Chapter 2
Three-Dimensional Pose Estimation
and Segmentation Methods

In the previous chapter it has been described how a three-dimensional reconstruction
of a scene can be obtained from point correspondences between images, and how
this problem is related with the problem of determining the intrinsic and extrinsic
camera parameters. In this context, the reconstruction result is always obtained as
a cloud of three-dimensional points. This point cloud contains information about
the presence of matter at a certain position in space. However, no information is
available about the presence or even the position and orientation of objects in the
scene.

Hence, this chapter provides an analysis of traditional and newly introduced
methods for the segmentation of point clouds and for the three-dimensional detec-
tion and pose estimation of rigid, articulated, and flexible objects in a scene based
on single or multiple calibrated images, where it is assumed that a (more or less
detailed) model of the object is available.

For rigid objects, pose estimation refers to the estimation of the six degrees of
freedom of the object, i.e. three rotation angles and three translation components
(cf. Sect. 2.1). For objects with a limited number of internal degrees of freedom
(‘articulated objects’) and objects with an infinite number of internal degrees of
freedom (‘non-rigid objects’) pose estimation may correspond to a much higher
dimensional optimisation problem (cf. Sect. 2.2.1.2). Here, the three-dimensional
object detection is based directly on the acquired images of the scene or suitable
features derived from them. A class of complementary approaches deals with the
analysis of point clouds obtained e.g. by stereo image analysis with respect to their
three-dimensional structure and motion behaviour, aiming for a segmentation into
physically meaningful domains representing individual objects or object parts. Such
methods are regarded in Sect. 2.3.

2.1 Pose Estimation of Rigid Objects

To estimate the pose of a rigid object, a set of three-dimensional scene points
with coordinates given by a geometry model of the object is brought into corre-
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spondence with points in the image such that the rotation angles and the trans-
lation of the object with respect to the camera can be determined by minimis-
ing a suitable error measure, e.g. the reprojection error of the model points. Ac-
cordingly, pose estimation of rigid objects is equivalent to the problem of deter-
mining the extrinsic camera parameters (cf. Sect. 1.4). This is an important in-
sight, since all approaches described in Sect. 1.4 in the context of camera cal-
ibration can in principle be applied to pose estimation as well. Hence, an im-
portant issue in the context of pose estimation is to establish reliable correspon-
dences between model points and points in the image. This section provides an
overview of pose estimation techniques for rigid objects based on point features but
also on edges or lines, and then regards in more detail the edge-based hierarchi-
cal template matching approach to pose estimation introduced by von Bank et al.
(2003).

2.1.1 General Overview

2.1.1.1 Pose Estimation Methods Based on Explicit Feature Matching

A seminal work in the domain of three-dimensional pose estimation is provided by
Haralick et al. (1989). They introduce several classes of pose estimation problems:
2D-2D pose estimation determines the pose of a two-dimensional object from an
image, while 3D-3D pose estimation deals with three-dimensional data points from
which the pose of a three-dimensional object is inferred. The estimation of the six
pose parameters from a single two-dimensional image of the object, given a ge-
ometry model, or an estimation of the relative camera orientation based on two
or more images of the object without making use of a geometry model of the ob-
ject, corresponds to 2D-3D pose estimation. The solutions proposed by Haralick et
al. (1989) are based on point correspondences between the images and the object
model. They rely on a minimisation of the distances in three-dimensional space be-
tween the model points and the observed rays to the corresponding scene points.
A linear method based on singular value decomposition is proposed to determine
the rotation angles, and it is demonstrated that using a robust M-estimator technique
instead of least-mean-squares minimisation may increase the performance of the
optimisation procedure, as a reasonable pose estimation result is still obtained when
the rate of outliers is as high as 50 %.

Image features beyond points are examined in the classical work by Lowe
(1987). Linear structures, whose appearance does not change significantly even
with strongly varying camera viewpoints, are grouped according to geometric cri-
teria such as their similarity in orientation or the distances between their end
points, a process termed ‘perceptual organisation’ by Lowe (1987). The three-
dimensional model is projected into the image plane. The complexity of the
subsequent step, during which correspondences between the model and the ex-
tracted image features are established, is reduced by prioritising those correspon-
dences which involve features that are known to have a high probability of occur-
rence.
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A further important classical approach to 2D-3D pose estimation, introduced
by Lamdan and Wolfson (1988), is geometric hashing. An object is represented in
terms of its geometric features, where coordinate systems are constructed based on
specific features, especially points. For example, for a set of points lying in a plane,
an orthogonal coordinate system is given by any pair of points on the plane, and
the other points can be expressed in that coordinate system. All point pair-specific
sets of coordinates (‘models’) along with the points that define them (‘basis pair’)
are stored in what is called the ‘hash table’. Non-planar objects are assumed to
be composed of planar parts by Lamdan and Wolfson (1988). The pose estimation
process is then performed based on a random selection of pairs of observed scene
points, where all other scene points are again expressed in the correspondingly de-
fined coordinate system. Each selected pair of scene points increments a counter
for one such model and basis pair stored in the hash table. All entries of the hash
table for which the counter is larger than a previously defined minimum value are
regarded as occurrences of the modelled object in the observed scene, where the
parameters of the corresponding coordinate system denote the pose parameters, re-
spectively.

An important edge-based approach to 2D-3D pose estimation is proposed by
Lowe (1991). The object model is assumed to be composed of plane parts of polyg-
onal shape as an approximation to the true surface shape. The contours of the object
in the image are obtained by projecting the silhouette of the object into the im-
age plane. Edge segments are extracted from the utilised greyscale image with the
Canny edge detector (Canny, 1986). The error function is given by the sum of the
perpendicular distances in the image plane between the extracted edge segments
and the nearest projected object contour line. The pose parameters, including in-
ternal degrees of freedom of the object, are obtained by least-mean-squares min-
imisation of the error function with the Gaul—Newton method or alternatively with
the Levenberg-Marquardt algorithm (Press et al., 2007), where the latter generally
displays a more robust convergence behaviour.

A similar 2D-3D pose estimation approach based on point and line correspon-
dences is described by Phong et al. (1996). They propose a quadratic error func-
tion by expressing the pose parameters in terms of a quaternion. Minimisation of
the error function to determine the pose parameters is performed using a trust-
region method, which yields a superior performance when compared with the Gau3—
Newton method.

In the framework developed by Grebner (1994), 2D-3D pose estimation of in-
dustrial parts is performed based on edges and corner points, where the param-
eter search, corresponding to the minimisation of an appropriately chosen cost
function, is performed using the A* algorithm (cf. e.g. Sagerer, 1985 for an
OoVerview).

2.1.1.2 Appearance-Based Pose Estimation Methods

A different class of methods consists of the appearance-based approaches, which
directly compare the observed image with the appearance of the object at different
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poses without explicitly establishing correspondences between model features and
parts of the image.

Methods Based on Monocular Image Data A probabilistic approach to si-
multaneous pose estimation and object recognition is proposed by Niemann and
Hornegger (2001). However, they only regard the problem of 2D-2D pose esti-
mation. They follow a statistical approach to object recognition, while localisa-
tion is performed based on estimating the corresponding parameters. An object
model is represented by the position-dependent and typically multimodal proba-
bility densities of the pixel grey values in an image that displays an object of a
certain class. Relying on empirical data, the number of the components of these
multimodal distributions is determined by vector quantisation, while the param-
eters of the distribution are obtained with the expectation—maximisation algo-
rithm. Hence, pose estimation is performed based on a maximum likelihood esti-
mate.

In the monocular system of Kolzow and Ellenrieder (2003), a unified statisti-
cal approach for the integration of several local features, such as edges or tex-
tures, is employed. The utilised object model consists of CAD data complemented
by the local features, resulting in an ‘operator model’. The six pose parameters
of a rigid object are then obtained by adaptation of the visible model features to
the image. The accuracy of the obtained pose estimation results is discussed in
Sect. 6.1.

Other pose estimation algorithms rely on geometric (edges) and on intensity (sur-
face radiance) information. In this context, Nayar and Bolle (1996) introduce an ob-
ject representation based on reflectance ratios, which is used for object recognition
using monocular greyscale images. Pose estimation is performed relying on the re-
flectance ratio representation and a three-dimensional object model, thus taking into
account physical properties of the object surface in addition to purely geometric
information.

Another technique which relies on the simultaneous extraction of edge and shad-
ing information for 2D-3D pose estimation is the appearance-based approach pro-
posed by Nomura et al. (1996), who utilise synthetic edge and intensity images
generated based on an object model. A nonlinear optimisation procedure based
on a comparison between the observed and the synthetic images yields the pose
parameters. The accuracy of the obtained pose estimation results is discussed in
Sect. 6.1.

The approach by Ando et al. (2005) is based on a set of grey value images of an
object with known associated three-dimensional poses. After reducing the dimen-
sion of the images by principal component analysis, the rotational pose parameters
of the object are learned directly from the image data using support vector regres-
sion.

The integrated 2D-3D pose estimation approach by Barrois and Wohler (2007),
which in addition to edges and surface brightness also takes into account polarisa-
tion and defocus features, is discussed in Sects. 5.6 and 6.1.

The three-dimensional pose estimation method of Lagger et al. (2008) is based
on an ‘environment map’, i.e. a direction-dependent map of the light intensity and
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colour incident on the object surface. An image sequence showing the object is ac-
quired, where a three-dimensional model of the object is available. For each image,
the diffuse reflection component is separated from the specular component, where
the latter is then used to infer the corresponding environment map. The pose pa-
rameters are refined by minimising an error measure which consists of a weighted
sum of the negative normalised cross-correlation coefficients between the pixel grey
values of the first and the current image and the squared differences between the cor-
responding environment maps.

Chang et al. (2009) propose two appearance-based methods for estimating the
three-dimensional pose of objects with specularly reflecting surfaces based on
CAD data. A mirror-like reflectance behaviour of the object surface is assumed.
The first approach is based on the determination of the position and appearance
of specular reflections in the image by rendering and a subsequent comparison
with the observed image. The second technique relies on the ‘specular flow’,
i.e. the optical flow associated with specularly reflecting surface parts. The ac-
curacy of the obtained three-dimensional pose estimation results is discussed in
Sect. 6.1.

Methods Based on Multiocular Image Data  Classical monocular pose estima-
tion approaches have in common that they are not able to estimate the distance to
an object at high accuracy, since the only available depth information is the scale of
a known object in the resulting image, and the appearance of the object in the im-
age is not very sensitive to small depth variations. In comparison, for a convergent
stereo setup with a baseline similar to the object distance, for geometrical reasons
a depth accuracy of the same order as the lateral translational accuracy is obtain-
able. Accordingly, a variety of three-dimensional pose estimation methods relying
on multiple images of the scene have been proposed.

The system of Bachler et al. (1999) performs a pose estimation of industrial parts
based on a pair of stereo images in the context of taking the parts out of a bin with
an industrial robot. In a first step, planes are detected in the scene relying on the
projection of structured light. After isolating an object based on the plane detection
result, the rotation angle around the optical axis is determined. Furthermore, the
translational pose parameters parallel to the image plane are estimated using a CAD
model, while the distance to the object is assumed to be known. The accuracy of the
approach is discussed in Sect. 6.1.

A fast tracking algorithm for estimating the pose of an automotive part us-
ing a pair of stereo images is presented by Yoon et al. (2003). This method
is regarded further in the application scenario of industrial quality inspection in
Sect. 6.1.

Rosenhahn et al. (2003) introduce a method for appearance-based three-
dimensional pose estimation from several images, regarding objects characterised
by free-form surfaces modelled in terms of Fourier descriptors, thus providing a
computationally favourable approximate representation on large spatial scales. The
pose parameters are determined in the framework of conformal geometric algebra.
The optimisation of the pose parameters is performed based on the appearance of
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the object contour projected into the image, applying the iterative closest point (ICP)
algorithm by Zhang (1999b), which is especially designed for analysing free-form
surfaces (cf. also Sect. 2.3).

Rosenhahn et al. (2006) compare the ICP algorithm for three-dimensional pose
estimation in stereo image pairs with a level set approach formulated in terms of a
computational technique from the field of optical flow analysis. The pose estimation
is based on silhouettes. A quantitative evaluation of the two methods and their com-
bination is performed. It demonstrates that the highest performance is achieved by a
combination of both approaches, especially when regarding the convergence radius,
i.e. the ability to converge towards the true pose from a considerably different initial
pose.

The method of von Bank et al. (2003), which is described in detail in Sect. 2.1.2,
is extended by Kriiger (2007) to a multiocular setting characterised by three cali-
brated cameras. The accuracy of the three-dimensional pose estimation results ob-
tained by Kriiger (2007) is discussed in Sect. 6.1.

The object recognition and pose estimation system proposed by Collet et al.
(2011) for the manipulation of objects by a robot relies on one or several calibrated
images of the scene. Three-dimensional models of the objects are constructed using
a structure from motion approach, where a model is associated with a set of features.
The three-dimensional scene reconstruction and the estimation of the pose param-
eters are performed simultaneously based on the ‘iterative clustering estimation’
algorithm, where features detected in the images are clustered and associated with
objects and their corresponding pose parameters in an iterative manner by employ-
ing robust optimisation methods. Collet et al. (2011) use the mean-shift algorithm
as proposed by Cheng (1995) for clustering. The resulting object hypotheses are
again clustered, using the ‘projection clustering’ approach, and a pose refinement is
applied, which yields the objects in the scene with their associated pose parameters.
An optimised hardware architecture using graphical processing units for the compu-
tationally complex parts of the algorithm, such as the feature detection step, results
in cycle times of about two seconds for a real-world image sequence with 60 objects
per image. The pose estimation accuracy of the system is discussed in Sect. 6.1.

