
Chapter 2
Introduction to Binary Systems

In order to model stars, we must first have a knowledge of their physical properties.
In this chapter, we describe how we know the stellar properties that stellar models
are meant to replicate. Some of our data comes from observations of nearby single
stars, but much of our information comes from binary stars. We will begin by
describing the orbit of a binary and how these orbits are observed. We conclude
this chapter with a discussion of how stellar masses are obtained from observations
of the spectra of binary stars.

Binary systems are observed as:

1. Visual or astrometric binaries, if both or one of the stars can be observed to move
in a periodic fashion

2. Spectrum or spectroscopic binaries if there are one or two clearly identified spec-
tra indicating different Doppler shifts. Spectroscopic binaries have sufficiently
short orbital periods so that a changing Doppler shift can be measured

3. Eclipsing binaries if the light from the system is observed to vary periodically as
each star is eclipsed by its companion

Note that a given binary can be placed in more than one of these classifications.
In principal, the masses of the components of a binary can be inferred from a

measurement of its orbital properties.

2.1 The Two-Body Problem

Given a central force, the motion of two bodies is found from the Lagrangian, which
can be expressed as

L =
1
2

m1v2
1 +

1
2

m2v2
2 +

Gm1m2

|r2 − r1| . (2.1)
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14 2 Introduction to Binary Systems

Fig. 2.1 Barycenter
coordinate description of a
binary system

We choose a barycentric coordinate system, so that

m1r1 +m2r2 = 0 (2.2)

and therefore
m1r1 = m2r2. (2.3)

We define the relative separation to be

r = r1 + r2. (2.4)

We can use these two equations to solve for r1 and r2 in terms of r to get

r1 =
m2

M
r, (2.5)

r2 =
m1

M
r, (2.6)

where M = m1 +m2. Note that θ1 = θ2 −π = θ (Fig. 2.1).
Assuming that the orbits lie in a plane, we have

v2
1 = ṙ2

1 + r2
1θ̇ 2

1 =
(m2

M

)2 (
ṙ2 + r2θ̇ 2) , (2.7)

v2
2 = ṙ2

2 + r2
2θ̇ 2

2 =
(m1

M

)2 (
ṙ2 + r2θ̇ 2) (2.8)

and so

L =
1
2

m1m2
2

M2

(
ṙ2 + r2θ̇ 2)+ 1

2
m2m2

1

M2

(
ṙ2 + r2θ̇ 2)+ Gm1m2

r

=
1
2

m1m2

M
ṙ2 +

1
2

m1m2

M
r2θ̇ 2 +

Gm1m2M
Mr

=
1
2

μ ṙ2 +
1
2

μr2θ̇ 2 +
GμM

r
. (2.9)
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Problem 2.1: Demonstrate that the orbit lies in a plane by obtaining the
Lagrangian using arbitrarily oriented spherical polar coordinates (r,φ ,θ ).
Calculate the Euler–Lagrange equations of motion and show that one can
recover the planar equations of motion using the initial conditions: θ = π/2
and θ̇ = 0.

Since L is independent of θ , we have

d
dt

∂L

∂ θ̇
− ∂L

∂θ
⇒ ∂L

∂ θ̇
= constant (2.10)

so

∂L

∂ θ̇
= μr2θ̇ = J = angular momentum. (2.11)

The total energy is also conserved, and it is given by

1
2

m1v2
1 +

1
2

m2v2
2 −

Gm1m2

r
=

1
2

μ
(
ṙ2 + r2θ̇ 2)− GμM

r
=C. (2.12)

(Note that here we use C for the total energy instead of E—this is because E is
reserved for the eccentric anomaly, which is an important quantity for describing
observations of orbits.) Using Eq. (2.11), we can express the total energy as an
equation that is dependent upon r only.

θ̇ =
J

μr2 ⇒ θ̇ 2 =
J2

μ2r4 , (2.13)

so

C =
1
2

μ ṙ2 +
1
2

J2

μr2 − GμM
r

. (2.14)

2.2 The Orbital Shape

From Eq. (2.14), we can obtain the time dependence of the radius of the orbit,
and then we can obtain the time dependence of the orbital angle using Eq. (2.11).
However, these results are not particularly useful for determining the orbit directly
from observations of binaries. Instead, we will first determine the shape of the orbit
using Eq. (2.14) and some clever variable substitutions. Later we will determine the
time dependence of the orbit in terms of observational quantities.

