2. Quantum Attacks on IFP-Based
Cryptosystems

If you don’t work on important problems, it’s not likely that you’ll do
important work.

RicHARD HAMMING (1915-1998)
The 1968 Turing Award Recipient

In this chapter we shall first study the integer factorization problem (IFP)
and the classical solutions to IFP, then we shall discuss the IFP-based cryp-
tography whose security relies on the infeasibility of the IFP problem, and
finally, we shall introduce some quantum algorithms for attacking both IFP
and IFP-based cryptography.

2.1 IFP and Classical Solutions to IFP

Fundamental Theorem of Arithmetic

In mathematics, there are many fundamental theorems such as fundamen-
tal theorem of geometry, fundamental theorem of algebra, and fundamental
theorem of calculus. The fundamental theorem of arithmetic (FTA) may be
regarded as the first and most important fundamental theorem in mathemat-
ics, stating as follows.

Theorem 2.1 (FTA). Any positive integer n > 1 can be written uniquely
as the following standard prime factorization form:

n=py'py? et (2.1)
where p1 < py < -+ < pg are primes and a1, as, - - - , y are positive integers.
S.Y. Yan, Quantum Attacks on Public-Key Cryptosystems, 31

DOI 10.1007/978-1-4419-7722-9_2,
© Springer Science+Business Media, LLC 2013

32 2. Quantum Attacks on IFP-Based Cryptosystems

Integer Factorization Problem

The idea of FTA can be traced to Euclid’s Elements [25], but it was first
clearly stated and proved by Gauss [29] in his Disquisitiones. According to
FTA, any positive integer can be uniquely written as its prime decomposition
form, say, for example,

12345678987654321 = 3% - 377 - 3336677,
So, we can define the prime factorization problem (PFP) as follows:

det Input : n € Z~1 and n ¢ Primes
PFP = (2.2)
Output : n = pi"'ps? - pp*

The solution to PFP is actually involved in the solutions of two other prob-
lems: the primality testing problem (PTP) and the IFP, which can be de-
scribed as follows:

Input : n € L1
pTP ¥ Yes, n € Primes (2.3)
Output :
No, Otherwise
and
dof Input : n € Z~1 and n ¢ Primes
IFP = (2.4)

Output : 1< f <n (fis a nontrivial factor of n).
So, to solve PFP, one just needs to recursively execute the following two
algorithms:
1. Algorithm for PTP
2. Algorithm for IFP
That is,

def & 9
PFP = PTP @ IFP.

For example, if we wish to factor the integer 123457913315, the recursive pro-
cess may be shown in Fig. 2.1. Since PTP can be solved easily in polynomial
time [3], we shall only concentrate on the solutions to IFP.

2.1 IFP and Classical Solutions to IFP 33

123457913315
187 660202745
1 17 5 132040549

Figure 2.1. Prime factorization of 123457913315

Methods for Integer Factorization

There are many methods and algorithms for factoring a large integer. If we
are concerned with the determinism of the algorithms, then there are two
types of factoring algorithms:

1. Deterministic factoring algorithms
2. Probabilistic factoring algorithms

However, if we are more concerned with the form and the property of the
integers to be factored, then there are two types factoring methods or algo-
rithms:

1. General-purpose factoring algorithms: The running time depends mainly
on the size of N, the number to be factored, and is not strongly dependent
on the size of the factor p found. Examples are:

(a) Lehman’s method [44], which has a rigorous worst-case running time
bound O (n!/3+¢).

(b) Euler’s factoring method [49], which has deterministic running time
O (n1/3+€) .

(¢) Shanks’ SQUare FOrm Factorization method [68] SQUFOF, which
has expected running time O (nl/ 4).

(d) The FFT-based factoring methods of Pollard and Strassen [58, 75]
which have deterministic running time O (nl/ 4+€).

(e) The lattice-based factoring methods of Coppersmith [18], which has
deterministic running time O (n'/4+¢).

(f) Shanks’ class group method [67], which has running time O (n!/°*°),
assuming the extended Riemann’s hypothesis (ERH).

(g) Continued FRACtion (CFRAC) method [55], which under plausible
assumptions has expected running time

0 (exp (ev/lognloglogn)) = O (nevioskosn/losn)

where ¢ is a constant (depending on the details of the algorithm);
usually ¢ = v/2 ~ 1.414213562.

34 2. Quantum Attacks on IFP-Based Cryptosystems

(h) Quadratic sieve/Multiple polynomial quadratic sieve (QS/MPQS)
[60], which under plausible assumptions has expected running time

0 (exp (ev/lognloglogn)) = O (nevioskosn/losn).

where ¢ is a constant (depending on the details of the algorithm);

usually ¢ = i ~ 1.060660172.

2v2
(i) Number field sieve (NFS) [46], which under plausible assumptions
has the expected running time

o (exp (6\3/ log ny/(log log 1))) :

where ¢ = (64/9)'/% ~ 1.922999427 if GNFS (a general version of
NFS) is used to factor an arbitrary integer n, whereas ¢ = (32/9)/3 ~
1.526285657 if SNFS (a special version of NFS) is used to factor a
special integer n such as n = r® + s, where r and s are small, r > 1,
and e is large. This is substantially and asymptotically faster than
any other currently known factoring method.

2. Special purpose factoring algorithms: The running time depends mainly
on the size of p (the factor found) of n. (We can assume that p < 4/n.)
Examples are:

(a) Trial division [41], which has running time O (p(logn)?).

(b) Pollard’s p-method [10, 59] (also known as Pollard’s “rho” algo-
rithm), which under plausible assumptions has expected running time
o (p1/2(10g n)?).

(c) Pollard’s p— 1 method [58], which runs in O(B log B(logn)?), where
B is the smooth bound; larger values of B make it run more slowly,
but are more likely to produce a factor of n.

(d) Lenstra’s elliptic curve method (ECM) [47], which under plausible
assumptions has expected running time

O (exp (c+/Tompoglogp) - Gogn)?)

where ¢ &~ 2 is a constant (depending on the details of the algorithm).
The term O ((log n)2) is for the cost of performing arithmetic operations
on numbers which are O(logn) or O ((logn)?) bits long; the second can
be theoretically replaced by O ((logn)'*) for any € > 0.

Note that there is a quantum factoring algorithm, first proposed by Shor
[70], which can run in polynomial time

O((logn)**).

2.1 IFP and Classical Solutions to IFP 35

However, this quantum algorithm requires to be run on a quantum computer,
which is not available at present.

In practice, algorithms in both categories are important. It is sometimes
very difficult to say whether one method is better than another, but it is gen-
erally worth attempting to find small factors with algorithms in the second
class before using the algorithms in the first class. That is, we could first try
the trial division algorithm, then use some other method such as NFS. This
fact shows that the trial division method is still useful for integer factoriza-
tion, even though it is simple. In this chapter we shall introduce some most
the useful and widely used factoring algorithms.

From a computational complexity point of view, the IFP is an infeasible
(intractable) problem, since there is no polynomial-time algorithm for solving
it; all the existing algorithms for IFP run in subexponential-time or above
(see Fig.2.2). Note that there is a quantum algorithm proposed by Shor [70]

Class Group Method
SQUFOF
p Method

Trial Divisions

CFRAC
QS

NFS
ECM

Quantun Factoring

Figure 2.2. Algorithms/methods for IFP

for IFP that can be run in polynomial time, but it needs to be run on a
practical quantum computer which does not exist at present.

NFS Factoring

A fundamental idea of many modern general-purpose algorithms for factoring
n is to find a suitable pair if (z,y) such that

z? =y* (mod n) but z # +y (mod n)

36 2. Quantum Attacks on IFP-Based Cryptosystems

then there is a good chance to factor n:

Prob(ged(z + y,n) = (f1, f2), 1 < fi,fa <n)> %

In practice, the asymptotically fastest general-purpose factoring algorithm
is the NFS, and it runs in expected subexponential-time:

O(exp(c(logn)'/?(loglogn)??)).

Definition 2.1. A complex number « is an algebraic number if it is a root
of a polynomial

f(@) = apgz® + ay2* ™t + axx® 2 4y, =0 (2.5)

where ag,a1,a9,...,a; € Q and ag # 0. If f(x) is irreducible over Q and
ag # 0, then k is the degree of x.

Example 2.1. Two examples of algebraic numbers are as follows:

1 Rational numbers, which are the algebraic numbers of degree 1

2 /2, which is of degree 2 because we can take f(z) = 22 —2 =0 (/2 is
irrational)

Any complex number that is not algebraic is said to be transcendental such
as 7 and e.

Definition 2.2. A complex number [is an algebraic integer if it is a root
of a monic polynomial

2F 4 bz 4 b2 b =0 (2.6)
where bo, bl, bg, ceey by € Z.

Remark 2.1. A quadratic integer is an algebraic integer satisfying a monic
quadratic equation with integer coefficients. A cubic integer is an algebraic
integer satisfying a monic cubic equation with integer coefficients.

Example 2.2. Some examples of algebraic integers are as follows:

1 Ordinary (rational) integers, which are the algebraic integers of degree
1. That is, they satisfy the monic equations x — a = 0 for a € Z.

2 {/2 and /3, because they satisfy the monic equations 2> — 2 = 0 and
2% — 5 = 0, respectively.

3 (=1 ++/=3)/2, because it satisfies 2* + z + 1 = 0.
4 Gaussian integer a + by/—1, with a,b € Z.

Clearly, every algebraic integer is an algebraic number, but the converse
is not true.

2.1 IFP and Classical Solutions to IFP 37

Proposition 2.1. A rational number r € Q is an algebraic integer if and
only if r € Z.

Proof. Ifr € Z, then r is a root of x —r = 0. Thus, r is an algebraic integer.
Now, suppose that » € Q and r is an algebraic integer (i.e., r = ¢/d is a
root of (2.6), where ¢, d € Z; we may assume ged(c, d) = 1). Substituting ¢/d
into (2.6) and multiplying both sides by d", we get

P bV + by 2P -+ bpd® = 0.

It follows that d | ¢* and d | ¢ (since ged(c, d) = 1). Again, since ged(c,d) = 1,
it follows that d = +1. Hence, r = ¢/d € Z. It follows, for example, that 2/5
is an algebraic number but not an algebraic integer.]

Remark 2.2. The elements of Z are the only rational numbers that are
algebraic integers. We shall refer to the elements of Z as rational integers
when we need to distinguish them from other algebraic integers that are not
rational. For example, v/2 is an algebraic integer but not a rational integer.

The most interesting results concerned with the algebraic numbers and
algebraic integers are the following theorem.

Theorem 2.2. The set of algebraic numbers forms a field, and the set of
algebraic integers forms a ring.

Proof. See pp 67-68 of Ireland and Rosen [38].]

Lemma 2.1. Let f(z) be an irreducible monic polynomial of degree d over
integers and m an integer such that f(m) =0 (mod n). Let a be a complex
root of f(z) and Z[«a] the set of all polynomials in « with integer coefficients.
Then there exists a unique mapping @ : Z[a] — Z,, satisfying:

1 P(ab) = P(a)P(b), Va,beZ[a].

2 @(aer) &(a) + P(b), Ya,be Zla].
D(za) = @(a), Va e Zla), z € Z.
?(1) =
P(a) = (mod n).

Now, we are in a position to introduce the NFS. Note that there are
two main types of NFS: NFS (general NFS) for general numbers and SNFS
(special NFS) for numbers with special forms. The idea, however, behind the
GNFS and SNFS is the same:

1. Find a monic irreducible polynomial f(z) of degree d in Z[z] and an integer
m such that f(m) =0 (mod n).

38

2. Quantum Attacks on IFP-Based Cryptosystems

Let o € C be an algebraic number that is the root of f(z), and denote the
set of polynomials in « with integer coefficients as Z[«].

Define the mapping (ring homomorphism): @ : Z[a]| — Z,, via &(a) = m
which ensures that for any f(x) € Z[z], we have &(f(«)) = f(m) (mod n).

. Find a finite set U of coprime integers (a, b) such that

n (a —ba) = (2, H (a —bm) = y?

(a,b)eU (a,b)eU
for € Z[a] and y € Z. Let = = @(S). Then

o = o(B)P(P)

Il
S

H (a — ba)

(a,b)eU

H &(a — ba)

(a,b)eU

H (a —bm)

(a,b)eU

= ¢ (mod n)

which is of the required form of the factoring congruence, and hopefully, a
factor of n can be found by calculating ged(x £ y,n).

There are many ways to implement the above idea, all of which follow

the same pattern as we discussed previously in CFRAC and QS/MPQS: By
a sieving process, one first tries to find congruences modulo n by working
over a factor base, and then do a Gaussian elimination over Z/27Z to obtain
a congruence of squares 2 = y? (mod n). We give in the following a brief
description of the NFS algorithm [54].