2.1.2 Template-Based Pose Estimation

Many industrial applications of pose estimation methods for quality inspection pur-
poses impose severe constraints on the hardware to be used with respect to robust-
ness and easy maintenance. Hence, it is often not possible to utilise multiocular cam-
era systems since they have to be recalibrated regularly, especially when the sensor
unit is mounted on an industrial robot. As a consequence, employing a monocular
camera system may be favourable from a practical point of view, while nevertheless
a high pose estimation accuracy is required to detect subtle deviations between the
true and the desired object pose.

The presentation in this section is adopted from von Bank et al. (2003). The
appearance-based 2D-3D pose estimation method described in this section involves



2.1 Pose Estimation of Rigid Objects 95

a viewer-centred representation of the image data. The views are generated automat-
ically from a three-dimensional object model by rendering, and the pose parameters
of each view are stored in a table. Edge templates are computed for each view.
For the input image, the best-fitting template and thus the corresponding pose pa-
rameters are determined by a template matching procedure. The difficult trade-off
between the tessellation constant, i.e. the difference between the pose parameters of
neighbouring views, and the accuracy of pose estimation is alleviated by a technique
for hierarchical template matching (Gavrila and Philomin, 1999).

The input image first undergoes an edge detection procedure. A distance trans-
form (DT) then converts the segmented binary edge image into what is called a
distance image. The distance image encodes the distance in the image plane of each
image point to its nearest edge point. If we denote the set of all points in the image
as A = {Sal,...,SaN} and the set of all edge points as B = {Sbl, R SbM} with
B C A, then the distance d(%a,, B) for point Sa, is given by

d(*ay. B) =min(|>a, — by ). 2.1)

where ||...|| is a norm on the points of A and B (e.g. the Euclidean norm). For
numerical simplicity we use the chamfer-2-3 metric (Barrow, 1977) to approximate
the Euclidean metric.

The chamfer distance D¢ (T, B) between an edge template consisting of a set of
edge points T = {ty, ..., StQ} with 7' C A and the input edge image is given by

0
Dc(T, B) = éZd(Stn, B). (2.2)
n=1

A correspondence between a template and an image region is assumed to be present
once the distance measure (‘dissimilarity’) D(T, B) becomes smaller than a given
threshold value 6. To reduce false detections, the distance measure was extended to
include oriented edges (Gavrila and Philomin, 1999).

In order to recognise an object with unknown rotation and translation, a set of
transformed templates must be correlated with the distance image. Each template is
derived from a certain rotation of the three-dimensional object. In previous work, a
uniform tessellation often involved a difficult choice for the value of the tessellation
constant. If one chooses a relatively large value, the views that lie ‘in between’ grid
points on the viewing sphere are not properly represented in the regions where the
aspect graph is undergoing rapid changes. This decreases the accuracy of the mea-
sured pose angles. On the other hand, if one chooses a relatively small value for the
tessellation constant, this results in a large number of templates to be matched on-
line; matching all these templates sequentially is computationally intensive and pro-
hibitive to any real-time performance. The difficult trade-off regarding tessellation
constant is alleviated by a technique for hierarchical template matching, introduced
by Gavrila and Philomin (1999). That technique, designed for distance transform-
based matching, in an offline stage derives representation which takes into account
the structure of the given distribution of templates, i.e. their mutual degrees of sim-
ilarity. In the online stage, this approach allows an optimisation of the matching
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Fig. 2.1 Sketch of the
robot-based inspection
system with a definition of
the pose angles ¢ (roll), A
(pitch), and p (yaw) in the
camera coordinate system

procedure by representing a group of similar templates by a single prototype tem-
plate and a distance parameter. A recursive application of this grouping scheme
eventually results in a hierarchy of templates, which is generated in a bottom-up
manner using simulated annealing-based partitional clustering. Each node of the hi-
erarchical tree of templates requires matching of a prototype template p with a part
of the image. To avoid an exhaustive search, locations of interest for the nodes in
the hierarchy one level below a certain prototype template (‘children nodes’) are
determined by selecting the positions for which the distance measure between the
respective prototype and the image falls below a predefined threshold 6,,. This pro-
cedure is repeated for the children nodes until the tree has been traversed. If, on
the other hand, the distance measure exceeds 6),, the search is not continued in the
next level of the tree. The high computational efficiency of this method results from
the fact that, according to the hierarchical approach, only a small fraction of the
templates actually need to be matched with parts of the image.

In our system, we do not need to estimate scale—the distance to the object is as-
sumed to be known at an accuracy of better than 3 % due to the fact that the system
is designed for an industrial quality inspection scenario in which the approximate
position of the parts is provided by CAD data. Template matching does not have
to search all scales explicitly. Hence, the original pose estimation problem of de-
termining six degrees of freedom can be reduced to a five-degree-of-freedom (three
pose angles and two image position coordinates) problem.

For pose fine-tuning, the pose angles are interpolated between the n;, ‘best’ tem-
plate matching solutions, with n; = 30 in our system. This is justified, because in
our pose estimation scenario the dissimilarity values of the 30 best solutions usu-
ally do not differ by more than about 20 %, and thus all these solutions contain a
significant amount of information about the pose.

In many applications, templates are generated from real-world image data (De-
mant, 1999). For inspection tasks, however, one can assume that a CAD model of the
object to be inspected is available. We therefore generate realistic two-dimensional
templates from CAD data using the public domain software POVRAY, simulating
the properties of the surface material and the illumination conditions by employing
ray tracing techniques. The pose of the object is defined by the three angles ¢ (roll),
A (pitch), and p (yaw), as shown in Fig. 2.1. Typical matching results are shown
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Fig. 2.2 Matching results
(best solution) for several
example poses

for an automotive part in Fig. 2.2. A quantitative evaluation of the described edge-
based pose estimation technique is performed in the scenario of industrial quality
inspection in Sect. 6.1.1.

To improve the robustness of monocular pose estimation in the presence of a
cluttered background, the edge-based method is extended by Barrois and Wohler
(2007) to appearance-based monocular pose estimation based on geometric, pho-
topolarimetric, and defocus cues (cf. Sect. 5.6).

2.2 Pose Estimation of Non-rigid and Articulated Objects

In contrast to rigid objects, articulated objects consist of several rigid subparts which
are able to move with respect to each other. Methods that aim for a pose estimation
of such objects need to determine these internal degrees of freedom in addition to
the six rotational and translational degrees of freedom encountered for rigid ob-
jects. Non-rigid objects have no rigid subparts at all and therefore have an infinite
number of internal degrees of freedom. In this section we first give an overview of
pose estimation methods for articulated and non-rigid objects. Then we regard the
contour-based algorithm of d’ Angelo et al. (2004) for three-dimensional reconstruc-
tion of non-rigid objects such as tubes and cables, which may be regarded as a mul-
tiocular extension of the concept of active contours (Blake and Isard, 1998). Sub-
sequently, the multiocular contracting curve density algorithm (Hahn et al., 2007,
2010a) is described, which allows a three-dimensional reconstruction of non-rigid
objects and a pose estimation of articulated objects in the presence of a cluttered
background.

2.2.1 General Overview

2.2.1.1 Non-rigid Objects

The extraction of two-dimensional object contours from images is an essential part
of image segmentation. A classical approach to this problem is that of active con-
tours or snakes. The original snake algorithm by Kass et al. (1988) determines a
curve for which an optimisation is performed simultaneously in terms of its length
or curvature and its correspondence with edges in the image. Many variations and



98 2 Three-Dimensional Pose Estimation and Segmentation Methods

improvements of the original snake algorithm have been proposed, such as ‘bal-
loon snakes’ (Cohen, 1991), ‘ziplock snakes’ (Neuenschwander et al., 1997), ‘gra-
dient vector field snakes’ (Xu and Prince, 1998), and implicit active contour models
(Caselles et al., 1995, 1997, Sethian, 1999).

In the balloon snake approach of Cohen (1991), the adaptation of the curve to
intensity gradients in the image is based on an ‘inflation force’, which increases the
robustness of the contour adaptation in the presence of small edge segments which
do not correspond to the true object border. The ziplock snake algorithm of Neuen-
schwander et al. (1997) is described in Sect. 2.2.2. Xu and Prince (1998) adapt a
contour to the intensity gradients in the image based on a ‘generalised gradient vec-
tor field’. In their approach, the process of the adaptation of the curve to the image
is described by a set of partial differential equations modelling a force exerted on
the contour, which decreases smoothly with increasing distance from an intensity
gradient. In the approach by Caselles et al. (1997), the contour adaptation process is
performed in a Riemannian space with a metric defined according to the image in-
tensities. The contour adaptation thus corresponds to the minimisation of the length
of a curve in that space, leading to a set of partial differential equations describing
the adaptation of the curve to the image.

In many medical imaging applications, volumetric data need to be analysed, lead-
ing to the three-dimensional extension of the snake approach by Cohen and Cohen
(1993). For pose estimation of non-rigid objects from multiple images, it is as-
sumed by most approaches that the non-rigid object is adequately described by a
one-dimensional curve in three-dimensional space. Such techniques are primarily
useful for applications in medical imaging, e.g. for the extraction of blood vessels
from a set of angiographies (Caifiero et al., 2000) or for the inspection of bonding
wires on microchips (Ye et al., 2001). A related method for extracting the three-
dimensional pose of non-rigid objects such as tubes and cables from stereo image
pairs of the scene based on three-dimensional ribbon snakes is described in detail
later in this section.

For the segmentation of synthetic aperture radar images, which typically dis-
play strong noise, Gambini et al. (2004) adapt B-spline curves to the fractal di-
mension map extracted from the image, where gradients of the inferred frac-
tal dimension are assumed to correspond to the borders of contiguous image re-
gions.

Mongkolnam et al. (2006) perform a colour segmentation of the image in a
first step and then adapt B-spline curves to the resulting image regions. The bor-
der points extracted by the colour segmentation step do not have to lie on the
adapted curve, such that the approach yields smooth borders of the extracted re-
gions.

Another approach to two-dimensional curve fitting is the contracting curve den-
sity (CCD) algorithm introduced by Hanek and Beetz (2004). The CCD algorithm
employs a likelihood function as a quantitative measure of how well a curve is able
to describe the boundary between different image regions, where the degree of sim-
ilarity is described by the local probability distributions of the pixel grey values
determined based on the local vicinity of the expected curve. The posterior prob-
ability density is iteratively maximised with respect to the parameters of the curve
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model, which are defined by a Gaussian distribution rather than a set of sharply de-
fined quantities. Adapting this ‘blurred curve model’ (Hanek and Beetz, 2004) to
the local statistical properties of the pixel grey values yields a large convergence
radius and at the same time a high accuracy of the determined boundary. As a result,
the CCD algorithm is capable of separating objects with ill-defined outlines from a
cluttered background. Section 2.2.3 describes in detail a multiocular variant of the
CCD algorithm developed by Hahn et al. (2007, 2010a).

Ellenrieder (2004) proposes a three-dimensional active contour method which in-
corporates a technique similar to the shape from texture approach (Jiang and Bunke,
1997) to estimate the normal of a surface displaying a pronounced texture (e.g. the
surface of a tube laminated by textile material) based on spatial variations of the am-
plitude spectrum of the surface texture. In the context of industrial quality inspection
of tubes and cables, Ellenrieder (2005) introduces a method for three-dimensional
pose estimation of non-rigid objects which is based on the analysis of the contour of
the shadow of the non-rigid object cast on a surface of known shape under known
illumination conditions.

An approach to the computation of the derivatives of the bundle adjustment error
function (1.25) for non-rigid objects is introduced by Kriiger (2007), who adapts the
model to the image based on a gradient descent scheme. The method relies on the
sign of the gradient of the error function, and its determination reduces to one look-
up per feature for which a correspondence with the image is established in a table
that is computed offline. Once the space of pose parameters is divided into appro-
priate sections, it is sufficient to memorise one bit, denoting the sign of the gradient
of the error function, for each pixel, each pose parameter of the regarded pose es-
timation problem, and each defined section in the pose parameter space. These bit
matrices, which are termed ‘gradient sign tables’ by Kriiger (2007), have the same
size as the image. The computational complexity of this optimisation approach is
quite low, while its memory demand may become fairly high.

2.2.1.2 Articulated Objects

Most pose estimation approaches regarding articulated objects address the scenario
of human body pose estimation (cf. e.g. Moeslund et al. (2006) for an introduction
to and overview of the large field of pose estimation and tracking of the human
body).

Many approaches, especially those aiming for gesture recognition in the context
of human-robot interaction, rely on monocular image sequences. A more detailed
overview of such techniques is thus given in Sect. 7.1.2. As an example, Schmidt
et al. (2006) adapt a three-dimensional articulated body model consisting of chains
of cylinders to monocular colour images of the person, where the optimisation of
the pose parameters basically relies on skin colour detection as well as on intensity,
edges, and the spatially varying statistical distribution of colour cues. Sminchisescu
(2008) provides a broad discussion of the advantages and limitations resulting from
monocular body pose estimation. Specifically, the problem of ambiguities of the



100 2 Three-Dimensional Pose Estimation and Segmentation Methods

appearance of the object in the image as a result of the projection from the three-
dimensional scene into the two-dimensional image plane is addressed, which may
lead to reconstruction errors, especially when partial self-occlusions of the body
occur. Body pose estimation methods are divided by Sminchisescu (2008) into gen-
erative algorithms, relying on a model of the observation likelihood which is sup-
posed to obtain its maximum value once the pose parameters have been estimated
correctly, and discriminative algorithms, which learn the probability distribution of
the pose parameters from examples and predict them using Bayesian inference.

An early approach by Gavrila and Davis (1996) to full body pose estimation
involves template matching in several distance-transformed images acquired from
different viewpoints distributed around the person. Plinkers and Fua (2003) and
Rosenhahn et al. (2005) apply multiple-view three-dimensional pose estimation al-
gorithms which are based on silhouette information.

