Chapter 2

Synthesis of Organic and Bioorganic
Nanoparticles: An Overview

of the Preparation Methods

Joachim Allouche

Abstract Since the emergence of Nanotechnology in the past decades, the
development and design of organic and bioorganic nanomaterials has become an
important field of research. Such materials find many applications in a wide
range of domains such as electronic, photonic, or biotechnology, which con-
tribute to impact our society and our way of life. The improvement of properties
and the discovery of new functionalities are key goals that cannot be obtained
without a well controlled and a better understanding of the preparation methods
which constitute the starting point of the design of a specific organic material. In
this context, this chapter gives a general but non-exhaustive overview of the
methods of preparation of organic and bioorganic nanoparticles. Some general
definitions about organic nanoparticles and description of organic compounds are
given before describing the most common methods used divided into two
families, the two-step and one-step procedures. The major part of the two-step
procedures is based on an emulsification step followed by generation of nano-
particles through different mechanisms such as precipitation, gelation, or poly-
merization. The one-step procedures are founded on generation of nanoparticles
through different techniques such as nanoprecipitation, desolvation, or drying
processes without preliminary emulsification step. For each method, the
description is supported by several examples and focused on the explanation of
the general mechanisms and of the major key parameters involved in the control
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of the nanoparticles formation. In addition, since emergence and improvement of
syntheses are often associated to development of experimental setups, techno-
logical aspects are also mentioned.

2.1 Introduction

Organic nanoparticles can be commonly described as solid particles composed of
organic compounds (mainly lipids or polymeric) ranging in diameter from 10 nm
to 1 pm [1, 2]. Over the past decades, this type of nanoparticles has met a great
expansion and intensive investigations due to their high potentialities in a wide
spectrum of industrial areas ranging from electronic to photonic, conducting
materials to sensors, medicine to biotechnology, and so forth [3—13]. Therefore,
the choice of the synthetic route is central to optimize the final properties of
nanoparticles designed for a specific application. This choice has to be guided by a
series of factors such as physico-chemical parameters of the organic compound,
chemical composition, nanoparticles diameter, structure, morphology, or envi-
ronmental considerations which constitute definitely an increasingly incontro-
vertible criterion. Consequently, a suitable preparation method cannot be
dissociated from a real compromise chosen in function of the different constraints
which have to be overcome to design well-controlled organic nanomaterials.

This chapter focuses on the description of the most used preparation methods
reported in the literature for the preparation of organic nanoparticles. It starts by
giving some general definitions on the different types of nanoparticles and features
of organic compounds. The second part is devoted to the description of the
preparation methods highlighting the general principles and mechanisms involved
and the parameters governing the particles formation and their properties.

2.2 Definition and Description of the Different Types
of Particles

2.2.1 Structure and Morphology

Nanoparticles can be divided into main two groups: nanospheres and nanocap-
sules (Fig. 2.1). Nanospheres are considered as matrix particles whose entire
mass are solid whereas nanocapsules are composed of a liquid or empty core
surrounded by an organic solid shell. Nanospheres and nanocapsules are gen-
erally spherical but non-spherical shape can be encountered. The obtaining of the
different types of nanoparticles depends evidently on the methods selected for
the preparation.
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Fig. 2.1 The different types Organic solid matrix Qil or water
of nanoparticles. a—

a Nanospheres,
b nanocapsules

(@) (b)

2.2.2 Organic Materials Composing the Particles

2.2.2.1 Polymeric Nanoparticles

Polymeric nanoparticles constitute by far the most studied organic particles in the
literature [14-18]. Although polymeric nanoparticles can be designed for a wide
spectrum of applications, two major families can be distinguished. The first one is
related to nanoparticles elaborated for drug delivery and/or for biomedical pur-
poses [19-22]. In this case, the macromolecules require biodegradable or
biocompatible properties. Number of synthetic or natural polymers can be used
and the most widely used are reported in Table 2.1. Despite the great potential of
polymer chemistry today, one can observe that only a limited number of molecules
can be used as constituents of drug delivery nanocarriers. This is particularly due
to the drastic constraints and requirements which characterized in vivo applica-
tions in terms of toxicity and biocompatibility.

The second family of polymeric particles is constituted of conjugated polymeric
nanoparticles that exhibit electronic or opto-electronic properties [15, 23]. Among
these conjugated polymers; polyaniline, polypyrrole, polyacetylene, and their
derivatives have been widely studied for their intrinsic conductivity [24—-30], while
polythiophenes, polyfluorenes, poly(p-phenylenevinylene)s, and poly(p-phenyle-
neethynylene)s derivatives [31-38] have rather been studied for their electro-
optical and photoluminescence behaviors.

2.2.2.2 Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are composed of lipid matrices derived generally
from glycerol esters of fatty acids [39—41]. The lipid compound is characterized by a
melting temperature above 37 °C in order to ensure solidification at physiological
temperature. Due their high stability (several years), good biocompatibility and low
toxicity, SLNs are considered as promising drug delivery systems and a good
alternative to polymeric nanoparticles especially for parenteral method. But the limit
of this type of particles lies in the fact that the majority of drugs have a poor solubility
in lipids [42]. Ongoing investigations are conducted to increase encapsulations rates
using nanostructured lipids matrices or lipid-drug conjugates [43, 44].
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2.3 Methods of Preparation of Nanoparticles

The preparation of organic and bioorganic nanoparticles is divided into two main
methods [14, 16, 17]. The first approach is based on a two-step procedure
involving generally the preparation of an emulsification system during the first step
carried out to generate nanodroplets of definite sizes wherein organic compounds
(polymer, monomer, lipid) are previously solubilized. The strategies of emulsifi-
cation developed in the literature differ from their high- or low-energy stirring
procedures. The nanoparticles are formed in the second step of the process by
various mechanisms such as precipitation, gelation, or polymerization.

The second approach consists in conduction of one-step procedures where
emulsification is not required prior to the formation of nanoparticles. The methods
are generally based on the precipitation of organic compounds in solution occuring
through different routes including nanoprecipitation by solvent displacement
or self-assembly mechanisms induced by ionic gelation or by the formation
of polyelectrolyte complexes. A few other methods have also been reported
recently based on strategies involving spray-drying [45, 46], supercritical fluid
technologies [14, 47, 48], or piezoelectrical ways [49].

2.3.1 Two-Step Procedures Based on Emulsification

2.3.1.1 Emulsions and Methods of Emulsification

The term emulsion is defined basically as a mixing of two or more totally or
partially immiscible liquids obtained in the presence or absence of a surface active
agent. Generally, depending on the type of dispersed phase and of the dispersion
medium, o/w (o0il in water) direct emulsion or w/o (water in oil) inverse emulsion
can be formed but more complex systems such as O/O (oil in oil) or multiple
emulsions of different kinds (W/O/W, O/W/O, W/O/O) can also be obtained
(Fig. 2.2). Depending on the sizes of droplets, the emulsion formed can be clas-
sified into three main categories: a microemulsion type which is characterized by a
thermodynamically stable behavior with droplet diameters ranging from 10 to
100 nm and a miniemulsion or a macroemulsion systems that are both thermo-
dynamically unstable with drop sizes comprised between 100 nm and 1 pm and up
to 1 um, respectively [50-52].