Algorithm 2.1. Given an odd positive integer n, the NFS algorithm has the
following four main steps in factoring n:

[1] (Polynomials Selection) Select two irreducible polynomials f(x) and g(z)

with small integer coefficients for which there exists an integer m such that
f(m) = g(m) = 0 (mod n) (2.7)

The polynomials should not have a common factor over Q.

2.1 IFP and Classical Solutions to IFP 39

[2] (Sieving) Let a be a complex root of f and § a complex root of g. Find
pairs (a,b) with ged(a,b) = 1 such that the integral norms of a — b and

a—0bps
N(a — ba) = b3& f(a/b), N(a—bp) = b¥e@g(a/p) (2.8)

are smooth with respect to a chosen factor base. (The principal ideals a — b
and a — b factor into products of prime ideals in the number field Q(«) and

Q(p), respectively.)
[3] (Linear Algebra) Use techniques of linear algebra to find a set U = {a;, b;}
of indices such that the two products

[[(ai = bi), [J(ai — b:8) (2.9)

U U

are both squares of products of prime ideals.

[4] (Square root) Use the set S in (2.9) to find an algebraic numbers o’ € Q(a)
and 3’ € Q(p) such that

(@) = [[(ai — bia), (8)? = [[(ai — b:B) (2.10)

U U

Define @, : Q(o) — Zy, and P : Q(B) — Z,, via Py () = P3(8) = m, where
m is the common root of both f and g. Then

22 b, ()P, ()

Do ((a')?)

b, (—b; a))
€U

[[2a .

U

H(ai - blm)

U

Dp(B')?

y? (mod n)

which is of the required form of the factoring congruence, and hopefully, a factor
of N can be found by calculating ged(z & y, n).

40 2. Quantum Attacks on IFP-Based Cryptosystems

Example 2.3. We first give a rather simple NFS factoring example. Let
n = 14885 = 5-13-229 = 1222 + 1. So we put f(z) = 22 + 1 and m = 122,
such that

f(z) = f(m) =0 (mod n).
If we choose |a|, |b] < 50, then we can easily find (by sieving) that

(a,b) Norm(a + bi) a+ bm

(—49,49) | 4802 =2-7% | 5929 = 7% .112

(—41,1) | 1682 = 2292 81 =34

(Readers should be able to find many such pairs of (a;, b;) in the interval that
are smooth up to, e.g., 29.) So, we have

(49 + 49i)(—41+1i) = (49 —21i)?
f(49 —21i) = 49 —21m
= 49-21-122
= —2513 -z,
592981 = (2%2.7-11)
= 693
— y = 693.
Thus,
ged(z £ y,n) = ged(—2513 £ 693,14885)
= (65,229).

In the same way, if we wish to factor n = 84101 = 2902 + 1, then we let
m =290 and f(z) = 2?2 + 1 so that

We tabulate the sieving process as follows:

2.1 IFP and Classical Solutions to IFP 41

(a,b) Norm(a + bi) a+bm
-50,1 2501 =41-61 240=2%.3-5
-50,3 2509 =13 -193 820 = 22.5-41

—49,43 4250 = 2-5%- 17 12421 = 12421

-38,1 1445 = 5 - 172 252 = 22.32.7
—22,19 845 =5 - 132 5488 = 24 . 73
—118,11 | 14045 = 5 - 532 3072 = 210.3

218,59 | 51005 =5-1012 | 17328 = 24.3.192

Clearly, —38 + i and —22 + 197 can produce a product square, since

(=38 +14)(—22+197) = (31 —12i)?
f(31—12i) = 31—12m

= —3449 — «x,

2525488 = (23.3.7%)?

= 11762,
— y=1176,
ged(x +y,n) = ged(—3449 +1176,84101)

= (2273,37).

In fact, 84101 = 2273 x 37. Note that —118 + 117 and 218 + 59i can also
produce a product square, since

42 2. Quantum Attacks on IFP-Based Cryptosystems

(—118 + 114)(218 + 59i) = (14 — 1634)?,
f(14 —163i) = 14—163m
= —47256 — x,
3071173288 = (27-3-19)2
= 7296
— = T7296,
ged(z £ y,n) = ged(—47256 £ 7296,84101)
= (37,2273).

Example 2.4. Next, we present a little bit more complicated example. Use
NFS to factor n = 1098413. First, notice that n = 1098413 = 12 - 453 + 173,
which is in a special form and can be factored by using SNF'S.

[1] (Polynomials Selection) Select the two irreducible polynomials f(z) and
g(x) and the integer m as follows:

a7
m E,
5 17\°
flx)y=2>+12 = f(m)= (4—5) +12 =0 (mod n),
17
g(x) =452 — 17 = g(m) =45 (4—5) — 17 =0 (mod n).

[2] (Sieving) Suppose after sieving, we get U = {a;, b;} as follows:
U= {(67 -1), (37 2), (_77 3)7 (17 3)7 (_27 5), (_37 8)7 (97 10)}'

That is, the chosen polynomial that produces a product square can be
constructed as follows (as an exercise, readers may wish to choose some
other polynomial which can also produce a product square):

[T(ai+biz) = (6—2)(3+2x)(—7+3x) (1+3x) (—2+5)(~3+82)(9+10z).
U

Let o = /=12 and 8 = % Then

2.1 IFP and Classical Solutions to IFP 43

n(a — ba)

U

7400772 + 11382360 — 105490

(2694 + 213 — 28a?)?
(5610203

- 2025

= 2707292,

28.112.132.232
H(a—bﬁ) = 312 . 54

52624\ ?
—\ 18225

8755392,

So, we get the required square of congruence:
2707292 = 875539 (mod 1098413).

Thus,
gcd(270729 £ 875539, 1098413) = (563,1951).

That is,
1098413 = 563 - 1951.

Example 2.5. We give some large factoring examples using NF'S.

1 SNFS examples: One of the largest numbers factored by SNFS is
n = (12" +1)/13 = pr5 x p1os

It was announced by P. Montgomery, S. Cavallar, and H. te Riele at CWI
in Amsterdam on 3 September 1997. They used the polynomials f(x) =
2% — 144 and g(z) = 1233z + 1 with common root m = 12!3* (mod n).
The factor base bound was 4.8 million for f and 12 million for g. Both
large prime bounds were 150 million, with two large primes allowed on
each side. They sieved over |a| < 8.4 million and 0 < b < 2.5 million. The
sieving lasted 10.3 calendar days; 85 SGI machines at CWI contributed
a combined 13027719 relations in 560 machine-days. It took 1.6 more
calendar days to process the data. This processing included 16 CPU-hours
on a Cray C90 at SARA in Amsterdam to process a 1969262 x 1986500
matrix with 57942503 nonzero entries. The other large number factorized
by using SNFS is the 9th Fermat number:

Fy = 229 +1= 9512 + 1 = 2424833 - p4g - g9,

44 2. Quantum Attacks on IFP-Based Cryptosystems

a number with 155 digits; it was completely factored in April 1990. The
most wanted factorin%number of special form at present is the 12th Fer-
mat number Fio = 22" 4 1; we only know its partial prime factorization:

Fio = 114689-26017793-63766529-190274191361-1256132134125569-c1187

and we want to find the prime factors of the remaining 1187-digit com-
posite.

2 GNFS examples:

RSA — 130 (130 digits)

= 18070820886874048059516561644059055662781025167694013491
70127021450056662540244048387341127590812303371781887966
563182013214880557

= 396859994595974542901611261628837
86067576449112810064832555157243

X

455344986467359721884036868972744
08864356301263205069600999044599.

RSA — 140 (140 digits)

— 2129024631825875754749788201627151749780670396327721627
8233383215381949984056495911366573853021918316783107387
995317230889569230873441936471

— 33987174230284385545301236276138758
35633986495969597423490929302771479

X
62642001874012850961516549482644422
19302037178623509019111660653946049

RSA — 155 (512 digits)

— 1094173864157052742180970732204035761200373294544920599
0913842131476349984288934784717997257891267332497625752
899781833797076537244027146743531593354333897

— 102639592829741105772054196573991675900
716567808038066803341933521790711307779

X
106603488380168454820927220360012878679
207958575989291522270608237193062808643

2.1 IFP and Classical Solutions to IFP

RSA — 576 (576 bits, 174 digits)

= 18819881292060796383869723946165043980716356337941738
27007633564229888597152346654853190606065047430453173
88011303396716199692321205734031879550656996221305168
759307650257059

= 3980750864240649373971255005503864911990643
62342526708406385189575946388957261 768583317

X

4727721461074353025362230719730482246329146
95302097116459852171130520711256363590397527

RSA — 640 (193 digits, 640 bits)

= 31074182404900437213507500358885679300373460228427275
45720161948823206440518081504556346820671723286782437
91627283803341547107310

= 163473364580925384844313388386509085984178367003
3092312181110852389333100104508151212118167511579

X

= 190087128166482211312685157393541397547189678996

8515493666638539088027103802104498957191261465571.

RSA — 663 (200 digits, 663 bits)

= 27997833911221327870829467638722601621070446786955428
53756000992932612840010760934567105295536085606182235
19109513657886371059544820065767750985805576135790987
34950144178863178946295187237869221823983

= 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

X

79258699544783330333470858414800596877379758573642
19960734330341455767872818152135381409304740185467

46 2. Quantum Attacks on IFP-Based Cryptosystems

RSA — 704 (704 bits, 212 digits)

= 7403756347956171282804679609742957314259318888923128
9084936232638972765034028266276891996419625117843995
8943305021275853701189680982867331732731089309005525
0511687706329907239638078671008609696253793465056379
6359

= 90912135295978188784406583026004374858926
08310328358720428512168960411528640933367
824950788367956756806141

X

81438592591100452657278091262844293358778
99002167627883200914172429324360133004116
702003240828777970252499.

RSA — 768 (768 bits, 232 digits)

= 123018668453011775513049495838496272077285356959533
479219732245215172640050726365751874520219978646938
995647494277406384592519255732630345373154826850791
702612214291346167042921431160222124047927473779408
0665351419597459856902143413

= 334780716989568987860441698482126908177047
949837137685689124313889828837938780022876
14711652531743087737814467999489

X

36746043666799590428244633799627952632279
15816434308764267603228381573966651127923
3373417143396810270092798736308917

Remark 2.3. Prior to the NFS, all modern factoring methods had an ex-
pected running time of at best

O (exp ((c + o(1))y/lognloglogn)) .

For example, Dixon’s random square method has the expected running time

O (exp (V2 + o(1)y/log nloglogn)).

2.1 IFP and Classical Solutions to IFP 47

whereas the MPQS takes time

O (exp ((1 + 0(1))4/loglogn/logn)) .

Because of the Canfield-Erdés—Pomerance theorem, some people even be-
lieved that this could not be improved, except maybe for the term (¢ + o(1)),
but the invention of the NF'S has changed this belief.

Conjecture 2.1 (Complexity of NFS). Under some reasonable heuristic
assumptions, the NFS method can factor an integer IV in time

o (exp ((c + 0(1))¥/log n{/(log log n)?)) (2.11)

where ¢ = (64/9)'/% ~ 1.922999427 if GNFS is used to factor an arbitrary
integer N, whereas ¢ = (32/9)"/? ~ 1.526285657 if SNFS is used to factor a
special integer N.

p-Factoring Method

Although NFS is the fastest method of factoring at present, other methods
are also useful, one of the particular method is the p-factoring method [59];
surprisingly it is the method that is applicable for all the three infeasible
problems, IFP, DLP, and ECDLP discussed in this book.

p uses an iteration of the form

xo = random(0, n — 1), (2.12)
2.12
i=1,2,3,...

x; = f(x;—1) (mod n),

where xg is a random starting value, n is the number to be factored, and
f € Z|x] is a polynomial with integer coefficients; usually, we just simply
choose f(z) = 2% £ a with a # —2,0. If p is prime, then the sequence
{z; mod p};~¢ must eventually repeat. Let f(z) = 22 + 1,29 = 0,p = 563.
Then we get the sequence {x; mod p};~o as follows (Fig. 2.3):

IOZOa
rp=a3+1=1,

my=1i+1=2,
r3 =13 +1=5,
T4 =123+ 1 =26,
r5 =23 +1 =114,
re =12 + 1 =48,

48 2. Quantum Attacks on IFP-Based Cryptosystems

7 =123 +1=53,

rs = 2% + 1 = 558,

zg =23 + 1 = 26.
That is,

0,1,2,5,26, 114, 48, 53, 558.

