
Chapter 2
Introduction to Rotor Dynamics

Rotor dynamics is the branch of engineering that studies the lateral and torsional
vibrations of rotating shafts, with the objective of predicting the rotor vibrations and
containing the vibration level under an acceptable limit. The principal components
of a rotor-dynamic system are the shaft or rotor with disk, the bearings, and the
seals. The shaft or rotor is the rotating component of the system. Many industrial
applications have flexible rotors, where the shaft is designed in a relatively long and
thin geometry to maximize the space available for components such as impellers
and seals. Additionally, machines are operated at high rotor speeds in order to max-
imize the power output. The first recorded supercritical machine (operating above
first critical speed or resonance mode) was a steam turbine manufactured by Gus-
tav Delaval in 1883. Modern high performance machines normally operates above
the first critical speed, generally considered to be the most important mode in the
system, although they still avoid continuous operating at or near the critical speeds.
Maintaining a critical speed margin of 15 % between the operating speed and the
nearest critical speed is a common practice in industrial applications.

The other two of the main components of rotor-dynamic systems are the bear-
ings and the seals. The bearings support the rotating components of the system and
provide the additional damping needed to stabilize the system and contain the ro-
tor vibration. Seals, on the other hand, prevent undesired leakage flows inside the
machines of the processing or lubricating fluids, however they have rotor-dynamic
properties that can cause large rotor vibrations when interacting with the rotor. Gen-
erally, the vibration in rotor-dynamic systems can be categorized into synchronous
or subsynchronous vibrations depending on the dominant frequency and source of
the disturbance forces. Synchronous vibrations have a dominant frequency com-
ponent that matches the rotating speed of the shaft and is usually caused by the
unbalance or other synchronous forces in the system. The second type is the sub-
synchronous vibration or whirling, which has a dominant frequency below the op-
erating speed and it is mainly caused by fluid excitation from the cross-coupling
stiffness.

In this chapter we present a short introduction to rotor dynamics, with the in-
tention to familiarize the reader with basic concepts and terminologies that are of-
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ten used in describing AMB systems. The material presented here is based on the
rotor-dynamics course notes prepared by Allaire [5], and the many books avail-
able in rotor dynamics by authors such as Childs [30], Genta [49], Kramer [78],
Vance [115], and Yamamoto and Ishida [119]. First, the mathematics behind the
basic rotor-dynamic principles are introduced through the example of a simple ro-
tor/bearing system model. The primary concerns in rotor-dynamic systems, includ-
ing the critical speed, unbalance response, gyroscopic effects and instability exci-
tation, are discussed in the sections throughout this chapter. Finally, the standards
published by the American Petroleum Institute for auditing the rotor response in
compressors are presented in detail. Most of these standards are directly applicable
to compressors with AMBs, and they will play an important role in the design of the
AMB levitation controller for the compressor test rig in Chap. 7.

2.1 Föppl/Jeffcott Single Mass Rotor

Rotor-dynamic systems have complex dynamics for which analytical solutions are
only possible to obtain in the most simple cases. With the computational power that
is easily available in modern days, numerical solutions for 2D and even 3D rotor-
dynamic analysis have become the standard. However, these numerical analyses do
not provide the deep insight that can be obtained from a step-by-step derivation of
an analytical solution, such as how the different system response characteristics are
interconnected in the final solution. For example, numerical analysis can accurately
estimate the location of the resonance mode of the system, but it cannot give an
analytical relationship between that mode frequency and the amount of damping
and stiffness on the rotor.

The vibration theory for rotor-dynamic systems was first developed by August
Föppl (Germany) in 1895 and Henry Homan Jeffcott (England) in 1919 [5]. Em-
ploying a simplified rotor/bearing system, they developed the basic theory on pre-
diction and attenuation of rotor vibration. This simplified rotor/bearing system that
is commonly known as the Föppl/Jeffcott rotor, or simply the Jeffcott rotor, is of-
ten employed to evaluate more complex rotor-dynamic systems in the real world. In
this section we overview the analytical derivation of the undamped and damped re-
sponses of the Föppl/Jeffcott rotor. We will use these results throughout this chapter
to characterize the dynamics of complex rotor-dynamic systems that can be found
in actual industrial applications.

Figure 2.1 illustrates the single mass Jeffcott rotor with rigid bearings. The rotor
disk with mass m is located at the axial center of the shaft. The mass of the shaft in
the Jeffcott rotor is assumed to be negligible compared to that of the disk, and thus
is considered to be massless during the analysis. The geometric center of the disk
C is located at the point (uxC, uyC) along coordinate axis defined about the bearing
center line, and the disk center of mass G is located at (uxG, uyG). The unbalance
eccentricity eu is the vector connecting the points C and G, and it represents the
unbalance in the rotor disk. The rotating speed of the disk/shaft is given by ω, and
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Fig. 2.1 Single mass Jeffcott
rotor on rigid bearings

without loss of generality we assume that eu is parallel with the x-axis at the initial
time t = 0. Lastly, uC is the displacement vector with phase angle θ that connects
the origin and the point C, and φ is defined to be the angle between the vectors uC
and eu.

Under the assumption that the rotor disk does not affect the stiffness of the mass-
less shaft, the lateral bending stiffness at the axial center of a simply supported
uniform beam is given by

ks = 48EI

L3
, (2.1)

where E is the elastic modulus of the beam, L is the length between the bearings,
and I is the shaft area moment of inertia. For a uniform cylindrical shaft with diam-
eter D, the equation for the area moment of inertia is

I = πD4

64
. (2.2)

Additionally, we assume that there is a relatively small effective damping acting on
the lateral motion of the disk at the rotor midspan, and the corresponding damping
constant is given by cs. This viscous damping is a combination of the shaft structural
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damping, fluid damping due to the flow in turbomachines, and the effective damping
added by the bearings.

The dynamic equations for the Föppl/Jeffcott rotor are derived by applying New-
ton’s law of motion to the rotor disk. With the assumption that the shaft is massless,
the forces acting on the disk are the inertial force and the stiffness/damping forces
generated by the lateral deformation of the shaft. The lateral equations of motion in
the x- and y-axes as shown in Fig. 2.1 are found to be

müxG = −ksuxC − csu̇xC, (2.3a)

müyG = −ksuyC − csu̇yC, (2.3b)

where (uxG, uyG) and (uxC, uyC) are the coordinates of the mass center and geomet-
ric center, respectively. The coordinates of the disk center of mass can be rewritten
in terms of its geometric center C and the rotor angle of rotation ωt at time t ,

uxG = uxC + eu cos(ωt), (2.4a)

uyG = uyC + eu sin(ωt). (2.4b)

Substituting the second time derivative of Eqs. (2.4a), (2.4b) into Eqs. (2.3a), (2.3b),
we obtain the equations of motion for the Föppl/Jeffcott rotor in terms of the disk
geometric center as

müxC + ksuxC + csu̇xC = meuω
2 cos(ωt), (2.5a)

müyC + ksuyC + csu̇yC = meuω
2 sin(ωt). (2.5b)

We note here that, as the bearings are considered to be infinitely stiff and the
rotor disk does not tilt, this model does not include the gyroscopic effects acting on
the rotor. The shaft is fixed at the bearing locations, thus it is always aligned to the
bearing center line. The effect of the gyroscopic forces in rotor-dynamic systems
will be discussed in Sect. 2.2. Additionally, no aerodynamics or fluid-film cross-
coupling forces are included in this simplified analysis. These disturbance forces are
mostly generated at the seals and impellers of the rotor due to the circumferential
difference in the flow, and they are not modeled in this section. Aerodynamic cross-
coupling forces will be discussed in Sect. 2.3. As a result of all this, the equations
of motion in Eqs. (2.5a), (2.5b) are decoupled in the x- and y-axes.