Over the past decade, methods to prepare suitable emulsions with nanoscaled
droplets to design organic nanoparticles have been considerably evolved due to the
technological development of emulsification devices and due to the expansion of
low-energy stirring routes in constant progress, thanks to environmental
constraints. Indeed, low- and high-energy emulsification techniques constitute two
strategies to obtain nanodroplets and consequently nanoparticles.
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Fig. 2.2 Different types of (a) (b) (C) (d)
emulsions. a Microemulsion, P
. . o
b nanoemulsion, ¢ simple e °
macroemulsion, d multiple °’ ©o ° °
emulsion ©
Microemulsions ~ Miniemulsions Macroemulsions
10-100 nm 100-1000 nm >1um

Low-energy Emulsification Methods

Nanoemulsions can be generated by low-energy emulsification techniques clas-
sified into two groups in the literature. The first one is the so-called spontaneous
emulsification [50, 51, 53-55] obtained by the rapid diffusion of a water-soluble
solvent, solubilized first in the oily phase, moving toward the aqueous one when
the two phases are mixed. This phenomenon, presented as a good alternative of
high-energy methods, has been described in several works as a solvent displace-
ment method [56-61] (also called the “Ouzo effect”) where nanoemulsion is
obtained by a rapid diffusion of an organic solvent generally acetone or ethanol
from the oily phase to the aqueous phase. Direct O/W emulsion as well as inverse
W/O emulsion can be produced by this way. Spontaneous emulsification
mechanism originates from interfacial turbulence related to surface tension gra-
dient produced by the diffusion of solutes between two phases [54]. It is assumed
that drops are created by interfacial corrugations caused by a Marangoni effect
causing severe interfacial fluctuations. In the case of the presence of surfactants,
fluctuations of the interfacial amphiphile concentration create local supersaturation
of the surfactant at interface resulting in the nucleation and growth of drops [62—
64]. The study of the basic mechanism involved can be illustrated by a simple
ternary water/alcohol/oil ternary system through the determination of a phase
diagram which is essential to describe the diffusion path and to target the spon-
taneous emulsification domain [54]. In such diagram, as illustrated in Fig. 2.3, a
two-phase equilibrium region occurs corresponding to the spontaneous emulsifi-
cation (SE) domain. Upon dilution, the diffusion path of the water phase crosses
the SE region inducing spontaneous emulsification and the formation of
nanoemulsion.

In the field of nanoparticles synthesis, more complex systems are involved and
the ternary diagram has to be adjusted to take into account the potential influences
of additional components such as monomers, polymers, or surface active agents on
the modification of the diffusion pathway. Among all key parameters modifying
the droplet sizes and stability of nanoemulsions (pH, water and oil proportions,
solvent type and content, etc.), temperature strongly affects the solubility of the
organic solvent in the water and the oil phase and modifies consequently the
diffusion process.

Another route to produce spontaneous emulsification is the so-called emulsion
inversion point method (EIP) carried out at constant temperature. The method is
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Fig. 2.3 Diftusion path in a Alcohol
water/alcohol/oil system.
Segment (1-2): diffusion path
of the aqueous phase.
Segment (2-3): interfacial
equilibrium. Segment (3-4):
diffusion path of the oily
phase. Segment (1'-2):
crossing of the two-phase
equilibrium region induces
spontaneous emulsification

\-.

Spontaneous emulsification
1 (two-phase equilibrium_region)

Water Qil

based on a progressive dilution with water or oil of a microemulsion or liquid
crystals leading kinetically stable nanoemulsions [65-73]. Indeed, by changing the
water and oil proportion in microemulsion network, interfacial instabilities are
occurring resulting in the destabilization of the thermodynamically stable micro-
emulsion structure into nanoemulsions. Keeping in mind that the best conditions
have to be found to obtain the smallest drop sizes, determination of phase diagrams
is also required in this case and have to be adjusted carefully in function of the
formulation used for the design of nanoparticles (type of monomers, polymers,
initiators, drug encapsulated, etc.).

The third group of low-energy emulsification methods is the so-called phase
inversion temperature (PIT) method [74, 75] offering the main advantages to
obtain nanoemulsions with a potentially low amount of surfactant (typically less
than 5 wt %), a reduced toxicity since no organic solvent is needed, and a rela-
tively easy handling. It makes the method suitable for biotechnology applications
(nanomedecine, pharmaceutical science or cosmetics) since degradation of drug to
be encapsulated is avoided. This versatile way uses the ability of polyethylene
oxide (PEO)-based surfactants to change their affinity for water and oil in function
of temperature leading to a so-called “transitional phase inversion” of emulsions.
Typically, when temperature increases, the PEO blocks undergo dehydration
which modify the amphiphilic character of surfactants toward higher lipophilic
behavior. Consequently, an O/W emulsion produced at low temperature inverts
into a W/O one upon a temperature rising. Likewise, in the transitional region at
temperatures for which the surfactant exhibits similar affinity for the two immis-
cible phases, ultralow interfacial tension and low curvature create bicontinuous
microemulsion nanostructures. Therefore, the principle of the PIT method is to
suddenly breakup such structures maintained at the PIT temperature by rapid
cooling or dilution generating immediately kinetically stable nanoemulsions
[76-81]. Once again, phase diagram has to be established to determine the tran-
sitional inversion region in function of the formulation parameters (temperature,
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Fig. 2.4 Typical ‘formulation-composition’ map for a given water/surfactant/oil system showing
the emulsion inversion zones and the different types of emulsions. Path (1-2) illustrates a possible
transitional inversion from O/W emulsion to nano-W/O emulsion inducing by the crossing of the
ultra-low interfacial tension region HLD = 0

HLD
o

oil type, salinity, etc.) and of the water to oil ratio (WOR). This is suitable to target
the inversion path which has to be followed to produce nanoemulsions. The group
of Salager et al. has developed an empirical “Hydrophilic Lipophilic Deviation”
(HLD) expression (Eq. 2.1) based on the difference of the chemical potential of
surfactants in the two phases [82—-86].