This sequence symbols a diagram, looks like the Greek letter p: As an exercise,

114

Figure 2.3. p cycle modulo 563 using f(z) = 22 + 1 and 29 = 0

readers may wish to find the p cycle modulo 1951 using f(r) = 22 + 1 and
g = 0. Of course, to factor n, we do not know its prime factors before hand,
but we can simply modulo n (justified by the Chinese Remainder Theorem).
For example, to factor n = 1098413 = 563 - 1951, we perform (all modulo
1098413):

Tro = 0, Yi = T4 gcd(xz — Y, n)
T = x% +1=1,

Ty =274+ 1=2, Y1 = T3 = ged(l—2,n) =1
T3 =123+ 1=5,

g =25 +1 =26, Yo = x4 = 26 ged(2 —26,n) =1

2.1 IFP and Classical Solutions to IFP 49

x5 =23 +1 =677

=114,
Tg = 77 + 1 = 458330

= 48, Y3 = x6 = 458330 ged(5 — 458330,n) = 1
r7 =22 +1 = 394716

= 53,
Ty =22 + 1 = 722324

= 558, ys = x5 = 722324 ged(26 — 722324, 1) = 1
Tg =1 +1 = 293912

= 26
a0 = xf +1 = 671773

=114 ys = x10 = 671773 ged(677 — 671773, n) = 563.

The following algorithm is an improved version of Brent [10] over Pollard’s
original p-method.

Algorithm 2.2 (Brent—Pollard’s p-method). Let n be a composite inte-
ger greater than 1. This algorithm tries to find a nontrivial factor d of n, which
is small compared with /n. Suppose the polynomial to use is f(z) = 22 + 1.

[1] (Initialization) Choose a seed, say zp = 2, a generating function, say
f(z) = 2% +1 (mod n). Choose also a value for ¢ not much bigger than
Vd, perhaps t < 100+/d.

[2] (Tteration and Computation) Compute z; and y; in the following way:
z1 = f(xo),
z2 = [(f(z0)) = f(z1),
zs = [f(f(f(@0))) = f(f(z1)) = flx2),

xX; = f(xi—l)-
yio= w2 = flz1) = f(f(z0)) = f(f (o)),
Y2 = wa=flzs) = f(f(22)) = F(F(yn)),

ys = x¢ = f(xs) = f(

Yy = $2i=f(f(yi—1))-

and simultaneously compare z; and y; by computing d = ged(z; —y;, n).

50 2. Quantum Attacks on IFP-Based Cryptosystems

[3] (Factor Found?) If 1 < d < n, then d is a nontrivial factor of n, print d,
and go to Step [5].

[4] (Another Search?) If x; = y; (mod n) for some i or i > /¢, then go to
Step [1] to choose a new seed and a new generator and repeat.

[5] (Exit) Terminate the algorithm.

The p algorithm has the conjectured complexity:

Conjecture 2.2 (Complexity of the p-method). Let p be a prime di-
viding n and p = O(,/p), then the p-algorithm has expected running time

O(y/p) = Oyp (logn)?) = O(n!/*(log n)?) (2.13)
to find the prime factor p of n.

Remark 2.4. The p-method is an improvement over trial division, because
in trial division, O(p) = O(n'/*) divisions is needed to find a small factor p
of n. But of course, one disadvantage of the p-algorithm is that its running
time is only a conjectured expected value, not a rigorous bound.

Exercises and Problems for Sect. 2.1

1. Explain why general-purpose factoring algorithms are slower than special
purpose factoring algorithms, or why the special numbers are easy to
factor than general numbers.

2. Show that:
(a) Addition of two logn bit integers can be performed in O(logn) bit
operations.

(b) Multiplication of two logn bit integers can be performed in
O((logn)**€) bit operations.

3. Show that:
(a) Assume the ERH, there is deterministic algorithm that factors n in
O(n'/5+¢) steps.

(b) FFT (fast Fourier transform) can be utilized to factor an integer n
in O(n'/4+¢) steps.

(c) Give two deterministic algorithms that factor integer n in O(n'/3+¢)
steps.

4. Show that if P = NP, then IFP € P.
5. Prove or disprove that IFP € N"P-complete.

2.1

IFP and Classical Solutions to IFP 51

. Extend the NFS to FF'S (function field sieve). Give a complete description

of the FFS for factoring large integers.

. Let a; = f(xi—1), i =1,2,3,.... Let also t,u > 0 be the smallest num-

bers in the sequence z;4; = Tyiyti, ¢ = 0,1,2,..., where ¢t and u are
called the lengths of the p tail and cycle, respectively. Give an efficient
algorithm to determine ¢ and u exactly, and analyze the running time of
your algorithm.

. Find the prime factorization of the following RSA numbers, each of these

numbers has two prime factors:

(a) RSA-896 (270 digits, 896 bits)
4120234369866595438555313653325759481798116998443279828454556
2643387644556524842619809887042316184187926142024718886949256
0931776375033421130982397485150944909106910269861031862704114
8808669705649029036536588674337317208131041051908642547932826
01391257624033946373269391

(b) RSA-1024 (309 digits, 1024 bits)
1350664108659952233496032162788059699388814756056670275244851
4385152651060485953383394028715057190944179820728216447155137
3680419703964191743046496589274256239341020864383202110372958
7257623585096431105640735015081875106765946292055636855294752
1350085287941637732853390610975054433499981115005697723689092
7563

(c) RSA-1536 (463 digits, 1536 bits)
1847699703211741474306835620200164403018549338663410171471785
7749106516967111612498593376843054357445856160615445717940522
2971773252466096064694607124962372044202226975675668737842756
2389508764678440933285157496578843415088475528298186726451339
8633649319080846719904318743812833635027954702826532978029349
1615581188104984490831954500984839377522725705257859194499387
0073695755688436933812779613089230392569695253261620823676490
316036551371447913932347169566988069

(d) RSA-2048 (617 digits, 2048 bits)

2519590847565789349402718324004839857142928212620403202777713
7836043662020707595556264018525880784406918290641249515082189
2985591491761845028084891200728449926873928072877767359714183
4727026189637501497182469116507761337985909570009733045974880
8428401797429100642458691817195118746121515172654632282216369
9875491824224336372590851418654620435767984233871847744479207
3993423658482382428119816381501067481045166037730605620161967
6256133844143603833904414952634432190114657544454178424020924
6165157233507787077498171257724679629263863563732899121548314

52

2. Quantum Attacks on IFP-Based Cryptosystems

3816789988504044536402352738195137863656439121201039712282212

0720357

9. Try to complete the following prime factorization of the smallest unfac-
tored (not completely factored) Fermat numbers:

Iy =

Fi3 =

Iy

114689 - 26017793 - 63766529 - 190274191361 -
1256132134125569 - c1187

2710954639361 - 2663848877152141313 - 36031098445229199 -
319546020820551643220672513 - ca391

C4933

1214251009 - 2327042503868417 -
168768817029516972383024127016961 - cygos

825753601 - 188981757975021318420037633 - c19694
31065037602817 - c39444

13631489 - 81274690703860512587777 - c78884
70525124609 - 646730219521 - c157804

€315653

4485296422913 - ce31294

€1262612

167772161 - co505215

C5050446

Basically, you are asked to factor the unfactored composite numbers,
denoted by ¢, of the Fermat numbers. For example, in Fjo, c1187 is the
unfactored 1187 digit composite.

2.2 TFP-Based Cryptography

Basic Idea of IFP-Based Cryptography

IFP-based cryptography is a class of cryptographic systems whose security
relies on the intractability of the IFP problem:

2.2 IFP-Based Cryptography 53

can be used to construct

IFP IFP-Based Cryptography
Infeasible Secure
Hard Unbreakable

No Efficient Classical Attacks
on both IFP and IFP-Based Cryptography

Typical cryptographic systems in this class include RSA [64], Rabin [62],
and Goldwasser—Micali probabilistic encryption [32] and Goldwasser—Micali—
Rackoff zero-knowledge interactive proof [33]. We shall first give an account
of the RSA cryptographic system. In a general cryptographic setting, we
assume Alice wishes to send a ciphertext C of the plaintext M to Bob (or
vice versa), Eve, the eavesdropper, wishes to understand the communication
between Alice and Bob:

Alice M M Bob

M/

Eve

RSA Cryptography

RSA is the most famous, first practical, widely used, and still unbreakable
public-key cryptography, for which its three inventors, Rivest, Shamir, and
Adleman, received the 2002 Turing Award. The security of RSA relies com-
pletely on the infeasibility of the IFP problem.

Definition 2.3. The RSA public-key cryptosystem may be formally defined
as follows (Depicted in Fig.2.4):

RSA = (M,C,K,M,C,e,d, N, E, D) (2.14)

where:

1. M is the set of plaintexts, called the plaintext space.
2. C is the set of cipherexts, called the ciphertext space.
3. K is the set of keys, called the key space.
4. M € M is a piece of particular plaintext.

54 2. Quantum Attacks on IFP-Based Cryptosystems

Public/Insecure Channel Eve (Cryptanalyst)
c-omium

Plaintext Encryption Decryption Plaintext
M | C=M®(mod N)| Ciphertext M=C%@mod N) | M
c
Alice
Bob Key Source Key Source (Rec ;iv er)
(Sender) (e,N) (d,N)
‘ (e,d, N)ek ’

Figure 2.4. RSA public-key cryptography

5. C' e C is a piece of particular ciphertext.

6. N = pq is the modulus with p,q prime numbers, usually each with at
least 100 digits.

7. {(e,N),(d,N)} € K with e # d are the encryption and encryption keys,
respectively, satisfying

ed =1 (mod ¢(N)) (2.15)

where ¢(N) = (p — 1)(¢ — 1) is the Euler ¢-function and defined by
d(N) = #(Z%), the number of elements in the multiplicative group Z%;.
8. E is the encryption function

Een: M—C
That is, M € M maps to C € C, using the public-key (e, N), such that
C' = M° (mod N). (2.16)
9. D is the decryption function
Dgn: C— M
That is, C' € C maps to M € M, using the private-key (d, N), such that
M =C?= (M%) (mod N). (2.17)
The idea of RSA can be best depicted in Fig. 2.5.

Theorem 2.3 (The Correctness of RSA). Let M, C, N, e, d be plaintext,
ciphertext, encryption exponent, decryption exponent, and modulus, respec-

tively. Then
(M4 = M (mod N).

2.2 IFP-Based Cryptography 55

Alice chooses primes p, ¢
such that N = pq
and ed = 1(mod (p —1) (¢ —1))

(e, N) public

Alice Bob

C'=M° (mod N)

— -

M=C? (mod N)

(e, N,C) > M’
Eve

Figure 2.5. RSA encryption and decryption

Proof. Notice first that

c! = (M°)? (mod N) (since C = M*® (mod N))
= MW (mod N) (since ed = 1 (mod ¢(N)))
= M-M*%) (mod N)
= M- (M*M)F (mod N)

= M- (1)* (mod N) (by Euler’s Theorem a®™ =1 (mod N))
= M
The result thus follows.]

Both encryption C = M€ (mod N) and decryption M = C? (mod N)
of RSA can be implemented in polynomial time by the fast exponentiation
method. For example, the RSA encryption can be implemented as follows:

Algorithm 2.3. Given (e, M, N), this algorithm finds C = M¢ (mod N), or
given (d,C, N), finds M = C? (mod N) in time polynomial in loge or logd,
respectively.

Encryption: Decryption:
Given (e, M, N) to find C Given (d,C, N) to find M
Set C 1 Set M « 1
While e > 1 do While d > 1 do
if emod 2 =1 ifdmod2 =1
then C'«— C'- M mod N then M «— M - C'mod N
M « M? mod N C < C? mod N
e — le/2] d — |d/2]

Print C Print M

56 2. Quantum Attacks on IFP-Based Cryptosystems

Remark 2.5. For the decryption process in RSA, as the authorized user
knows d and hence knows p and ¢, thus instead of directly working on M =
C? (mod N), he can speed-up the computation by working on the following
two congruences:

M, = cd = gdmodp-l (mod p)
M, = C?=cimdal (mod q)
and then use the Chinese Remainder Theorem to get
M=M,-q-¢g*modp+ M, -p-p* modgq (mod N). (2.18)

The Chinese Remainder Theorem is a two-edged sword. On the one hand,
it provides a good way to speed-up the computation/performance of the
RSA decryption, which can even be easily implemented by a low-cost crypto-
chip [34]. On the other hand, it may introduce some serious security prob-
lems vulnerable to some side-channel attacks, particularly the random fault
attacks;

Example 2.6. Let the letter-digit encoding be as follows:
space = 00,A =01,B=02,--- ,Z = 26.

(We will use this digital representation of letters throughout the book.) Let
also

e = 9007,
M = 200805001301070903002315180419000118050019172105011309-
190800151919090618010705,
N = 114381625757888867669235779976146612010218296721242362_

562561842935706935245733897830597123563958705058989075_
147599290026879543541.
Then the encryption can be done by using Algorithm 2.3:
cC = M°
= 968696137546220614771409222543558829057599911245743198_
746951209308162982251457083569314766228839896280133919_
90551829945157815154 (mod N).

For the decryption, since the two prime factors p and ¢ of N are known to
the authorized person who does the decryption:

p = 34905295108476509491478496199038981334177646384933878_
43990820577
g = 32769132993266709549961988190834461413177642967992942_

539798288533

2.2 IFP-Based Cryptography 57

then

d = 1/e
= 106698614368578024442868771328920154780709906633937862_
= 801226224496631063125911774470873340168597462306553968_
= 544513277109053606095 (mod (p — 1)(q — 1)).