Plinkers and Fua (2003) make use of three-dimensional data generated by a
stereo camera to obtain a pose estimation and tracking of the human upper body.
The upper body is modelled with implicit surfaces, and silhouettes are used in ad-
dition to the depth data to fit the surfaces. Lange et al. (2004) propose a method for
tracking the movements of a human body in a sequence of images acquired by at
least two cameras based on the adaptation of a three-dimensional stick model with
a stochastic optimisation algorithm. A comparison between the appearance of the
stick model after projection into the image plane with the acquired images yields
an appropriate error function. A refinement of the correspondingly estimated joint
angles of the stick model is obtained based on several pairs of stereo images.

Rosenhahn et al. (2005) track the upper body of a person, which is represented by
a three-dimensional model with 21 body pose parameters consisting of connected
free-form surfaces. The pose estimation is based on silhouettes which are extracted
using level set functions. Tracking is performed by using the pose in the last frame
as the initial pose in the current frame. Using images acquired synchronously by
four cameras distributed around the person, they achieve a high reconstruction ac-
curacy of about 2° for the joint angles under laboratory conditions without a clut-
tered background. As a ground truth, the joint angles determined by a commercial
marker-based tracking system with eight cameras are used. In an extension of this
method by Brox et al. (2008), the silhouette of the person is inferred from a single
image or several images acquired by cameras distributed around the person, and a
three-dimensional model representing the body surface is adapted to the silhouettes.
The procedures of pose estimation and silhouette extraction based on level sets are
alternated in order to allow tracking in scenes with a non-uniform and non-static
background. In this context, Bayesian inference involving the local probability den-
sity models of image regions with respect to different features such as grey value,
RGB colour values, or texture is used for simultaneously extracting a contour and
a set of pose parameters. For large pose differences between successive images,
prediction of the pose is achieved based on the optical flow. Since the pose esti-
mation yields correspondences between the two-dimensional silhouettes in the im-
ages and the three-dimensional body model, while the optical flow yields correspon-
dences between two-dimensional image positions in the current and the subsequent
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time step, the three-dimensional pose of the body model which is consistent with
the optical flow can be predicted for the subsequent time step. A priori knowledge
about likely and unlikely configurations of joint angles is used to impose constraints
on the pose by learning the probability distribution of the joint angles from ex-
amples and incorporating it as an a priori probability into the Bayesian inference
scheme.

Rosenhahn et al. (2008a) propose a method for tracking the motion of dressed
persons by integrating a kinematic simulation of clothes covering parts of the body
into a silhouette-based system for body pose estimation. The body pose is deter-
mined by minimising an appropriately defined error function, where the correspon-
dences between the observed and modelled silhouettes, the parameters of the kine-
matic chain defining the body model, the appearance of the clothes on the body, and
the forces exerted on the clothes are taken into account. A fairly detailed modelling
is performed, since parameters of the clothes of the person such as the length of
a skirt are extracted during the optimisation process, and physical kinematic mod-
elling of the motion of the clothes resulting e.g. from wind is performed. A quan-
titative evaluation demonstrates that despite the fact that parts of the tracked body
are occluded by clothes, the error of the proposed method is less than one degree
higher than typical inaccuracies of tracking systems relying on markers attached to
the person.

Grest and Koch (2008) adapt a three-dimensional body model consisting of rigid
fixed body parts to a three-dimensional point cloud extracted from a pair of stereo
images with a dynamic programming-based dense stereo technique. A maximum
number of 28 pose parameters is estimated for the human body model using a
3D-3D pose estimation technique based on the ICP algorithm. The Gau3—Newton,
gradient descent, and stochastic meta-descent optimisation methods are compared
with respect to their convergence behaviour, where the GauB8—Newton method is
found to be the superior approach.

A markerless system for three-dimensional body pose estimation specifically de-
signed for the distinction between normal and pathological motion behaviour of
a person is described by Miindermann et al. (2008). It is based on an ICP tech-
nique involving an articulated surface model designed such that the exact positions
at which the articulated motion is performed within the joints can be refined (within
certain limits) during the model adaptation procedure, where multiple (between 4
and 64) images of the scene acquired from viewpoints distributed around the person
are used. Segmentation of the person from the background is performed by apply-
ing an intensity and colour threshold to the background-subtracted images, which
yields a three-dimensional visual hull of the person to which the articulated model is
adapted. A direct comparison to a marker-based body pose estimation system yields
accuracies of 10.6 £ 7.8 mm, 11.3 £ 6.3 mm, and 35.6 £ 67.0 mm for the full body
and 8.7 2.2 mm, 10.8 & 3.4 mm, and 14.3 & 7.6 mm for the lower limbs of the
human body for 64, 8, and 4 cameras, respectively.

Gall et al. (2009) rely on silhouette and colour features and assume the existence
of an accurate three-dimensional model of the analysed human body. They utilise a
local optimisation technique for three-dimensional pose estimation which is similar
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to the approach introduced by Rosenhahn et al. (2005), combined with a global
stochastic optimisation and filtering stage based on a technique named ‘interacting
simulated annealing’.

Hofmann and Gavrila (2009) suggest an extraction of three-dimensional human
body pose parameters from single images based on a hierarchical matching scheme
similar to the one described by Gavrila and Philomin (1999) and a simultaneous
adaptation of the parameters of the human body model based on multiple image
sequences acquired from different viewpoints distributed around the observed per-
sons. The results are integrated over time relying on representative sequences of
three-dimensional pose parameters extracted from the acquired image sequences,
which are used to generate a model of the apparent surface texture of the person.
Texture information is used in combination with contour information to arrive at a
final estimate of the three-dimensional pose parameters.

Salzmann and Urtasun (2010) introduce a method which combines discrimi-
native approaches (such as regression or classification techniques) estimating the
three-dimensional pose of an articulated object and the three-dimensional shape of
an arbitrary surface with the minimisation of a likelihood function depending on the
image information (such as the reprojection error or the distances between edges
generated by the three-dimensional model pose and those observed in the image).
‘Distance preservation constraints’ are introduced by Salzmann and Urtasun (2010)
into the estimation of the three-dimensional pose parameters. These constraints im-
pose constant distances between reference points, i.e. the joints in the case of an
articulated human body model and the mesh points in the case of a surface model.

Approaches like those introduced by Plinkers and Fua (2003), Rosenhahn et al.
(2005), and Brox et al. (2008) determine a single pose which is updated at every
time step. A more refined tracking scheme is proposed by Ziegler et al. (2006), who
employ an unscented Kalman filter for tracking the pose parameters of the body. An
ICP-based approach to estimate the pose of the upper human body is used, relying
on a comparison of a three-dimensional point cloud generated by the analysis of
several pairs of stereo images with a synthetically rendered depth map, obtained
with a polygonal model of the upper body using the z-buffer technique. The system
of Ziegler et al. (2006) determines the position of the torso along with the joint
angles of the upper arms at the shoulders and the joint angles characterising the
postures of the forearms relative to the upper arms.

To increase the robustness of tracking, other approaches such as those proposed
by Deutscher et al. (2001) and Schmidt et al. (2006) rely on the particle filter ap-
proach introduced by Isard and Blake (1998) in order to take into account multi-
ple pose hypotheses simultaneously. In this probabilistic framework, the probability
distribution of the parameters to be estimated is modelled by a (typically large) num-
ber of random samples (‘particles’). For tracking the human body based on a small
number of particles, Deutscher et al. (2001) introduce an approach inspired by the
optimisation technique of simulated annealing, termed ‘annealed particle filtering’,
which allows one to determine the absolute maximum of the (generally multimodal)
probability distribution of the pose parameters by introducing several subsequent
annealing stages. For weighting the particles, edge detection and background sub-
traction are used. A relatively small number of at least 100 and typically a few
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hundreds of particles are sufficient for tracking an articulated model of the human
body with 29 pose parameters. For three-dimensional body tracking, Schmidt et al.
(2006) employ the ‘kernel particle filter’, which approximates the probability den-
sity in state space by a superposition of Gaussian kernels. They use 150 particles to
track a three-dimensional model of the upper human body defined by 14 pose pa-
rameters, relying on monocular colour images. The particles are weighted by the use
of colour cues which are combined with ridge and edge cues. Due to the monocular
approach, pose ambiguities may be encountered in this framework.

To alleviate the ambiguity of the three-dimensional pose estimation result of the
human body, Pons-Moll et al. (2011) propose a method which combines image in-
formation with data acquired by inertial sensors attached to the body. The inertial
sensors provide information about the orientation of the body parts to which they
are attached, which are converted into three-dimensional poses based on an inverse
kinematics approach. This technique allows one to reduce the number of pose pa-
rameters of the utilised human body model, corresponding to 31, to an effective
number of 16 parameters when employing five inertial sensors. Three-dimensional
pose hypotheses consistent with the inertial sensor data are compared by Pons-Moll
et al. (2011) with the observed image features, especially silhouette information,
using a particle filter framework, where the sensor noise is modelled by the von
Mises—Fisher distribution. The experimental evaluation shows a high accuracy and
robustness of the correspondingly obtained three-dimensional pose estimation re-
sults.

At this point it is illustrative to mention methods for three-dimensional pose es-
timation and tracking of the human hand, which also represents a complex articu-
lated object with a large number of degrees of freedom. From the methodical point
of view, methods for hand pose estimation tend to be fairly similar to many of the
previously described full body pose estimation approaches. The extensive survey by
Erol et al. (2007) provides an overview of hand pose estimation techniques. They
divide methods for hand modelling into geometric techniques, usually involving a
considerable number of pose parameters, and kinematic approaches that learn typi-
cal dynamical patterns of the hand motion, where they point out that in most systems
a manual user-specific calibration of the kinematic hand model is required. Further-
more, they distinguish between two-dimensional and three-dimensional methods for
hand pose estimation, where the three-dimensional techniques may rely on colour,
edges, point correspondences, disparity information, or actively scanned range data.
A further distinction is made by Erol et al. (2007) between tracking of single hy-
potheses, typically using a Kalman filter, and tracking of multiple hypotheses, e.g.
involving an extended or unscented Kalman filter or a particle filter. For details refer
to Erol et al. (2007) and references therein.

The work by StoBel (2007) is one of the few studies that examine the problem of
three-dimensional pose estimation of articulated objects in the context of industrial
quality inspection. The described system performs a three-dimensional pose esti-
mation of objects which consist of several connected rigid parts, termed ‘multi-part
assemblies’ by Stoflel (2007), relying on a monocular image, where the correspond-
ing articulated object models are characterised by up to 29 pose parameters. The
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method is based on the minimisation of the Hausdorff distance between edges ob-
served in the image and those inferred from the model projected into the image,
taking into account mutual occlusions of different parts of the articulated object.
For minimisation of the error function, the ‘extended kernel particle filter’ approach
is introduced by St68el (2007) and employed as a stochastic optimisation technique.

2.2.2 Three-Dimensional Active Contours

This section is adopted from d’Angelo et al. (2004), who describe a parametric
active contour framework for recovering the three-dimensional contours of rota-
tionally symmetric objects such as tubes and cables. The proposed algorithm is a
three-dimensional ziplock ribbon active contour algorithm based on multiple views.

2.2.2.1 Active Contours

In the snake approach by Kass et al. (1988), the basic snake is a parametric func-
tion p representing a contour curve or model:

p=v(s) forsel0,I], (2.3)

where p is a contour point for a certain value of the length parameter s. An energy
function E¢ is minimised over the contour v(s) according to

[
Ec =[ Esnake(V(S)) ds. 2.4)
0
The snake energy Egpake 1S separated into four terms:

Esnake(v(s)) = OlEcont(V(s)) + IBEcurv(V(S)) + VEext(V(S)) + 8 Econ (V(S)) (2.5)

The ‘internal energy’ Ein = o Econt(V(s)) + BEcurv(V(s)) regularises the problem
by favouring a continuous and smooth contour. The ‘external energy’ Ex; depends
on the image at the curve point v(s) and thus links the contour with the image. Here
we use the negative gradient magnitude of the image as the external energy, which
then becomes Eexi = —||VI(v(s))|l. Econ is used in the original snake approach by
Kass et al. (1988) to introduce constraints, e.g. linking of points of the active contour
to other contours or springs. Balloon snake techniques (Cohen, 1991) use Ecop to
‘inflate’ the active contour in order to compensate for the shrinking induced by the
internal energy Ejn.. The weight factors «, B, y, and § can be chosen according to
the application.

The dependence of the snake model on its parameterisation may lead to nu-
merical instabilities and self-intersection problems when it is applied to complex
segmentation tasks. Such problems are avoided by implicit active contour mod-
els (Caselles et al., 1995, 1997). Furthermore, a contour is not necessarily a single
curve, and modifications to extract ribbon structures consisting of parallel lines, like
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roads in aerial images (Fua and Leclerc, 1990) or blood vessels in angiographic im-
ages (Hinz et al., 2001), have been proposed in the literature. Snakes can also be
used as a segmentation tool in an interactive manner, where a human operator pro-
vides a rough estimate of the initial contour and can move the snake such that local
minima of the energy function are avoided (Kass et al., 1988).

For the method described in this section, the greedy active contours approach in-
troduced by Williams and Shah (1992) is used as the basis for the three-dimensional
snake framework. The contour is modelled by a polyline consisting of n points, and
finite differences are used to approximate the energy terms Econ; and E¢yry at each
point pg, s =1, ..., n according to

Econt(v(s)) ~ ’”ps —Ps—1ll — h’

(2.6)
Ecurc(v(s)) ~ ||ps—1 = 2ps + Ps+11l,

where £ is the mean distance between the polyline points. The greedy minimisa-
tion algorithm is an iterative algorithm which selects the point of minimal energy
inside a local neighbourhood. The greedy optimisation is applied separately to each
point, from the first point at s = 0 to the last point at s = /. The energy Ec(v(s))
is calculated for each candidate point p in a neighbourhood grid H € R?, where d
is the dimensionality of the curve. The point ppi, of minimum energy inside H is
selected as the new curve point at v(s). This procedure is repeated until all points
have reached a stable position or a maximum number of iterations has been reached.