HLD =o— EON + bS —kACN + /AT + aA (2.1)

where EON is the number of ethylene oxide groups for surfactants, S is the weight
percentage of electrolytes in the aqueous phase, ACN the amount of carbon
numbers of the n-alcane composing the oily phase, AT the temperature difference
from the reference temperature (25 °C), A the weight percentage of alcohol
potentially added, «, k, ¢ the parameters in function of the used surfactant, a, a
constant function of the types of alcohol and surfactants, and finally b a constant
function of the nature of the added electrolytes. It comes that HLD can be cal-
culated and its value depends on the different formulation parameters of the system
representing by the terms of the equation. HLD = 0 corresponds to the optimum
formulation where the surfactant has equal affinity to water and oil whereas HLD
> 0 and HLD < 0O represent higher lipophilic or hydrophilic behaviors, respec-
tively. Moreover, formulation-composition maps can be constructed as illustrated
in Fig. 2.4 [83, 87-91]. For a given system at constant stirring conditions and for a
fixed surfactant concentration, zones of macroemulsion, multiple emulsions, and
transitional region appear. It allows the identification of the best path conditions
(especially the temperature range) to produce transitional inversion of emulsion
[91-96]. Although transitional inversion presents many advantages for the prep-
aration of nanoparticles, this method is still anecdotal and very recently developed
in the literature for the production of lipid nanocarriers and nanocapsules or
polymer nanoparticles compared to high-energy emulsification techniques.
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Fig. 2.5 Scheme of the
principle of emulsification
with a rotor—stator device

High-Energy Emulsification Methods

Most of methods of preparation of nanoemulsions are based on mechanical pro-
cesses related to high-energy stirring techniques. In this field, the most common
device consists in a rotor—stator apparatus in which a shear stress is applied to
induce deformation of pre-emulsion droplets leading to their breaking into smaller
ones of uniform size (Fig. 2.5). The final diameter of the daughter droplets is
mainly determined by the applied stress and only weakly depends on the viscosity
ratio between the dispersed and the continuous phase [97-102].

Sonication is also a process widely used in the literature for nanoemulsification
[50, 103-114] and for the generation of polymer or lipid nanoparticles [115-127].
This process of ultrasound emulsification is performed under high frequency where
large drops are generated by the instability of interfacial waves [104, 105]. The
drops are subsequently broken into smaller ones through a cavitation mechanism.
Some authors have shown that optimal conditions for sizes reduction and better
nanoemulsion stability are obtained using high-power setting for short exposure
times [103]. Indeed, longer exposure times produce degradation of surfactant by
radicals which form during the thermal decomposition of water [128, 129].

In the past few years, others machines have been designed to obtain droplets
with more reproducible calibrated sizes and well-defined characteristics in the
view of large-scale production. These machines have been related to microfluidic
techniques that constitute at the moment an intense research area in progress
[130-137]. The principle is based on an extrusion mechanism where the dispersed
phase is forced to permeate through a microfiltration device to calibrate droplets in
the continuous phase (Fig. 2.6). The microfiltration units differ from their tech-
nological design and can be engineered as porous membranes, flow-focusing,
Y-shaped or T-type microchannels [138]. Polymeric particles of PLGA-PEG
[139], PCL [140], or alginate [141] have for example already been produced by
this technique.
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Fig. 2.6 Scheme of the Oily phase
principle of emulsification

using a microfiltration device -l- -()-

n rous membran
based on a porous membrane <»Aqueous phase
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2.3.1.2 Generation of Nanoparticles from Emulsion
Precipitation Induced by Solvent Removal

Macromolecules dissolved in the dispersed phase (mainly the oily one) of the
emulsion can undergo precipitation upon removal of the organic, often volatile
solvent. To perform this solvent extraction, several methods such as solvent
evaporation, solvent diffusion, or salting-out procedures have been developed and
constitute by far the most famous routes carried out in the field of organic
nanoparticles formation from emulsified systems. It comes from the versatility
character of this way that can be applied to a wide range of organic compounds
including synthetic polymers and natural bioorganic macromolecules such as
chitosan, polysaccharides, alginate, or gelatin.

Solvent Evaporation

The method consists in the preparation of nanoemulsion formulated with a poly-
mer dissolved in a volatile solvent solution [142]. Dichloromethane and chloro-
form are the most widely used solvents but are often replaced by ethyl acetate, less
toxic and hence much more adapted to the synthesis of controlled release systems
where drug encapsulation is generally involved. In this method performed under
vacuum, suspension is produced by evaporation of the polymer solvent from
emulsion droplets which is allowed to diffuse through the continuous phase [19].
This slow procedure involves first a fast evaporation period during which at least
90 % of the polymer solvent is evacuated followed by a slow evaporation period
where the few percent of the remaining solvent is extracted. During the first step,
droplets sizes dramatically decrease to reach a minimum value due to the high
solvent lost. In contrary, the second step is characterized by a significant increase
of the droplet diameters in reason to coalescence. This coalescence process can be
accentuated in the case of a polymer having interfacial adsorption properties
whereas for polymers characterized by poor surface active properties, the coa-
lescence is reduced. In addition, partially miscible solvents in the preparation of
emulsion can be used and change the conditions of evaporation. The volatile
solvent removal can be in this case realized by distillation [143].

Numerous examples of nanoparticles preparations by solvent evaporation can
be found in the literature with various polymers such as PLGA [144-147], PLA
[148, 149], or PCL [150] (Fig. 2.7). Also, amphiphilic copolymers (PEG-PLA
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Fig. 2.7 Examples of nanoparticles produced by the emulsion—solvent evaporation method.
a PLGA nanoparticles (adapted with permission from [145]). b PCL nanoparticles (adapted with
permission from [150])

Fig. 2.8 Scheme of preparation of nanoparticles by the emulsion—diffusion procedure. (/)
Partially water miscible solvent saturated with water. (2) Water saturated with solvent. (3)
Solvent saturated with water + dissolved polymer. (4) Water saturated with solvent + surfac-
tant. (5) Emulsification. (6) Dilution with water and formation of polymeric nanoparticles from
emulsion

[151, 152], PEG-PLGA [153], polysaccharides-PCL [154, 155]) nanospheres can
be produced by this method with no need of surfactant to ensure the emulsion
formation and the stability of the final nanoparticles suspension.

Solvent Diffusion

The solvent diffusion method also called solvent displacement method (Fig. 2.8)
requires a polymer solvent partially soluble in water [156—158]. The preparation of
emulsion involves two immiscible phases, but where the oil dispersed one is com-
posed of water saturated with the polymer solvent and where the continuous one is
composed of oil saturated with water. This can be obtained by mixing the polymer
solvent and water and waiting the decantation to get a two-phase system. At the
bottom and at the top of the resulting system, the solvent saturated water and the
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Fig. 2.9 Scanning Electron
Microscopy images of PLA
nanoparticles obtained with
the solvent diffusion method
(adapted with permission
from [161])

water saturated solvent can be collected, respectively. Oil-in-water emulsion is
prepared with the previous two immiscible phases and subsequently diluted with a
high quantity of water. This leads to the precipitation of the polymer induced by a
rapid diffusion of the organic solvent from the oil droplets to the continuous phase.
Several polymer solvents can be used such as ethyl acetate [143], isopropyl acetate
[159], benzyl alcohol, propylene carbonate [160], and surfactants such as pluronic
F68® or Polyvinyl alcohol (PVA) is often employed to play a role in the stabilization
and sizes of the emulsion droplets. PLA [161] (Fig. 2.9), PLGA [162—164], and PCL
[157] are the most common and suitable polymers used but gelatin or chitosan
nanoparticles [165—-167] have also been synthesized by this method.