Thus, the original plaintext M can be recovered either directly by using
Algorithm 2.3 or indirectly by a combined use of Algorithm 2.3 and the
Chinese Remainder Theorem (2.18):

M = ¢
200805001301070903002315180419000118050019172105011309_
190800151919090618010705 (mod N)

which is “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.”

Remark 2.6. Prior to RSA, Pohlig and Hellman in 1978 [57] proposed a
secret-key cryptography based on arithmetic modulo p, rather than N = pq.
The Pohlig-Hellman system works as follows: Let M and C' be the plain
and cipher texts, respectively. Choose a prime p, usually with more than 200
digits, and a secret encryption key e such that e € Z™ and e < p—2. Compute
d=1/e (mod (p—1)). (e,p) and of course d must be kept as a secret.

[1] Encryption:
C' = M° (mod p). (2.19)
This process is easy for the authorized user:

nd

{M,e.p} {C = M* (mod p)}. (2.20)

fi
easy
[2] Decryption:

M = C? (mod p). (2.21)

For the authorized user who knows (e, p), this process is easy, since d can
be easily computed from e.

[3] Cryptanalysis: The security of this system is based on the infeasibility
of the discrete logarithm problem. For example, for a cryptanalyst who
does not know e or d would have to compute:

e =log,, C (mod p).

Remark 2.7. One of the most important features of RSA encryption is that
it can also be used for digital signatures. Let M be a document to be signed,

58 2. Quantum Attacks on IFP-Based Cryptosystems

and N = pqg with p,q primes, (e,d) the public and private exponents as
in RSA encryption scheme. Then the processes of RSA signature signing
and signature verification are just the same as that of the decryption and
encryption; that is, use d for signature signing and e signature verification as
follows (see also Fig. 2.6):

Alice chooses primes p, g
such that N =pq
and ed =1 (mod ¢(V)

1

Alice Bob
S =M? (mod N)

(e, N) public

M =S¢ (mod N)

Figure 2.6. RSA digital signature

[1] Signature signing:
S = M? (mod N) (2.22)

The signing process can only be done by the authorized person who has
the private exponent d.

[2] Signature verification:
M =S¢ (mod N) (2.23)
This verification process can be done by anyone since (e, N) is public.

Of course, RSA encryption and RSA signature can be used together to obtain
a signed encrypted document to be sent over an insecure network.

RSA Problem and RSA Assumption

As can be seen from the previous section, the whole idea of the RSA encryp-
tion and decryption is as follows:

C = M°(mod N),}

M = C?(mod N) (2.24)

2.2 IFP-Based Cryptography 59
where

ed = 1 (mod ¢(N))
N = pq with p,q e Primes. (2.25)

Thus, the RSA function can be defined by

frsa : M — M®mod N. (2.26)
The inverse of the RSA function is then defined by

frsa : M€ +— M mod N. (2.27)
Clearly, the RSA function is a one-way trap-door function, with

{d,p,q. (N)} (2.28)

the RSA trap-door informationmitrap-door information. For security pur-
poses, this set of information must be kept as a secret and should never be
disclosed in anyway even in part. Now, suppose that Bob sends C' to Alice,
but Eve intercepts it and wants to understand it. Since Eve only has (e, N, C)
and does not have any piece of the trap-door information in (2.28), then it
should be infeasible/intractable for her to recover M from C:

hard

{e, N,C = M¢ (mod N)} {M = C? (mod N)}. (2.29)

On the other hand, for Alice, since she knows d, which implies that she knows
all the pieces of trap-door information in (2.28), since

P P P
{d} = {p} = {g} = {o(NV)} (2.30)
Thus, it is easy for Alice to recover M from C:

{d,p,q,0(N)}

easy

{N,C = M*° (mod N)} {M=C? (mod N)}. (2.31)

Why is it hard for Eve to recover M from C? This is because Eve is facing
a hard computational problem, namely, the RSA problem [65]:

The RSA problem: Given the RSA public-key (e, N) and the RSA
ciphertext C, find the corresponding RSA plaintext M. That is,

{e, N,C} —— {M}.

It is conjectured although it has never been proved or disproved that:

The RSA conjecture: Given the RSA public-key (e, N) and the
RSA ciphertext C, it is hard to find the corresponding RSA plaintext
M. That is,

hard
——————

{e,N,C} {M}.

60 2. Quantum Attacks on IFP-Based Cryptosystems

But how hard is it for Alice to recover M from C? This is another version of
the RSA conjecture, often called the RSA assumption, which again has never
been proved or disproved:

The RSA assumption: Given the RSA public-key (e, N) and the
RSA ciphertext C, then finding M is as hard as factoring the RSA
modulus N. That is,

IFP(N) <= RSA(M)

provided that IV is sufficiently large and randomly generated, and M
and C are random integers between 0 and N — 1. More precisely, it
is conjectured (or assumed) that

IFP(N) <2 RSA(M).

That is, if N can be factorized in polynomial time, then M can be recovered
from C' in polynomial time. In other words, cryptoanalyzing RSA must be
as difficult as solving the IFP problem. But the problem is, as we discussed
previously, that no one knows whether or not IFP can be solved in polynomial
time, so RSA is only assumed to be secure, not proved to be secure:

IFP(N) is hard — RSA(M) is secure.

The real situation is that
IFP(N) =5 RSA(M),
IFP(N) <= RSA(M).

Now, we can return to answer the question of how hard is it for Alice to
recover M from C? By the RSA assumption, cryptanalyzing C is as hard
as factoring N. The fastest known integer factorization algorithm, the NFS,
runs in time

O(exp(c(log N)'?(loglog N)*?))

where ¢ = (64/9)"/3 if a general version of NFS, GNFS, is used for factoring an
arbitrary integer N whereas ¢ = (32/9)'/? if a special version of NFS, SNFS,
is used for factoring a special form of integer N. As in RSA, the modulus
N = pq is often chosen to be a large general composite integer N = pq with
p and ¢ of the same bit size, which makes SNFS not useful. This means that
RSA cannot be broken in polynomial time but in subexponential-time, which
makes RSA secure, again, by assumption. Thus, readers should note that the
RSA problem is assumed to be hard, and the RSA cryptosystem is conjectured
to be secure .

2.2 IFP-Based Cryptography 61

In the RSA cryptosystem, it is assumed that the cryptanalyst, Eve:

1. Knows the public-key {e, N} with N = pq and also the ciphertext C
2. Does not know any one piece of the trap-door information {p, ¢, #(N), d}
3. Wants to know {M}

That is,

{e,N,C' = M*® (mod N)} Eve wants to find (M}

Obviously, there are several ways to recover M from C' (i.e., to break the
RSA system):

1. Factor N to get {p, ¢} so as to compute
M = /e (mod (p—1)(g—1)) (mod N).
2. Find ¢(N) so as to compute
M = ¢Ye (med ¢(N) (1od N).

3. Find order(a, N), the order of a random integer a € [2, N — 2] modulo
N, then try to find

{p,q} = ged(a™? £1,N) and M = ¢V/¢ (med (p=D(@=1) (;od N).
4. Find order(C, N), the order of C modulo N, so as to compute
M = Ol/e (mod order(C,N)) (mod N)

5. Compute logo M (mod N), the discrete logarithm M to the base C
modulo N in order to find

M = Oloch (mod N) (mod N)

Rabin Cryptography

As can be seen from the previous sections, RSA uses M€ for encryption,
with e > 3 (3 is the smallest possible public exponent in RSA); in this way,
we might call RSA encryption M¢ encryption. In 1979, Michael Rabin [62]
proposed a scheme based on M? encryption, rather than the M¢ for e > 3
encryption used in RSA. A brief description of the Rabin cryptosystem is as
follows (see also Fig.2.7).

1. Key generation: Let n = pg with p, ¢ odd primes satisfying
p=g¢g=3(mod 4). (2.32)

62 2. Quantum Attacks on IFP-Based Cryptosystems

Alice chooses primes p, ¢ such that
p=qg=3 (mod 4)

(p, q) secret
n public
Alice
C = M? (mod n) Bob

M= \C (mod p)
]Wq =+/C (mod q)
M={tM,, +M}

Figure 2.7. Rabin cryptosystem

2. Encryption:

C = M? (mod n). (2.33)

3. Decryption: Use the Chinese Remainder Theorem to solve the system
of congruences:

{ M, =+/C (mod p) (2.34)

M, =+/C (mod q)

to get the four solutions: {+M,, +M,}. The true plaintext M will be one
of these four values.

4. Cryptanalysis: A cryptanalyst who can factor n can compute the four
square roots of C' modulo n and hence can recover M from C. Thus,
breaking the Rabin system is equivalent to factoring n.

Example 2.7. Let M = 31.

[1] Key generation: Let n = 11 - 19 be the public-key, but keep the prime
factors p = 11 and ¢ = 19 of n as a secret.
[2] Encryption:

C =312 = 125 (mod 209).
[3] Decryption: Compute

M,,E\/ﬁzi2 (mod p)
{qux/ﬁzi7(mod q).

2.2 IFP-Based Cryptography 63

Now, use the Chinese Remainder Theorem to solve

M =2 (mod 11)

== M =178
M =7 (mod 19)
M = -2 (mod 11)

= M =64
M =7 (mod 19)

= —2 (mod 11)
= M =145
M =17 (mod 19)

= —2 (mod 11)
{ M = —7 (mod 19)

= M =31

The true plaintext M will be one of the above four values, and in fact,
M = 31 is the true value.

Unlike the RSA cryptosystem whose security was only conjectured to be
equivalent to the intractability of IFP, the security of Rabin system and its
variant such as Rabin-Williams system is proved to be equivalent to the in-
tractability of IFP. First, notice that there is a fast algorithm to compute the
square roots modulo N if n = pq is known. Consider the following quadratic
congruence

2% =y (mod p) (2.35)

there are essentially three cases for the prime p:
(1) p=3 (mod 4).
(2) p=5 (mod 8).
(3) p=1 (mod 8).

All three cases may be solved by the following process:

p+1
if p=3(mod 4), x=4+y 4 (mod p),
p+1 p+3
ify 4 =1, z=4y 8 (mod p) (2.36)
if p=>5 (mod 8),
p+1 p—>5

ify 4 #1, z=42y(dy) 8 (mod p).

Algorithm 2.4 (Computing square roots modulo pg). Let n = pg with
p and g odd prime and y € QR,,. This algorithm will find all the four solutions
in z to congruence 2 = y (mod pq) in time O((logp)*).

[1] Use (2.36) to find a solution 7 to 22 =y (mod p).

64 2. Quantum Attacks on IFP-Based Cryptosystems

[2] Use (2.36) to find a solution s to 22 =y (mod q).

[3] Use the Extended Euclid’s algorithm to find integers ¢ and d such that
cp +dg=1.

[4] Compute & = £(rdq £ scp) (mod pq).

On the other hand, if there exists an algorithm to find the four solutions
in z to 22 = y (mod n), then there exists an algorithm to find the prime
factorization of n. The following is the algorithm.

Algorithm 2.5 (Factoring via square roots). This algorithm seeks to
find a factor of n by using an existing square root finding algorithm (namely,
Algorithm 2.4).

[1] Choose at random an integer x such that ged(z,n) = 1, and compute

2? = a (mod n).

[2] Use Algorithm 2.4 to find four solutions in z to 2% = a (mod n).

[3] Choose one of the four solutions, say y such that y # +a (mod n), then
compute ged(z + y,n).

[4] If ged(x + y,n) reveals p or ¢, then go to Step [5], or otherwise, go to
Step [1].

[5] Exit.

Theorem 2.4. Let N = pq with p, ¢ odd prime. If there exists a polynomial-
time algorithm A to factor n = pq, then there exists an algorithm B to find
a solution to 72 =y (mod n), for any y € QR .

Proof. If there exists an algorithm A to factor n = pq, then there exists an
algorithm (in fact, Algorithm 2.4), which determines z = +(rdq + scp) (mod
pq), as defined in Algorithm 2.4, for 22 =y (mod n). Clearly, Algorithm 2.4
runs in polynomial time.]

Theorem 2.5. Let n = pq with p, ¢ odd prime. If there exists a polynomial-
time algorithm A to find a solution to 22 = a (mod n), for any a € QR,,,
then there exists a probabilistic polynomial-time algorithm B to find a factor
of n.

Proof. First, note that for n composite, x and y integer, if 22 = y? (mod n)
but « # ty (mod n), then ged(z + y,n) are proper factors of n. If there
exists an algorithm A to find a solution to 22 = a (mod n) for any a €
QR,,, then there exists an algorithm (in fact, Algorithm 2.5), which uses
algorithm A to find four solutions in z to 22 = a (mod n) for a random x
with ged(z,n) = 1. Select one of the solutions, say, y # tx (mod n), then
by computing ged(x + y,n), the probability of finding a factor of N will be
> 1/2. If Algorithm 2.5 runs for k times and each time randomly chooses a
different z, then the probability of not factoring n is < 1/2F.]