2.1.1 Undamped Free Vibration

The undamped free vibration analysis deals with the rotor vibration in the case of
negligible unbalance eccentricity (eu = 0) and damping (cs = 0). The equations of
motion in Eqs. (2.5a), (2.5b) are simplified to

müxC + ksuxC = 0, (2.6a)

müyC + ksuyC = 0. (2.6b)
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The solution to this second order homogeneous system takes the form of

uxC = Axe
st , (2.7a)

uyC = Aye
st , (2.7b)

for some complex constant s. The values of the constants Ax and Ay are obtained
from the initial conditions of the rotor disk. Substituting the solution in Eqs. (2.7a),
(2.7b) into Eqs. (2.6a), (2.6b) we obtain

ms2Axe
st + ksAxe

st = (
ms2 + ks

)
Axe

st = 0, (2.8a)

ms2Axe
st + ksAxe

st = (
ms2 + ks

)
Aye

st = 0. (2.8b)

The above equations hold true for any value of Ax and Ay if the undamped charac-
teristic equation holds,

ms2 + ks = 0. (2.9)

Solving the above equality for the complex constant s, we obtain the following
solution:

s1,2 = ±jωn, (2.10)

where ωn is the undamped natural frequency of the shaft defined as

ωn =
√

ks

m
=

√
48EI

L3m
. (2.11)

Thus, the solutions to the equation of motion in Eqs. (2.6a), (2.6b), are undamped
oscillatory functions with frequency ±ωn. The undamped critical speed of the sys-
tem is defined as

ωcr = ±ωn, (2.12)

corresponding to the positive forward +ωn and the negative backward −ωn compo-
nents. The forward component indicates the lateral vibration that follows the direc-
tion of the shaft rotation, and the backward component represents the vibration that
moves in the opposite direction. The final solutions to the undamped free vibration
are given by the linear combination of the two solutions found in Eqs. (2.7a), (2.7b)
and Eq. (2.10),

uxC = Ax1e
jωnt + Ax2e

−jωnt

= Bx1 cos(ωnt) + Bx2 sin(ωnt), (2.13)

and

uyC = Ay1e
jωnt + Ay2e

−jωnt

= By1 cos(ωnt) + By2 sin(ωnt), (2.14)

for some values of Axi and Ayi , or Bxi and Byi , which can be found from the initial
conditions of the rotor.
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2.1.2 Damped Free Vibration

Now consider the free vibration of the Föppl/Jeffcott rotor with a non-zero effective
shaft damping acting on the system. Newton’s equation of motion in Eqs. (2.5a),
(2.5b) becomes

müxC + ksuxC + csu̇xC = 0, (2.15a)

müyC + ksuyC + csu̇yC = 0. (2.15b)

The solutions to the above system of homogeneous second order differential equa-
tions take the same form as in Eqs. (2.7a), (2.7b). Substituting these solutions into
Eqs. (2.15a), (2.15b), we obtain

(
ms2 + ks + cs

)
Axe

st = 0, (2.16a)
(
ms2 + ks + cs

)
Aye

st = 0. (2.16b)

These equations hold for any initial condition if the damped characteristic equation
holds:

ms2 + ks + cs = 0. (2.17)

The zeros of the characteristic equation, also know as the damped eigenvalues of the
system, are found to be

s1,2 = − cs

2m
± j

√
ks

m
−

(
cs

2m

)
. (2.18)

Generally, the rotor/bearing system is underdamped, which means that

cs

2m
<

ks

m
,

and s will have an imaginary component.
Define the damping ratio as

ζ = cs

2mωn
. (2.19)

This value corresponds to the ratio of the effective damping cs to the critical value in
the damping constant when the system becomes overdamped, or the imaginary part
of the solution in Eq. (2.18) vanishes. With this newly defined ratio, the solutions to
Eqs. (2.16a), (2.16b) can be rewritten as

s1,2 = −ζωn ± jωn

√
1 − ζ 2. (2.20)

The imaginary component of s1,2 is known as the damped natural frequency,

ωd = ωn

√
1 − ζ 2. (2.21)
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For traditional passive bearings, the value of the damping coefficient can vary be-
tween 0.3 > ζ > 0.03, although a minimum of ζ = 0.1 is normally considered as
needed for the safe operation of the machine. The final solutions to the undamped
free vibration are found to be the linear combination of the solutions found in
Eqs. (2.7a), (2.7b) and Eq. (2.18), that is,

uxC = e−ζωnt
(
Ax1e

jωdt + Ax2e
−jωdt

)

= e−ζωnt
(
Bx1 cos(ωnt) + Bx2 sin(ωnt)

)
, (2.22)

and

uyC = e−ζωnt
(
Ay1e

jωdt + Ay2e
−jωdt

)

= e−ζωnt
(
By1 cos(ωnt) + By2 sin(ωnt)

)
, (2.23)

for some values of Axi and Ayi , or Bxi and Byi , dependent on the initial condition
of the rotor.

A typical response for an underdamped system in free vibration is shown in
Fig. 2.2. We observe that the response is oscillatory, where the frequency is given
by the damped natural frequency ωd. Because of the damping, the magnitude of the
oscillation is reduced over time, and the rate of decay is a function of the damping
ratio ζ and the undamped natural frequency ωn. For most rotor-dynamic systems,
the damping ratio is smaller than 0.3 and the free vibration response is similar to the
underdamped response in Fig. 2.2.

2.1.3 Forced Steady State Response

Finally, we consider the forced response of the Jeffcott rotor with a non-zero mass
eccentricity. Using the definition of ωn and ζ as given above, the equations of motion
for the rotor are rewritten into the form

üxC + 2ζωnu̇xC + ω2
nuxC = euω

2 cos(ωt), (2.24a)

üyC + 2ζωnu̇yC + ω2
nuyC = euω

2 sin(ωt). (2.24b)

In order to simplify the equations of motion, we will combine the x and y displace-
ments of the rotor into the complex coordinates as

uC = uxC + juyC, (2.25)

where uC is the displacement of the disk geometric center on the complex coordinate
axis.

We assume that the steady state solutions of the system of the differential equa-
tions in Eqs. (2.24a), (2.24b) are in complex exponential form,

uxC = Uxe
jωt , (2.26a)

uyC = Uye
jωt . (2.26b)
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Fig. 2.2 Typical response of an underdamped system in free vibration

It is observed here that, since Eqs. (2.24a), (2.24b) is a linear system with a sinu-
soidal input of frequency ω, the steady state output solutions will also be sinusoidal
signals of the same frequency. Then, the solution of the disk displacement in the
complex form is

uC = Uxe
jωt + jUye

jωt . (2.27)

Combining the exponential terms in the expression for the above complex rotor
displacement, we obtain the solution in the form

uC = Uejωt , (2.28)

where

U = Ux + jUy. (2.29)

Next, the set of solutions in Eqs. (2.26a), (2.26b) are substituted into Eqs. (2.24a),
(2.24b), and the resulting system of equations is

(−ω2 + 2jωζωn + ω2
n

)
Uxe

jωt = euω
2 cos(ωt), (2.30a)

(−ω2 + 2jωζωn + ω2
n

)
Uye

jωt = euω
2 sin(ωt). (2.30b)

The equations for the x-axis and y-axis displacements are combined into the com-
plex form as done in Eq. (2.25) by multiplying Eq. (2.30b) by the complex operator
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1j , and adding it to the expression in Eq. (2.30a). The resulting complex equation
of motion is

(−ω2 + 2jωζωn + ω2
n

)
Uejωt = euω

2eωt , (2.31)

or
(−ω2 + 2jωζωn + ω2

n

)
uC = euω

2, (2.32)

where eu is the unbalance eccentricity in the complex coordinates as illustrated in
Fig. 2.1(b).

Considering that the values of both the rotor disk displacement uC and the un-
balance eccentricity eu are just complex numbers, we can compute from Eq. (2.32)
the ratio between these two complex values as

uC

eu
= f 2

r

[1 − f 2
r + 2jfrζ ] , (2.33)

where

fr = ω

ωn
(2.34)

is known as the frequency ratio. We notice that right hand side of Eq. (2.33) is not a
function of time, and it only depends on the frequency ratio. The complex solution
in Eq. (2.33) can be rewritten as the product of a magnitude and a phase shift in the
form of

uC

eu
= |U |

eu
e−jφ

= f 2
r e−jφ

√
(1 − f 2

r )2 + (2ζfr)2
. (2.35)

The ratio |U |/eu is known as the dimensionless amplitude ratio of the forced re-
sponse and is given by

|U |
eu

= |Uy|
eu

= |Ux|
eu

= f 2
r√

(1 − f 2
r )2 + (2ζfr)2

. (2.36)

The above equation gives the expected amplitude of the rotor vibration as a function
of the frequency ratio. Additionally, the angle φ is the phase difference between the
uC and eu and is found from Eq. (2.32) to be

φ = tan−1
(

2ζfr

1 − f 2
r

)
. (2.37)

The dimensionless amplitude ratio |U |/eu is plotted in Fig. 2.3 over the fre-
quency ratio fr for different values of damping ratio. For very low frequencies,
the amplitude ratio is nearly zero since the unbalance forces are small. As the shaft
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Fig. 2.3 Dimensionless amplitude of the forced response for the Jeffcott rotor vs. frequency ratio

speed increases, the amplitude shows a large peak near fr = 1 when ω is near the
resonance frequency of the system. The amplitude ratio at the critical speed fr = 1
can be found from Eq. (2.36) to be

|U |
eu

= 1

2ζ
. (2.38)

When the damping ratio is small, the amplitude ratio increases rapidly near fr = 1
as the unbalance forces excite the rotor resonance mode. For larger values of ζ , the
system is nearly critically damped, and only a little of the resonance is seen in the
amplitude ratio plot. Finally, for fr � 1 the amplitude of vibration approaches 1.