In addition, this method involves a pure diffusion mechanism where the droplet
sizes drop suddenly in a millisecond time scale during solvent extraction and
polymeric nanoparticles formation. Among all factors impacting the reduction of
the particle diameters, one can cite the increase of the miscibility of water with the
organic solvent or of the stirring rate and the use and concentration of stabilizing
agents added in the emulsion. On the contrary, the rise of the polymer concen-
tration leads to significant increase of the particle sizes and polydispersity.
Generally, nanospheres are produced by this technique but adding a small amount
of oil in the organic phase results in the generation of nanocapsules.

Salting-Out

Very close to the solvent-diffusion method, this process involves emulsification
with a polymer solvent generally acetone that is normally totally miscible with
water. Actually, the artifice used to emulsify water and acetone is to dissolve high
contents of salt or sucrose in the aqueous phase to provoke a strong salting-out
effect modifying the solubility of water with the solvent [168]. The emulsion can
hence be formed with a polymer dissolved in the solvent droplets. Particles pre-
cipitation is induced, as in the solvent-diffusion process, by diluting the emulsion
and adding a large amount of water in the continuous phase to drop the salt
concentration and to cause extraction of the solvent out of the droplets.

The suitable electrolytes for this process are generally magnesium chloride
[169-171] or calcium chloride [172] but salting-out can also be produced by
saturation of the aqueous phase by PVA [173] which acts in addition as a
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viscosity-increasing agent and emulsion stabilizer. Poly(ethylene oxide) [169],
PLGA [172, 174], or poly(trimethylene carbonate) [175] particles, for instance,
have been synthesized by this method with diameters in a 100-500 nm range. The
stirring energy required for this method is also reduced which provides lower
particle diameter and less pronounced influence of the polymer concentration and
of the stirring speed on the emulsion droplets in comparison to more conventional
emulsification routes.

Gelation of the Emulsion Droplets

Another method to obtain nanoparticles after nanoemulsification is to gelify
polymer or crystalize lipid dissolved in the droplets [39, 176]. For instance, in the
case of agarose [177] or gelatin [127], the preparation of the nanoemulsion can be
performed at moderate high temperature above the melting point and subsequent
cooling down induces gelation of the emulsion droplets and their conversion into
nanoparticles. The same procedure can be applied for the production of solid lipid
nanoparticles by crystallization of the lipid under the melting temperature [39].
Gelation can be produced by other physicochemical factors such as pH or by
adding components like divalent cation (generally calcium) to induce ionic gela-
tion [178]. Polysaccharides biopolymers such as alginate or pectin are particularly
adapted since their chemical compositions based on uronic acids functions are
responsive to pH or to complexation with cations. In this kind of gelation, two
emulsions are generally prepared, the first one containing the dissolved biopolymer
and the second one containing the pH controlling agent or the cation. The two
emulsions are mixed under strong agitation to provoke droplets collision which is
essential to induce gelation and hence formation of nanoparticles.

Polymerization in Emulsion

Among all techniques used for the generation of nanoparticles from emulsions,
polymerization is the subject of the abundant literature since well-defined and
desired nanoparticles properties for a particular application can be attained through
this process [179-184]. In this case, instead of the previously described techniques
for which a solution of a preformed polymer is prepared, macromolecules form
through polymerization of monomers. The major emulsion polymerization tech-
niques can be classified into different methods such as conventional emulsion
polymerization, surfactant-free emulsion polymerization, as well as mini- (or
nanoemulsions) and microemulsions polymerizations which differ from the
kinetically and thermodynamically different emulsion behaviors. In addition, we
can cite interfacial polymerization, a very useful method for the preparation of
nanocapsules and living/controlled radical polymerization process that offers at
this moment a much better control of the polymer characteristics in comparison to
older conventional polymerization techniques.
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Conventional Emulsion Polymerization

This method can be considered as the traditional way to generate nanospheres from
emulsion polymerization and is still widely used nowadays. Generally, the com-
ponents are water, a monomer of low water solubility, a water-soluble initiator
which may be an ion or a free-radical and a surfactant. Polymerization starts in this
case when a monomer molecule collides with an initiator molecule. Another way
consist in initiating radical from the monomer itself using UV irradiation, ultra-
sonication, or y-radiation. Before or after the termination of the polymerization,
the solid particles can be formed. Various types of polymeric nanoparticles could
be produced by this technique such as poly(vinylcarbazole) [185], poly(methyl-
methacrylate) [186, 187], polystyrene [188—195], or poly(alkylcyanoacrylate)
[196-201] nanoparticles. In the latter case, anionic polymerization for which
initiation occurs by any nucleophilic groups like hydroxyl groups of water is the
most common way. In addition, performing anionic polymerization in acidic
conditions slows down the rate of reaction and hence favors the formation of
nanospheres instead of polymer aggregates. The particles sizes depend on the
surfactant used and can be obtained generally in a 50-300 nm range.

Surfactant-Free Emulsion Polymerization

In contrary to conventional emulsion polymerization, surfactant-free emulsion
polymerization is performed without emulsifier offering the major advantage to obtain
nanoparticles without any step of surfactant removal [202-208]. This could be
environmentally, energetically, and time-consuming advantageous especially for
high-scale productions of nanoparticles. The ingredients in such emulsifier-free system
are water, a water-soluble initiatior (like potassium persulfate), and monomers which
are generally vinyl or acrylic. The stabilization of nanoparticles in formation is ensured
in this case by the use of ionizable initiators or ionic co-monomers. Two mechanisms of
polymerization are involved, micellar-like nucleation [209, 210] and homogeneous
nucleation [211-216] that differs from the aqueous solubility of the monomer. PMMA
nanoparticles have been obtained by this technique using microwave irradiation
[217,218], redox initiation [219], or laponite clays as stabilizing agent for the emulsion
[220]. The general trend is that monomer concentration is a key parameter influencing
the particle sizes as illustrated in Fig. 2.10 where the increase of the monomer
concentration increases the particle size.

Polyacrylate nanospheres were also obtained and some authors have shown that
ultrasonic irradiation or the concentration of a stabilizing agent (4-styrene sulfonic
acid) altered the particle sizes and distribution [221]. Polythiophene nanoparticles
have been equally successfully prepared by Fe®* oxidative polymerization [222]
where the difference in the polymerization rates of monomers and the electrostatic
attraction between sulfonate and Fe** ions results in the production of core—shell
morphology with a size distribution ranging from 300 to 800 nm.

Although surfactant-free emulsion polymerization is considered as a simple and
“green” way for polymeric nanoparticles preparation, improvements have to be
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Fig. 2.10 Influence of 400
monomer concentration on
dispersity and average
particle size of PMMA
nanoparticles obtained
through surfactant-free
emulsion polymerization
(reprinted with permission
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conducted in the future to obtain monodisperse and more precisely controlled
particle sizes.