Since the greedy optimisation algorithm does not necessarily find a global min-
imum, it needs a good initialisation to segment the correct contours. Especially in
segmenting non-rigid objects, however, providing a suitable initialisation along the
whole contour might not always be feasible. In such cases, the ziplock snake al-
gorithm introduced by Neuenschwander et al. (1997) is used. Ziplock snakes are
initialised by the end points of the contour segment to be extracted and the tangents
of the curve at these points. The contour consists of active parts, which are subject
to the full energy term Egnake, and inactive parts, which are influenced only by the
internal energy Ein. The ‘force boundaries’ between the active and inactive parts of
the snake start close to the end points of the contour segments and move towards
each other in the course of the optimisation.

2.2.2.2 Three-Dimensional Multiple-View Active Contours

If volumetric images are available, the image energy Eex; of a three-dimensional
contour can be calculated directly from the volumetric data. In industrial quality
inspection applications, volumetric data are not available, but it is usually possible
to obtain images acquired from multiple viewpoints. In that case E¢x can be calcu-
lated by projecting the contour into the image planes of the cameras (Fig. 2.3a). The
camera system is calibrated with the method of Kriiger et al. (2004) (cf. Sect. 1.4).
An arbitrary number N of images (i = 1, ..., N) can be used for this projection.
The intrinsic and extrinsic parameters of each camera are assumed to be known.
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Fig. 2.3 (a) Projection of the three-dimensional curve model v(s) into multiple images. Two cam-
eras are observing the scene. Calculation of the external energy requires the contour curves in the
image planes of all cameras. (b) Sketch of a ribbon snake

Each scene point "p is projected to the corresponding image point Sip defined
in the sensor coordinate system. The energy term E.x; that connects the contour
with the images is calculated based on the projection of the contour into each im-
age plane according to E}, = ZlN: 1 Ecx(5'p). Hence, generating different active
contours separately for each image or a depth map determined e.g. by stereo image
analysis is not necessary. All image and constraint information is used by the energy
minimisation step in the model parameter space. In our examples, we use the image
gradient as the external energy term, i.e. Eex (5'p) = —||VI;(5ip)||. Occlusions of
the object are not considered during modelling, but the algorithm copes with partial
occlusions and holes in the contour if they do not appear excessively. The energy
terms Ejy and Eop are independent of occlusions that may occur in some views.

The described approach requires that either the points of the extracted three-
dimensional snake correspond to the same scene points, respectively, or that the
object displays certain symmetries. In our scenario of inspection of tubes and cables,
the objects to be segmented are rotationally symmetric with respect to a centreline,
such that their silhouette is similar from multiple viewpoints and can be described by
a centre curve (x(s), y(s), z(s))T and a radius r(s), leading to v(s) = (x, y, z, )T
(Fig. 2.3b). In this case, the contour model is not a simple curve and cannot be
projected into the images as described above. Instead, the centreline (x, y, z)T is
projected into the images while the corresponding ribbon curves are calculated by
projecting the radius r into the image planes.

If prior knowledge about the contour is available, it can be integrated into the
snake optimisation algorithm to improve its convergence. In an industrial produc-
tion environment, CAD models of the parts that are subject to quality inspection
are available and can be used to provide prior knowledge to the active contour seg-
mentation. If the shape of objects should be recovered, only constraints that are
invariant to the possible shapes of the object should be used. For quality inspection
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of tubes, this includes elasticity, length, radius, and sometimes the mounting posi-
tion, depending on the application. The model information is introduced into the
optimisation process in two ways. The first is by adding additional energy terms,
the second by using a constrained optimisation algorithm. Additional model-based
energy terms that favour a certain shape of the contour can be added to E.q,. For
example, the approximate radius of a cable is known, but it may vary at some places
due to labels or constructive changes.

As a first approach, we utilise a three-dimensional ribbon snake to detect the
cable shape and position. Hence, Econ = Erip = [ (S) — Fmodel (s)]2 can be used as
a ‘spring energy’ to favour contours with a radius r close to a model radius given
by the function ryede1(s). However, adding constraint terms to the objective func-
tion may result in an ill-posed problem with poor convergence properties and adds
more weight factors that need to be tuned for a given scenario (Fua and Brechbiih-
ler, 1996). The second approach is to enforce model constraints through optimiser
constraints. In the greedy algorithm this is achieved by intersecting the parameter
search region H and the region C permitted by the constraints to obtain the allowed
search region H, = H U C. This ensures that these constraints cannot be violated
(they are also called hard constraints).

For some applications like glue line detection, the surface in which the contour
is located is known, for example from CAD data. In other cases, the bounding box
of the object can be given. This knowledge can be exploited by a constraint that
restricts the optimisation to the corresponding surface or volume. Model information
can also be used to create suitable initial contours—for example, tubes are often
fixed with brackets to other parts. The pose of these brackets is usually given a priori
when repeated quality inspection tasks are performed or can be determined by using
pose estimation algorithms for rigid objects (cf. Sect. 2.1). These points can be used
as starting and end points, i.e. boundary conditions, for three-dimensional ziplock
ribbon snakes.

2.2.2.3 Experimental Results on Synthetic Image Data

As a first test, the described algorithm has been applied to synthetically generated
image data, for which the ground truth is inherently available. For all examples, a
three-dimensional ribbon snake was used. The weight factors of (2.5) were set to
a=1,8=1, y =3, and § = 0. Additionally, a hard constraint has been placed
on the minimum and maximum ribbon width, which avoids solutions with neg-
ative or unrealistically large width. To estimate the reconstruction quality, a syn-
thetically rendered scene was used as a test case, as this allows a direct compari-
son to the known ground truth. Figures 2.4a and b show the example scene and its
three-dimensional reconstruction result. The start and end points of the object and
their tangents were specified. In a real-world application these could either be taken
from a CAD model, or estimated by pose estimation of the anchoring brackets. The
ground truth used to produce the image is known and is compared to the segmented
contour. The utilised error measure is the root-mean-square error (RMSE) of the
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Fig. 2.4 (a) One of the three artificially rendered input images with the overlaid reprojec-
tions of the three-dimensional ribbon snake. A virtual trinocular camera with a resolution of
1024 x 768 pixels and a base distance of 100 mm has been used to generate the images. (b) Re-
constructed tube, shown from a different viewpoint. The RMSE between ground truth and recon-
struction is 1.5 mm
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Fig. 2.5 Behaviour of the three-dimensional ziplock ribbon snake algorithm with respect to partial
occlusion of the object. A virtual rod is moved across the rendered scene of Fig. 2.4

centre curve of the estimated ribbon snake with respect to the model centre curve.
In the example shown in Fig. 2.4, the RMSE amounts to 1.5 mm, which roughly
corresponds to 1 pixel disparity error. Subpixel greedy stepwidths and interpolated
image energy calculation were used to obtain this result.

The behaviour of the algorithm in the presence of partial occlusions has been
tested by moving a virtual rod over the scene, as shown in Fig. 2.5. In Fig. 2.5a,
where only a small part of the object is occluded, the RMSE with respect to the
ground truth amounts to 1.1 mm, while for stronger occlusions as in Figs. 2.5b
and ¢ the RMSE corresponds to 3.1 mm and 3.8 mm, respectively. All described test
cases were run on a 1.7 GHz Pentium Mobile Processor. The computation time of
the optimisation procedure amounts to between 1 and 23 seconds, depending on the
complexity of the scene and the parameters chosen for the optimisation procedure.

The experimental results show that the proposed three-dimensional ziplock rib-
bon snake algorithm is able to perform a fairly accurate three-dimensional contour
segmentation. The stability of the algorithm is mainly due to the usage of model-
based constraints and initial contour curves based on model information. However,
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the proposed method is sensitive to occlusions and self-intersections if they appear
excessively. It is limited to lines and tube-shaped objects, which is useful for a
variety of applications, e.g. in the field of industrial quality inspection. As real-
world applications of the three-dimensional ziplock ribbon snake method, the three-
dimensional reconstruction of a cable and of a glue line on a car body part are
addressed in Sect. 6.2.

2.2.3 Three-Dimensional Spatio-Temporal Curve Fitting

As an example of three-dimensional pose estimation of articulated objects, this sec-
tion addresses the problem of markerless pose estimation and tracking of the motion
of human body parts in front of a cluttered background. The multiocular contract-
ing curve density (MOCCD) algorithm inspired by Hanek and Beetz (2004) and its
spatio-temporal extension, the shape flow algorithm, are introduced by Hahn et al.
(2007, 2008b, 2010a) to determine the three-dimensional pose of the hand—forearm
limb.

Due to the limited resolution of the trinocular greyscale camera setup it is un-
feasible in the system to model each finger of the hand, as is possible e.g. in the
work by Stenger et al. (2001). On the other hand, a cylindrical model of the forearm
as proposed by Schmidt et al. (2006) is too coarse due to the variability of human
appearance, e.g. clothes. Hence, the methods described in this section are based on
a three-dimensional hand—forearm model which represents the three-dimensional
contour by an Akima spline (Akima, 1970) using control points defined by a param-
eter vector. The MOCCD algorithm is computationally too expensive to be used in a
particle filter framework. Hence, it is integrated into a Kalman filter-based tracking
framework which estimates more than one pose hypothesis at a single time step.
The presentation in this section is adopted from Hahn et al. (2010a). Further details
are provided by Hahn (2011).

2.2.3.1 Modelling the Hand—Forearm Limb

In the application scenario of safe human-robot interaction described in Sects. 7.3
and 7.4, a three-dimensional model of the human hand—forearm limb will be used
which consists of a kinematic chain connecting the two rigid elements forearm and
hand. The model consists of five truncated cones and one complete cone, as shown
in Fig. 2.6. The cones are defined by nine parameters according to

T = [pix, P1y, P1z> @1, Bi, @2, B, 1, 14]” 2.7

The three-dimensional point Wp1 = [p1x, P1y, P1;] defines the beginning of the
forearm and is part of the pose parameter vector T. The wrist (" p») and finger-
tip (W p3) positions are computed according to
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where [forearm and lhang are the predefined lengths of the human hand—forearm limb.
The x and y axes are running in the horizontal and vertical directions parallel to
the image plane, respectively, while the z axis denotes the depth. The matrix Ry («)
represents a rotation around the y axis by the angle «, and Rz (8) a corresponding
rotation around the z axis.

The lengths lhang and lforearm Of the hand and forearm are set to uniform fixed
values for all image sequences regarded in the experimental evaluation described in
Sect. 7.4. Although human hands and forearms may actually have fairly different
lengths, it is shown in Sect. 7.4 that the hand—forearm limb of all test persons is
tracked successfully, and we found that differences between the modelled and the
actual lengths of 100-200 mm are easily tolerated by the system. Such differences
may even occur as short-term variations within a sequence, e.g. when the hand is
grabbing, holding, and depositing a tool.

The shapes of the hand and the forearm relative to the maximal radii 7; and r4
were derived from human anatomy, as shown in Fig. 2.6, and are defined according
to

rp = 0.8- ry
r3 =0.65-r;

(2.10)
rs=1.1-rq

re = 0.026 m = const.
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(b)

Fig. 2.7 (a) Original 8-bit image /;. (b) Absolute difference image. (c) Input image I;* (scaled to
8 bit) for L = 1 according to (2.11)

Hence, in contrast to their lengths, the maximal radii 1 and r4 of the hand and the
forearm are part of the parameter vector T and can thus be adapted to the images
during the optimisation process.

2.2.3.2 Principles and Extensions of the CCD Algorithm

The CCD algorithm introduced by Hanek (2001) and refined by Hanek and Beetz
(2004) adapts a curve model to an image based on the probability distributions of
the pixel grey values on the inner and the outer side of the curve. A computationally
efficient real-time variant of the CCD algorithm is described by Panin et al. (2006).

A difference to the work of Hanek (2001) is that Hahn et al. (2010a) rely on an
extended input image, since in the regarded application scenario the model-based
image segmentation is challenging due to noise, a cluttered background, and the
coarse object description. In order to obtain an accurate and robust model-based
image segmentation, we take advantage of the constant camera position in our ap-
plication. Our input image 7*(¢) is computed by

I'O)y=I1t)+ A/l —1(¢—1)

, @2.11)

where [ (¢) is the image at time step ¢ and |/ (¢) — I (¢ — 1)] is the absolute difference
image of the current and the previous image. The factor A defines the influence
of the absolute difference image. The influence of the absolute difference image
increases the pixel values in areas where motion occurs, which allows a more robust
segmentation, since the CCD algorithm adapts the curve model by separating the
probability distributions of the pixel grey values on the inner and the outer side of
the object curve. Another advantage is that if there is no motion, the input image
I*(t) corresponds to the original image 7 (r) and it is still possible to fit the model.
We experimented with different values of A in the range [0.5, ..., 3] and found
empirically that the dependence of the segmentation result does not critically depend
on the value of A. For a moving camera, the original image I (¢) would have to
be used as the input image 7*(¢), corresponding to A = 0. Figure 2.7 shows the
original camera image, the absolute difference image, and the input image obtained
for A = 1.
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c(k=2,T)
c(k=LT) c(k=3T)
(a) c(k=0,T) I c(k=4,T) (b)

Fig. 2.8 (a) The two-dimensional model curve described by the curve function c(k, T). The pa-
rameter k defines a point on the curve, and the vector T contains the curve parameters. (b) Curve
function c(k, T) with the k perpendiculars centred at the curve points

The CCD algorithm fits a parametric curve c(k, T) to the image I*. The pa-
rameter k € [0, K] of the parametric model curve c(k, T) shown in Fig. 2.8a is
incremented with the points defining the curve, and the vector T denotes the set of
estimated curve parameters. The CCD algorithm relies on the image /* and the ini-
tial probability distribution p(T) ~ p(T|mr, fT) of the parameters T of the curve
model, which is assumed to be Gaussian and is thus given by the mean parameter
vector my and the corresponding covariance matrix St. As initial values, the a pri-
ori density parameters (mr, fT) are used. The CCD algorithm adapts the model
to the image by repeatedly performing steps 1 and 2 described below until the re-
duction of mt and X1 becomes smaller than a predefined value or after a given
maximum number of iteration cycles has been performed. This procedure can be
summarised by the two steps.