The phase angle φ corresponding to different values of the damping ratio is also
presented here over a range of frequency ratios in Fig. 2.4. At low frequencies, the
phase angle is near zero, and the center of gravity G is aligned with the geometric
center of the disk during the rotation of the shaft. When the frequency ratio is near
1 and the shaft speed is close to the natural frequency, we see in Fig. 2.4 that the
phase angle is about 90 degrees for all values of damping ratios. This characteristic
can be helpful in identifying experimentally the critical speed of actual machines.
Lastly, at high frequencies where fr � 1, the phase angle approaches 180 degrees.
In this case, the center of gravity of the disk is inside the rotor orbit drawn by the
rotating path of C, and the unbalance forces work in the opposite direction to the
inertial forces of the rotor.
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Fig. 2.4 Phase angle φ of the forced response for the Jeffcott rotor vs. frequency ratio

2.2 Rotor Gyroscopic Effects

So far, we have found that the rotor lateral dynamics are decoupled in the horizon-
tal and the vertical directions of motion when rigid bearings are assumed. In the
Föppl/Jeffcott rotor considered in Sect. 2.1, the shaft axis of rotation was always
aligned with the bearing center line, and thus the inertia induced moments acting on
the disk were neglected. In this section we investigate how the gyroscopic moments
affect the dynamics of the system, as the addition of flexible bearings allows the
shaft rotational axis to diverge from the bearing center line. Through an example of
a simple cylindrical rotor supported on flexible bearings, the undamped free vibra-
tion of the rotor is analyzed, and the natural frequency of the rotor is predicted as a
function of the shaft speed. The results will demonstrate the sensitivity of the actual
critical speed of rotor-dynamic systems to the geometry and rotating speed of the
rotor.

The tilt of a rotating shaft relative to the axis of rotation generates gyroscopic dis-
turbance forces. As we will find later in this section, the magnitude of the generated
force is proportional to the angle of tilt, angular moment of inertia of the rotor, and
the shaft rotational speed. In the modeling and analysis of rotor-dynamic systems,
there are two main phenomena that are attributed to the gyroscopic effects. First,
the gyroscopic moments tend to couple the dynamics in the two radial direction of
motions. A change in the vertical state of the rotor affects the horizontal dynamics,
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Fig. 2.5 Cylindrical rotor with isotropic symmetric flexible bearings [115]

and vice versa. Second, gyroscopic moments cause the critical speeds of the system
to drift from their original predictions at zero speed. As we will see later in this sec-
tion, the gyroscopic moment acting on a rotor can increase or decrease the critical
speeds related to some system modes as a function of the rotational speed.

2.2.1 Rigid Circular Rotor on Flexible Undamped Bearings

Consider the rigid rotor as shown in Fig. 2.5 with a long cylindrical disk of mass m,
length L, and rotating speed ω. The support bearings are considered to be flexible
with stiffness coefficients of k1 and k2 in the lateral directions as shown in Fig. 2.5.
The axial distance between the bearing location and the rotor center of gravity G

is a for the left bearing and b for the right bearing. The total distance between the
bearings is Lb.

Under the assumption that the shaft has negligible mass, the polar moment of
inertia of the uniform rigid cylindrical rotor is given by

Jp = mR2

2
, (2.39)

where R is the radius of the rotor. This represents the rotational inertia of the cylin-
der about its main axis of rotation. The transverse moment of inertia for the same
rotor is

Jt = m

4

(
R2 + 1

3
L2

)
, (2.40)

which represents the rotational inertia about the axis perpendicular to the main axis
of rotation. A characteristic of the rotor that will be important in the derivations to
follow throughout this section is the ratio P of the polar to the transverse moment
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of inertia, which is given by

P = Jp

Jt

= 2

1 + 1
3 ( L

R
)2

. (2.41)

We notice that the value of this ratio is affected by the geometry of the rotor. For
cylindrical rotors where the radius is much larger than the length, or R � L, the
value of the moment of inertia ratio approaches P ≈ 2. On the other hand, for the
case of a long thin rotor with R � L, the denominator of Eq. (2.41) approaches
infinity and the value of the moment of inertia ratio is approximately P ≈ 0. Finally,
the ratio in Eq. (2.41) is equal to one if the ratio of the length L to the radius R is
equal to

√
3.

2.2.2 Model of Rigid Circular Rotor with Gyroscopic Moments

Consider the rigid cylindrical rotor presented in Fig. 2.5. The lateral displacements
of the rotor center of mass are given by xG in the x-direction, and yG in the y-
direction. Additionally, the rotation of the rotor at the center of mass G about the
x-axis is denoted as θxG, and the equivalent rotation about the y-axis is θyG, as
Fig. 2.5 illustrates. The displacements and rotations about the rotor center of mass
can be computed as

xG = 1

Lb
(bx1 + ax2), (2.42a)

yG = 1

Lb
(by1 + ay2), (2.42b)

θxG ≈ 1

Lb
(y2 − y1), (2.42c)

θyG ≈ 1

Lb
(x2 − x1), (2.42d)

where x1 and y1 are the lateral displacements of the shaft at the first bearing loca-
tion, as shown in Fig. 2.5. The corresponding displacements at the second bearing
location in Fig. 2.5 are given by x2 and y2. For computing the rotor tilt angle, the
approximation sin(θ) ≈ θ for θ � 1 was used.

The equations of motion for the translation and rotation of the rotor about its
center of mass can be found once again as in Sect. 2.1 through the use of Newton’s
law of motion. The resulting equations are

mẍG + αxG − γ θyG = 0, (2.43a)

mÿG + αyG − γ θxG = 0, (2.43b)
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Jtθ̈xG + Jpωθ̇yG + γ xg + δθxG = 0, (2.43c)

Jtθ̈yG − Jpωθ̇xG + γyg + δθyG = 0. (2.43d)

The defined stiffness parameters in the above equations are

α = k1 + k2, (2.44a)

γ = −k1a + k2b, (2.44b)

δ = k1a
2 + k2b

2. (2.44c)

The first two equations in Eqs. (2.43a)–(2.43d) describe the lateral translation of
the rotor, and the last two equations describes the angular dynamics. The second
term in the left-hand side of Eq. (2.43c) and Eq. (2.43d) is the linearized gyroscopic
moment about the x- and the y-axes, respectively, for small amplitude motions as
discussed in [119]. An important characteristic of the above dynamic equations is
that the two equations of translational motion are decoupled from the equations of
angular motion when γ is 0, in which case they can be solved separately.

The differential equations of Eqs. (2.43a)–(2.43d) are sometimes written in the
vector form

MẌ + ωGẊ + KX = 0, (2.45)

where the generalized state vector is given by

X =

⎡

⎢⎢
⎣

xG
yG
θxG
θyG

⎤

⎥⎥
⎦ , (2.46)

and the mass matrix M , gyroscopic matrix G, and stiffness matrix K are given by

M =

⎡

⎢⎢
⎣

m 0 0 0
0 m 0 0
0 0 Jt 0
0 0 0 Jt

⎤

⎥⎥
⎦ , (2.47)

G =

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 Jp
0 0 −Jp 0

⎤

⎥⎥
⎦ , (2.48)

and

K =

⎡

⎢⎢
⎣

α 0 0 γ

0 α γ 0
0 γ δ 0
γ 0 0 δ

⎤

⎥⎥
⎦ , (2.49)

respectively.
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We notice here that the mass matrix is always diagonal, and the stiffness matrix
is diagonal when γ is zero. On the other hand, the gyroscopic matrix is skew sym-
metric, and it represents the coupling between the motions in the x- and the y-axes.
This is one of the main characteristics of the gyroscopic effects as mentioned at
the beginning of this section. For the remainder of this section, we will make the
simplifying assumption that the stiffnesses of all support bearings are the same,

k = k1 = k2,

and that the rotor is axially symmetric about its center of mass,

Lb

2
= a = b.