So, finally, we have

2.2 IFP-Based Cryptography 65

Theorem 2.6. Factoring integers, computing the modular square roots, and
breaking the Rabin cryptosystem are computationally equivalent. That is,

IFP(n) <= Rabin(M). (2.37)

Residuosity-Based Cryptography

Recall that an integer a is a quadratic residue modulo n, denoted by a € @,,, if
ged(a,n) = 1 and there exists a solution x to the congruence #2 = a (mod n),
otherwise a is a quadratic non-residue modulo n, denoted by a € @,,. The
quadratic residuosity problem (QRP) may be stated as:

Given positive integers a and n, decide whether or not a € Q,,.
It is believed that solving QRP is equivalent to computing the prime factor-

ization of n, so it is computationally infeasible. If n is prime then

aeQ, — (3)=1, (2.38)

n

and if n is composite, then

a€Q, = (%) =1, (2.39)
but
aeQ, <= (%) —1, (2.40)
however,
weQ, — (%) -1 (2.41)

Let J, = {a € (Z/nZ)* : (%) = 1}, then Qn = Jn — Q. Thus, Q,, is the
set of all pseudosquares modulo n; it contains those elements of J,, that do
not belong to @,,. Readers may wish to compare this result to Fermat’s little
theorem, namely (assuming ged(a,n) = 1),

nis prime = a" ! =1 (mod n), (2.42)
but
X
nis prime <= a" ' =1 (mod n), (2.43)
however,
n is composite <= a""! %1 (mod n). (2.44)

The QRP can then be further restricted to:

Given a composite n and an integer a € J,,, decide whether or not

a€ Qn.

66 2. Quantum Attacks on IFP-Based Cryptosystems

For example, when n = 21, we have Jo; = {1,4,5,16,17,20} and Q2 =
{1,4,16}, thus Q21 = {5,17,20}. So, the QRP problem for n = 21 is actu-
ally to distinguish squares {1, 4,16} from pseudosquares {5,17,20}. The only
method we know for distinguishing squares from pseudosquares is to factor n;
since integer factorization is computationally infeasible, the QRP problem is
computationally infeasible. In what follows, we shall present a cryptosystem
whose security is based on the infeasibility of the QRP; it was first proposed
by Goldwasser and Micali in 1984 [32] in 1984, under the term probabilistic
encryption.

Algorithm 2.6 (Quadratic residuosity-based cryptography). This al-
gorithm uses the randomized method to encrypt messages and is based on
the QRP. The algorithm divides into three parts: key generation, message
encryption, and decryption.

[1] Key generation: Both Alice and Bob should do the following to generate
their public and secret keys:
[a] Select two large distinct primes p and ¢, each with roughly the same
size, say, each with 3 bits.
[b] Compute n = pq.
Select a y € Z/nZ, such that y € Q,, and (E) = 1. (y is thus a pseu-
n

dosquare modulo n).

[c] Make (n,y) public, but keep (p, q) secret.
[2] Encryption: To send a message to Alice, Bob should do the following:
[a] Obtain Alice’s public-key (n,y).

[c] Represent the message m as a binary string m = mymsg---my of
length k.

[d] For ¢ from 1 to k do
[d-1] Choose at random an x € (Z/nZ)* and call it ;.

[d-2] Compute ¢;:

z?modn, ifm;=0, (rs.)
C; = (245)

yr? modn, if m; =1, (r.p.s.),

where r.s. and r.p.s. represent random square and random pseu-
dosquare, respectively.

Send the k-tuple ¢ = (c1,ca,...,c;) to Alice. (Note first that each
¢; is an integer with 1 < ¢; < n. Note also that since n is a 25-bit
integer, it is clear that the cipher-text ¢ is a much longer string
than the original plain-text m.)

[3] Decryption: To decrypt Bob’s message, Alice should do the following:

2.2 IFP-Based Cryptography 67

[a] For i from 1 to k do

[a-1] Evaluate the Legendre symbol:

¢l = (%) . (2.46)

0, if ef=1
m; = (247)

[a-2] Compute m;:

1, if otherwise.
That is, m; = 0 if ¢; € @, otherwise, m; = 1.
Finally, get the decrypted message m = mimsg - - - my.

Remark 2.8. The above encryption scheme has the following interesting
features:

1) The encryption is random in the sense that the same bit is transformed
into different strings depending on the choice of the random number x.
For this reason, it is called probabilistic (or randomized) encryption.

2) Each bit is encrypted as an integer modulo n and hence is transformed
into a 28-bit string.

3) It is semantically secure against any threat from a polynomially bounded
attacker, provided that the QRP is hard.

Example 2.8. In what follows we shall give an example of how Bob can send
the message “HELP ME” to Alice using the above cryptographic method. We
use the binary equivalents of letters as defined in Table 2.1. Now, both Alice

Table 2.1. The binary equivalents of letters

Letter Binary code Letter Binary code Letter Binary code

A 00000 B 00001 C 00010
D 00011 E 00100 F 00101
G 00110 H 00111 I 01000
J 01001 K 01010 L 01011
J 01001 K 01010 L 01011
M 01100 N 01101 O 01110
P 01111 Q 10000 R 10001
S 10010 T 10011 U 10100
\Y% 10101 A% 10110 X 10111
Y 11000 Z 11001 U 11010

and Bob proceed as follows:

68 2. Quantum Attacks on IFP-Based Cryptosystems

[1] Key generation:

— Alice chooses (n,y) = (21, 17) as a public-key, where n =21 =3 -7
is a composite and y = 17 € le (since 17 € Jag but 17 ¢ Q21), so
that Bob can use the public-key to encrypt his message and send it to
Alice.

— Alice keeps the prime factorization (3,7) of 21 as a secret; since (3,7)
will be used as a private decryption key. (Of course, here we just show
an example; in practice, the prime factors p and ¢ should be at last
100 digits.)

[2] Encryption:
— Bob converts his plaintext HELP ME to the binary stream M =
mimsa - M35:

00111 00100 01011 01111 11010 01100 00100.

(To save space, we only consider how to encrypt and decrypt ms = 0
and mgz = 1; readers are suggested to encrypt and decrypt the whole
binary stream.)

— Bob randomly chooses integers x; € (Z/21Z)*. Suppose he chooses
x9 = 10 and x3 = 19 which are elements of (Z/21Z)*.

— Bob computes the encrypted message C' = cics - - - ¢, from the plaintext
M = mimg---my using (2.45). To get, for example, co and c3, Bob
performs:

c2 = x3 mod 21 = 102 mod 21 = 16, since my = 0,
C3=y-:v§ mod 21 = 17-192 mod 21 = 5, since mg = 1.
(Note that each ¢; is an integer reduced to 21, i.e., m; is a bit, but its

corresponding c¢; is not a bit but an integer, which is a string of bits,
determined by Table 2.1.)

— Bob then sends ¢o and c¢3 along with all other ¢;’s to Alice.
[3] Decryption: To decrypt Bob’s message, Alice evaluates the Legendre sym-

bols (2> and (2) Since Alice knows the prime factorization (p, q) of
p
n, it should be easy for her to evaluate these Legendre symbols. For

e
example, for co and c3, Alice first evaluates the Legendre symbols (i

- (3)-(5)- ()
-()-()- ()

2.2 IFP-Based Cryptography 69

then she gets
me =0, since e} =1,

mg =1, since e = —1.

Remark 2.9. The scheme introduced above is a good extension of the
public-key idea but encrypts messages bit by bit. It is completely secure
with respect to semantic security as well as bit security.! However, a major
disadvantage of the scheme is the message expansion by a factor of logn bit.
To improve the efficiency of the scheme, Blum and Goldwasser [8] proposed
in 1984 another randomized encryption scheme, in which the ciphertext is
only longer than the plaintext by a constant number of bits; this scheme is
comparable to the RSA scheme, both in terms of speed and message expan-
sion.

Problems and Exercises for Sect. 2.2

1. The RSA function M — C mod n is a trap-door one-way, as it is com-
putationally intractable to invert the function if the prime factorization
n = pq is unknown. Give your own trap-door one-way functions that can
be used to construct public-key cryptosystems. Justify your answer.

2. Show that
M = M (mod n),
where ed =1 (mod ¢(n)).

3. Let the ciphertexts C; = My (mod n) and Cy = M§ (mod n) be as
follows, where e = 9137 and n is the following RSA-129 number:

46604906435060096392391122387112023736039163470082768_
24341038329668507346202721798200029792506708833728356-
7804532383891140719579,

65064096938511069741528313342475396648978551735813836-
77796350373814720928779386178787818974157439185718360-
8196124160093438830158.

Find M1 and MQ.

IBit security is a special case of semantic security. Informally, bit security is
concerned with not only that the whole message is not recoverable but also that
individual bits of the message are not recoverable. The main drawback of the scheme
is that the encrypted message is much longer than its original plaintext.

70

4. Let

€1 =

€2

Cl =

CQE

2. Quantum Attacks on IFP-Based Cryptosystems

9007,
65537,
114381625757888867669235779976146612010218296721242362_
562561842935706935245733897830597123563958705058989075_
14'7599290026879543541,

M* (mod n),
10420225094119623841363838260797412577444908472492959_
12574337458892652977717171824130246429380783519790899_
45343407464161377977212,

M* mod n
76452750729188700180719970517544574710944757317909896._
04134098748828557319028078348030908497802156339649075_
9750600519496071304348.

Find the plaintext M.
5. (Rivest) Let

where

k=22 (mod n)

n = 63144660830728888937993571261312923323632988
18330841375588990772701957128924885547308446
05575320651361834662884894808866350036848039
65881713619876605218972678101622805574753938
38308261759713218926668611776954526391570120
69093997368008972127446466642331918780683055
20679512530700820202412462339824107377537051
27344494169501180975241890667963858754856319
80550727370990439711973361466670154390536015
25433739825245793135753176536463319890646514
02133985265800341991903982192844710212464887
45938885358207031808428902320971090703239693
49199627789953233201840645224764639663559373
67009369212758092086293198727008292431243681,

t = 79685186856218.

Find k. (Note that to find &, one needs to find 2* (mod ¢(n)) first; how-
ever, to find ¢(n) one needs to factor n first.)

6. (Knuth) Let

{C1,Co} = {M}, M3} mod n

2.2 IFP-Based Cryptography 71

where

Gy

Ca

687502836437089289878995350604407990716898140258583443
035535588237479271080090293049630566651268112334056274
332612142823187203731181519639442616568998924368271227
5123771458797372299204125753023665954875641382171

713013988616927464542046650358646224728216664013 755778
567223219797011593220849557864249703775331317377532696
534879739201868887567829519032681632688812750060251822
3884462866157583604931628056686699683334519294663

779030228851015954236247565470557836248576762097398394
108440222213572872511709998585048387648131944340510932
265136815168574119934775586854274094225644500087912723
2585749337061853958340278434058208881085485078737.

Find {M;, Ms}. (Note that there are two known ways to find {My, Ma}:

M; = {/C; (mod n),
M; = C¢ (mod n),

where 7 = 1,2. But in either way, one needs to find n first.

7. The original version of the RSA cryptosystem:

with

C =M° (mod n), M =C? (mod n),

ed =1 (mod ¢(n))

is a type of deterministic cryptosystem, in which the same ciphertext is
obtained for the same plaintext even at a different time. That is,

Encryption at Time 1

M1 Cl)
Encryption at Time 2

M1 Cl)
Encryption at Time ¢t

M; Ch

A randomized cryptosystem is one in which different ciphertext is ob-
tained at a different time even for the same plaintext

Encryption at Time 1

Ml Cl)

72 2. Quantum Attacks on IFP-Based Cryptosystems

Encryption at Time 2

Ml CZ)
M1 Encryption at Time ¢t Ct 7
with C; # Cs # - -+ # C,. Describe a method to make RSA a randomized

cryptosystem.

8. Describe a man-in-the-middle attack on the original version of the RSA
cryptosystem.

9. Show that cracking RSA or any IFP-based cryptography is generally
equivalent to solving the IFP problem.

10. Let

n = 21290246318258757547497882016271517497806703963277216278233
3832153847057041325010289010897698254819258255135092526096
02369983944024335907529

C = M? (mod n)

= 51285205060243481188122109876540661122140906807437327290641
6063392024247974145084119668714936527203510642341164827936
3932042884271651389234

Find the plaintext M.

2.3 Quantum Attacks on IFP and IFP-Based
Cryptography

As the security of RSA or any IFP-related cryptography relies on the in-
tractability of the IFP problem, if IFP can be solved in polynomial time, all
the IFP-related cryptography can be broken efficiently in polynomial time.
In this section, we discuss quantum attacks on IFP and IFP-related cryptog-
raphy.

