0y | 0y .
[3] Randomize the first register as follows:

|Ψ0y Ñ |Ψ1y “ 1?
2t

2t´1ÿ

k“0

|ky | 0y .

[4] Unitarily compute the function fpaq ” 13a pmod 15q as follows:

|Ψ1y Ñ |Ψ2y “ 1?
2t

2t´1ÿ

k“0

| ky ˇ
ˇ 13k pmod 15qD

“ 1?
2t

r | 0y | 1y ` | 1y | 7y ` | 2y | 4y ` | 3y | 13y `
| 4y | 1y ` | 5y | 7y ` | 6y | 4y ` | 7y | 13y `
| 8y | 1y ` | 9y | 7y ` | 10y | 4y ` | 11y | 13y `
` ¨ ¨ ¨ s

[5] We now apply the FFT to the second register and measure it (it can be
done in the first), obtaining a random result from 1, 7, 4, 13. Suppose we
incidently get 4, then the state input to FFT would be

c
4

2t
r | 2y ` | 6y ` | 10y ` | 14y ` ¨ ¨ ¨ s .

After applying FFT, some state
ÿ

λ

αλ |λy

with the probability distribution for q “ 2t “ 2048 (see [56]). The final
measurement gives 0, 512, 1024, 2048, each with probability almost ex-
actly 1{4. Suppose λ “ 1536 was obtained from the measurement. Then
we compute the continued fraction expansion

λ

q
“ 1536

2048
“ 1

1 ` 1
3

, with convergents

„

0, 1,
3

4
,

j

Thus, r “ 4 “ order15p7q. Therefore,
gcdpxr{2 ˘ 1, Nq “ gcdp72 ˘ 1, 15q “ p5, 3q.

Remark 2.12. Quantum factoring is still in its very earlier stage and will
not threaten the security of RSA at least at present, as the current quantum
computer can only factor a number with only 2 digits such as 15 which is
essentially hopeless.
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Exercises and Problems for Sect. 2.3

1. Show that if in Shor’s factoring algorithm, we have
ˇ
ˇ
ˇ
ˇ
c

2m
´ d

r

ˇ
ˇ
ˇ
ˇ ă 1

2n2

and ˇ
ˇ
ˇ
ˇ
c

2m
´ d1

r1

ˇ
ˇ
ˇ
ˇ ă 1

2n2
,

then
d

r
“ d1

r1
.

2. Show that in case r � 2n, Shor’s factoring algorithm [70] needs to be
repeated only Oplog log rq steps in order to achieve the high probability
of success.

3. Let 0 ă s ď m. Fix an integer x0 with 0 ď x0 ă 2s. Show that

ÿ

0ďcă2m

c”c0 p mod 2sq

e2πicx{2m “
#

0 if x ı 0 pmod 2m´sq
2m´se2πixc0{2m if x ” 0 pmod 2m´sq

4. There are currently many pseudo-simulations of Shor’s quantum factor-
ing algorithm; for example, the paper by Schneiderman, Stanley, and
Aravind [66] gives one of the simulations in Maple, whereas Browne [12]
presents an efficient classical simulation of the quantum Fourier trans-
form based on [66]. Construct your own Java (C/C++, Mathematica
or Maple) program to simulate Shor’s quantum factoring algorithm and
discrete logarithm algorithm.

5. Both ECM factoring algorithm and NFS factoring algorithm are very
well suited for parallel implementation. Is it possible to utilize the quan-
tum parallelism to implement ECM and NSF algorithms? If so, give a
complete description the quantum ECM and NFS algorithms.

6. Pollard [58] and Strassen [75] showed that FFT can be utilized to factor
an integer n in Opn1{4`εq steps, deterministically. Is it possible to replace
the classical FFT with a quantum FFT in the Pollard–Strassen method,
in order to obtain a deterministic quantum polynomial-time factoring
algorithm (i.e., to obtain a QP factoring algorithm rather than the BQP
algorithm as proposed by Shor)? If so, give a full description of the QP
factoring algorithm.

7. At the very heart of the Pollard ρ-method for IFP lives the phenomenon
of periodicity. Develop a quantum period-finding algorithm, if possible,
for the ρ factoring algorithm.
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2.4 Conclusions, Notes, and Further Reading

The theory of prime numbers is one of the oldest subject in number theory
and indeed in the whole of mathematics, whereas the IFP is one of the oldest
number-theoretic problems in the field. The root of the problem can be traced
back to Euclid’s Elements [25], although it was first clearly stated in Gauss’
Disquisitiones [29]. With the advent of modern public-key cryptography, it
has an important application in the construction of unbreakable public-key
cryptographic schemes and protocols, such as RSA [28, 64], Rabin [62], and
zero-knowledge proofs [33]. IFP is currently a very hot and applicable research
topic, and there are many good references in the field; for a general reading,
the following references are highly recommended: [1, 4, 11, 13, 17, 19, 21, 23,
40, 45, 50, 53, 61, 63, 87].

IFP-based cryptography forms an important class of public-key cryptog-
raphy. In particular, RSA cryptography is the most famous and widely used
cryptographic schemes in today’s Internet world. More information on IFP-
based cryptography can be found in [9, 20, 30, 31, 36, 37, 39, 42, 52, 76, 84],
and [86].