Step 1: Learning Local Probability Distributions The local probability distri-
butions S(mr, 1), which are given by the pixel grey value means and standard
deviations, are computed on both sides of the curve.

In this step pixels close to the curve (along the perpendiculars as shown in
Fig. 2.8b) are probabilistically assigned to the inner and the outer side of the ex-
pected curve. Then the probability distributions S(mT, X'1) of the pixel grey values
on both sides of the curve are computed. For this porpose only pixels on (K + 1)
different lines segments are used. Each line segment & is a perpendicular on the
curve point C; = c(k, mr) of the expected curve. In contrast to the original real-
time CCD algorithm (Hanek, 2001), the perpendiculars are not chosen to be equally
spaced along the curve, because our applied curve model is not a closed curve. Thus
there are more perpendiculars on the closed side (hand part) of our curve, to obtain
a stronger dependence of the objective function on the shift along the forearm axis
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(cf. Fig. 2.8b). The length of a perpendicular k£ depends on the local uncertainty oy
of the curve given by

of=ny -Jc, - Tr-J¢, M (2.12)

and changes in each iteration step. The variable ny defines the curve normal and
Jc, the Jacobian, i.e. the partial derivative of the curve with respect to the model
parameters T. The original real-time CCD algorithm according to Hanek (2001)
computes for every perpendicular k a local uncertainty oy of the curve. In contrast
to Hanek (2001), we apply a fixed local uncertainty for every perpendicular of the
curve, thus avoiding a large number of nonlinear function evaluations. The local
uncertainties oy and ok > at the perpendiculars k =0 and k = K /2 are computed
using (2.12), and the fixed local uncertainty o results from o = (o9 +0k/2)/2. The
fixed local uncertainty o is now used to compute the probabilistic assignment for
every point v ; on the perpendiculars; / denotes the pixel index on perpendicular k.
For every point v; ; on perpendicular k the probability a; 1(d;) that the point lies on
side 1 (inner side) of the curve (probabilistic assignment) is computed by

a)1(d) = ! [erf(;a> + 1i| (2.13)

In (2.13), erf(x) is the Gaussian error function and d;(vi ;) = n,{(vk,l — Cy) the
signed distance of the pixel coordinate v ; from the curve point Ci. The probabilis-
tic assignment a; 2(d;) of side 2 (outer side) is defined by a; 2(d;) =1 — a;,1(d}).

To compute the two-sided probability distributions of the pixel grey values we
follow the suggestions of Hanek (2001) and apply as a weighting function the ex-
pression

wys =walays) - wp(d, o) -we(o) withs € {1,2}, (2.14)
where
. 9(2Ew
walars) = max<o, [M] ) (2.15)
-7

assesses the probabilistic assignment. The parameter y; € [0, 1[ describes the mini-
mum probability a; s that the pixel is used to compute the probability distributions.
We use y; =0.5 and E4 = 3. The weight wp(d], o) considers the signed distance
of the pixel v ; to the curve and is given by

wp(dy, o) = C - max(0, "4/ 29 _ 1) yiith (2.16)
o=y3-0+y4. (2.17)

Here C is a normalisation constant, where we set C = 5. For the other parameters
we use y» =4, y3 =6, and y4 = 3. The weighting function w¢ (o) evaluates the
local uncertainty o according to

we(o) = (o + 1)~ Fc, (2.18)

We recommend the choice E¢c = 4. Since we consider a fixed local uncertainty o,
the probabilistic assignment and the weights depend only on the signed distance
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d; to the curve, where the sign indicates the side of the curve on which a pixel is
located. Hence, the weighting function and the probabilistic assignment need to be
computed only once and can be obtained by a distance-dependent look-up opera-
tion, thus avoiding a large number of nonlinear function evaluations without loss
of accuracy. Based on the weights w; ; we obtain the statistical moments my s , of
order o € {0, 1, 2} for every perpendicular k and side s € {1, 2} of the curve, using

Ly

Mi,s,0 = Z Wi,s (2.19)
I=1
L

M= wis- I (2.20)
I=1
Ly

M52 = Z URES RY i (2.21)
I=1

with 7, ,:‘ ; as the pixel value of perpendicular k and pixel index /. The original CCD
tracker according to Hanek (2004) uses a spatial and spatio-temporal smoothing of
the statistical moments to exploit the spatial and spatio-temporal coherence of pixel
values. This improves the robustness of the tracker, since the influence of strong
edges and outliers is reduced. In contrast to the original work of Hanek (2004), we
apply only a spatial smoothing of the statistical moments, since our input images /*
according to (2.11) are not temporally coherent due to the addition of the absolute
difference image. We rely on a blurring with fixed filter coefficients by applying to
the statistical moments a Gaussian convolution operator of size 1 x 5 with a standard
deviation of 2 contour points. This leads to the spatially smoothed moments 7 s,
of order o € {0, 1, 2} for every perpendicular k£ and side s € {1, 2}. The local mean
vectors my () and covariance matrices Xy ;(¢) for every perpendicular k at time
step ¢ on both sides s € {1, 2} of the curve are computed by

_ %k,s,l(t)
mys(t) = Fk,s,o(f) (2.22)
2_Jk,s(l‘) = M - mk,s(l) ~m,{§(t) + k. (2.23)
mk,s,O([) ”

The parameter x avoids singularities. We set it to ¥ = 2.5. The local probability
distributions S(mT, X1) of the pixel grey values which are used in the second step
to refine the estimate consist of (K + 1) different local mean vectors my () and
covariance matrices Xy ;(¢). In the following we assume to be at time step ¢ and
denote the mean values by my ; and the covariance matrices by X .

Step 2: Refinement of the Estimate (MAP Estimation) An update of the pa-
rameters (m, X'1) obtained in step 1, describing the probability distribution of the
curve parameters, is performed based on a single Newton-Raphson step which in-
creases the a-posteriori probability according to Eq. (2.24).
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Fig. 2.9 The CCD algorithm determines the parameters of the curve (black line) by computing the
probability distributions of the pixel grey values in a local neighbourhood of the curve (indicated
by the grey lines) and by maximising the a posteriori probability of the curve model. Non-optimal
(left) and optimal (right) configuration

The principle of the CCD algorithm is depicted in Fig. 2.9. The CCD algorithm
estimates a model pose by computing the maximum of the a posteriori probability
according to

p(TlI*) = p(l*|T) - p(T). (2.24)

Since the probability distributions of p(T) and p(I*|T) are unknown, they are
approximated. The Gaussian a priori density p(T) ~ p(T|mr, fT) of thE model
parameters T is defined by the mean my and the covariance matrix Y. The
likelihood function p(/*|T) is approximated by the Gaussian density function
p(I*|S(my, X)) and describes how well the pixel values along the perpendicular
fit estimated probability distributions S(mr, X'1) close to the curve. The observation
model, i.e. the likelihood function, is computed by

2
h hi

* ToxZ .
p(I*|S(mt, Zr)) ki with (2.25)

H A2 Ekz
hy = P(Ik,llmk,l, Zi1) — my (2.26)

where / defines the pixel index on the perpendicular k and p(I};|my. 1, Xy 1) a Gaus-
sian probability density with mean my ; and covariance Xy ; according to

My =ay1-Mmg1+a2-mgo (2.27)
Zri=a1 - X1 +an Y. (2.28)

These values depend on the probabilistic assignment a; ; of the pixel with index [
and the two-sided probability distributions S(mr, X'1) of the pixel grey values with
the mean vector my ¢ and covariance matrix Xy s for perpendicular k.

To increase the numerical stability of the optimisation procedure, the log-
likelihood

X ==2In[p(I*|S(mr, Zp) - p(TIfir, £1)], (2.29)
rather than the a posteriori probability according to Eq. (2.24) is computed, and

the curve density parameters (mt, X'1) are refined by a single step of a Newton—
Raphson optimisation.
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2.2.3.3 The Multiocular Extension of the CCD Algorithm

The multiocular extension of the CCD algorithm relies on the projection of the
boundary of a three-dimensional contour model into each image. The intrinsic and
extrinsic parameters of the camera model (Bouguet, 2007) are obtained by multi-
ocular camera calibration (Kriiger et al., 2004). An arbitrary number of images N
can be used for this projection. The input values of the MOCCD algorithm are N
images and the Gaussian a priori distribution p(T) ~ p(T|mr, ET) of the model
parameters T, which define the three-dimensional object model. To achieve a more
robust segmentation, the input image /7, of the MOCCD algorithm is computed
using (2.11) and the original camera images I.; with ¢ € {1, ..., N¢} at the time
steps ¢ and (¢ — 1). Before the first iteration, the MOCCD algorithm is initialised
by setting the mean vector and covariance matrix (mt, Y1) to be optimised to the
given a priori density parameters (i, >1). The MOCCD algorithm then consists
of three steps.

Step 1: Extraction and Projection of the Three-Dimensional Model The in-
trinsic and extrinsic camera parameters are used to project the extracted outline of
the three-dimensional model to each camera image I;*. The MOCCD algorithm ex-
tends the CCD algorithm to multiple calibrated cameras by projecting the boundary
of a three-dimensional model into each camera image / C* Therefore, the MOCCD
algorithm requires the extraction and projection of the outline of the used three-
dimensional model.

A three-dimensional hand—forearm model (cf. Sect. 2.2.3.1) is fitted to the im-
ages of a trinocular camera. The outline of our three-dimensional model in each
camera coordinate system is extracted by computing a vector from the origin of
each camera coordinate system to the point in the wrist, e.g. €1p, for camera 1.
This vector and the direction vector pjpz of the forearm span a plane. The nor-
mal vector of this plane is intersected with the three-dimensional model to yield
the three-dimensional outline observed from the camera viewpoint. The extracted
three-dimensional contour model for the given camera, which consists of 13 points,
is projected into the pixel coordinate system of the camera. The corresponding two-
dimensional contour model is computed by an Akima interpolation (Akima, 1970)
along the curve with the 13 projected points as control points. Figure 2.10 depicts
the extraction and projection of the three-dimensional contour model for camera 1.

Step 2: Learning Local Probability Distributions from all N, Images For all
N camera images I compute the local probability distributions S.(mr, X1) on
both sides of the curve. This step is similar to step 1 of the CCD algorithm; the only
difference is that the probability distributions S, (mT, X1) on both sides of the curve
are learned for all N, camera images I\

Step 3: Refinement of the Estimate (MAP Estimation) The curve density pa-
rameters (mt, 2t) are refined towards the maximum of (2.30) by performing a
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Fig. 2.10 Extraction and
projection of the
three-dimensional contour
model for camera 1

single step of a Newton—Raphson optimisation procedure. The learned probability
distributions S, (mT, Y1) are used to maximise the joint probability

Ne
p(Tlif,.... I§) = []‘[ p(1F1Sc(mr, ):T))} - p(TIfr, 1) (2.30)
c=1

with S.(mr, 1) representing the probability distributions close to the pro-
jected curve in image IF. As in the original CCD framework, we optimise
the log-likelihood of (2.30) with a Newton—Raphson optimisation step. The
MOCCD algorithm can be illustrated as follows: The Gaussian probability den-
sities p(I*|S.(my, X'1)) are sensitive with respect to step-like structures along the
curve perpendiculars in each image I, and the three-dimensional model is adapted
to the N, camera images by an implicit triangulation.

2.2.3.4 The Shape Flow Algorithm

The shape flow (SF) algorithm is introduced by Hahn et al. (2008b, 2010a) as a top-
down approach for spatio-temporal pose estimation. In contrast to bottom-up motion
estimation approaches, like the motion analysis module described in Sect. 2.3.3, the
SF algorithm is generally able to estimate the three-dimensional pose parameters T
and the temporal pose derivative T with a spatio-temporal model and the images of
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N, time steps only. With the SF algorithm it is possible to estimate the velocity along
the depth axis, which is not possible with the motion analysis module described
in Sect. 2.3.3, as the regarded scene flow vectors provide no information about the
velocity of the three-dimensional points along the depth axis.

The SF algorithm is a temporal extension of the MOCCD algorithm and fits a
three-dimensional spatio-temporal contour model to multiocular images (N, cam-
eras) at N, time steps. The input values of the SF algorithm are N, images at N; time
steps and the Gaussian a priori distribution p(T) ~ p(T|mr, fT) of the model pa-
rameters T, which define the spatio-temporal three-dimensional object model. To
achieve a more robust segmentation, the input image /7, of the SF algorithm is
computed using (2.11). Here, the SF algorithm is used to estimate the temporal pose
derivative T only. Before the first iteration, the SF algorithm is initialised by setting
the mean vector and covariance matrix (mt, X'1) to be optimised to a priori density
parameters (M, fT) which may e.g. be provided by the motion analysis module
described in Sect. 2.3.3. The SF algorithm consists of three steps.