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 73

Relationships Between IFP and IFP-Based Cryptography

As can be seen, IFP is a conjectured (i.e., unproved) infeasible problem
in computational number theory; this would imply that the cryptographic
system-based DLP is secure and unbreakable in polynomial time:

can be used to construct

IFP IFP-Based Cryptography
Infeasible Secure
Hard Unbreakable

Efficient Quantum Attacks
on both IFP and IFP-Based Cryptography

Thus, anyone who can solve IFP can break IFP-based cryptography. With
this regard, solving IFP is equivalent to breaking IFP-based cryptography.
As everybody knows at present, no efficient algorithm is known for solving
IFP, therefore, no efficient algorithm for cracking IFP-based cryptography.
However, Shor 73] showed that IFP can be solved in BQP, where BOP is the
class of problem that is efficiently solvable in polynomial time on a quantum
Turing machine (see Fig.2.8).

Hence, all IFP-based cryptographic systems can be broken in polynomial
time on a quantum computer. Incidentally, the quantum factoring attack is
intimately connected to the order finding problem which can be done in poly-
nomial time on a quantum computer. More specifically, using the quantum
order finding algorithm, the quantum factoring attack can break all TFP-
based cryptographic systems, such as RSA and Rabin, which can be broken
completely in polynomial time on a quantum computer :

Quantum Period Finding Algorithm
Quantum IFP Algorithm

Quantum Attacks on IFP-Based Cryptography

74

2. Quantum Attacks on IFP-Based Cryptosystems

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Abstract

A compurer is generally considered 1o be o universal
computational device; Le., it is believed able to simulate
any physical computational device with a cost in com-
putation rime of ar most a polynomial factor It ix not
WMIM#W!MMWWJ
is saken into

0,2 Alﬂwhwmﬂmmm
ion, be did show that

2 Turi he . hyﬂw ible unk

lrymhuwoflqmmm

Pkﬁﬁndbﬁwmhﬂgm:muﬂwmm

tational properties. This paper gives Las Vegas algorithms
Jor finding discrete logarithms and foctoring integers on
@ quantum computer that take o number of steps which ir
i the input size, e.g., the number of digits of the
integer 1o be factored. These two problems are generaily
considered hard on a classical computer and have been
wred ax the basis of several propored cryplosystems. [We
thus give the first examples of quantum cryptanalysis.)

1 Introduction

Since the discavery of quantum mechasics, people have
mei«wmhuﬂww-nm

quasitam mechanical phenomena behave quite differently
ﬂud:plmolcwphylmm“mmd

the first to ask fect
m:huunwmmwl:l‘! 14]. He gave argaments as
o why this behavior might make it intrinsically compu-
tationally expensive to simulate quantism mechanics on a
chasacal (or von Neumann) computer. He also suggested
the possibility of using a computer based on quantum me-
chanical principles to avoid this problem, thas implicitly
asking the converse question: by using quantum mechan-
ics im a computer can you compute more efficiently than
on & classical computer. Other early work in the field of
quantum mechanics and computing was done by Benboff

CIT-EAT4 $04.00 © 1994 IEEE

g Wnﬂ\mpmpmne
part of this paper d

putation relates (0 classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
«classes for those readers who do not have this background,
Mnm;mwwmmﬂnmhry
of time and
memary). Nﬁddefnﬂnuolugmﬂmomndm
ithe asympiotic demands that algorithms make for these
resources as o function of the problem size. Theoretical
computer scientists generally classify algorithms as cffi-
ciend when the number of sieps of the algorithms grows as
a polynomial in the size of the input. The class of prob-
lems which can be solved by efficient algorithms is known
a8 P. This classification has several nice properties. For
one thing, it does a ressonable job of reflecting the per-
formance of algorithms in practice {although an algorithm
whose running time is the tenth power of the input size,
say, is not truly efficient). For another, this classification is
e ! " i el
produce the same class P. We will see this behavior reap-
pear in quantum computation, where different models for
quantum machines will vary in running times by mo mare
than pelynomis] factors.

There are also other computational complexity classes
discussed in this paper. One of these is PSPACE, which
are those problems which can be solved with an amount
of memory polynomial in the input size. Another impor-
tant complexity class is NF. which intuitively is the class

may require the search of an exponential size space to find

Figure 2.8. David Deutsch and the first page of his 1985 paper

Order Finding Problem

We first present some basic concept of the order of an element in a mul-
tiplicative group.

Definition 2.4. Let G = Z% be a finite multiplicative group, and = € G a
randomly chosen integer (element). Then order of x in G, or order of an ele-
ment a modulo N, sometimes denoted by order(z, N), is the smallest positive

integer r such that
2" =1 (mod N).

Example 2.9. Let 5 € Z},,. Then order(5,104) = 4, since 4 is the smallest
positive integer satisfying

5* =1 (mod 104).

Theorem 2.7. Let G be a finite group and suppose that x € G has finite
order 7. If z¥ = 1, then r | k.

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 75

Example 2.10. Let 5 € Z§y,. As 5 =1 (mod 104), so, 4 | 24.

Definition 2.5. Let G be a finite group, then the number of elements in G,
denoted by |G|, is called the order of G.

Example 2.11. Let G = Z7,,. Then there are 48 elements in G that are
relatively prime to 104 (two numbers a and b are relatively prime if ged(a, b) =
1), namely,

1,3,5,7,9, 11, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81
83, 85, 87, 89, 93, 95, 97, 99, 101, 103

Thus, |G| = 48. That is, the order of the group G is 48.

Theorem 2.8 (Lagrange). Let G be a finite group. Then the order of an
element x € G divides the order of the group G.

Example 2.12. Let G = Z,,. Then the order of G is 48, whereas the order
of the element 5 € G is 4. Clearly 4 | 24.

Corollary 2.1. If a finite group G has order r, then 2" =1 for all z € G.
Example 2.13. Let G = Z%,, and |G| = 48. Then

1 = 1 (mod 104)
3% = 1 (mod 104)
5% = 1 (mod 104)
7% = 1 (mod 104)
101 = 1 (mod 104)
103 = 1 (mod 104).

Now, we are in a position to present our two main theorems as follows.

Theorem 2.9. Let C be the RSA ciphertext, and order(C, N) the order of
C € Z%. Then
d=1/e (mod order(C,N)).

Corollary 2.2. Let C be the RSA ciphertext, and order(C, N) the order of
C € Z%. Then
M = Cl/e (mod order(C,N)) (mod N)

Thus, to recover the RSA M from C, it suffices to just find the order of
C modulo N.

Now, we return to the actual computation of the order of an element
x in G = Z} . Finding the order of an element x in G is, in theory, not a

76

2. Quantum Attacks on IFP-Based Cryptosystems

problem: Just keep multiplying until we get to “1,” the identity element of the
multiplicative group G. For example, let N = 179359, z = 3 € G, and G =
Z¥19359, such that ged(3,179359) = 1. To find the order r = order(3,179359),
we just keep multiplying until we get to “17:

31000
31001
31002

314716
314717
314718

mod
mod
mod

mod
mod
mod

mod
mod
mod

179359 = 3
179359 = 9
179359 = 27
179359 = 31981
179359 = 95943
179359 = 108470
179359 = 99644
179359 = 119573
179359 = 1.

Thus, the order r of 3 in the multiplicative group G = (Z/179359Z)* is 14718,
that iS, ord179359(3) = 14718.

Example 2.14. Let

N = 5515596313
e = 1757316971
C = 763222127
r = order(C, N) = 114905160

Then

M = Cl/emodr (mod N)
= 763222127%/1757316971 mod 114905160 (1) 5515596313)

1612050119

Clearly, this result is correct, since

ME

= 1612050119 70731097
763222127
C (mod 5515596313)

It must also be noted, however, that in practice, the above computation
for finding the order of z € (Z/NZ)* may not work, since for an element z in a
large group G with N having more than 200 digits, the computation of r may

require more than 1

0150

multiplications. Even if these multiplications could

be carried out at the rate of 1,000 billion/s on a supercomputer, it would take

approximately 3 -1

080

years to arrive at the answer. Thus, the order finding

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 77

problem is intractable on conventional digital computers. The problem is,
however, tractable on quantum computers, provided that a practical quantum
computer is available.

It is worthwhile pointing out that although the order is hard to find, the
exponentiation is easy to compute. Suppose we want to compute z¢ mod n
with x,e,n € N. Suppose moreover that the binary form of e is as follows:

e = ﬁka + ﬁk_12k_1 + -+ ﬁ121 + ﬁ020, (2.48)
where each 3; (i =0,1,2,---k) is either 0 or 1. Then we have

P — x6k2k+ﬂk712k71+"'+6121+ﬂ020

k .
i=0

k
- 11 (:&’) . (2.49)
i=0
Furthermore, by the exponentiation law,

R (2.50)
and so the final value of the exponentiation can be obtained by repeated
squaring and multiplication operations. For example, to compute a'?°, we
first write 10019 = 11001005 := egeseseszesereg, and then compute

a'® = (1) a)*)*)? - a)*)? (2.51)
= a dd dS a2 g% 425 50 qlo0

Note that for each e;, if e; = 1, we perform a squaring and a multiplication
operation (except “eg = 1,” for which we just write down a, as indicated in
the first bracket); otherwise, we perform only a squaring operation. That is,

eg 1 a a initialization

es 1 (a)?-a a® squaring and multiplication
es 0 ((a)? - a)? a® squaring

es 0 (((a)? - a)?)? a'? squaring

es 1 ((((a)?-a)®)?)?-a a*® squaring and multiplication
er 0 ((((a)?-a)*)?)?-a)? a® squaring

e 0 ((((((@) a2 a2 @ squaring

o

The following is the algorithm, which runs in in O(loge) arithmetic op-
erations and O ((loge)(logn)?) bit operations.

78 2. Quantum Attacks on IFP-Based Cryptosystems

Algorithm 2.7 (Fast modular exponentiation ¢ mod n). This algori-
thm will compute the modular exponentiation

¢ =z° (mod n),

where x,e,n € N with n > 1. It requires at most 2loge and 2loge divisions
(divisions are only needed for modular operations; they can be removed if only
¢ = z° are required to be computed).

[1] [Precomputation] Let
€3—-1€p—2 """ €1€Q (2.52)
be the binary representation of ¢ (i.e., e has 8 bits). For example, for 562 =
1000110010, we have 5 = 10 and

1 o0 0 0 1 1 0 0 1 0
LI N R R A |

€g €8 €7 € €5 €4 €3 €2 €1 €

[2] [Initialization] Set ¢ « 1.
[3] [Modular Exponentiation] Compute ¢ = 2° mod n in the following way:

for i from 8 — 1 down to 0 do
¢ < ¢ mod n (squaring)
if e; = 1 then

¢ « c¢-x mod n (multiplication)

[4] [Exit] Print ¢ and terminate the algorithm.

Quantum Order Computing

It may be the case that, as the famous physicist Feynman mentioned, nobody
understands quantum mechanics, some progress has been made in quantum
mechanics, particularly in quantum computing and quantum cryptography.
In this section, we present a quantum algorithm for computing the order of an
element « in the multiplicative group Z%, due to Shor [69]. The main idea of
Shor’s algorithm is as follows. First of all, we create two quantum registers for
our quantum computer: Register-1 and Register-2. Of course, we can create
just one single quantum memory register partitioned into two parts. Secondly,
we create in Register-1 a superposition of the integers a = 0,1,2,3, - which
will be the arguments of f(a) = 2% (mod N), and load Register-2 with all
zeros. Thirdly, we compute in Register-2 f(a) = 2* (mod N) for each input
a. (Since the values of a are kept in Register-1, this can be done reversibly.)
Fourthly, we perform the discrete Fourier transform on Register-1. Finally, we
observe both registers of the machine and find the order r that satisfies ™ =
1 (mod N). The following is a brief description of the quantum algorithm
for the order finding problem.

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 79

Algorithm 2.8 (Quantum order finding attack). Given RSA ciphertext
C' and modulus N, this attack will first find the order, r, of C in Z?V, such that
C" =1 (mod N), then recover the plaintext M from the ciphertext C'. Assume
the quantum computer has two quantum registers: Register-1 and Register-2,
which hold integers in binary form.

[1]
2]

&

[4]

[5]

(Initialization) Find a number ¢, a power of 2, say 2!, with N2 < ¢ < 2N?2.
(Preparation for quantum registers) Put in the first t-qubit register, Register-

1, the uniform superposition of states representing numbers a (mod ¢), and
load Register-2 with all zeros. This leaves the machine in the state | ¥):

1S
V1) = %§0|a>|0>.

(Note that the joint state of both registers are represented by | Register-1)
and | Register-2)). What this step does is put each qubit in Register-1 into
the superposition
1
V2

(Power Creation) Fill in the second t-qubit register, Register-2, with powers
C® (mod N). This leaves the machine in state | ¥s):

(10> +11)).

15
Uy = — ay|C?* (mod N)).
|W2) \@;o|)10 (D

This step can be done reversibly since all the a's were kept in Register-1.

(Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | a) to

1S ,
7& ;0 exp(2miac/q)|c).