Shor’s discovery of the quantum factoring algorithm [69, 70, 70–73] in
1994 generated a great deal of research and interest in the field. Quantum
computers provided a completely new paradigm for the theory of com-
putation, and it was the first time to show that IFP can be solved effi-
ciently in polynomial time on a quantum computer. Now, there are many
good references on quantum computation, particularly on quantum factoring.
Readers who wish to know more about quantum computers and quan-
tum computation are suggested to consult the following references: [2, 5–
7, 16, 22, 24, 35, 43, 48, 51, 56, 74, 77–83, 85, 88, 89], and [90]. Feynman
is perhaps the father of quantum computation whose original idea about
quantum computers may be found in [26, 27].

In addition to quantum computation for factoring, there are also some
other non-classical computations for factoring such as molecular DNA-based
factoring and attacking. For example, Chang et al. proposed some fast parallel
molecular DNA algorithms for factoring large integers [14] and for breaking
RSA cryptography [15].
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(Birkhäuser, Boston, 1990)

[64] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures
and public key cryptosystems. Comm. ACM 21(2), 120–126 (1978)

[65] R.L. Rivest, B. Kaliski, RSA Problem, in Encyclopedia of Cryptography and
Security, ed. by H.C.A. van Tilborg (Springer, Berlin, 2005)

[66] J.F. Schneiderman, M.E. Stanley, P.K. Aravind, A pseudo-simulation of Shor’s
quantum factoring algorithm, 20 pages (2002) [arXiv:quant-ph/0206101v1]



90 2. Quantum Attacks on IFP-Based Cryptosystems

[67] D. Shanks, class number, a theory of factorization, and genera, in Proceedings
of Symposium of Pure Mathematics, vol. XX, State Univ. New York, Stony
Brook, 1969 (American Mathematical Society, Providence, 1971), pp. 415–440

[68] D. Shanks, Analysis and improvement of the continued fraction method of
factorization, Abstract 720-10-43. Am. Math. Soc. Not. 22, A-68 (1975)

[69] P. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, in Proceedings of 35th Annual Symposium on Foundations of Computer
Science (IEEE Computer Society, Silver Spring, 1994), pp. 124–134

[70] P. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

[71] P. Shor, Quantum computing. Documenta Math. Extra Volume ICM I, 467–
486 (1998)

[72] P. Shor, Introduction to quantum algorithms. AMS Proc. Symp. Appl. Math.
58, 17 (2002)

[73] P. Shor, Why haven’t more quantum algorithms been found? J. ACM 50(1),
87–90 (2003)

[74] D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26(5),
1471–1483 (1997)

[75] V. Strassen, Einige Resultate über Berechnungskomplexität. Jahresber. Dtsch.
Math. Ver. 78, 1–84 (1976/1997)

[76] W. Trappe, L. Washington, Introduction to Cryptography with Coding The-
ory, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2006)

[77] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Tannoni, M.H. Sherwood,
I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm
using nuclear magnetic resonance. Nature 414, 883–887 (2001)

[78] R. Van Meter, K.M. Itoh, Fast quantum modular exponentiation. Phys. Rev.
A 71, 052320 (2005)

[79] R. Van Meter, W.J. Munro, K. Nemoto, Architecture of a quantum milticom-
puter implementing Shor’s algorithm, in Theory of Quantum Computation,
Communication and Cryptography, ed. by Y. Kawano, M. Mosca. Lecture
Note in Computer Science, vol. 5106 (Springer, Berlin, 2008), pp. 105–114

[80] U.V. Vazirani, On the power of quantum computation. Phil. Trans. R. Soc.
Lond. A356, 1759–1768 (1998)

[81] U.V. Vazirani, Fourier transforms and quantum computation, in Proceedings of
Theoretical Aspects of Computer Science (Springer, Berlin, 2000), pp. 208–220

[82] U.V. Vazirani, A survey of quantum complexity theory. AMS Proc. Symp.
Appl. Math. 58, 28 (2002)

[83] J. Watrous, in Quantum Computational Complexity. Encyclopedia of Com-
plexity and System Science (Springer, New York, 2009), pp. 7174–7201

[84] H. Wiener, Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf.
Theor. 36(3), 553–558 (1990)

[85] C.P. Williams, Explorations in Quantum Computation, 2nd edn. (Springer,
New York, 2011)

[86] S.Y. Yan, Cryptanalyic Attacks on RSA (Springer, Berlin, 2008)

[87] S.Y. Yan, in Primality Testing and Integer Factorization in Public-Key Cryp-
tography. Advances in Information Security, vol. 11, 2nd edn. (Springer, New
York, 2009)



References 91

[88] N.S. Yanofsky, M.A. Mannucci, Quantum Computing for Computer Scientists
(Cambridge University Press, Cambridge, 2008)

[89] A.C. Yao, Quantum circuit complexity, in Proceedings of Foundations of Com-
puter Science (IEEE, New York, 1993), pp. 352–361

[90] C. Zalka, Fast versions of Shor’s quantum factoring algorithm. LANA e-print
quant-ph 9806084, p. 37 (1998)



http://www.springer.com/978-1-4419-7721-2


	2. Quantum Attacks on IFP-Based Cryptosystems
	2.1 IFP and Classical Solutions to IFP
	2.2 IFP-Based Cryptography
	2.3 Quantum Attacks on IFP and IFP-Based Cryptography
	2.4 Conclusions, Notes, and Further Reading
	 References