Miniemulsion Polymerization

This method can be distinguished from conventional and surfactant-free emulsion
polymerization by the generation of nanoemulsions using high-energy methods
(Fig. 2.11) and generally a low molecular mass compound as co-stabilizer prior
initiating polymerization [223-231]. The typical formulation consists in water,
monomer mixture, co-stabilizer, surfactant, and initiator. The droplets of the
nanoemulsion are generally composed of a pure monomer phase stabilized by a
suitable adsorbed surfactant. The polymerization mechanism widely employed is
radical polymerization which is initiated in the emulsions droplets via the incor-
poration, in most cases, of the initiator in the continuous phase. The general
mechanism assumed in the literature is the droplet nucleation mechanism sug-
gesting that radicals are generating in each monomer droplet taken as individual
reaction site [180, 232]. The number and size of particles do not consequently vary
during the polymerization process. The choice of the initiator and its solubility has
evidently a great influence on the final particles properties especially the particle
size. Even if inverse nanoemulsion polymerization is possible using hydrophilic
ingredients [233-235], in most cases, the hydrophobic character of the dispersed
monomer phase requires an oil-soluble initiator which is more suitable to obtain
well-defined nanoparticles.

Although radical polymerization is often selected for the generation of nano-
particles in miniemulsion polymerization, non-radical polymerization methods
such as polyaddition [236, 237], anionic polymerization [238], or metal-catalyzed
reactions [239] are less aggressive for drug encapsulation applications and can also
be used. Some authors [236, 237] have demonstrated for instance the preparation
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Fig. 2.11 Scheme of nanoparticles preparation from a typical miniemulsion polymerization
method. a Pre-emulsification b nanoemulsification using a high shear device ¢ formation of
polymeric nanoparticles upon addition of initiator

of polyurethane latex nanospheres using reaction between diisocyanate and acti-
vated diol in nanoemulsion droplets. The low water solubility of reactants and the
slower polymerization kinetics than emulsification are the main key factors
inducing the successful synthesis.

Microemulsion Polymerization

The main difference between microemulsion and miniemulsion polymerization
methods relies on the kinetic character of the dispersed phase produced in the
emulsified system. Indeed, in contrary to miniemulsion, microemulsion is a ther-
modynamically and spontaneous stable system prepared with a high quantity of
surfactant and characterized by an interfacial tension at the oil/water interface
close to zero [52, 64]. The generation of nanoparticles through microemulsion
polymerization generally results in smaller particle size (typically less than 80 nm)
than in miniemulsion polymerization processes. A water-soluble initiator is
introduced in the aqueous phase initiating the polymerization in only some swollen
micelles of the microemulsion containing the monomer. As time elapses, the
osmotic and elastic influence of the polymeric chains in formation destabilizes the
microemulsions leading to an increase in the particle size, to the formation of
empty micelles, and to a secondary nucleation [232, 240].

In the literature, various formulations have been investigated to prepare for
instance nanoparticles of polyvinyl acetate [241, 242], polyaniline [243-246],
polyacrylamide, or polypyrrole [247]. The studies highlighted the critical factors
that influence the final particle properties as the type of initiator and concentration,
the surfactant, the concentration of monomer, and the reaction temperature.

Microemulsion polymerization has a great potential in many applications but
retains important drawbacks relating to its high dilute formulation and its high
amount of surfactant which limit in a large extent the commercial use of this
technique.
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Fig. 2.12 Scheme of the different strategies of interfacial polymerization. (1) Introduction of the
monomer in the oily phase. (2) Introduction of monomer in the aqueous phase. (3) Introduction of
monomers in the oily and aqueous phase. (4) Polymerization using a membrane reactor device

Interfacial Polymerization

Interfacial polymerization is characterized by the polycondensation of monomers
at the droplet interface leading to the generation of mainly nanocapsules instead of
nanospheres. Different strategies have been developed (Fig. 2.12) which depend
on the formulation selected and the choice of monomers introduced either in the
continuous and/or in the dispersed phase.

The first way consists in introducing the monomer in the continuous phase of
the emulsified system. The monomer can subsequently react with the emulsion
droplets to form nanocapsules. Due to the hydrophobic character of the majority of
monomers used, the emulsions prepared in this case are generally of the W/O type.
Thus, a good solubility of the monomer for the external phase and its sufficient
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Fig. 2.13 TEM images of PEDOT nanocapsules and mesocellular foams. a Nanocapsules
prepared using 0.15 M of DeTAB. b Mixture of nanocapsules and mesocellular foams obtained
using 0.20 M of DeTab. ¢ Mesocellular foams prepared using 0.30 M of DeTab. d The
concentration ranges for formation of PEDOT nanomaterials as a function of the surfactant
hydrocarbon length and polymerization temperature. DeTab Decyltrimethylammonium bromide,
OTAB Octadecytrimethylammonium bromide, DoTAB Dodecyltrimethylammonium bromide.
(adapted with permission from [257])

reactivity toward the aqueous phase are critical factors that influence the success of
the procedure. For instance, in the case of the polymerization of alkylcyanoac-
rylate such as isobutyl-cyanoacrylate, hydroxyl ions catalyze the reaction and w/o
nanocapsules can be generated [248-255]. Lipophilic diisocyanate can also be
used due to its high hydrolyzable properties which induce conversion of the iso-
cyanate functions into amine [256]. The amine function can react subsequently
with another monomer molecule leading to polymerization at droplet interface.
Another interesting work showed by Jang et al. [257] is the possibility to obtain
from this first strategy different architectures of poly(3,4-ethylenedioxythiophene)
(PEDOT) nanomaterials. The method is based on a so-called “Surfactant Medi-
ating Interfacial Polymerization (SMIP)” method allowing selective synthesis of
either nanocapsules or mesocellular foams in function of the concentration of
quaternary ammonium-based surfactants (Fig. 2.13).

In the second strategy, the monomer is introduced in the droplet phase and
polymerization occurs by reaction with the continuous phase or by adding initiator
in the external phase [258, 259]. Initiator can also be added in the dispersed phase
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and polymerization is initiated by temperature. In this case, as polymerization
proceeds; gradual segregation of the polymer in formation toward the water/oil
interface creates nanocapsules. Another interesting procedure that could be pos-
sible is the simultaneous generation of interfacial polymerization and nanoemul-
sion using solvent diffusion. For instance, alkyl cyanoacrylate monomers can be
introduced in the oil dispersed phase containing a water miscible organic solvent
[62, 260-263]. Polymerization can thus be initiated along with the rapid solvent
diffusion to the aqueous continuous phase. Nanocapsules are hence formed at the
same time than the nanoemulsion.