That is, we apply the unitary matrix with the (a,c¢) entry equal to
\/LE exp(2miac/q). This leaves the machine in the state |¥3):
qg—1qg—1

|0 = % S 3" exp(2riac/q) | ¢y C* (mod N)).

a=0c=0

(Periodicity Detection in x®) Observe both |c¢) in Register-1 and
|C® (mod N)) in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of |c¢) in the first argument and
some |2 (mod n)) as the answer for the second one (0 < k < r).

80 2. Quantum Attacks on IFP-Based Cryptosystems

[6] (Extract) Extract the required value of r. Given the pure state |¥3), the
probabilities of different results for this measurement will be given by the
probability distribution:

Prob(c, C* (mod N)) exp(2miac/q)

I
SE R

1 Wa=k=1)/r]
= |- 2 exp(2mi(br + k)c/q)
7 p=o

l(q—k—1)/r] ?

Z exp(2mib{rc}/q)
B=0

Q| =

where {rc} is r¢ mod N. As shown in [69],

ig{rc}<i = igrcqué;r, for some d
2 2 2 2
1
= Prob(c,C* (mod N)) > —;.
rob(e, (mo) 3,2

then we have

c d

q r

1
< —.
2q

Since 5 were known, r can be obtained by the continued fraction expansion
of €.
q

[7] (Code Breaking) Once the order r, r = order(C, N), is found, then compute:
M = CcVemedr (mod N).
Hence, decodes the RSA code C.

Theorem 2.10. (Complexity of Quantum Order Finding Attack).

Quantum order attack can find order(C, N) and recover M from C in time
O((log N)**<).

Remark 2.10. This quantum attack is for particular RSA ciphertexts C.
In this special case, the factorization of the RSA modulus N is not needed.
In the next section, we shall consider the more general quantum attack by
factoring N.

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 81

Quantum Integer Factorization

Instead of finding the order of C'in Z%;, one can take this further to a more
general case: find the order of an element z in Z%, denoted by order(z, N),
where N is the RSA modulus. Once the order of an element z in Z%; is found,
and it is even, it will have a good chance to factor N, of course in polynomial
time, by just calculating

{gcd(:cr/2 +1,N), ged(z"? - 1,N)} .
For instance, for x = 3, r = 14718, and N = 179359, we have
{gcd(314718/2 +1,179359), ged(314718/2 1, 179359)} — (67,2677),
and hence the factorization of N:

N = 179359 = 67 - 2677.

The following theorem shows that the probability for r to work is high.

Theorem 2.11. Let the odd integer N > 1 have exactly k distinct prime
factors. For a randomly chosen = € Z%; with multiplicative order r, the prob-
ability that r is even and that

2% # —1 (mod N)

is least 1 — 1/2*=1. More specifically, if N has just two prime factors (this is
often the case for the RSA modulus V), then the probability is at least 1/2.

Algorithm 2.9 (Quantum algorithm for integer factorization).
Given integers x and N, the algorithm will

— find the order of z, i.e., the smallest positive integer such that
2" =1 (mod N),

— find the prime factors of N and compute the decryption exponent d,
— decode the RSA message.

Assume the machine has two quantum registers: Register-1 and Register-2, which
hold integers in binary form.

[1] (Initialization) Find a number g, a power of 2, say 2¢, with N? < ¢q < 2N?2,

[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-
1, the uniform superposition of states representing numbers a (mod g), and
load Register-2 with all zeros. This leaves the machine in the state | ¥):

82 2. Quantum Attacks on IFP-Based Cryptosystems

19
>—7§;0|a>|0>-

(Note that the joint state of both registers are represented by | Register-1)
and | Register-2)). What this step does is put each qubit in Register-1 into
the superposition

1
7§(|0>+|1>)-

[3] (Base Selection) Choose a random « € [2, N — 2] such that ged(z, N) = 1.

[4] (Power Creation) Fill in the second t-qubit register, Register-2, with powers
x2® (mod N). This leaves the machine in state | ¥s):

19
H) = — ay|z® (mod .
| 2) \/aagol MEAN(N))

This step can be done reversibly since all the a's were kept in Register-1.

[5] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | a) to

199
— exp(2miac c).
\/5; p(/a))

That is, we apply the unitary matrix with the (a,c¢) entry equal to

\/iq exp(2miac/q). This leaves the machine in the state |¥3):

| Ws) = 2 2 exp(2miac/q) | cy|z® (mod N)).

| =

[6] (Periodicity Detection in x®) Observe both |c¢) in Register-1 and
| 2% (mod N)) in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of |¢) in the first argument and
some | 2¥ (mod n)) as the answer for the second one (0 < k < r).

[7] (Extract r) Extract the required value of r. Given the pure state |¥3), the
probabilities of different results for this measurement will be given by the
probability distribution:

Prob(c, z¥ (mod N))

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 83

where {rc} is r¢ mod N. As showed in [69],

ig{rc}<i = igrcqué;r, for some d
2 2 2 2
1
= Prob(c,z" (mod N)) > —.
rob(e, 2" (mo) 3,2

then we have
c d 1
<

P i

Since g were known, r can be obtained by the continued fraction expansion
of £.
q
[8] (Resolution) If r is odd, go to Step [3] to start a new base. If r is even, then
try to compute Once r is found, the factors of N can be possibly

{ged(z"/? —1,N), ged(z"? +1,N)}
Hopefully, this will produce two factors of N.

[9] (Computing d) Once N is factored and p and ¢ are found, then compute
d=1/e (mod (p—1)(¢ —1)).

[10] (Code Break) As soon as d is found, and RSA ciphertext encrypted by the
public-key (e, N), can be decrypted by this d as follows:

M = C? (mod N).

Theorem 2.12 (Complexity of Quantum Factoring). Quantum factor-
ing algorithm can factor the RSA modulus N and break the RSA system in
time O((log N)?*¢).

Remark 2.11. The attack discussed in Algorithm 2.9 is more general than
that in Algorithm 2.8. Algorithm 2.9 also implies that if a practical quantum
computer can be built, then the RSA cryptosystem can be completely broken,
and a quantum resistant cryptosystem must be developed and used to replace
the RSA cryptosystem.

Example 2.15. On 19 December 2001, IBM made the first demonstration
of the quantum factoring algorithm [77] that correctly identified 3 and 5 as
the factors of 15. Although the answer may appear to be trivial, it may have
good potential and practical implication. In this example, we show how to
factor 15 quantum-mechanically [56]:

[1] Choose at random x = 7 such that ged(z, N) = 1. We aim to find
r = ordery57 such that 77 = 1 (mod 15).

84 2. Quantum Attacks on IFP-Based Cryptosystems

[2] Initialize two four-qubit registers to state 0:
|Wo) = 10)]0).
[3] Randomize the first register as follows:

2t—1

|%>~|%>=¢%Z 53] 0).
k=0

[4] Unitarily compute the function f(a) = 13% (mod 15) as follows:

1 2t—1
U)o W) = —— k>[13F (mod 15
1
= \/—§[|0>|1>+|1>|7>+|2>|4>+|3>|13>+

DI +15)[7)+[6)[4)+|7)|13) +
I8+ 1917+ [10)[4) + [11)[13) +
+ .-]

[5] We now apply the FFT to the second register and measure it (it can be

done in the first), obtaining a random result from 1, 7,4, 13. Suppose we
incidently get 4, then the state input to FFT would be

4
q/i [12)+]6)+ |10+ |14y +---].
After applying FFT, some state

ZCY)\|)\>
A

with the probability distribution for ¢ = 2! = 2048 (see [56]). The final
measurement gives 0,512,1024, 2048, each with probability almost ex-
actly 1/4. Suppose A = 1536 was obtained from the measurement. Then
we compute the continued fraction expansion

A 1536 1

3
E = 5018 — ﬂ’ with convergents [O, 1, Z,]

Thus, r = 4 = ordery5(7). Therefore,
ged(2™? + 1, N) = ged(7? + 1,15) = (5, 3).

Remark 2.12. Quantum factoring is still in its very earlier stage and will
not threaten the security of RSA at least at present, as the current quantum
computer can only factor a number with only 2 digits such as 15 which is
essentially hopeless.

2.3 Quantum Attacks on IFP and IFP-Based Cryptography 85

Exercises and Problems for Sect. 2.3

1. Show that if in Shor’s factoring algorithm, we have

c d 1
oam 2n?
and
C dl 1
2m oy 2n?’
then
d dy
T N 1

2. Show that in case r t 2", Shor’s factoring algorithm [70] needs to be
repeated only O(loglogr) steps in order to achieve the high probability
of success.

3. Let 0 < s < m. Fix an integer xy with 0 < z¢p < 2°. Show that

Z - { 0 if 20 (mod 2m%)
e TICT —

0<c<2m Qm—s g2mizco/2 ifz=0 (mod 2m—s)
c=co (mod 25)

4. There are currently many pseudo-simulations of Shor’s quantum factor-
ing algorithm; for example, the paper by Schneiderman, Stanley, and
Aravind [66] gives one of the simulations in Maple, whereas Browne [12]
presents an efficient classical simulation of the quantum Fourier trans-
form based on [66]. Construct your own Java (C/C++, Mathematica
or Maple) program to simulate Shor’s quantum factoring algorithm and
discrete logarithm algorithm.

5. Both ECM factoring algorithm and NFS factoring algorithm are very
well suited for parallel implementation. Is it possible to utilize the quan-
tum parallelism to implement ECM and NSF algorithms? If so, give a
complete description the quantum ECM and NFS algorithms.

6. Pollard [58] and Strassen [75] showed that FFT can be utilized to factor
an integer n in (’)(nl/ 4+¢) steps, deterministically. Is it possible to replace
the classical FFT with a quantum FFT in the Pollard—Strassen method,
in order to obtain a deterministic quantum polynomial-time factoring
algorithm (i.e., to obtain a QP factoring algorithm rather than the BOP
algorithm as proposed by Shor)? If so, give a full description of the QP
factoring algorithm.

7. At the very heart of the Pollard p-method for IFP lives the phenomenon
of periodicity. Develop a quantum period-finding algorithm, if possible,
for the p factoring algorithm.

86 2. Quantum Attacks on IFP-Based Cryptosystems

2.4 Conclusions, Notes, and Further Reading

The theory of prime numbers is one of the oldest subject in number theory
and indeed in the whole of mathematics, whereas the IFP is one of the oldest
number-theoretic problems in the field. The root of the problem can be traced
back to Euclid’s Elements [25], although it was first clearly stated in Gauss’
Disquisitiones [29]. With the advent of modern public-key cryptography, it
has an important application in the construction of unbreakable public-key
cryptographic schemes and protocols, such as RSA [28, 64], Rabin [62], and
zero-knowledge proofs [33]. IFP is currently a very hot and applicable research
topic, and there are many good references in the field; for a general reading,
the following references are highly recommended: [1, 4, 11, 13, 17, 19, 21, 23,
40, 45, 50, 53, 61, 63, 87].

IFP-based cryptography forms an important class of public-key cryptog-
raphy. In particular, RSA cryptography is the most famous and widely used
cryptographic schemes in today’s Internet world. More information on IFP-
based cryptography can be found in [9, 20, 30, 31, 36, 37, 39, 42, 52, 76, 84],
and [86].

Shor’s discovery of the quantum factoring algorithm [69, 70, 70-73] in
1994 generated a great deal of research and interest in the field. Quantum
computers provided a completely new paradigm for the theory of com-
putation, and it was the first time to show that IFP can be solved effi-
ciently in polynomial time on a quantum computer. Now, there are many
good references on quantum computation, particularly on quantum factoring.
Readers who wish to know more about quantum computers and quan-
tum computation are suggested to consult the following references: [2, 5—
7, 16, 22, 24, 35, 43, 48, 51, 56, 74, 77-83, 85, 88, 89|, and [90]. Feynman
is perhaps the father of quantum computation whose original idea about
quantum computers may be found in [26, 27].

In addition to quantum computation for factoring, there are also some
other non-classical computations for factoring such as molecular DNA-based
factoring and attacking. For example, Chang et al. proposed some fast parallel
molecular DNA algorithms for factoring large integers [14] and for breaking
RSA cryptography [15].