Step 1: Projection of the Spatio-Temporal Three-Dimensional Contour
Model Based on the motion model, e.g. with constant velocity, the three-
dimensional contour model for all time steps N; is computed and camera param-
eters are used to project the extracted outline of the three-dimensional model to
each camera image If,. The SF algorithm extends the MOCCD algorithm to the
temporal dimension by using a spatio-temporal three-dimensional model, defined
by the parameter vector and an underlying motion model, e.g. constant velocity.
In this step the observed boundary of the spatio-temporal three-dimensional model
is computed for all time steps N; and projected into each camera image 17,. The
outline of our three-dimensional model is extracted and projected as described in
step 1 of the MOCCD algorithm.

Now we describe the applied motion model and the computation of the spatio-
temporal three-dimensional model. Note that the optimised parameter vector in the
SF algorithm consists only of the temporal derivative T(r). We assume that the
forearm radius r; and the hand radius r4 (cf. Sect. 2.2.3.1) are constant over short
periods of time corresponding to a few frames; therefore these radii are not part
of the temporal pose derivative T. However, the radii r; and r4 are only excluded
from the estimation of the temporal pose derivative T, not from the estimation of
the pose T itself. Hence, the algorithm is able to adapt itself to short-term changes
of the radii within a sequence; only their temporal derivatives are not estimated
directly.

The three-dimensional pose T(¢) at time step ¢ is computed at time step ¢ with
the MOCCD algorithm or with the fusion module described in Sect. 7.4.3. The
temporal pose derivative T(¢) at time step ¢ is determined with the SF algorithm
and the image triples at the time steps (¢ + At) and (¢t — At). The spatio-temporal
three-dimensional curve model at the time steps (¢ = Atr) is computed according
to T(t) £ T(¢) - At, thus assuming constant motion. Figure 2.11 depicts the pro-
jected contour model for camera 1 (the one which defines the coordinate system) and
the spatio-temporal three-dimensional pose estimation result (a model-based dense
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t + At

Fig. 2.11 Projected three-dimensional contour model for camera 1 at time steps (+ — At), ¢, and
(t 4+ At). The lines indicate the amount and direction of motion for each point on the model surface

scene flow). At time step ¢ the projected contour of the estimated three-dimensional
pose is shown as a solid curve, while the images at the time steps (t £ At) depict
the projected contour of the pose derivative.

Step 2: Learn Local Probability Distributions from all N, Images For all
N camera images I and for all N, time steps, compute the local probability dis-
tributions S. ;(mT, Y1) on both sides of the projected three-dimensional contour
model, defined by camera ¢ and time step ¢. This step is similar to step 1 of the CCD
algorithm, the only difference is that the probability distributions S, ;(mT, Y1) on
both sides of the curve are learned for all N, cameras images [ o at all N; time
steps.

Step 3: Refine the Estimate (MAP Estimation) The curve density parameters
(mT, Y1) are refined towards the maximum of (2.31) by performing a single step
of a Newton—Raphson optimisation procedure. The learned spatio-temporal proba-
bility distributions S, ;(mr, X1) are used to maximise the joint probability

p(THIes)) = []‘[Hp c,|sct<mT,2T>)]-p<T|ﬁT,§T> 2.31)

with S¢ ; (mT, X'1) representing the probability distributions of the pixel grey values
close to the projected curve in image /., (camera c, time step ). The underlying
assumption is that the images are independent random variables. As in the original
CCD framework, a numerically favourable form of (2.31) is obtained by computing
the log-likelihood. The SF algorithm can be interpreted as a top-down, model-based
spatio-temporal three-dimensional pose estimation approach which determines a
three-dimensional pose and its temporal derivative. The advantage is that tempo-
ral and spatial constraints are handled directly in the optimisation procedure.
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Fig. 2.12 Construction of the
reference templates. The
forearm rectangle is cropped
from all camera images and
transformed and interpolated
to a predefined size and
orientation

2.2.3.5 Verification and Recovery of the Pose Estimation Results

Pose Verification To verify and rate a set of calculated pose parameters, three
quality measures are used. The first quality criterion is the point distance of the seg-
mented point cloud to the model. Accordingly, a thin hull around the object model
is used to determine the points inside the object hull. The weighting value o, is the
quotient of object points inside the hull and all segmented points.

The second quality criterion is the orientation similarity o,, which is computed
for a three-dimensional pose by extracting the contour of the three-dimensional
model according to Sect. 2.2.3.1 and projecting it into the images acquired by the
camera system. For calculating the quality of a contour, the algorithm ‘walks along’
small perpendiculars in each projected curve point of the contour. For each pixel on
the perpendicular the image gradient is calculated. The image gradient orientation,
which is between 0° and 180°, is then compared with the orientation of the model
contour in the current curve point itself. While the contour gradient describes a ref-
erence orientation, the grey image gradient is the compared actual orientation. By
simply counting the curve points that do not differ too much and normalising by all
projected curve points in all camera images, one obtains an intuitive quality measure
in the range [0...1].

The third quality criterion is the appearance similarity o, for a three-dimensional
pose at time step 7, which is based on a comparison of the current object ap-
pearance with the previous object appearances. With the three-dimensional pose
at time step ¢ and the known camera parameters we crop the image of the fore-
arm in all camera images and transform the cropped images to a predefined size
and orientation. The final pose estimation result is used to add the current refer-
ence template at time step 7 to a database (cf. Fig. 2.12). This database describes
the appearance of the tracked object in the last 20 time steps. The appearance
similarity o, of a new pose estimation result is computed based on a normalised
cross-correlation of the current object appearance at time step ¢ with the previ-
ous object appearance at time step (f — 1). Since we have three cameras, there are
three correlation results for a pose comparison, where we choose the worst of the
three as the final result. The assumptions made for this similarity measure are that
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Fig. 2.13 Probability
distribution image for
camera 1, obtained based on
the histogram of the relative
frequency of greyscale pixel
values
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(i) a good three-dimensional pose estimation is available at the first time step and
(ii) that the object appearance does not change considerably over a small period of
time.

To verify an estimated three-dimensional pose, five criteria are used: (i) the tem-
poral variation of the orientation similarity, (ii) the current orientation similarity,
(iii) the temporal variation of the appearance similarity for the three-dimensional
pose T(¢) compared with the pose T(t — At), (iv) the appearance similarity for T ()
compared with T(# — Atr), and (v) the appearance similarity for pose T(#) compared
with pose T(r — 2A¢).

If the five criteria of a three-dimensional pose pass a set of thresholds, the pose is
defined as valid and the reference template is added to the database. Otherwise, the
tracking can either be stopped with a warning that the object is lost, or a reference
template-based pose recovery stage can be applied.

Pose Recovery on Loss of Object If the object is deemed to be lost by the ver-
ification stage, the pose recovery stage starts at the last valid three-dimensional
pose vector T and computes two possible pose hypotheses: (i) based on a proba-
bility distribution image and (ii) by applying a correlation with the reference tem-
plates.

The first pose hypothesis is obtained using the last 10 reference templates of the
forearm to construct a histogram which describes the forearm appearance. The his-
togram describes the relative frequency of greyscale pixel values (Bradski, 1998)
and is computed only for camera 1. Similar to Bradski (1998), the histogram is used
to compute a probability distribution image for camera 1, as shown in Fig. 2.13.
The last valid three-dimensional pose vector T is used to project a rectangle cir-
cumscribing the forearm into the probability distribution image. A two-dimensional
greedy optimisation in the image plane is applied to find the centre and rotation of
the rectangle with the maximum sum of pixel probabilities. Using the best match-
ing rectangle, we construct a three-dimensional pose under the assumption that the
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depth does not change. The resulting three-dimensional pose is computed with the
MOCCD algorithm, where the pose of the best matching rectangle is used for ini-
tialisation.

The second hypothesis is computed using a two-dimensional correlation-based
pose refinement algorithm. The last valid three-dimensional pose vector T is used
to project a rectangle circumscribing the forearm into the image of camera 1. This
rectangle is the starting position of a two-dimensional greedy optimisation which
searches the centre and rotation of the rectangle with the highest normalised cross-
correlation compared to the reference template of the last valid time step. A three-
dimensional pose is inferred from the best matching rectangle, which is used as an
initialisation for the MOCCD algorithm.

Relying on the criteria of the verification module, the better of the two hypotheses
is determined. If the better hypothesis passes the verification module, the tracking
is continued using the corresponding three-dimensional pose.

2.3 Point Cloud Segmentation Approaches

For the point-based three-dimensional pose estimation methods outlined in Sect. 2.1,
explicit knowledge about correspondences between three-dimensional model points
and two-dimensional image points is required. The problem of estimating the pose
of an object is then equivalent to that of determining exterior camera orientation (cf.
Sect. 1.4). In contrast, appearance-based pose estimation approaches like those de-
scribed in Sects. 2.1 and 2.2.1.2 do not rely on explicit correspondences but, instead,
minimise the difference between the expected appearance of the object according to
the estimated pose and the true object appearance.

In many scenarios, a three-dimensional description of the scene is given as a
point cloud obtained e.g. by stereo image analysis (cf. Sect. 1.2) or with active sen-
sors such as laser scanning devices. Initially, this point cloud contains no informa-
tion about objects in the scene. In such cases, an important task is the segmentation
of the point cloud into objects, either without using a priori information or based on
(weak or strong) model assumptions about the objects found in the scene. A scene
segmentation without a priori knowledge can be achieved by clustering methods
(Press et al., 2007; Marsland, 2009), while an important approach to model-based
segmentation of point clouds is the iterative closest point (ICP) algorithm (Besl and
McKay, 1992; Zhang, 1992). Similar methods have been developed in the domain
of photogrammetry, e.g. to extract human-made objects such as buildings from topo-
graphic maps or terrestrial laser scanner data (Rottensteiner et al., 2005, 2006). We
regard in detail a method introduced by Schmidt et al. (2007) for the detection and
tracking of objects in a three-dimensional point cloud with motion attributes gen-
erated with the spacetime stereo approach described in Sect. 1.5.2.5. This method
involves a clustering step relying on the spatial distribution and motion behaviour
of the scene points, a subsequent model-fitting stage, and a kernel particle filter for
tracking the detected objects.
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2.3.1 General Overview

Segmentation of a point cloud corresponds to the subdivision of the cloud into sub-
parts that likely represent different objects. Without a priori knowledge about the
sizes and shapes of the objects encountered in the scene, i.e. in the absence of
model information, an appropriate approach to scene segmentation is clustering,
which corresponds to the subdivision of a set of points into parts consisting of mu-
tually similar points (Press et al., 2007; Marsland, 2009). These points may e.g.
be three-dimensional points extracted by a scene reconstruction method or three-
dimensional points enriched by velocity information such as optical flow or scene
flow (cf. Sect. 1.5.2.5), but may also be data points defined in an abstract feature
space, where the position in the feature space is associated with certain properties.
According to Marsland (2009), the similarity between the points is measured by
an appropriately defined metric, where the most common choice is the Euclidean
distance between the points. It is important to note that the subdivision of the data
set into clusters is performed without information about the class to which each of
the individual data points belongs, such that clustering is also termed ‘unsupervised
learning’ (Press et al., 2007).

2.3.1.1 The k-Means Clustering Algorithm

An important hierarchical clustering algorithm is the k-means algorithm introduced
by MacQueen (1967). According to Marsland (2009), the number k of clusters has
to be given, and k random points are selected as cluster centres. In the first step,
each data point is assigned to the cluster centre with the smallest distance. In the
second step, the new cluster centres are computed as the averages of the data points
according to their assignments in the first step. These two steps are repeated until
the assignment of the data points to the established cluster centres (and thus also the
cluster centres themselves) remains constant. A new, unknown data point is assigned
to the cluster with the smallest distance. Notably, as a consequence of the random
initialisation, the k-means algorithm does not necessarily yield the same result for
different initialisations.

2.3.1.2 Agglomerative Clustering

According to Press et al. (2007), agglomerative clustering starts with each data
point representing a cluster and combines small clusters into larger ones until a
dissimilarity criterion between the clusters is met. Press et al. (2007) describe sev-
eral approaches to determine the distances dp; between a newly formed cluster
k and a reference cluster p in comparison to the distances dp; and dp; of the
previous cluster pair (i, j) to the same reference cluster as a criterion to com-
bine the cluster pair into a new single cluster. Here, the ‘weighted pair group
method using arithmetic averages’ (WPGMA) implies dp; = dip = (dpi +dpj)/2,
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the ‘unweighted pair group method using arithmetic averages’ (UPGMA) yields
dpx = dyp = (nidp; +njdy;)/(n; +nj) with n; and n; as the number of data points
in the clusters i and j, respectively, the ‘single linkage clustering method’ relies on
the minimum distance dpx = di, = min(dy;, dp;), and the ‘complete linkage clus-
tering method’ on the maximum distance dp; = dip = max(dp;, d);). For segmen-
tation of a three-dimensional point cloud, the object detection and tracking method
by Schmidt et al. (2007) described in Sect. 2.3.4 relies on the complete linkage
clustering method.