In order to determine the shape of the orbit, we first make the variable substitution
u = 1/r, so that

du
dθ

= u′ =− 1
r2

dr
dθ

⇒ dr
dθ

=−r2u′. (2.15)
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Now,

ṙ =
dr
dθ

θ̇ =−r2u′
J

μr2 =− J
μ

u′, (2.16)

where the θ̇ substitution comes from Eq. (2.13). Substitution of Eq. (2.16) into
Eq. (2.14) gives

J2

2μ
u′ 2 +

J2

2μ
u2 −GμMu =C. (2.17)

Now, we make another substitution and let � = J2/Gμ2M so that J2/μ = GMμ�,
and

1
2

GMμ�u′ 2 +
1
2

GMμ�u2 −GMμu =C. (2.18)

Finally, we divide by GMμ/2� and add 1 to both sides to obtain

�2u′ 2 + �2u2 − 2�u+ 1=
2C�

GMμ
+ 1. (2.19)

Next, we define

e2 =
2C�

GMμ
+ 1 (2.20)

and make the final substitution of x = �u− 1, so we have

x′ 2 + x2 = e2, (2.21)

or

x′ =
√

e2 − x2. (2.22)

This equation can be integrated as follows:
∫ x

x0

dx√
e2 − x2

=

∫ θ

θ0

dθ ,

arcsin
(x

e

)
− arcsin

(x0

e

)
= θ −θ0. (2.23)

Clearly, |x| ≤ |e| in order for the arcsin to make any sense. We define θ0 = 0 and
require x(0) = e to obtain

arcsin

(
x(0)

e

)
− arcsin

(x0

e

)
= 0 ⇒ arcsin

(x0

e

)
= arcsin1 =

π
2
. (2.24)

Thus,
x
e
= sin(θ +π/2) = cosθ ⇒ x = ecosθ . (2.25)

Reversing all the substitutions, we finally obtain

r =
�

(1+ ecosθ )
, (2.26)
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Fig. 2.2 Elliptical orbit with
the origin centered on one star

which is the parametric equation for an ellipse. Thus, the shape of the relative orbit
is an ellipse with the point of closest approach (or periastron) at θ = 0 and one body
at the focus. The semimajor axis (a) of an ellipse is half of the long axis, which is
also the sum of the minimum distance and the maximum distance (the apastron).
Thus,

rmin = r(0) = �/(1+ e), (2.27)

rmax = r(π) = �/(1− e) (2.28)

and

a =
1
2
(rmin + rmax) = �/(1− e2) ⇒ �= a(1− e2). (2.29)

The periastron and apastron can now be expressed in terms of the semimajor axis as

rmin = a(1− e), (2.30)

rmax = a(1+ e). (2.31)

Although initially introduced to simplify the differential equation, the value of e is
found to be the eccentricity of the elliptical orbit (Fig. 2.2).

Problem 2.2: Derive Kepler’s third law (GM = a3ω2) using J = μr2θ̇ and
r = �/(1+ ecosθ ).

The actual motion of the components of the binary are about the center of mass
(also known as the barycenter). We can show that this motion is also elliptical
and obeys a version of Kepler’s third law. Using barycentric coordinates, we have
m1r1 =−m2r2 and r1 − r2 = r. Therefore, from Newton’s law, we have

r̈1 =−Gm2

r3 r =−Gm2

r3
1

(m2

M

)3
r1

(
M
m2

)
=−Gm3

2

M2

r1

r3
1

. (2.32)
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We can obtain a similar equation for the motion of m2 by simply interchanging 1
and 2. Note that these equations of motion are similar to the relative equation:

r̈ = −GM
r3 r, (2.33)

r̈1 = −G
(
m3

2/M2
)

r3
1

r1, (2.34)

r̈2 = −G
(
m3

1/M2
)

r3
2

r2, (2.35)

and so they all obey a version of Kepler’s third law with the following values for the
mass:

Relative: M
Barycentric body 1: m3

2/M
Barycentric body 2: m3

1/M

Note also that there is a simple rescaling of the position vectors between the
barycentric frame and the relative orbit frame:

r1 =
m2

M
r. (2.36)

r2 = −m1

M
r, (2.37)

and so the barycentric orbits are simply rescaled versions of the relative orbit ellipse.

2.3 Time-Dependent Orbits

The orbital shape of the barycentric orbits is of value when we can only observe
one star in the binary system. If we see both stars and can identify the motion of
the barycenter, then we can identify the individual masses of the stars. Frequently,
we only measure part of the orbit, and often we only measure the orbital speed.
Thus, we need to know the position of the components as a function of time. This is
found from what is known as Kepler’s equation. To derive this we need to study the
geometry of an ellipse.