Finally, the third route involves two reactive species of different solubilities
introduced, respectively, in the continuous and dispersed phases. The reaction
takes place at the interface of the two liquids. This method is the most commonly
used for the generation of nanocapsules. Evidently, the type of monomers added
defines the nature of the final polymer shell. For instance, polyamides [264],
polyurea [265], polyurethanes [57] nanocapsules can be produced by this tech-
nique using generally the reaction of isocyanate functions with activated diol.
Some authors have shown that the thickness of the polymer wall is independent of
the concentration of the lipophilic monomer but varies with the amount of the
hydrophilic monomer added [264].

From the strategies described above, different methods have been developed to
design nanoparticles by interfacial polymerization but a main problem inherent to
the well control of the particle size remains. In the recent past years, the use of
membrane reactors has been developed to overcome this problem since a better
controlled addition of one reactant to another reactant can be achieved [266, 267].
Indeed, this versatile technique allows the preparation of either nanospheres or
nanocapsules and offers the possibility to target the nanoparticle size by a suitable
choice of the membrane parameters (membrane pore radius, cross-flow velocity,
shape of the pore opening, transmembrane pressure, etc.) and the formulation
factors (viscosity of the dispersed and continuous phase, type of surfactant, etc.)
[268, 269]. However, nanoparticles preparation by membrane reactors is often
considered as an expensive process due to a complicated technological develop-
ment which constitutes a major drawback to its widespread utilization.

Controlled/Living Radical Polymerization

Main limitations caused by fast radical-radical terminations are inherent to radical
polymerization including the control of the molar mass and mass distribution, the
end-functionalities and the macromolecular architecture. To obtain a better control
of such parameters, the controlled/living radical polymerization [270-272] has
emerged as a new field in the recent past years helped by the industrial production of
hydrophilic polymeric nanoparticles designed specifically for biomedical applica-
tions and by environmental concern with the development of the so-called “green
chemistry”. The principal methods of controlled/living radical polymerization are
nitroxide-mediated polymerization (NMP) [273-277], atom transfer radical poly-
merization (ATRP) [278-284], and reversible addition and fragmentation transfer
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chain polymerization (RAFT) [285-287]. Suitable properties of nanoparticles can be
obtained by optimizing different parameters such as the nature and concentration of
the monomer, surfactant, initiator, and the type of emulsion but above all the type and
concentration of the mediating (control) agent. Several kinds of polymeric nano-
particles have been synthesized by this technique such as for instance poly(butyl
acrylate) [275, 276, 288], poly(styrene) [277, 286], or poly(methyl methacrylate)
[282,284] nanoparticles with typical particle size in a 30—400 nm range, using either
NMP, ATRP, or RAFT approaches and different formulations. The presence of
residual control agent is at this moment the major problem of controlled/living
radical polymerization. For environmental purpose, the removal of control agent
needs to be performed which caused additional difficulties and cost for this process.

2.3.2 One-Step Procedures

2.3.2.1 Nanoprecipitation

Nanoprecipitation method also called solvent displacement method was developed
by Fessi et al. [63] in the end of 1980s. It is one of the easiest, most economic, and
reproducible routes to produce nanospheres using preformed polymers instead of
monomers. This method, very close to the previous described spontaneous
emulsification technique, is based on the interfacial deposition of a polymer after
displacement of a semipolar solvent, miscible with water, from a lipophilic
solution. Three ingredients are required to achieve the process: the polymer, the
polymer solvent, and the non-solvent of the polymer. The polymer can be syn-
thetic, semisynthetic, or natural and the most frequently used polymer solvents are
ethanol, acetone, hexane, methylene chloride, or dioxane. The choice of the
polymer solvent is guided by two factors: a high solubility in water and an easy
removal by evaporation. To satisfy these conditions, acetone is often selected
[63, 289, 290] but a binary blend of solvent like acetone with a small amount of
water or blends of acetone and ethanol [291-293] or methanol [294] can be used.
The non-solvent phase is composed of one or a mixture of nonsolvent of the
polymer with eventually the addition of surfactants. The nanoparticles are gen-
erated by a rapid diffusion of the polymer solvent in the non-solvent phase by
mixing the polymer solution with the latter one. This results in a drop of the
interfacial tension between the two phases causing an increase of the surface area
and the instantaneous precipitation of polymeric nanoparticles. The lipophilic
polymer solution is generally added slowly to the non-polymer solvent but the
reverse order also produces nanoparticles. Smaller, more well-defined and nar-
rower distribution of the nanoparticle sizes, typically in a 75-900 nm range, can be
obtained than those obtained by emulsification solvent evaporation technique.
Many parameters are conditioning the final nanoparticle properties such as the
organic phase injection rate, the agitation during addition of the polymer solution,
the miscibility of the organic solvent with the non-solvent phase, or the nature of
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the polymer/solvent interactions. The type and concentration of added surface
active agents also influence the nanoprecipitation process [157, 295] since sur-
factants help in the stabilization of the nanoparticles prevented from aggregation
which is especially useful for long storage periods of suspensions.

The method of nanoprecipitation can be performed with various formulation
including a wide range of polymers such as poly(e-caprolactone) [295-299],
polylactide [300, 301], poly(lactide-co-glycolide) [302, 303], poly(hydroxyl
butyrate) [304], or even peptides [305]. Moreover, the process can be applied to
non-polymeric compounds such as cyclodextrin [306] and drug [307].

Finally, nanoprecipitation is a method widely used for the preparation of
polymeric or non-polymeric nanospheres due its simplicity, rapidity, and repro-
ducibility even though the low polymer concentration required limits the recov-
ering yield of nanoparticles.

2.3.2.2 Dialysis

Very close to the above described method, dialysis is based on a solvent dis-
placement mechanism but includes, in contrary to the conventional nanoprecipi-
tation technique, additional tools such as dialysis tubes or semi-permeable
membranes with suitable molecular weight cutoff which serve as a physical barrier
for the polymer [308-310]. Thus, dialysis is performed against a nonsolvent of the
polymer miscible with the polymer solvent. The displacement of the polymer
solvent through the membrane induces a progressive loss of solubility of the
polymer leading to the formation of homogeneous suspensions of nanoparticles.
According to the solvents used, the morphology and size of the particles can be
affected [311]. Various formulations have been investigated and nanoparticles of
different types of polymers such as poly(lactide)-b-poly(ethylene oxide) [312],
polystyrene [313], poly(L-lactic acid)-b-poly(ethylene glycol) [314], poly(y-glu-
tamic acid) [311], or cellulose-derived polymers [315] can be obtained by dialysis.