This provides the decoupling condition of γ = 0 for the rotor equations of motion
in the translational and the angular direction in Eqs. (2.43a)–(2.43d). In this case,
the system stiffness matrix becomes

K =

⎡

⎢⎢
⎣

α 0 0 0
0 α 0 0
0 0 δ 0
0 0 0 δ

⎤

⎥⎥
⎦ . (2.50)

2.2.3 Undamped Natural Frequencies of the Cylindrical Mode

Here we are to solve the rotor equations given in Eq. (2.43a) and Eq. (2.43b) cor-
responding to the rotor translational or parallel motion. Using the methods as in
Sect. 2.1, we assume that the system of homogeneous linear differential equations
has solutions in the complex exponential form

xG = UxGest , (2.51a)

yG = UyGest , (2.51b)

for some constant values of UxG and UyG. Substituting these solutions into
Eq. (2.43a) and Eq. (2.43b), we rewrite the equations of motion as

(
ms2 + α

)
UxG = 0, (2.52a)

(
ms2 + α

)
UyG = 0. (2.52b)

The expression within the parentheses on the left-hand sides of the above two equa-
tions is known as the characteristic polynomial. We know from Sect. 2.1 that the
zeros of the characteristic equation,

ms2 + α = 0, (2.53)
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are the eigenvalues of the system corresponding to the cylindrical mode. The char-
acteristic equations for the horizontal x- and the vertical y-axes of motion given
above are identical and decoupled. This is expected since the lateral translation does
not cause rotor tilt, and the corresponding gyroscopic moment is zero.

The natural frequency ωn corresponding to the rotor parallel vibration is found
from the zeros of the characteristic equation in Eq. (2.53). More precisely, the imag-
inary components of the zeros give the natural frequency

s = ±jωn. (2.54)

In the case of the cylindrical mode, the horizontal undamped natural frequency
has the forward mode ωn1 and the backward mode ωn2. The undamped natural
frequency in the vertical direction has the forward mode ωn3 and the backward
mode ωn2. These natural frequencies are found to be

ωn1 = ωn3 = √
2k/m, (2.55a)

ωn2 = ωn4 = −√
2k/m. (2.55b)

2.2.4 Undamped Natural Frequencies of the Conical Mode

We now consider the angular dynamics of the rotor, given in Eq. (2.43d) and
Eq. (2.43c). We will assume once again that the solutions to the homogeneous sys-
tem of differential equations take the form

θxG = ΘxGest , (2.56a)

θyG = ΘyGest , (2.56b)

for some constant values of ΘxG and ΘyG. Substituting these solutions into
Eq. (2.43c) and Eq. (2.43d), we obtain the following system of homogeneous equa-
tions:

(
Jts

2 + δ
)
ΘxG + JpωsΘyG = 0, (2.57a)

(
Jts

2 + δ
)
ΘyG − JpωsΘxG = 0. (2.57b)

The characteristic equation for the above system is

det

[
Jts

2 + δ Jpωs

−Jpωs Jts
2 + δ

]

= 0. (2.58)

The angular dynamics about the different lateral axes of motion are coupled through
the terms corresponding to the gyroscopic moment in the above characteristic equa-
tion. In the remainder of this section, we will discuss how the rotating speed of
the shaft, and thus the gyroscopic moment acting on the rotor, affects the natural
frequencies of the conical mode.
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2.2.4.1 Conical Mode at Zero Rotating Speed

For the special case where the rotational speed is zero (ω = 0), the characteristic
equation in Eq. (2.58) becomes decoupled in the x- and the y-axes. The conical
natural frequencies for the non-rotating rotor can be found by solving for the zeros
of the undamped characteristic equation in Eq. (2.58),

s = ±j

√
kL2

b

2Jt
. (2.59)

The resulting non-rotating conical natural frequency is

ωnC0 =
√

kL2
b

2Jt
. (2.60)

The non-rotating conical natural frequency ωnC0 will appear again in the calculation
of the rotor conical mode with non-zero rotating speed.

2.2.4.2 Conical Mode at Zero Rotating Speed

In the general case with non-zero rotating speed (ω �= 0), the characteristic equation,
after expanding the determinant of the matrix in Eq. (2.58), becomes

(
Jts

2 + δ
)2 + (Jpωs)2 = 0. (2.61)

In the same way as in Sect. 2.1, the undamped conical natural frequency ωnC is
found from the complex zeros of the characteristic equation in Eq. (2.61),

s = ±jωnC.

This is an expression equivalent to

s2 = −ω2
nC.

Replacing the above expressions for s in the characteristic equation in Eq. (2.61),
we obtain

(−Jtω
2
nC + δ

)2 − (JpωωnC)2 = 0. (2.62)

Factoring the above expression into two terms gives

(
Jtω

2
nC − δ + JpωωnC

)(
Jtω

2
nC − δ − JpωωnC

) = 0. (2.63)

This equation is further simplified by dividing both sides of the above equality by Jt,
and substituting in the derived expression for the moment of inertia ratio P and the
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non-rotating conical natural frequency ωnC0. The resulting characteristic equation
is

(
ω2

nC − ω2
nC0 + PωωnC

)(
ω2

nC − ω2
nC0 − PωωnC

) = 0. (2.64)

Next, we define the dimensionless conical mode natural frequency ratio ω̄nC and
the dimensionless conical mode frequency ratio frC0 as

ω̄nC = ωnC

ωnC0
, (2.65)

and

frC0 = ω

ωnC0
, (2.66)

respectively. Then, by dividing both sides of Eq. (2.64) by the square of ωnC0, and
substituting in the non-dimensional parameters defined in Eqs. (2.65) and (2.66), we
obtain

(
ω̄2

nC + PfrC0ω̄nC − 1
)(

ω̄2
nC − PfrC0ω̄nC − 1

) = 0. (2.67)

The natural frequencies of the conical modes are the four zeros of Eq. (2.67).
Here we organize these modes as the lower modes and the higher modes. The zeros
of the first term in Eq. (2.67) provide frequencies corresponding to the forward
component of the non-dimensional lower mode ω̄n3, and the backward component
of the non-dimensional higher mode ω̄n8 as

ω̄n5 = −PfrC0/2 +
√

(PfrC0/2)2 + 1 > 0, (2.68a)

ω̄n8 = −PfrC0/2 −
√

(PfrC0/2)2 + 1 < 0. (2.68b)

On the other hand, the zeros of the second term in Eq. (2.67) provide frequencies
corresponding to the backward component of the non-dimensional lower mode ω̄n6,
and the forward component of the non-dimensional higher mode ω̄n7 as

ω̄n6 = PfrC0/2 −
√

(PfrC0/2)2 + 1 < 0, (2.69a)

ω̄n7 = PfrC0/2 +
√

(PfrC0/2)2 + 1 > 0. (2.69b)

The forward and backward conical modes are plotted in Fig. 2.6 over the frequency
ratio frC0 and for different values of P . The dashed line in the figures connects the
points where the rotor speed matches the frequency of the mode at the corresponding
frequency ratio, and the system is in the condition of resonance.

Figure 2.6 shows how the gyroscopics effects acting on the rotor causes the nat-
ural frequency of the system to drift. For long rotors where P ≈ 0, the gyroscopic
moment is small, and the frequency of the conical mode remains unaffected to the
rotational speed and frC0. As the value of P increases for different geometries of the
rotor, we can observe a more significant drift in the mode frequency. For example,
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Fig. 2.6 Dimensionless conical natural frequency ratio versus the conical mode frequency ratio
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for the extreme case of P ≥ 1, we observe in Fig. 2.6 that the shaft rotation would
never excite one of the forward conical modes as the gyroscopic effects keep the
mode frequency always above the rotor operating speed.