Consider an ellipse with semimajor axis a that is circumscribed by a circle of
radius a, as shown in Fig. 2.3.

Referring to the figure, the following line segments and angles can be defined:

OΠ = a = semimajor axis , (2.38)

SΠ = a(1− e) = periastron, (2.39)

OS = ae (2.40)
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Fig. 2.3 Properties of an
ellipse

and

• The angle θ is called the true anomaly.
• The angle E is called the eccentric anomaly.

We want to find the time dependence of the eccentric anomaly, E .
The auxiliary circle has the property that PR/QR = b/a =

√
1− e2, so

r cosθ =−RS = OS−OR = acosE − a e, (2.41)

r sin θ = PR =
(√

1− e2
)

QR = asinE
√

1− e2, (2.42)

and

r =
√

r2 cos2 θ + r2 sin2 θ

=
√

a2e2 − 2a2ecosE + a2 cos2 E + a2 sin2 E − a2e2 sin2 E

=
√

a2e2
(
1− sin2 E

)− 2a2ecosE + a2

= a
√

e2 cos2 E − 2ecosE + 1

= a(1− ecosE) . (2.43)

We use the equation for the specific angular momentum, or angular momentum per
mass:

r2dθ = Ldt (2.44)

(n.b.: L= J/μ), so we can substitute r = a(1− ecosE), but we still need an equation
for θ .

We obtain this equation by noting that

d
dE

sinθ = cosθ
dθ
dE

. (2.45)
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Using

sin θ =
a
r

sin E
√

1− e2

=
asinE

a(1− ecosE)
b
a

=
bsinE

a(1− ecosE)
(2.46)

and differentiating with respect to E gives

d
dE

(sinθ ) =
b
a

cosE − e

(1− ecosE)2 (2.47)

so that

cosθdθ =
b(cosE − e)dE

a(1− ecosE)2 . (2.48)

Now, using

cosθ =
−a(e− cosE)

r
=

−(e− cosE)
(a− ecosE)

(2.49)

we find that

dθ =− (1− ecosE)
(e− cosE)

b(cosE − e)

a(1− ecosE)2 dE =
bdE

a(1− ecosE)
. (2.50)

Finally, we have

a2 (1− ecosE)2 bdE
a(1− ecosE)

= Ldt (2.51)

or

(1− ecosE)dE =
L
ab

dt. (2.52)

Integrating this equation gives

∫
(1− ecosE)dE =

L
ab

∫
dt (2.53)

or

E − esinE =
L
ab

t + k. (2.54)

Now we need to determine the integration constant. First, we define T to be the time
at periastron passage and we note that E = 0 at periastron, so

k =− L
ab

T (2.55)
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and

E − esinE =
L
ab

(t −T ) . (2.56)

From Kepler’s second law, we have 1
2 r2dθ = dA = 1

2 Ldt, so
∫ 2π

0

1
2

r2dθ = πab =
1
2

LP ⇒ L
ab

=
2π
P

= ω (2.57)

and then

E − esinE =
2π
P

(t −T ) . (2.58)

This equation is generally solved using numerical techniques. The simplest
approach is to use a Newton–Raphson iterative solution—given xn−1, we find xn by

xn = xn−1 − f (xn−1)/ f ′(xn−1). (2.59)

Here, we let f (E) = E − esinE − 2π(t−T )/P and note that f ′(E) = 1− ecosE .

2.4 The Orbital Elements

Observed binaries do not lie in the plane of the sky, so we need to describe the
orientation of the binary using the orbital elements. These are defined in terms of
both the total angular momentum vector J and the total energy of the orbit.

The orientation of the binary can be described in terms of the direction of the
total angular momentum vector and the direction of the periastron, which give the z-
and x-axes in the orbital plane, respectively. These directions are measured relative
to a coordinate system that is defined by the tangent plane to the celestial sphere
at the location of the binary. A Cartesian coordinate system is defined in terms of
the line of sight to the binary from the observer and the tangent to a great circle
joining the binary to the north celestial pole. The angle of inclination is defined
as the angle between the plane of the orbit and the tangent plane to the celestial
sphere. The ascending node (N) is the line defined by the intersection of the plane
of the orbit and the tangent plane and points in the direction where the binary passes
from inside the celestial sphere to outside the celestial sphere. Figure 2.4 shows the
orientation of the orbit relative to the tangent plane and the three angles that define
this orientation. These three angles are

Angle of inclination i
Longitude of the ascending node Ω
Longitude of the periastron ω

The shape of the orbit is then given by three quantities:

Semimajor axis a
Eccentricity e
Time of periastron T
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Fig. 2.4 Illustration of the
different angles for the orbital
elements of a binary. The line
of sight from the observer to
the binary is the along the
z-axis, viewed from z =−∞.
The x-axis is chosen so that
the positive x direction points
toward the north celestial
pole. The tangent plane of the
sky is the xy-plane

These six quantities are called the orbital elements. If the orbital elements can be
measured, then the masses of the binary can be determined. The orbit will always
appear to be an ellipse when viewed on the sky, but unless i = 0, the center of mass
of the system will not lie at the focus of this apparent ellipse (Fig. 2.5).