2.3.1.3 Mean-Shift Clustering

The mean-shift clustering approach is a non-parametric clustering technique which
estimates local density maxima of the data points. It is described in detail by Co-
maniciu and Meer (2002), who mention as precursors to their approach the works
by Fukunaga and Hostetler (1975) and Cheng (1995). According to Comaniciu and
Meer (2002), the mean-shift algorithm relies on a kernel-based estimation of the
density gradient of the distribution of the N data points {x;};—1, . ~. The function
k(x) is termed the ‘profile’ of the kernel function. Several kernel functions are dis-
cussed by Cheng (1995). Comaniciu and Meer (2002) state that two important ker-
nel profiles are the Epanechnikov kernel with kg(x) =1 —x for 0 <x <1 and
kg (x) = 0 otherwise, and the normal kernel ky = exp(—%x) with x > 0. The ker-
nel function is assumed to be radially symmetric with K (X) = ¢ 4 k(|Ix]|%), where
d is the feature space dimension and c; 4 > 0 normalises the kernel function such
that its integral over the complete feature space amounts to unity. To estimate the
density gradient, Comaniciu and Meer (2002) define g(x) = —dk(x)/dx as the pro-
file of the kernel G(x) = ¢4 4 g(||x||2). The mean-shift algorithm is then initialised
with the position yq in the feature space, and the kernel width & needs to be given.
The position in the feature space is then updated iteratively for j > 0 according
to

i xig (112
PIEFI(E
Comaniciu and Meer (2002) show that y; converges towards a local maximum of

the point density as long as the profile k(x) of the kernel K (x) is convex and de-
creases monotonically with increasing values of x.

Yi+1= (2.32)

2.3.1.4 Graph Cut and Spectral Clustering

A more recent approach to the clustering problem is the normalised graph cuts
method introduced by Shi and Malik (1997, 1998, 2000), which is closely related
to the method of spectral clustering (Fowlkes et al., 2004). In the context of image
segmentation, Shi and Malik (2000) model the image in the form of a weighted
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undirected graph, where each node is assigned to a pixel while an edge of the graph
is defined by a pair of pixels. The similarity between the pixel pair determines the
weight of an edge. Removing the edges connecting the segments out of which the
image consists leads to a segmentation of the image into disjoint sets. The optimal
subdivision is the configuration with the minimal removed edge weights, which is
termed the ‘cut’. Hence, such techniques are also known as ‘graph cut’ methods.
They have become fairly popular in the domain of image segmentation.

Fowlkes et al. (2004) assume that a number of N image pixels is given by their
previously determined properties such as position, grey value, texture, or depth. The
basis of spectral clustering is the N x N symmetric similarity matrix W of the graph.
The set of nodes is denoted by V. When a bipartition of V is given by A and B with
AUB =V and AN B =0, the ‘cut’ is defined by

cut(A, B) =" " Wi. (2.33)
i€cA jeB
The degree d; of node i corresponds to d; =) j Wi;;, and the volumes of A and B
are given by vol(A) = ZiGA d; and vol(A) = ZieB d;. The ‘normalised cut’ is then
defined according to
ncut(A, B) = _2cu(d, B) (2.34)
vol(A)||vol(B)
with the harmonic mean a||b = 2ab/(a + b). At this point it is desired to determine
the graph bipartition which minimises the value of ncut(A, B). A solution of this
complex optimisation problem based on an eigenvalue decomposition of the Lapla-
cian matrix £ = D~Y/2(D — W)D~'/? with the diagonal matrix D containing the
values d; as diagonal elements is proposed by Shi and Malik (2000). Fowlkes et al.
(2004) extend the clustering framework towards more than two groups. The compu-
tational effort of the graph cut approach may become considerable, as it increases
quadratically with the number of pixels. Hence, Fowlkes et al. (2004) suggest that
one utilise the Nystrom method to obtain an approximate solution of the eigensys-
tem.

2.3.1.5 The ICP Algorithm

A method to register a point cloud to a geometric object model is the iterative closest
point (ICP) algorithm introduced by Besl and McKay (1992). Given an initial esti-
mate of the object pose, the pose parameters are updated by minimising the mean
squared distance between the measured data and the model, and a new assignment
of measured points to model points is performed. This procedure is applied in an it-
erative manner. As a result, the algorithm yields the three-dimensional object pose.
Besl and McKay (1992) apply this method to point clouds, parametric and non-
parametric curves, and to parametric, non-parametric, and triangulated (tessellated)
surfaces. In the ICP algorithm proposed by Zhang (1992), the scene points as well
as the object model are represented as connected (‘chained’) points. During each
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iteration step the pose parameters are updated while at the same time some of the
scene points are assigned to the model, based on the distance to the model and the
similarity between the directions between neighbouring points for the data and the
model curve, such that outliers in the data are not taken into account for matching.
The ICP algorithm yields those measured points that can be assigned to the model,
i.e. a scene segmentation, along with the pose parameters.

2.3.1.6 Photogrammetric Approaches

In the domain of photogrammetry, an important application which requires the seg-
mentation of three-dimensional point clouds is the three-dimensional reconstruction
of buildings, mainly from airborne or terrestrial laser scanner data. Rottensteiner
(2006) states that polyhedral models are appropriate for modelling buildings on spa-
tial scales at which topographic mapping is performed, where symmetry constraints
or a priori knowledge, e.g. about the orthogonality of walls or the orientation of parts
of the building, can be exploited. Rottensteiner (2006) defines one group of com-
mon approaches to building extraction as bottom-up methods, where the geomet-
ric primitives of the building are constructed from the measured three-dimensional
point cloud and are then used to build up a model of the building. This approach
is used by Rottensteiner et al. (2005) to determine the roof planes of buildings in
three-dimensional point clouds acquired by a laser scanner based on statistical con-
siderations. The second basic class of methods discussed by Rottensteiner (2006) is
top-down reconstruction, where given geometric primitives are adapted to parts of
the three-dimensional point cloud. A priori knowledge can either be incorporated by
‘hard constraints’, which are always exactly satisfied by the inferred model, or by
‘soft constraints’, which allow a residual deviation of the adapted model from the
three-dimensional point cloud data.

2.3.2 Mean-Shift Tracking of Human Body Parts

This section describes the mean-shift-based approach of Hahn et al. (2010b) to
tracking human body parts, which extracts all moving objects or object parts from
the scene based on a simple ellipsoid model. The presentation in this section is
adopted from that work. Further details are provided by Hahn (2011).

2.3.2.1 Clustering and Object Detection

Object detection and three-dimensional tracking are based on a scene flow field. We
use a combination of dense optical flow and sparse correlation-based stereo. The
dense optical flow algorithm described by Wedel et al. (2008a, 2008b) is used to
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Fig. 2.14 Reprojected sparse
scene flow field

Fig. 2.15 Left: Ellipsoid
model used for tracking
arbitrary objects or object
parts in the three-dimensional
point cloud.

Right: Reprojection of four
tracked objects

determine the object motion in the image sequence. The optical flow field is com-
bined with the three-dimensional points from the blockmatching stereo algorithm
by Franke and Joos (2000) to obtain the scene flow field (cf. Fig. 2.14). The velocity
component parallel to the depth axis is not computed.

At each time step, a graph-based clustering stage extracts all moving objects
from the scene flow field, essentially separating moving objects from the (stationary
or differently moving) background. The computed clusters are approximated as el-
lipsoids, and the three-dimensional ellipsoid pose T = (cx, ¢y, ¢, ﬂ)T is determined
(cf. Fig. 2.15). Only the centre ¢ = (cy, ¢y, c;)T of the ellipsoid and the rotation an-
gle B around the depth axis are part of the pose vector T, since we assume that the
approximated objects are parallel to the image plane. The three-dimensional pose
update of all tracked objects is based on a two-stage three-dimensional extension of
the mean-shift algorithm according to Cheng (1995), Comaniciu et al. (2000). If a
tracked object is not moving for more than five time steps it is deleted.

2.3.2.2 Target Model

The target model q(;4) with the object index id is computed based on the first three-
dimensional ellipsoid pose T¢® and is updated at every time step. It consists of
a one-dimensional histogram of greyscale values. To compute the histogram q;4)
we place a grid on the surface of the ellipsoid, the resolution of which is equal
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Fig. 2.16 Two-stage
mean-shift procedure.
Projected search region (left),
three-dimensional probability
grid (middle), final result
(right)

to the pixel resolution at the current depth. Every three-dimensional point on the
surface grid of the ellipsoid is projected into the images of all three cameras. The
histogram bin of a three-dimensional point p is obtained with the look-up function
iBin(p) = %(Iucv1 + Iuc;z + Iuc,f), where I,ﬁf is the greyscale value in the image from
camera c at the projected position (u, v) of the three-dimensional point p. Using
all three-dimensional points on the surface grid of the ellipsoid, a one-dimensional
histogram of the object appearance is computed. A normalisation of the histogram
yields the relative frequency of each greyscale value on the ellipsoid surface, which
is interpreted as a probability.

2.3.2.3 Image-Based Mean-Shift

In the first stage, the mean-shift procedure is applied to a search region, a three-
dimensional plane parallel to the image plane centred at the last object position.
Similar to the method of Bradski (1998) in two dimensions, the target model q;4)
is used as a look-up table to compute the probability value for all three-dimensional
points in the search region. The look-up function iBin is used to obtain a probability
value for each three-dimensional point on the grid. Figure 2.16 (left) depicts the
projected search region in the image of one camera and Fig. 2.16 (middle) shows
the inferred three-dimensional probability grid. The three-dimensional centre point
€ is estimated with the mean-shift procedure using a geometric ellipse model. The
ellipse orientation B is computed similarly as in Bradski (1998). This mean-shift
stage allows only for an update of the lateral pose of the tracked ellipsoid, since the
probability grid is parallel to the image plane. No information from the scene flow
field is used; thus a pose update of the ellipsoid is computed even if there is no new
three-dimensional information available.

2.3.2.4 Point Cloud-Based Mean-Shift

In this stage all moving three-dimensional points of the scene flow field are used
to update the three-dimensional pose of the tracked ellipsoid. At the first iteration
J =1 of the mean-shift procedure, the ellipsoid centre ¢;— is initialised with the
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estimated three-dimensional centre point € of the image-based mean-shift stage. For
all subsequent iterations, the ellipsoid model is moved to the new position

SN sn - &(Sn, €j) - uiay (Bin(sy))
YN g(sn.¢;) - Giay (iBin(s,))

where ¢; is the previous centre position. In the mean-shift procedure a truncated
Gaussian kernel g(s,, ¢;) is used according to Cheng (1995), for which the weight
decreases with increasing distance from the ellipsoid centre ¢;. The mean-shift-
based three-dimensional tracking approach incorporates an appearance weighting
Qi) (iBin(s,)) obtained by looking up the appearance probability of the moving
three-dimensional point s, in the target model q;4), such that a three-dimensional
point with an appearance similar to the target appearance is assigned a higher
weight. Figure 2.16 (right) depicts all moving three-dimensional points and the
final result of the two-stage mean-shift procedure for three-dimensional track-
ing.

Cir1 = (2.35)

2.3.3 Segmentation and Spatio-Temporal Pose Estimation

The problem of three-dimensional scene segmentation along with the detection and
pose estimation of articulated objects has been addressed primarily in the context of
human motion capture (cf. Sect. 2.2.1.2 for an overview). A technique for model-
based three-dimensional human body tracking based on the ICP algorithm is pre-
sented by Knoop et al. (2005). Normal optical flow is used by Duric et al. (2002)
for positional short-term prediction in an image-based system for the detection and
tracking of human body parts. The motion of a camera through a scene is estimated
by Gongalves and Aratjo (2002) based on a combined analysis of stereo correspon-
dences and optical flow.

This section describes a vision system for model-based three-dimensional detec-
tion and spatio-temporal pose estimation of objects in cluttered scenes proposed by
Barrois and Wohler (2008). The presentation is adopted from that work. Further de-
tails are provided by Barrois (2010). As low-level features, this approach requires a
cloud of three-dimensional points attributed with information about their motion and
the direction of the local intensity gradient. These features are extracted by space-
time stereo based on local image intensity modelling according to Sect. 1.5.2.5.
After applying a graph-based clustering approach to obtain an initial separation be-
tween the background and the object, a three-dimensional model is adapted to the
point cloud based on an ICP-like optimisation technique, yielding the translational,
rotational, and internal degrees of freedom of the object. An extended constraint
line approach is introduced which allows one to estimate the temporal derivatives of
the translational and rotational pose parameters directly from the low-level motion
information provided by the spacetime stereo data.
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Fig. 2.17 (a) Image from a test sequence. Interest pixels for which stereo correspondences are
established are shown as bright dots. Epipolar velocities are indicated as white lines. (b) Three-di-
mensional model adapted to the point cloud

2.3.3.1 Scene Clustering and Model-Based Pose Estimation

An initial segmentation of the attributed three-dimensional point cloud extracted
with the spacetime stereo technique is obtained by means of a graph-based unsuper-
vised clustering technique (Bock, 1974) in a four-dimensional space spanned by the
spatial coordinates and the epipolar velocity of the three-dimensional points. This
clustering stage generates a scene-dependent number of clusters, essentially sepa-
rating the moving object from the (stationary or differently moving) background.
For the first image of a sequence, the approximate position and orientation of the
object are estimated based on a principal component analysis of the corresponding
cluster points and used as initial values for the model adaptation procedure. For the
subsequent images, the initial pose parameters are inferred for the current time step
from the previous spatio-temporal pose estimation result, as described later.

We follow the ICP approach according to Zhang (1992) in order to fit a three-
dimensional model of the hand—forearm limb (which does not necessarily represent
the object at high accuracy) to the three-dimensional points determined to belong
to the moving foreground object by the preceding clustering stage. We utilise the
hand—forearm model introduced in Sect. 2.2.1.2 (Hahn et al., 2007, 2010a), con-
sisting of a kinematic chain connecting the two rigid elements forearm and hand.
The model consists of five truncated cones and one complete cone (cf. Fig. 2.17b).
The cone radii corresponding to the hand and the upper end of the forearm are both
set to 60 mm, and the lengths of the forearm and the hand are fixed to 220 mm
and 180 mm, respectively. The other radii are inferred from human anatomy, as de-
scribed in Sect. 2.2.1.2. For each of the two rotationally symmetric model parts, the
five-dimensional vector T of translational and rotational pose parameters is deter-
mined. The relative orientation between forearm and hand is described by two an-
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Fig. 2.18 (a) Relation between edge direction § and normal velocity ¢,. (b) Definition of the
constraint line in UV space according to Schunck (1989), representing the configurations (U, V)
which are consistent with the observed normal velocity ¢,

gles, which are included in the model as internal degrees of freedom. In the course
of the adaptation process, three-dimensional points not previously determined to
belong to the object may be added to it while others may be rejected, resulting in a
robust behaviour with respect to errors of the preceding clustering stage. The optimi-
sation procedure is implemented as an M-estimator (Rey, 1983). It is straightforward
to utilise the result of this three-dimensional pose estimation procedure as an initial-
isation for the appearance-based MOCCD technique described in Sect. 2.2.1.2.