2.3 Instability due to Aerodynamic Cross Coupling

Cross-coupling forces are in many cases the main cause of instability in rotor-
dynamic systems. These forces are generated in components such as fluid-film bear-
ings, impellers and seals, which are essential for the operation of the turbomachines.
The aerodynamic cross-coupling forces are generated by the flow difference in the
uneven clearances around impellers and seals caused by the rotor lateral motion.
Machines with traditional fluid-film bearings are sometimes more vulnerable to
these effects, as the rotor is not centered in the clearance and it is susceptible to
go into the whirling motion. It is common for cross-coupling disturbance forces to
generate large rotor vibration, and eventually drive the machine to instability. In this
section we focus on the aerodynamic cross-couple stiffness generated by the flow of
gas through the impeller and seal clearances.

A commonly observed effect of the cross-coupling forces is the rapid loss of
damping in the rotor/bearing system modes, particularly the forward mode corre-
sponding to the first critical speed. This results in large subsynchronous rotor vi-
brations, as the cross-coupling forces increase together with the pressure build-up
in the compressor or pump. Eventually, the system mode loses all its damping for
large enough magnitudes of the cross-coupling forces, and the rotor-dynamic sys-
tem becomes unstable. The destabilizing effects of the aerodynamic cross-coupling
forces are amplified when they are generated near the rotor midspan, far from the
supporting bearings, where the effectiveness of the added damping by the bearings
is significantly reduced.

2.3.1 Aerodynamic Cross Coupling in Turbines

J.S. Alford in 1965 studied the forces found in the clearances around the aircraft gas
turbine engine rotors, which tend to drive the turbine wheel unstable [3, 30]. These
forces, affecting both turbines and compressors, came to be known as Alford forces
or aerodynamic cross-coupling forces. The aerodynamic cross-coupling forces are
normally expressed in terms of stiffness values, connecting the two axes of the rotor
lateral motion. Define the rotor lateral axes of motion as shown in Fig. 2.1. Given
that the rotor x and y displacements at the location of a turbine stage along the rotor
length are denoted by xd and yd, the cross-coupling forces acting on the turbine
rotor take the form

[
Fdx
Fdy

]
=

[
qsxx qsxy
qsyx qsyy

][
xd
yd

]
, (2.70)
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where Fdx and Fdy are the x-axis and y-axis components of the resulting cross-
coupling forces, respectively. The coefficients qsxx and qsyy are related to the princi-
pal (direct) aerodynamic stiffness, and qsxy and qsyx are known as the cross-coupling
aerodynamic stiffness coefficients.

It is normally the case in actual machines that the principal aerodynamic stiffness
coefficients are negligible when compared to the cross-coupling coefficients, and
−qsxy = qsyx. Then, the expression for the cross-coupling forces can be simplified
to the form

[
Fsx
Fsy

]
=

[
0 −qa
qa 0

][
xd
yd

]
, (2.71)

for some cross-coupling stiffness coefficient qa. A simple estimate of the cross-
coupling aerodynamic stiffness coefficient for one turbine stage was introduced by
Alford in his derivation as

qa = Tβ

DmLt
, (2.72)

where T is the torque on the turbine stage, β is a correction constant, Dm is the mean
blade diameter, and Lt is the turbine blade radial length. Based upon his experience
with aircraft gas turbines, Alford suggested the value of this constant to be 1.0 <

β < 1.5.

2.3.2 Aerodynamic Cross Coupling in Compressors

In the case of compressors, the impellers are subject to the same cross-coupling
stiffness as presented in Eq. (2.71) for a single turbine stage. In industrial com-
pressor applications, a common range for the value of the impeller aerodynamic
cross-coupling coefficient per each stage or impeller is

175,000 N/m ≥ qa ≥ 525,000 N/m. (2.73)

In the rotor-dynamic analysis of compressors, the rotor vibration level and stabil-
ity are often evaluated at the average cross-coupling stiffness coefficient value of
qa = 350,000 N/m per impeller stage [5]. Moreover, a common rule for compres-
sors that is also based on experience is that the cross-coupling stiffness contribution
of the end impellers in multi-stage machines is negligible and not counted when
computing the total cross-coupling stiffness of compressors.

Seals are employed in compressors and other turbomachines to prevent the gas
leakage between the different machine stages. The compressible flow in these seals
generate lateral forces that act on the rotor in the form of stiffness and damping,

[
Fsx
Fsy

]
=

[
ksxx ksxy
ksyx ksyy

][
xd
yd

]
+

[
csxx csxy
csyx csyy

][
ẋd
ẏd

]
, (2.74)
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where Fsx and Fsx are the x and y components of the cross-coupling forces gener-
ated by the seals, respectively. Once again, the principal stiffness coefficients and
the damping terms are relatively small when compared to the cross-coupling stiff-
ness coefficients, and are usually taken to be equal to zero. Thus, the equation for
the seal cross-coupling forces is often simplified to

[
Fsx
Fsy

]
=

[
0 ksxy

ksyx 0

][
xd
yd

]
, (2.75)

where ksxy < 0 and ksyx > 0 are known as the seal cross-coupling stiffness coeffi-
cients.

Finally, the total aerodynamic cross coupling for compressors is sometimes esti-
mated based on the horsepower of the machine. This approximation is given as

Qa = 63,000(HP)β

DhN
. (2.76)

The parameters of the above expression are the compressor horsepower HP, the
impeller diameter D (in), the dimension of the most restrictive flow path h (in)
and the shaft rotating speed N (rpm). A common value of the correction constant
introduced by Alford is β = 1.0 based upon experience [5]. The total cross-coupling
stiffness is given in the English unit of lbf/in and can be converted into the equivalent
SI unit N/m by a factor of 175. An expression similar to Eq. (2.76) is employed by
the API to predict the applied aerodynamic cross-coupling stiffness in the stability
analysis for compressors. This expression will be discussed below in Sect. 2.4.

2.4 Rotor-Dynamic Specifications for Compressors

Turbomachines such as compressors play an integral role in the manufacturing pro-
cesses of the chemical and petrochemical industries. Therefore, each machine is
carefully audited before being commissioned in order to guarantee that it meets the
performance and reliability standards agreed to be needed for continuous operation.
Both the International Organization for Standardization (ISO) and the American
Petroleum Institute (API) published sets of specifications developed for different
types of turbomachine used in industrial applications, although the API standards
are largely preferred in the chemical and petrochemical industries. A list of those
API standards relevant to different types of turbomachine are presented in Table 2.1.

In this section we present a brief summary of the different lateral rotor-dynamic
analyses that are required by the API specifications for compressors. These analyses
guide compressor end-users, original equipment manufacturers (OEM), component
manufacturers, service companies and educational institutions on proper design,
manufacturing and on-site installation of machines. For a more detailed description
of the required analyses for compressors, please refer to the original API Standard
617 [6].
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Table 2.1 API Specification
for Compressors, Fans and
Pumps [111]

API standard number Machine type

610 Centrifugal pumps

612 Steam turbines

617 Axial and centrifugal compressors

673 Centrifugal fans

2.4.1 Lateral Vibration Analysis

The API defines the critical speed to be the rotational speed of the shaft that causes
the rotor/bearing/support system to operate in a state of resonance. In other words,
the frequency of the periodic excitation forces generated by the rotor operating at
the critical speed coincides with the natural frequency of the rotor/bearing/support
system. Generally, the lateral critical speed is the most relevant, and it is given by the
natural frequency of rotor lateral vibration interacting with the stiffness and damping
of the bearings. In the present day, it has become common for high performance
machines to operate above the first critical speed, but the continuous operation at or
near the natural frequencies is generally not recommended.

Figure 2.7 illustrates the lateral vibration amplitude versus the rotating speed for
a typical rotor-dynamic system. The basic characteristics of the vibration response
that API employs to evaluate the machine are identified in the figure. The ith critical
speed is denoted as Nci , which is located at the ith peak in the vibration response
plot with amplitude of Aci . The amplification factor of a critical speed is defined
as the ratio of the critical speed to the difference between the initial and final speed
above the half-power of the peak amplitude N1 − N2, as shown in Fig. 2.7. Lastly,
the maximum continuous operating speed (MCOS) of the system corresponds to the
105 % of the highest rated speed of the machine in consideration, and the speeds
between the MCOS and the minimum operating speed of the machine is known as
the operating speed range.

The effective damping at a particular critical speed in a rotor-dynamic system is
measured through the amplification factor,

AF = Nc1

N2 − N1
. (2.77)

The measurement of the amplification factor is illustrated in Fig. 2.7 for the first
critical speed. A large amplification factor corresponds to a steep resonance peak
with low damping. Therefore, a small value of AF is desired for modes within or
near the operating speed range of the machine. For modes with large amplification
factors, a minimum separation margin SM is required between the corresponding
critical speed and the operating speed range of the machine.