The angular momentum and total energy are also related to the orbital period and
orbital shape. To obtain these relations we begin by noting that the kinetic energy is

K =
1
2

m1v2
1 +

1
2

m2v2
2 =

1
2

μv2, (2.60)

where v2 = ṙ2 + r2θ̇ 2 and r and θ are relative separation variables. Now, using
r = �/(1+ ecosθ ), we find that

ṙ = θ̇
r2

�
esinθ =

L
�

esinθ (2.61)

and

rθ̇ =
r2θ̇

r
=

L
r
=

L
�
(1+ ecosθ ) . (2.62)

From here we get

v2 =

(
L
�

)2 [
e2 sin2 θ + 1+ 2ecosθ + e2 cos2 θ

]

=

(
L
�

)2 [
e2 + 1+ 2ecosθ

]
=

(
L
�

)2 [
2(1+ cosθ )− 1+ e2]

=

(
L
�

)2 [2�
r
− (

1− e2)
]
=

L2

�

[
�

r
− 1− e2

�

]

=
L2

�

[
2
r
− 1

a

]
, (2.63)
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Fig. 2.5 Orbits of stars around Sgr A*. Note that every orbit is an ellipse, but that the foci do not
all lie at a common point, even though all orbits are about the same object. This image was created
by Prof. Andrea Ghez and her research team at UCLA and is from data sets obtained with the W.
M. Keck Telescopes

where we have used a = �
(
1− e2

)
in the last step. Now from Kepler’s second law,

we have L = 2πab/P, where P is the orbital period. Noting that b2 = a2(1− e2) we
find

L =
4π2a2b2

P2 =
4π2a3

P
a
(
1− e2)

= GMa
(
1− e2)

= GM�, (2.64)

where we have used Kepler’s third law. Finally, we have

v2 = GM

[
2
r
− 1

a

]
, (2.65)
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and so the kinetic energy is

K =
1
2

μv2 =
1
2

m1m2

M
GM

[
2
r
− 1

a

]

=
Gm1m2

r
− Gm1m2

2a
. (2.66)

Now, the potential energy is Ω =−Gm1m2/r, so the total energy is

C = K +Ω =−Gm1m2

2a
. (2.67)

The total angular momentum is J = m1L1 +m2L2, where

L1 =
m2

2

M2 L, (2.68)

L2 =
m2

1

M2 L, (2.69)

L2 = GMa
(
1− e2) . (2.70)

This gives:

J =
1

M2

(
m1m2

2 +m2m2
1

)√
GMa(1− e2)

= m1m2

√
Ga(1− e2)

M

=
2π
P

m1m2a2
√

1− e2

M
. (2.71)

Thus, the total energy is fixed by the masses and the semimajor axis, while the total
angular momentum also depends upon the period and the eccentricity.

2.5 Spectroscopic Binaries

We now look at determining the mass from spectroscopic binaries, where we can
only measure the radial velocity of the component stars. The Doppler shift alters the
frequency of spectral lines in stars by

f ′ = f

√
c± v
c∓ v

, (2.72)

where v is the radial velocity of the star and the sign choice depends on whether
the star is moving toward us or away from us. From the frequency shifts, we can
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determine the total radial velocity which is a combination of the systemic motion of
the binary and the velocity of the individual stars, so

vrad = ż+ γ. (2.73)

From the orbital elements, we see that the z-component of the star in its orbit is
given by

z = r sin(θ +ω)sin i, (2.74)

and so the radial velocity is

ż = sin i
[
ṙ sin(θ +ω)+ rθ̇ cos(θ +ω)

]
. (2.75)

Since r = a
(
1− e2

)
/(1+ ecosθ ), we have

ṙ = erθ̇ sinθ/(1+ ecosθ ) . (2.76)

Also, we have r2θ̇ = 2πa2
√

1− e2/P, and so

rθ̇ = 2πa2
√

1− e2/rP =
2πa(1+ ecosθ )

P
√

1− e2
. (2.77)

Substituting these two equations into Eq. (2.75), we find

ż =
2πasin i

P
√

1− e2
[cos(θ +ω)+ ecosω ] , (2.78)

and so the total measured radial velocity is

vrad = K [cos(θ +ω)+ ecosω ]+ γ, (2.79)

where K = (2πasin i)/
(

P
√

1− e2
)

is the semi-amplitude of the velocity and γ is

the radial velocity of the center of mass. Note that K is not to be confused with the
kinetic energy described in the previous section. A remarkable consequence of this
result is that the extrema of vrad are at the line of nodes. Several velocity curves for
a variety of binary systems are shown in Fig. 2.6.