2.3.2.3 Desolvation

The desolvation method is based on a slow addition of a desolvation factor such as
salts, alcohols, or solvents in a solution of macromolecules to provoke the pre-
cipitation of the polymer [316, 317]. This method, rather similar than other
nanoprecipitation methods based on a loss of solubilization of the polymer, is
however often associated to the generation of biopolymeric nanoparticles. Indeed,
desolvation process is generally employed for the production of nanoparticles of
different types of proteins (Fig. 2.14) such as human serum albumin [318-323],
bovine serum albumin [324, 325], gliadin [326-328], or gelatin [318, 329-335].
The desolvation is often followed by a cross-linking step performed with the
addition of a certain amount of aldehyde (typically glutaraldehyde) to stabilize the
formed nanoparticles. In the case of gelatin (type A), a two-step desolvation route
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Fig. 2.14 TEM images of
Gelatin (a), Human serum
albumin (b), and Bovine
serum albumin (c, d; high and
low magnification,
respectively) nanoparticles
prepared by the desolvation
method (reprinted with
permission from [323, 324,
334] respectively)
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has been developed by Coester et al. [329, 330, 336]. In the first step, the low
molecular gelatin fractions present in the supernatant is removed by decanting.
The sediment is then redissolved and desolvated in a second step at pH 2.5. This
two-step process can also be applied to type B gelatin but the pH is adjusted at 12.
Polysaccharide particles of chitosan [337] or hyaluronic acid [338] can also be
obtained by desolvation but using sodium sulfate as desolvating agent in these
cases.

2.3.2.4 Self-Assembly and Gelation
Polyelectrolytes Complexation

In this case, the organic nanoparticles are obtained based on the association of
oppositely charged macromolecules forming, when mixed in specific conditions,
polyelectrolyte complexes. Such particles are widely used and developed as in
vivo drug delivery carrier of nucleic acids [339, 340]. In this case, nucleic acids
play the role of drug as well as a component of the drug delivery system. The
polycations, typically poly(ethylenimine), poly(lysine) or chitosan, are generally
employed as the opposite (positive) charged compound able to interact with the
negative charges of the nucleic acid phosphate groups [340]. One of the key
parameters to optimize the nanoparticles formation is the ratio N/P of the positive
amine groups noted “N” (as nitrogen) to the nucleic acid negative phosphate
groups noted “P”. Thus, a value of N/P above one means a polyelectrolyte
complex positively charged where the internal polyelectrolyte chains of the system
are able to be swollen by water.
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Other types of complexes can be form based on the association of alginate, a
negatively charged polysaccharide, and poly(lysine), a positively charged peptide
[341]. Dextran sulfate and chitosan can also interact to form complexes [342-344].

An interesting feature of polyelectrolyte complexes is the possibility to add
one polyelectrolyte in excess compared to the other in order to modulate the net
charge of the nanoparticles and to induce colloidal stabilization. Indeed, the
excess of component is segregated at the outer shell of the complex which
produces a core—shell structure where the surface charge of the nanosphere is
conferred by the polyelectrolyte in excess. In addition, the nanoparticle size is
influenced by the chain length ratio of the macromolecules which conditions the
mutual role of each electrolyte in the complex. Indeed, the highest molecular
weighted compound serves as host for the lowest weighted one which is defined
as the guest [342].

“Lock and Key” Nanogels

Supramolecular nanoassemblies based on a “lock and key” concept lead nano-
spheres formed by neutral association of a certain type of macromolecules that
have been developed recently [345, 346]. These polymers are composed of dextran
modified by the grafting of alkyl chains and a poly(beta-cyclodextrin). The
assembly occurs spontaneously in aqueous medium forming a hydrogel since the
alkyl chains of the modified dextran are incorporated as a guest in the hydrophobic
cavities of the host poly(beta-cyclodextrin). One of the main advantages of this
system is the efficiency of the association phenomena which can lead 95 % of
incorporation of the guest in the nanogel as well as a nondependence of the
protocol followed (order of introduction of the polymer solutions, method of
mixing, temperature, etc.). However, the final properties of nanogels depend on
various factors such as the polymer concentrations, the weight ratio between the
host and the guest, the number of carbons in the alkyl chains, or the percentage of
substitution of the glucose units of dextran by the alkyl chains. Finally, these
nanogels used as drug delivery devices of hydrophobic drugs such as benzophe-
none and tamoxifen exhibit excellent loading efficiencies (at least 90 %) and a
well- controlled release of the drugs over a period of 16 days.

Tonic Gelation

Synthesis of nanoparticles by ionic gelation is commonly performed with bio-
polymers especially charged polysaccharides in aqueous medium in very dilute
solution (Fig. 2.15). Indeed, the polymer is dissolved in water with a concentration
below the gel point and can react with small ions of the opposite charges to form
clusters. These clusters can be stabilized subsequently using oppositely charged
polyelectrolytes. For instance, using alginate, gelation is typically carried out in
the presence of calcium ions leading to a pre-gel phase which is then stabilized
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Fig. 2.15 Examples of polysaccharides-based nanoparticles prepared by ionic gelation.
a Alginate/chitosan nanoparticles (adapted with permission from [357]). b Influence of
calcium chloride/sodium alginate ratio on alginate/polylysine and alginate/chitosan nanoparticles
(Reprinted with permission from [348]). ¢ Chitosan nanoparticles. d Chitosan-coated PEO-PPO
diblock copolymer (adapted with permission from [359])

with polycations such as polylysine [341, 347-350] or chitosan [348, 351-357]. It
is noted that alginate can react with polylysine without addition of cations to form
a simple polyelectrolyte complex but a pre-gel phase ensures a more compact
structure of the nanogel. Furthermore, the size of the nanoparticles obtained
greatly depends on the concentration of the biopolymers and is also influenced by
the molecular weight of the opposite charged macromolecule.

Chitosan nanoparticles can also be produced via ionic gelation. In contrary to
alginate, chitosan is positively charged at neutral pH and in consequence, can form
nanogels with anionic ions like tri-polyphosphates (TPP). Thus, the pre-gel phase
is induced, as for alginate, in diluted solution with the addition of a small amount
of TPP. The nanoparticles can be stabilized by copolymers such as pluronic® and
their sizes depend on the concentration of chitosan but are not influenced by the
TPP concentration. Calvo et al. [358, 359] have demonstrated the possibility to
design chitosan nanoparticles and chitosan coated with a diblock PEO-PPO
copolymer using this method (Fig. 2.15). The authors have shown the modification
of sizes and zeta potential in function of the amount of the copolymer. An
interesting feature of chitosan nanoparticles obtained from this method is their
ability to swell and shrink upon ionic strength or pH variations. Indeed, an increase
of the pH from acidic to basic causes deprotonation of the chitosan glucosamine
units and, as a consequence, a gel shrinking due to the reduction of the intramo-
lecular electric repulsions inside the particles [360]. In addition, variation of the
ionic strength by increasing the concentration of salt (typically KCl) in the med-
ium drops the chitosan—TPP interactions which favor the particles swelling or even
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their complete restructuration. Thus, due to their triggered swelling response upon
pH or ionic strength variations, chitosan nanogels are evidently investigated as
drug delivery nanocarriers [361-365].