The critical speeds of the rotor/support system can be excited by periodic dis-
turbance forces that need to be considered in the design of the machine. The API
identifies some of the sources for these periodic disturbances to be [6]:
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Nci = Rotor ith critical speed (rpm).
Nmc = Maximum continuous operating speed MCOS (105 % of

highest rate speed).
N1, N2 = Initial and final speed at 0.707 × peak amplitude.
AF = Amplification factor.

= Nc1
N2−N1

.

SM = Separation margin.
Aci = Amplitude at Nci .

Fig. 2.7 Example of a rotor forced response [6]

• rotor unbalance,
• oil film instabilities,
• internal rub,
• blade, vane, nozzle, and diffuser passing frequencies,
• gear tooth meshing and side bands,
• coupling misalignment,
• loose rotor components,
• hysteretic and friction whirl,
• boundary layer flow separation,
• acoustic and aerodynamic cross-coupling forces,
• asynchronous whirl,
• ball and race frequency of rolling-element bearings, and
• electrical line frequency.
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Fig. 2.8 Undamped critical speed vs. stiffness map [6]

Many of these disturbances are related to the mechanical and electrical characteris-
tics of the machine hardware and they can be corrected at the design stage or through
proper maintenance. For the lateral vibration analysis, we focus on the forced re-
sponse due to the rotor unbalance. The cross-coupling forces will be discussed in
the rotor stability analysis later in this section.

2.4.1.1 Undamped Critical Speed Analysis

Estimating the critical speeds and the mode shapes of the rotor-dynamic system
between zero and 125 % of the MCOS is generally the first step in the lateral
analysis. The critical speeds of the rotor/support system are estimated from the un-
damped critical speed map, superimposed by the calculated system support stiffness
in the horizontal direction (kxx ) and the vertical direction (kyy ) as shown in Fig. 2.8.
A quick estimate of a particular critical speed can be found from the figure at the
intersection of the corresponding curve in the critical speed map and the bearing
stiffness curve. The actual locations of the critical speeds of the system below the
MCOS should be validated in a test stand as required by the API standard [6]. Mode
shape plots for the relevant critical speeds should also be included in this initial
analysis.
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2.4.1.2 Damped Unbalance Response Analysis

A damped unbalance or forced response analysis including all the major compo-
nents of the rotor/bearing/support system is required by the API standard to be in-
cluded in the machine audit. The critical speed and the corresponding amplification
factor are identified here for all modes below 125 % of the MCOS.

The proper level of unbalance in compressor rotors for the forced response test
is specified in the SI units to be 4 × Ub, where

Ub = 6350
W

N
. (2.78)

The two parameters in the above definition is the journal static load W (kg), and the
maximum continuous operating speed N (rpm). The journal load value used for W

and the placement of the unbalance along the rotor are determined by the mode to
be excited as illustrated in Fig. 2.9. For example, to excite the first bending mode,
the unbalance is placed at the location of the maximum deflection near the rotor
midspan, and W is the sum of the static loads at both support bearings. Figure 2.9
applies to machines with between-bearing and overhung rotors as given in [6].

Based on the results from the forced response, a separation margin is required for
each mode below the MCOS that presents an amplification factor equal to or greater
than 2.5. The required minimum separation margin between the mode critical speed
and the operating speed range is given as

SM = min

{
17

(
1 − 1

AF − 1.5

)
,16

}
. (2.79)

On the other hand, if the mode with an amplification factor equal to or greater than
2.5 is above the MCOS, then the requirement for the minimum separation margin
between the mode critical speed and the machine MCOS is specified to be

SM = min

{
10 + 17

(
1 − 1

AF − 1.5

)
,26

}
. (2.80)

The requirements on the separation margin is employed to determine an operating
speed of the machine that avoids any critical speed with the potential to damage the
system.

Finally, for traditional fluid-film and rolling-element bearings, the peak-to-peak
amplitude limit of the rotor vibration is given by

A1 = 25

√
12,000

N
, (2.81)

where N is the maximum continuous operating speed in rpm. At the same time, the
peak amplitude of the rotor vibration at any speed between zero and Nmc should not
exceed 75 % of the minimum machine clearance. We will later see in Chap. 7 that
this particular specification generally does not apply to systems with active magnetic
bearings.
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Fig. 2.9 Unbalance values and placements as specified by API [6]

2.4.2 Rotor Stability Analysis

As the name indicates, this analysis investigates the stability of the rotor-dynamic
system in the presence of common destabilizing forces that compressors and tur-
bines are subjected to during normal operation. The dominant forces in this group
are often the aerodynamic cross-coupling forces, which were introduced in Sect. 2.3.
The stability analysis is required by the API for compressors and radial flow rotors
with the first rotor bending mode below the MCOS [6].

The stability of the rotor-dynamic system in the API standard is normally eval-
uated by the amount of damping on the first forward mode. The standard measure
of mechanical damping employed in the API standard is the logarithmic decrement,
which is computed as the natural logarithm of the ratio between the amplitudes of
two successive peaks. The relation between the mode logarithmic decrement δ and
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the corresponding damping ratio ζ can be found to be

δ = 2πζ
√

1 − ζ 2
. (2.82)

2.4.2.1 Level I Stability Analysis

The Level I stability analysis is the first step of the stability analysis. It is intended to
be an initial screening to identify the machines that can be considered safe for oper-
ation. The inlet and discharge conditions for the stability analysis are selected to be
at the rated condition of the machine, although it is allowed for the vendor and the
purchaser to agree on a different operating condition to perform the test. The pre-
dicted cross-coupling stiffness in kN/mm at each stage of a centrifugal compressor
is given by

qA = HP
BcCρd

DcHcNρs
, (2.83)

and that of an axial compressor is given by

qA = HP
BtC

DtHtN
. (2.84)

The parameters in the above equations are

HP = rated compressor horsepower,
Bc = 3,
Bt = 1.5,
C = 9.55,

Dc, Dt = impeller diameter (mm),
Hc = minimum of diffuser or impeller discharge width (mm),
Ht = effective blade height (mm),
N = operating speed (rpm),
ρd = discharge gas density per impeller/stage (kg/m3), and
ρs = suction gas density per impeller/stage (kg/m3).

The predicted total cross-coupling stiffness QA is the sum of the qA for all the
impellers/stages in the compressor.

In the Level I analysis, the stability of the rotor-dynamic system is tested for
a varying amount of the total cross-coupling stiffness. The applied cross-coupling
stiffness value ranges from zero to the smallest between 10QA and the maximum
cross-coupling stiffness before the system becomes unstable. This point of instabil-
ity is identified by the API to correspond to the cross-coupling stiffness value Q0
where the damping, or logarithmic decrement of the system first forward mode be-
comes zero. For the Level I analysis, the cross-coupling stiffness is assumed to be
concentrated at the rotor mid-span for between-bearing machines, or at the center
of mass of each impeller/stage for cantilevered systems.
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Fig. 2.10 Typical plot of logarithmic decrement corresponding to the first forward mode vs. ap-
plied cross-coupling stiffness for Level I stability analysis

An important graph that is required by the API to be included in the Level I
analysis is the plot of the logarithmic decrement δ for the first forward mode versus
the applied cross-coupling stiffness Q, as presented in Fig. 2.10. The predicted total
cross-couple stiffness QA and the corresponding logarithmic decrement of the first
forward mode δA are marked in the figure. Additionally, Q0 corresponds to the
cross-coupling stiffness when the logarithmic decrement of the first forward mode
becomes zero. The boundary at δ = 0.1 corresponds to the pass/fail condition of the
stability analysis, which will be discussed later in this section.

We note here that, although with traditional passive bearings the first forward
mode is generally the first one to be driven to instability by the cross-coupling stiff-
ness, the situation is not as straightforward with AMBs. As the active controller
in these magnetic bearings normally has a direct influence on any system mode
within the controller bandwidth, the interaction between the controller and the cross-
coupling effects has the potential to destabilize a group of modes within and above
the compressor operating speed range. Therefore, the logarithmic decrement of all
modes within the levitation controller bandwidth is sometimes inspected during the
Level I stability analysis for machines with magnetic bearings.