2.3.3.2 Estimation of the Temporal Pose Derivatives

Both motion components of a scene point parallel to the image plane can only be
recovered from the corresponding local pixel neighbourhood if the intensity pattern
around the pixel is corner-like. Edge-like intensity patterns only allow the determi-
nation of one velocity component, such as the component parallel to the epipolar
lines computed by the spacetime stereo algorithm (cf. Sect. 1.5.2.5). This ambiguity
is a consequence of the well-known aperture problem (Horn, 1986). Restricting the
stereo and motion analysis to corner-like image features (Franke et al., 2005) may
result in fairly sparse depth maps. If edge-like image features are evaluated, as is the
case in all image sequences regarded in this study, projecting the determined veloc-
ity component onto a line orthogonal to the local edge direction yields the normal
velocity ¢, as depicted in Fig. 2.18a. The angle o between the direction of the hor-
izontal epipolar lines and the direction of the normal velocity is given by § = tan«
with § as defined by (1.121) in Sect. 1.5.2.5.

In the following, the translational velocity components of the object parallel to
the x, y, and z axes are denoted by Uop;, Vobj, and Wop;, respectively, and expressed
in metres per second. A two-dimensional space is spanned by the horizontal and ver-
tical velocity components U and V measured in the scene and expressed in metres
per second. This space is termed U V space. Given the observed normal velocity ¢;,,
all consistent configurations (U, V') are represented by the corresponding constraint
line in UV space as defined by Schunck (1989) (cf. Fig. 2.18b). Fermiiller and Aloi-
monos (1994) extend the concept of constraint lines towards the analysis of ‘image
displacement fields’, i.e. optical flow and disparity, that arise from the motion of a
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camera through a static scene or the motion of a rigid object relative to the cam-
era (‘rigid motion’). Of special importance is the normal flow, i.e. the component
of the optical flow perpendicular to the edge in the image at which it is measured.
It is shown by Fermiiller and Aloimonos (1994) that an image displacement field
displays a structure which does not depend on the scene itself, where vectors with
specific values of their norm and direction are located on curves of certain shapes
in the image plane. Specifically, sets of identical optical flow (also normal flow) or
disparity vectors correspond to conic curves, termed ‘iso-motion contours’ by Fer-
miiller and Aloimonos (1994). The properties of these curves only depend on the
parameters of the three-dimensional rigid motion.

In the spatio-temporal pose estimation scenario regarded in this section, for an
object performing a purely translational motion parallel to the image plane all con-
straint lines belonging to pixels on the object intersect in a single pointin U V space.
Both components of the translational motion are thus uniquely recovered. For ob-
jects with a rotational motion component in the image plane, a case which is not
addressed by Schunck (1989), the intersection points between constraint lines are
distributed across an extended region in UV space. This situation is illustrated in
Fig. 2.19a for an ellipse rotating counterclockwise. The constraint lines belonging
to the indicated contour points are shown in Fig. 2.19b. In this example, the U
coordinates of the constraint line intersection points are a measure for the mean
horizontal velocities of the corresponding pairs of image points. The V' coordinates
have no such physical meaning. The distribution of intersection points is elongated
in vertical direction due to the fact that a vertical edge detector is used for interest
pixel extraction and because only image points with associated values of |§| < Smax
with dpax typically chosen between 1 and 2 (cf. Sect. 7.3) are selected by the space-
time stereo approach. Hence, constraint lines running at small angles to the U axis
do not exist.

Figure 2.19c shows a distribution of constraint line intersection points obtained
from the scene shown in Fig. 2.17a, typical of a rotationally symmetric and elon-
gated object like the forearm partial model used in this study. The points in UV
space are weighted according to the spatial density of the corresponding three-
dimensional points along the longitudinal object axis. The mean (Uqbj, Vob;) of the
intersection point distribution, corresponding to the translational motion component
of the object, has already been subtracted from the intersection points in Fig. 2.19c.
The translational motion component Wy, parallel to the z axis is given by the me-
dian of the (fairly noisy) values of dz/dt for all three-dimensional points assigned
to the object or object part.

In the example regarded in Fig. 2.19c, scene points near the wrist are moving
faster in the image plane than scene points near the elbow. The resulting intersec-
tion points are strongly concentrated near the points (U, Vi) and (Ua, V2) depicted
in Fig. 2.19c, which represent the motion of the scene points near the elbow and
near the wrist. In this scenario, two circular markers attached to the upper and the
lower end of the forearm, respectively, would yield two narrow clusters of inter-
section points in UV space at (Uy, V1) and (Uz, V2). Regarding scene points at
arbitrary positions on the forearm instead of well-localised markers yields a dis-
tribution which is largely symmetric with respect to the line connecting the points
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Fig. 2.19 (a) Rotating ellipse with reference points marked on its boundary. (b) Constraint lines
resulting from the rotation of the ellipse. (¢) Typical distribution of constraint line intersections
in UV space for a real-world image from the first test sequence (cf. Fig. 2.17). The mean of the
distribution has been subtracted from all points; the principal components are drawn as solid black
lines

(U1, V1) and (U, V3). The information about the rotational motion of the object
is thus contained in the range Av covered by the projections of the intersection
points on the principal component of the distribution which is oriented perpen-
dicular to the longitudinal axis of the object (the second principal component in
Fig. 2.19¢). The value of Av then corresponds to the velocity dispersion across
the object caused by rotational motion in the image plane. In our system, we ro-
bustly estimate Av based on the 10 % and 90 % quantiles of the distribution of
the projection values. The angular velocity w, of the object rotation parallel to
the image plane is then obtained by w, = Av/Al with Al as the length interval
parallel to the longitudinal object axis covered by the assigned three-dimensional
points.

The rotation orthogonal to the image plane is determined based on the values
of dz/0t determined in Sect. 1.5.2.5 for the extracted three-dimensional points.
For each model part, the projections p!) of the assigned three-dimensional points
on the longitudinal object axis are computed, and a regression line is fitted to the
(p®, 3z/8t™) data points. The slope of the regression line directly yields the ve-
locity dispersion Aw in the z direction and thus the angular velocity w, of the
object rotation orthogonal to the image plane. Due to the rotational symmetry of
the object models regarded in this study, the rotational motion of the object is al-
ready fully determined by the two components w, and w, of the angular veloc-
ity.

The technique described in this section allows us to extend the determination of
the vector T of pose parameters by a direct estimation of the temporal pose deriva-
tive T without the need for an object tracking stage.
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2.3.4 Object Detection and Tracking in Point Clouds

This section describes the approach to the detection and tracking of objects in three-
dimensional point clouds suggested by Schmidt et al. (2007). The presentation is
adopted from that work. The method relies on a motion-attributed point cloud ob-
tained with the spacetime stereo approach described in Sect. 1.5.2.5. In a subsequent
step, motion-attributed clusters are formed which are then used for generating and
tracking object hypotheses.

2.3.4.1 Motion-Attributed Point Cloud

A three-dimensional representation of the scene is generated with the correlation-
based stereo vision algorithm by Franke and Joos (2000) and with the spacetime
stereo algorithm described by Schmidt et al. (2007) (cf. Sect. 1.5.2.5). Both stereo
techniques generate three-dimensional points based on edges in the image, espe-
cially object boundaries. Due to the local approach they are independent of the ob-
ject appearance. While correlation-based stereo has the advantage of higher spatial
accuracy and is capable of generating more point correspondences, spacetime stereo
provides a velocity value for each stereo point. However, it generates a smaller
number of points and is spatially less accurate, since not all edges are necessarily
well described by the model defined in (1.118). Taking into account these proper-
ties of the algorithms, the results are merged into a single motion-attributed three-
dimensional point cloud. For each extracted three-dimensional point ¢, an average
velocity v(cy) is calculated, using all spacetime points s;, j € (1,...,J) in an el-
lipsoid neighbourhood defined by 8s(s;, cx) < 1 around ci. To take into account
the spatial uncertainty in depth direction of the spacetime data, d5(s;, cx) defines a
Mahalanobis distance whose correlation matrix X' contains an entry X', # 1 for the
depth coordinate which can be derived from the recorded data, leading to

J
f)(ck)zgzwsj') Vs 8s(sj.c0) < 1. (2.36)
j=1

The factor p denotes the relative scaling of the velocities with respect to the spatial
coordinates. It is adapted empirically depending on the speed of the observed ob-
jects. This results in a four-dimensional point cloud, where each three-dimensional
point is attributed with an additional one-dimensional velocity component parallel
to the epipolar lines; see Fig. 2.20d.

A reference image of the observed scene is used to reduce the amount of data
to be processed by masking out three-dimensional points that emerge from static
parts of the scene, as shown in Figs. 2.20a and b. Furthermore, only points within a
given interval above the ground plane are used, as we intend to localise objects and
humans and thus always assume a maximum height for objects above the ground.
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top: (a), bottom:(b) (c) - (d)

Fig. 2.20 (a) Original image (left camera). (b) Background subtracted image. (¢) Full point cloud
obtained with the correlation-based stereo vision technique. (d) Reduced motion-attributed point
cloud

(a) (b)

Fig. 2.21 (a) Over-segmentation and cluster velocities. (b) Objects with convex hull

2.3.4.2 Over-Segmentation for Motion-Attributed Clusters

To simplify the scene representation, we apply a hierarchical clustering algorithm,
recognising small contiguous regions in the cloud, based on features like spa-
tial proximity or homogeneity of the velocities. This procedure deliberately over-
segments the scene, generating motion-attributed clusters. By incorporating veloc-
ity information for clustering, we expect an improvement in segmentation at these
early stages of the algorithm, without the need for strong models to ensure separa-
tion of neighbouring objects. For clustering, we apply the complete linkage algo-
rithm to describe the distance between two clusters. The resulting hierarchical tree
is partitioned by selecting a clustering threshold and addressing each subtree as an
individual cluster (cf. Fig. 2.21a). The criterion for selecting the threshold is the
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increase in distance between two adjacent nodes in the tree, for which a maximum
allowed value is determined empirically. For each resulting cluster /, the weight
w(l) is set according to the number of points P belonging to [ as w(l) = +/P. The
square root is used to constrain the weight for clusters consisting of many points.
For each cluster the mean velocity of all points belonging to it is determined.

2.3.4.3 Generation and Tracking of Object Hypotheses

From here on, persons and objects can be represented as a collection of clusters of
similar velocity within an upright cylinder of variable radius. An object hypothesis
R(a) is represented by a four-dimensional parameter vector a = (x, y, v, )’ , with
x and y being the centre position of the cylinder on the ground plane, v denoting
the velocity of the object, and r the radius. This weak model is suitable for persons
and most encountered objects.

To extract the correct object positions, we utilise a combination of parameter op-
timisation and tracking. We first generate a number of initial hypotheses, optimise
the location in parameter space, and then utilise the tracking algorithm to select hy-
potheses which form consistent trajectories. Initial object hypotheses are created at
each time step by partitioning the observed scene with cylinders and by including
the tracking results from the previous frame, respectively. Multidimensional un-
constrained nonlinear minimisation (Nelder and Mead, 1965), also known as the
simplex algorithm, is applied to refine the position and size of the cylinders in the
scene, so that as many neighbouring clusters with similar velocity values as possible
can be grouped together to form compact objects, as shown in Fig. 2.21b. An error
function f(a) used for optimisation denotes the quality of the grouping process for
a given hypothesis. Each hypothesis is weighted based on the relative position, rel-
ative velocity, and weight of all clusters / within the cylinder R(a) using Gaussian
kernels according to

f@=f@ Y wdfal.a)fl a) (2.37)
leR(a)
. . . r(a)? _ B r(a)? . L I
with f;(a) = exp( S ) —exp(—577—) keeping the radius in a realistic range,

r,min

2
fa) = exp(—%) reducing the importance of clusters far away from the
d

2
cylinder centre, and f,(l,a) = exp(—%

) masking out clusters having dif-
fering velocities. The functions r(a), s(a),vand v(a) extract the radius, the two-
dimensional position on the ground plane, and the velocity of the hypothesis a,
respectively. The kernel widths H are determined empirically. Figure 2.22 shows
the error function from (2.37), parameterised for opposing velocities. Local minima
are centred on top of the objects of interest.

After optimisation, hypotheses with identical parameterisation are merged and
those without any clusters within R(a) are removed. The remaining hypotheses are
tracked over time using a particle filter, keeping only object hypotheses forming a
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Fig. 2.22 Error function plot for minimisation, showing the error surface for v = 0.26 ms™!,

r = 0.53 m (lower surface), and v = —0.79 ms~!, r = 0.53 m (upper surface, values mirrored for
clearer display)

Fig. 2.23 Trajectory of the
tracked object (dark grey)
with annotated ground truth
(light grey) for a tabletop
sequence

consistent trajectory. The trajectory of a moving object in a fairly simple tabletop
sequence as determined with the proposed algorithm is shown in Fig. 2.23 in com-
parison with the manually determined ground truth. This example demonstrates that
a moving object can be separated from stationary background objects. In Sect. 7.2
we provide a detailed quantitative evaluation of our method in a complex industrial
production scenario.
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