REFERENCES

[1] L.M. Adleman, Algorithmic number theory — the complexity contribution, in
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer
Science (IEEE, New York, 1994), pp. 88-113

References 87

[5]
(6]
(7]

8]

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
18]
[19]
[20]
21]

22]

L.M. Adleman, J. DeMarrais, M.D.A. Huang, Quantum computability. STAM
J. Comput. 26(5), 1524-1540 (1997)

M. Agrawal, N. Kayal, N. Saxena, Primes is in P. Ann. Math. 160(2), 781-793
(2004)

D. Atkins, M. Graff, A.K. Lenstra, P.C. Leyland, The magic words are
Squeamish Ossifrage, in Advances in Cryptology — ASIACRYPT’9/. Lecture
Notes in Computer Science, vol. 917 (Springer, Berlin, 1995), pp. 261-277

C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Na-
ture 404, 247-255 (2000)

C.H. Bennett, E. Bernstein et al., Strengths and weakness of quantum com-
puting. SIAM J. Comput. 26(5), 1510-1523 (1997)

E. Bernstein, U. Vazirani, Quantum complexity theory. SIAM J. Comput.
26(5), 1411-1473 (1997)

M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption
scheme that hides all partial information, in Advances in Cryptography,
CRYPTO ’84. Proceedings, Lecture Notes in Computer Science, vol. 196
(Springer, Berlin, 1985), pp. 289-302

D. Boneh, Twenty years of attacks on the RSA cryptosystem. Not. AMS 46(2),
203-213 (1999)

R.P. Brent, An improved Monte Carlo factorization algorithm. BIT 20,
176-184 (1980)

D.M. Bressound, Factorization and Primality Testing (Springer, New York,
1989)

D.E. Browne, Efficient classical simulation of the quantum Fourier transform.
New J. Phys. 9, 146, 1-7 (2007)

J.P. Buhler, P. Stevenhagen (eds.), Algorithmic Number Theory (Cambridge
University Press, Cambridge, 2008)

W.L. Chang, M. Guo, M.S.H. Ho, Fast parallel molecular algorithms for DNA-
based computation: factoring integers. IEEE Trans. Nanobioscience 4(2), 149—
163 (2005)

W.L. Chang, K.W. Lin et al., Molecular solutions of the RSA public-key cryp-
tosystem on a DNA-based computer. J. Supercomput. 56(2), 129-163 (2011)
I.L. Chuang, R. Laflamme, P. Shor, W.H. Zurek, Quantum computers, factor-
ing, and decoherence. Science 270, 1633-1635 (1995)

H. Cohen, in A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics, vol. 138 (Springer, Berlin, 1993)

D. Coppersmith, Small solutions to polynomial equations, and low exponent
RSA vulnerability. J. Cryptol. 10, 233-260 (1997)

T.H. Cormen, C.E. Ceiserson, R.L. Rivest, Introduction to Algorithms, 3rd
edn. (MIT, Cambridge, 2009)

J.S. Coron, A. May, Deterministic polynomial-time equivalence of computing
the RSA secret key and factoring. J. Cryptol. 20(1), 39-50 (2007)

R. Crandall, C. Pomerance, Prime Numbers — A Computational Perspective,
2nd edn. (Springer, Berlin, 2005)

D. Deutsch, Quantum theory, the Church—Turing principle and the universal
quantum computer. Proc. R. Soc. Lond. Ser. A 400, 96-117 (1985)

88

23]
24]

[25]

[26]
[27]
28]

[29]

[30]
31]
32]
33]
[34]

[35]
[36]

37]
[38]
39]
[40]
[41]
[42]

[43]

[44]

2. Quantum Attacks on IFP-Based Cryptosystems

J.D. Dixon, Factorization and primality tests. Am. Math. Mon. 91(6), 333-352
(1984)

A. Ekert, R. Jozsa, Quantum computation and Shor’s factoring algorithm.
SIAM J. Comput. 26(5), 1510-1523 (1997)

Fuclid, in The Thirteen Books of Euclid’s Elements, 2nd edn. Translated by
T.L. Heath. Great Books of the Western World, vol. 11 (William Benton Pub-
lishers, New York, 1952)

R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21,
467488 (1982)

R.P. Feynman, in Feynman Lectures on Computation, ed. by A.J.G. Hey, R.W.
Allen (Addison-Wesley, Reading, 1996)

M. Gardner, Mathematical games — a new kind of Cipher that would take
millions of years to break. Sci. Am. 237(2), 120-124 (1977)

C.F. Gauss, Disquisitiones Arithmeticae, G. Fleischer, Leipzig, 1801. English
translation by A.A. Clarke (Yale University Press, Yale, 1966) Revised English
translation by W.C. Waterhouse (Springer, Berlin, 1975)

O. Goldreich, Foundations of Cryptography: Basic Tools (Cambridge Univer-
sity Press, Cambridge, 2001)

O. Goldreich, Foundations of Cryptography: Basic Applications (Cambridge
University Press, Cambridge, 2004)

S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28,
270-299 (1984)

S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186—208 (1989)

J. Grobchadl, The Chinese remainder theorem and its application in a high-
speed RSA Crypto chip, in Proceedings of the 16th Annual Computer Security
Applications Conference (ACSAC’00) (IEEE, New York, 2000), pp. 384-393
J. Grustka, Quantum Computing (McGraw-Hill, New York, 1999)

M.J. Hinek, Cryptanalysis of RSA and Its Variants (Chapman & Hall/CRC
Press, London/West Palm Beach, 2009)

J. Hoffstein, J. Pipher, J.H. Silverman, An Introduction to Mathematical Cryp-
tography (Springer, Berlin, 2008)

K. Ireland, M. Rosen, in A Classical Introduction to Modern Number Theory,
2nd edn. Graduate Texts in Mathematics, vol. 84 (Springer, Berlin, 1990)

S. Katzenbeisser, Recent Advances in RSA Cryptography (Kluwer, Dordrecht,
2001)

T. Kleinjung et al., Factorization of a 768-bit RSA modulus, in CRYPTO 2010,
ed. by T. Rabin. Lecture Notes in Computer Science, vol. 6223 (Springer, New
York, 2010), pp. 333-350

D.E. Knuth, The Art of Computer Programming III — Sorting and Searching,
2nd edn. (Addison-Wesley, Reading, 1998)

A.G. Konheim, Computer Security and Cryptography (Wiley, New York, 2007)

B.P. Lanyou, T.J. Weinhold et al., Experiemntal demonstration of a compiled
version of Shor’s algorithm’ with quantum entabglement. Phys. Rev. Lett. 99,
250504, 4 (2007)

R.S. Lehman, Factoring large integers. Math. Comput. 28, 126, 637646 (1974)

References 89

[45]
[46]
[47]
(48]
[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]
[59]
[60]

[61]
[62]
[63]
[64]
[65]

[66]

A K. Lenstra, Integer factoring. Des. Codes Cryptography 19(2/3), 101-128
(2000)

A K. Lenstra, H-W. Lenstra Jr. (eds.), in The Development of the Number
Field Sieve. Lecture Notes in Mathematics, vol. 1554 (Springer, Berlin, 1993)

H.W. Lenstra Jr., Factoring integers with elliptic curves. Ann. Math. 126,
649673 (1987)

S.J. Lomonaco Jr., Shor’s quantum factoring algorithm. AMS Proc. Symp.
Appl. Math. 58, 19 (2002)

J.F. McKee, Turning Euler’s factoring methods into a factoring algorithm.
Bull. Lond. Math. Soc. 28, 351-355 (1996)

J.F. McKee, R. Pinch, Old and new deterministic factoring algorithms, in
Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 1122
(Springer, Berlin, 1996), pp. 217-224

N.D. Mermin, Quantum Computer Science (Cambridge University Press,
Cambridge, 2007)

R.A. Mollin, RSA and Public-Key Cryptography (Chapman & Hall/CRC
Press, London/West Palm Beach, 2003)

P.L. Montgomery, Speeding Pollard’s and elliptic curve methods of factoriza-
tion. Math. Comput. 48, 243-264 (1987)

P.L. Montgomery, A survey of modern integer factorization algorithms. CWI
Q. 7(4), 337-394 (1994)

M.A. Morrison, J. Brillhart, A method of factoring and the factorization of
F7. Math. Comput. 29, 183-205 (1975)

M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information,
10th Anniversary edn. (Cambridge University Press, Cambridge, 2010)

S.C. Pohlig, M. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theor. 24,
106-110 (1978)

J.M. Pollard, Theorems on factorization and primality testing. Proc. Camb.
Phil. Soc. 76, 521-528 (1974)

J.M. Pollard, A Monte Carlo method for factorization. BIT 15, 331-332 (1975)
C. Pomerance, The quadratic Sieve factoring algorithm, in Proceedings of Eu-

rocrypt 84. Lecture Notes in Computer Science, vol. 209 (Springer, Berlin,
1985), pp. 169-182

C. Pomerance, A tale of two sieves. Not. AMS 43(12), 1473-1485 (1996)

M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as
Factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Com-
puter Science (1979)

H. Riesel, Prime Numbers and Computer Methods for Factorization
(Birkh#user, Boston, 1990)

R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures
and public key cryptosystems. Comm. ACM 21(2), 120-126 (1978)

R.L. Rivest, B. Kaliski, RSA Problem, in Encyclopedia of Cryptography and
Security, ed. by H.C.A. van Tilborg (Springer, Berlin, 2005)

J.F. Schneiderman, M.E. Stanley, P.K. Aravind, A pseudo-simulation of Shor’s
quantum factoring algorithm, 20 pages (2002) [arXiv:quant-ph/0206101v1]

90

(67]

[68]

[69]

[70]
[71]
[72]
73]
[74]
[75]
[76]

[77]

(78]

[79]

[80]
(81]
[82]
[83]
[84]
[85]

[86]
[87]

2. Quantum Attacks on IFP-Based Cryptosystems

D. Shanks, class number, a theory of factorization, and genera, in Proceedings
of Symposium of Pure Mathematics, vol. XX, State Univ. New York, Stony
Brook, 1969 (American Mathematical Society, Providence, 1971), pp. 415-440

D. Shanks, Analysis and improvement of the continued fraction method of
factorization, Abstract 720-10-43. Am. Math. Soc. Not. 22, A-68 (1975)

P. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, in Proceedings of 35th Annual Symposium on Foundations of Computer
Science (IEEE Computer Society, Silver Spring, 1994), pp. 124-134

P. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484-1509 (1997)

P. Shor, Quantum computing. Documenta Math. Extra Volume ICM I, 467—
486 (1998)

P. Shor, Introduction to quantum algorithms. AMS Proc. Symp. Appl. Math.
58, 17 (2002)

P. Shor, Why haven’t more quantum algorithms been found? J. ACM 50(1),
87-90 (2003)

D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26(5),
1471-1483 (1997)

V. Strassen, Einige Resultate tiber Berechnungskomplexitat. Jahresber. Dtsch.
Math. Ver. 78, 1-84 (1976/1997)

W. Trappe, L. Washington, Introduction to Cryptography with Coding The-
ory, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2006)

L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Tannoni, M.H. Sherwood,
I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm
using nuclear magnetic resonance. Nature 414, 883-887 (2001)

R. Van Meter, K.M. Itoh, Fast quantum modular exponentiation. Phys. Rev.
A 71, 052320 (2005)

R. Van Meter, W.J. Munro, K. Nemoto, Architecture of a quantum milticom-
puter implementing Shor’s algorithm, in Theory of Quantum Computation,
Communication and Cryptography, ed. by Y. Kawano, M. Mosca. Lecture
Note in Computer Science, vol. 5106 (Springer, Berlin, 2008), pp. 105-114

U.V. Vazirani, On the power of quantum computation. Phil. Trans. R. Soc.
Lond. A356, 1759-1768 (1998)

U.V. Vazirani, Fourier transforms and quantum computation, in Proceedings of
Theoretical Aspects of Computer Science (Springer, Berlin, 2000), pp. 208-220

U.V. Vazirani, A survey of quantum complexity theory. AMS Proc. Symp.
Appl. Math. 58, 28 (2002)

J. Watrous, in Quantum Computational Complezity. Encyclopedia of Com-
plexity and System Science (Springer, New York, 2009), pp. 7174-7201

H. Wiener, Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf.
Theor. 36(3), 553-558 (1990)

C.P. Williams, Explorations in Quantum Computation, 2nd edn. (Springer,
New York, 2011)

S.Y. Yan, Cryptanalyic Attacks on RSA (Springer, Berlin, 2008)

S.Y. Yan, in Primality Testing and Integer Factorization in Public-Key Cryp-
tography. Advances in Information Security, vol. 11, 2nd edn. (Springer, New
York, 2009)

References 91

[88] N.S. Yanofsky, M.A. Mannucci, Quantum Computing for Computer Scientists
(Cambridge University Press, Cambridge, 2008)

[89] A.C. Yao, Quantum circuit complexity, in Proceedings of Foundations of Com-
puter Science (IEEE, New York, 1993), pp. 352-361

[90] C. Zalka, Fast versions of Shor’s quantum factoring algorithm. LANA e-print
quant-ph 9806084, p. 37 (1998)

2 Springer
http://www.springer.com/978-1-4419-7721-2

Quantum Attacks on Public-kKey Cryptosystems
Yan, 5.Y.

2013, VI, 207 p., Hardcover

ISBMN: 278-1-4419-7721-2

	2. Quantum Attacks on IFP-Based Cryptosystems
	2.1 IFP and Classical Solutions to IFP
	2.2 IFP-Based Cryptography
	2.3 Quantum Attacks on IFP and IFP-Based Cryptography
	2.4 Conclusions, Notes, and Further Reading
	 References