Finally, ionic gelation is a method that offers the main advantages of a solvent-
free and a relative simple preparation of organic nanoparticles but suffers from the
high diluted conditions which limit the yield of production of particles.

2.3.2.5 Organic Nanoparticles Prepared by Drying Processes

In the past few years, environmental considerations have motivated research on the
development of methods of nanoparticles synthesis avoiding the utilization of
organic solvents. In this aim, supercritical or spray drying processes offer the
possibility to design and prepare nanoparticles without the main drawbacks of the
traditional methods [47, 48, 366-370].

Supercritical Drying

Two procedures have been developed for the production of nanoparticles using
supercritical fluid. The first one is based on a rapid expansion of a supercritical
solution and the second one is founded on a rapid expansion of a supercritical
solution into liquid solvent.

Rapid Expansion of Supercritical Solution

In this method, organic macromolecules are solubilized in a supercritical fluid
solution which subsequently undergoes a rapid expansion through a nozzle into
ambient air. Well-dispersed particles can form resulting from a homogeneous
nucleation imposed by the high supersaturation conditions combined with the
rapid pressure reduction [371]. Generally, CO, is the supercritical fluid used in the
majority of studies. A typical experimental apparatus is composed of three units: a
high pressure stainless steel mixing cell, a syringe pump, and a pre-expansion unit.
The polymer is dissolved in a CO, solution at ambient temperature in the mixing
cell. The solution moves in the pre-expansion unit with the help of the syringe
pump and is heated isobarically to the pre-expansion temperature until it expands
through the nozzle at ambient pressure. Poly(heptadecafluorodecyl acrylate) [372]
or poly(L-lactic acid) [373] nanoparticles were yet prepared by this technique and
it appears that various factors impact the properties of the particles formed such as
the concentration and degree of saturation of the polymer, the processing condi-
tions, the molecular mass and the melting point of the polymer, etc. Although the
method is performed without organic solvents and produces a majority of nano-
sized particles, the main drawback is the generation of microsized particles or
agglomerates. This is due to a coalescence mechanism involved in the free jet. To
overcome this problem, another technology has been developed.
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Fig. 2.16 Left: Scheme showing the experimental setup of the rapid expansion of supercritical
fluid solution into liquid solvent process. Right: SEM images of PHDFDA nanoparticles obtained
in presence of NaCl and about 5 min after the rapid expansion process. (adapted with permission
from [375])

Rapid Expansion of Supercritical Solution into Liquid Solvent

In contrary to the above method, the supercritical solution expands in this case into
a liquid solvent instead of ambient air [374] (Fig. 2.16). The primary nanosized
particles are not allowed to grow in the expansion jet due to the presence of the
liquid solvent. For instance, poly(heptadecafluorodecylacrylate) (PHDFDA) [375]
particles were produced using water as the solvent in which were expanded the
supercritical solution and precipitated the polymer. It was shown that the particle
formation results from the aggregation of initially formed nanoparticles. In addi-
tion, the presence of NaCl in the water phase helps to a better stabilization of the
nanoparticles due to an increase in the ionic strength.

Poly(methyl methacrylate) and poly(L-lactic acid) nanomaterials were also syn-
thesized by this method using a CO,-cosolvent as the supercritical fluid. The cosolvent
allows a better solubilization of the polymers in the supercritical solution and the
presence of NaCl in the water solution generates only nanosized particles [376].

However, in spite of the wide spectrum of fluids available (carbon dioxide,
n-pentane, ammonia, etc.), the poor solubility of polymers in these supercritical
fluids remains a main drawback of this technology.

Spray-Drying
Spray-drying process has been used in the past few years for the production

of microsized organic particles or to convert nanoparticle suspensions in dry
powder mainly for biomedical and pharmaceutical applications especially in drug
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Fig. 2.17 Scheme of the nano Spray-Dryer B-90 (reprinted with permission from [45])

delivery [377-379]. A typical spray-drying process consists in the atomization of a
liquid into a spray of fine droplets brought subsequently in contact with a hot
drying gas to evaporate the moisture and to form the solid product which is finally
recovered via generally a cyclone unit. Spray-drying technology has undergone
constant evolution in the past years and the synthesis of polymeric nanosized
particles obtained in a one-step procedure by spray-drying a polymer solution has
emerged recently. For instance, Li et al. [45] described the preparation of different
types of polymeric nanoparticles such as Arabic gum, whey protein, polyvinyl
alcohol, modified starch, and maltodextrin based on a “nano spray dryer”, an
innovative new spray-drying technology developed by Biichi® (Fig. 2.17).

Very recently, the group of Lee et al. [46] has used the same technology to produce
bovine serum albumin nanoparticles. In contrary to conventional spray dryer, the “nano
spray dryer” is characterized by a vibration mesh spray technology creating tiny droplets
in a range of a smaller order of magnitude than the conventional apparatus. The gen-
eration of droplets is based on a piezoelectric actuator driven at an ultrasonic frequency
(i-e., 60 kHz) ensuring vibration of a thin perforated membrane with micron-sized holes
which can vary from 4 to 7 um in diameter. The membrane vibration causes ejection of
millions of nanodroplets per second with a very narrow size distribution. The final sizes
and standard deviation of the nanoparticles obtained depend on several parameters such
as the nature and concentration of the polymer, the spray mesh size, the operating
conditions (drying temperature, feed rate, drying gas flow rate, etc.), or the concentration
of surfactant, if present in the formulation. Finally, another advantage of this novel
technology is the high yield production of particles that can be in 70-95 % range.
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2.4 Conclusion

This chapter provides an overview of the main synthesis methods of organic and
bioorganic nanoparticles reported in the literature. Two approaches are highlighted
based on either one- or two-step procedures. In the case of two-step procedures, a
nanoemulsification step is required prior to conversion of nanodroplets into
nanoparticles. It constitutes an important part of the challenge to obtain materials
with well-defined structures and morphologies. High-energy emulsifications are by
far the most widely used methods but low-energy emulsifications, still few
reported, are undergoing a great expansion due to their main advantage in terms of
environmental impact. Conversion of nanoemulsions into nanoparticles can be
done subsequently in the second step through several ways including nanogelation,
solvent removal, salting out, or polymerization.

In the case of one-step procedures, no nanoemulsification is required and the
nanoparticles can be generated via different mechanisms such as nanoprecipita-
tion, desolvation, self-assembly, nanogelation, or using more technological ways
such as supercritical drying or nanospray-drying methods.

In the field of organic nanoparticles, according to the synthesis methods
described above, the control of size, morphology, and structure of particles is still
submitted to a number of difficulties that have to be overcome to develop new
functional nanomaterials based on organic nanoparticles in the future. A better
fundamental knowledge of the processes and mechanisms controlling the particles
synthesis should be the subject of an intensive research in the next decades. Both
technological aspects and precipitation techniques in solution should be developed
and improved simultaneously to ensure a wide spectrum of preparation methods
easily adapted to a large and increasing range of organic materials available.
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