We can determine the value of K observationally by measuring the maximum
and minimum velocities through the Doppler shift of spectral lines. Note that these
values occur at θ +ω = 0 and π , respectively. Therefore,

vmax = K [ecosω + 1]+ γ, (2.80)

vmin = K [ecosω − 1]+ γ, (2.81)

and so

vmax − vmin = 2K (2.82)

or

K =
1
2
(vmax − vmin) . (2.83)
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Fig. 2.6 Various velocity curves for several binary systems. Some are single-lined and some are
double-lined. Figure taken from Matijevič, et al., Astron. J., 141, 200 (2011). Reproduced by
permission from the AAS
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By fitting Eq. (2.75) to the shape of the velocity curve, one can obtain the values
of e, ω , and γ . If a double-lined spectroscopic binary is observed, then we can
determine

K1 =
2πa1 sin i

P
√

1− e2
, (2.84)

K2 =
2πa2 sin i

P
√

1− e2
(2.85)

along with e, ω , and γ . Therefore, we know

a1 sin i =

√
1− e2

2π
K1P, (2.86)

a2 sin i =

√
1− e2

2π
K2P. (2.87)

Since we know m1a1 = m2a2 and GM = 4π2a3/P2, we make the substitution:

m2 = m1 (a1/a2) = m1

(
a1 sin i
a2 sin i

)
= m1 (K1/K2) (2.88)

so

Gm1

(
1+

K1

K2

)
=

4π2

P2 (a1 sin i+ a2 sin i)3 /sin3 i (2.89)

and

m1 sin3 i =
4π2

P2

K2

G(K1 +K2)

(√
1− e2

2π
P

)3

(K1 +K2)
3

=
P

2πG

(
1− e2)3/2

(K1 +K2)
2 K2. (2.90)

This provides an upper limit for m1 unless i is known. We can find an upper limit
for m2 by simply interchanging 1 and 2 in Eq. (2.90). If we can only measure the
radial velocity of one component of the binary (say K1), then we can determine the
mass function by using Eq. (2.88) to determine K2 in terms of m1, m2, and K1. We
substitute this expression for K2 into Eq. (2.90) to obtain

m2 sin3 i =
PK3

1

2πG

(
1− e2)3/2

(
m1 +m2

m2

)2

, (2.91)

and so

f (m) =
m3

2 sin3 i

(m1 +m2)
2 =

PK3
1

2πG

(
1− e2)3/2

, (2.92)

where f (m) is known as the mass function.



28 2 Introduction to Binary Systems

If the orbit is also a visual binary, it is possible to obtain the angle of inclination
and consequently to obtain exact values for m1 and m2. The direct measurement of
the masses of all stars except the sun is determined in this way.

Problem 2.3: MT720 is a spectroscopic binary in the Cygnus OB2 Association.
It is found to have a period of P = 4.36 d and an eccentricity of e = 0.35.
The semi-amplitude of the radial velocities are K1 = 173km/s and K2 =
242km/s.

(a) Find msin3 i and asin i for each star.
(b) What is the mass ratio: q = m2/m1?
(c) If i = 70◦, what are the masses of each star?

Problems

2.1. Demonstrate that the orbit lies in a plane by obtaining the Lagrangian
using arbitrarily oriented spherical polar coordinates (r,φ ,θ ). Calculate the Euler–
Lagrange equations of motion and show that one can recover the planar equations
of motion using the initial conditions: θ = π/2 and θ̇ = 0.

2.2. Derive Kepler’s third law (GM = a3ω2) using J = μr2θ̇ and r = �/(1 +
ecosθ ).

2.3. MT720 is a spectroscopic binary in the Cygnus OB2 Association. It is found
to have a period of P = 4.36 d and an eccentricity of e = 0.35. The semi-amplitude
of the radial velocities are K1 = 173km/s and K2 = 242km/s.

(a) Find msin3 i and asin i for each star.
(b) What is the mass ratio: q = m2/m1?
(c) If i = 70◦, what are the masses of each star?
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