Based on the results from the Level I stability analysis, machines that do not
meet certain stability criteria are required to undergo a more advanced Level II sta-
bility analysis. For centrifugal compressors, a Level II stability analysis is required
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if either of

Q0/QA < 2, (2.85a)

δA < 0.1, (2.85b)

is found to be true. In the case of axial compressors, a Level II analysis is required
only if

δA < 0.1. (2.86)

2.4.2.2 Level II Stability Analysis

The Level II stability analysis is a complete evaluation of the rotor/bearing system
with the dynamics of all the compressor components generating the aerodynamic
cross-coupling stiffness or affecting the stability of the overall machine. Some of
these components are [6]

• seals,
• balance piston,
• impeller/blade flow,
• shrink fit, and
• shaft material hysteresis.

Details on the methodology of the analysis is left to a great extent to be decided
based on the latest capabilities of the vendor. API does not specify how each dy-
namic component is handled in the analysis. The operating condition of the machine
used in the analysis is the same as in the Level I analysis.

During the Level II analysis, the API requires the vendor to initially identify
the frequency and logarithmic decrement of the first forward damped mode for the
bare rotor/support system. Then, the analysis is repeated after adding the dynamics
of each component previously identified to affect the stability of the rotor-dynamic
system. Finally, the frequency and logarithmic decrement δf of the first damped
forward mode is computed for the total assembled system.

The pass/fail condition of the Level II stability analysis stated by API 617 is

δf > 0.1. (2.87)

If this is satisfied, then the machine is considered to have guaranteed stability in the
rated operating condition. On the other hand, if the pass/fail condition cannot be
satisfied, API allows the vendor and purchaser to mutually agree on an acceptable
level of δf considered to be sufficient for the safe operation of the machine. Finally,
it is recognized in the API 617 that other analysis methods exist for evaluating the
stability of rotor-dynamic systems, and these methods are constantly being updated.
Therefore, it is recommended to follow the vendor’s stability analysis methods if the
vendor can demonstrate that these methods can successfully predict a stable rotor.
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2.5 Rotor Finite Element Modeling

The first priority of the bearings in a rotor-dynamic system is commonly the support
of the rotor lateral dynamics. Although the rotor axial vibrations also need to be
carefully analyzed for possible signs of trouble, the main source of rotor instability
in most rotating machines comes from the lateral or radial vibrations. For this rea-
son, an accurate model of the system lateral dynamics is essential for the analysis
and simulation testing that are required during the design and commissioning phases
of these machines. In the case of systems with AMBs, the need for an accurate
model is even higher as the unstable bearing system requires reliable model-based
rotor levitation controllers for normal operation.

The lateral dynamics of flexible rotors are described by partial differential equa-
tions. These are complex equations with spatially distributed parameters, and it usu-
ally is not possible to derive analytic solutions for rotors with complex geometries.
In real world applications, a linearized approximation model of the rotor lateral dy-
namics is normally sufficient for analyzing rotor-dynamic systems and designing
rotor levitation controllers for AMBs. Such a model can be obtained by means of
the finite element method (FEM), where the description of the spatially continu-
ous rotor is simplified to the degrees of freedom corresponding to a finite number
of shaft elements, effectively eliminating the spatial variable in the original beam
equation [119].

In this section we present a brief summary of the process for obtaining the two-
dimensional finite element model of a rotor-dynamic system. Detailed step-by-step
description of the finite element method can be found in the many available finite
element textbooks such as [4], and the application of this method for modeling the
rotor-dynamic system is thoroughly discussed in [5] and [119]. In this section, we
only present a concise description of the process for deriving the finite element
model, as an introduction to what will later be used in Chap. 7 for the synthesis of
the AMB lateral levitation controller.

2.5.1 Discretizing Rotor into Finite Elements

As the first step of deriving a finite element model, the rotor is axially divided into
simple uniform beam elements connecting two adjacent node points. A typical mesh
of a simple rotor is illustrated in Fig. 2.11, where the node points are shown as dark
dots. The selection of an adequate rotor mesh must follow some rules that are based
on the rotor geometry, as well as the locations of the rotor disks, bearings, and
other rotor-dynamic components. First, a nodal point must be placed at each loca-
tion along the rotor with a step change in the diameter, so that all shaft elements
have a uniform radius. This will later simplify the modeling of the dynamics for
each individual shaft element. Second, a node point is defined at each location with
a mass/inertia disk, bearing, seal, and any other source of external disturbance force.
By the same token, all sensor locations and other measurement points are also collo-
cated with the shaft node points. This rule simplifies the definition of the input and
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Fig. 2.11 Rotor mesh
example

Fig. 2.12 Beam element and
generalized displacements of
nodes i and i + 1

output variables in the final expression of the finite element model. Finally, the ratio
of the element’s length to diameter must be about one or less in order to guarantee
the accuracy of the finite element formulation.

The rotor shown in Fig. 2.11 has a total of 17 elements and 18 node points. It is
common for the elements and nodes to be numbered from left to right, as demon-
strated in the figure. The support bearings, with given stiffness and damping coeffi-
cients, are located in this example at the nodes 4 and 15. For the remaining of this
section, we will assume that the general rotor mesh considered here is composed of
n beam elements, corresponding to a total of n + 1 node points

2.5.2 Approximating Element Displacement Functions and Nodal
Displacement

Once the shaft is sectioned into smaller elements, the dynamics of each shaft section
is studied independently. The generalized displacements and rotations of the shaft
element are described through the degrees of freedom that are defined at each node
point. The degrees of freedom for a typical beam element are shown in Fig. 2.12.
Considering only the lateral dynamics of the rotor for simplicity, each shaft sec-
tion has eight degrees of freedom, corresponding to the two displacements and two
rotations about the lateral axes at each node point.

As shown in Fig. 2.12, the lateral displacements of the ith node are given as uxi

in the horizontal x-axis, and uyi in the vertical y-axis. The angular displacements at
the same node about the y- and x-axes are defined, respectively, as

θy = ∂ux

∂z
, (2.88a)

θx = ∂uy

∂z
. (2.88b)
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The degrees of freedom of the ith node point are collected in the generalized dis-
placement vector qi , which describes the position and rotation of the node at a given
time. The displacement and rotation variables are sorted in the mentioned vector as

qi =

⎡

⎢⎢
⎣

uxi

uyi

θyi

θxi

⎤

⎥⎥
⎦ . (2.89)

Lastly, the generalized displacement of the ith shaft element illustrated in Fig. 2.12
combines the generalized displacement vectors at the end nodes qi and qi+1. The
generalized displacement vector for the ith element in Fig. 2.12 is defined as

Qi =
[

qi

qi+1

]
. (2.90)

The generalized displacement vector defined above is used in the derivation of the
dynamic model to estimate the state of the entire shaft section. Thus, the eight vari-
ables in Qi uniquely describe the shape of the ith beam element in the finite element
formulation.

Based on the degrees of freedom defined at a shaft element of the rotor mesh,
the lateral translation and rotation is interpolated at any arbitrary point along the
shaft element. The shape of the entire shaft element is estimated in terms of the
generalized displacement vector Qi and the shape functions Ni . The shape functions
that form a third order polynomial basis of the shaft element are given as [4]

N1 = 1

L3

(
L3 − 3z2L + 2z3), (2.91a)

N2 = 1

L2

(
zL2 − 2z2L + z3), (2.91b)

N3 = 1

L3

(
3z2L − 2z3), (2.91c)

N4 = 1

L2

(−z2L + z3). (2.91d)

The parameter L is the length of the shaft element, and the variable z is the axial
position along the element’s length. The above shape functions are illustrated in
Fig. 2.13.

For the given basis of shape functions in Eqs. (2.91a)–(2.91d), the generalized
lateral translation of the ith shaft element at an arbitrary axial position z is expressed
as a function of the time t and the axial offset from the leftmost node as

[
uxi (z, t)

uxi (z, t)

]
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 −N2 0 N3 0 −N4

]
Qi. (2.92)

In the same way, the lateral rotations θyi (z, t) and θxi (z, t) at an arbitrary axial
position z can be found by computing the partial derivative of Eq. (2.92) with respect
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Fig. 2.13 Element Hermite shape function

to the axial offset z as shown in Eqs. (2.88a), (2.88b). An important observation from
the expressions in Eq. (2.92) is that the spatial variable z is contained in the matrix of
basis functions in Eq. (2.92), while only the generalized displacement vector Qi is
a function of time. Thus, the description of the dynamics of the original continuous
shaft element is simplified in the finite element formulation into a finite number of
degrees of freedom corresponding to a discrete shaft [119].

2.5.3 Formulating Equations of Motion for Each Element

The equation of motion for the ith shaft element is determined following the La-
grange formulation:

d

dt

(
∂Li

∂q̇i

)
− ∂Li

∂qi

+ ∂Ri

∂q̇i

= 0. (2.93)
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The Lagrangian of the ith element Li is defined as the difference between the ele-
ment’s kinetic energy Ti and potential energy Ui ,

Li = Ti − Ui. (2.94)

Additionally, Ri captures the energy dissipation in the system due to the internal
friction or damping, and it is known as the dissipation function. Given that the gen-
eralized displacement of a shaft element is approximated as shown in Eq. (2.92), the
terms for both the kinetic and potential energies can be easily found based on either
the Bernoulli–Euler or the Timoshenko beam theories [4]. For each of the beam ele-
ments, the potential energy comes mainly from the beam bending and shear effects.
On the other hand, the level of the kinetic energy is determined by both the lateral
and the rotatory inertial effects in the shaft element.

By expanding the Lagrange equation in Eq. (2.93) with the energy formulation
for the individual shaft section, an expression describing the lateral dynamics of
the ith element of the rotor mesh is obtained in the form of the vector differential
equation,

MiQ̈i + CQ̇i + GiQ̇i + Kiqi = Fi. (2.95)

The system matrices are the mass matrix Mi , gyroscopics matrix Gi , stiffness matrix
Ki , and the damping matrix Ci . The generalized external force vector Fi is added
to the Lagrange equation to account for the external forces and torques perturbing
the system. The objective of the finite element formulation is to find the expressions
for the system matrices, based on Eq. (2.93) and the generalized displacements in
Eq. (2.92).

2.5.4 Element Mass and Gyroscopic Matrices

The kinetic energy of a mesh element comes from the translational and angular
momentum of the shaft. For a uniform ith beam element with the generalized dis-
placement as defined by Eq. (2.92), the resulting expression of the kinetic energy
takes the form

Ti = 1

2
Q̇T

i MiQ̇i + 1

2
ωQ̇T

i WiQi. (2.96)

The matrix Mi corresponds to the mass matrix of the shaft element, and the matrix
Wi is related to the polar moment of inertia of the element with a rotational speed
of ω. A detailed step-by-step description of how to determine the expressions for
these matrices can be found in [5] and [119].

The contribution of the kinetic energy in the Lagrange equation appears in the
first and second terms of Eq. (2.93). The first term of the Lagrange equation in
Eq. (2.93) with the above form of the kinetic energy is given by

d

dt

(
∂T

∂Q̇i

)
= MiQ̈i + 1

2
ωWIQ̇i . (2.97)
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The corresponding second term of the Lagrange equation is

− ∂T

∂Qi

= −1

2
ωWT

i Q̇i . (2.98)

Combining the two terms of the kinetic energy in the Lagrange equation, we obtain
the equation

d

dt

(
∂T

∂Q̇i

)
− ∂T

∂Qi

= MiQ̈i + 1

2
ω

(
Wi − WT

i

)
Q̇i,

= MiQ̈i + GiQ̇i, (2.99)

where the gyroscopic matrix Gi is defined above in terms of the matrix Wi and the
rotor speed ω.

The final expressions of the mass matrix Mi and the gyroscopic matrix Gi for a
uniform shaft element can be found in [5] and [119]. These matrices are expressed in
terms of the element’s length, cross sectional area, and material density. Therefore,
as the expressions are identical for all elements in the mesh, it is relatively simple
to automate the process of finding these matrices for all shaft sections, given that
the rotor mesh has been selected according to the rules described at the beginning
of this section.

2.5.5 Element Stiffness Matrix

Based on the Bernoulli–Euler beam theory, the potential energy of a uniform shaft
element comes from the internal strain energy due to the lateral bending. For the
ith uniform beam element with the generalized displacements uxi (z, t) and uxi (z, t)

defined as in Eq. (2.92), the resulting expression of the potential energy takes the
quadratic form

Ui = 1

2
QT

i KiQi. (2.100)

The matrix Ki is the stiffness matrix. It describes the axial strain/stress due to the
lateral bending of the beam element. A detailed derivation of the potential energy
term Ui and the stiffness matrix can be found in [5] and [119]. Substituting the above
expression of the potential energy to the second term of the Lagrange equation in
Eq. (2.93), we obtain

∂Ui

∂Qi

= KiQi. (2.101)

The coefficients of the stiffness matrix Ki are found in [5, 119], and they are given
in terms of the element’s length, cross sectional area moment of inertia about the lat-
eral axes, and modulus of elasticity. Therefore, same as in the mass and gyroscopic
matrices, the process of computing the stiffness matrix for all shaft elements can be
easily automated, provided the information about the rotor mesh.
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2.5.6 Element Damping Matrix

The dissipation of the energy in the shaft due to the internal friction is generally
small, and thus the dissipation function is normally neglected in the finite element
formulation. For special cases where the dissipation function is not negligible, the
expression for Ri takes the form

Ri = 1

2
Q̇T

i CiQ̇i , (2.102)

where the matrix Ci is the damping matrix of the shaft element. With the above form
of the dissipation function, the third term of the Lagrange equation in Eq. (2.93)
becomes

∂Ri

∂Q̇i

= CiQi. (2.103)

Finally, combining the terms in the Lagrange equation corresponding to the kinetic
energy in Eq. (2.99), potential energy in Eq. (2.101) and dissipation function in
Eq. (2.103), we obtain the vector differential equation for the shaft element as shown
in Eq. (2.95)

2.5.7 Adding Lumped Mass, Stiffness and Damping Components

Complex rotor designs can include impellers, motor core, and other mass disks
that contribute to the dynamics of the rotor/support system. These components are
treated in the two-dimensional finite element formulation as rigid disks located at the
different shaft node points, and the corresponding mass and moment of inertia are
added to the shaft model. As discussed at the beginning of this section, the centers
of mass of the disks are assumed in the finite element formulation to be collocated
with some nodal points in the rotor mesh. Under the assumption that the generalized
displacement vector corresponding to the node at the location of the disk is given as

qd =

⎡

⎢⎢
⎣

uxd
uyd
θyd
θxd

⎤

⎥⎥
⎦ , (2.104)

the vector differential equation of the disk takes the form [119]

Mdq̈d + Gdq̇d = 0, (2.105)

where Md is the diagonal mass matrix of the disk, and Gd is the skew-symmetric
gyroscopic matrix. The expressions for the mass and the gyroscopic matrices are as
described in Sect. 2.2
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Seals and bearings are also important components in rotor-dynamic systems,
adding stiffness and damping to the rotor at particular node locations. Given that
qb is the generalized displacement vector at the node point corresponding to the
bearing/seal location, the vector differential equation for the stiffness and damping
contribution is

Cbq̇b + Kbqb = 0. (2.106)

The matrix Cb is the damping matrix, and Kb is the stiffness matrix of the bearing
or seal. These matrices are design parameters that are commonly provided by the
manufacturer, and in many cases they are functions of the shaft speed.

2.5.8 Assembling the Global Mass, Gyroscopic, Stiffness, Damping
Matrices, and Force Terms

Finally, the system matrices for the shaft, disks and other components are assem-
bled to form the corresponding global matrices. Given that the global generalized
displacement vector is defined as

Q = [q1 q2 q3 · · · qn+1]T, (2.107)

the vector differential equation for the complete rotor-dynamic system has the final
form of

MQ̈ + GQ̇ + CQ̇ + KQ = F. (2.108)

The system matrices of the equation of motion in Eq. (2.108) are the global mass ma-
trix M , the global gyroscopic matrix G, the global damping matrix C and the global
stiffness matrix K . The generalized external force vector for the global system is
given by F , which includes all the external disturbance forces/torques perturbing
the dynamics of the global system. All system matrices and vectors are defined in
the same order as the nodal displacements in the vector Q.

The global matrices in Eq. (2.108) are assembled by combining at each shaft
node point the contribution of all the components in the finite element model. Here
we describe the process for the assembly of the global mass matrix. The same steps
can be followed for forming the remaining system matrices. The assembly of the
global mass matrix from the individual mass matrices of the shaft elements is shown
in Fig. 2.14, where Mi is the mass matrix for the ith shaft element. The overlap-
ping regions between the blocks corresponding to adjacent elements in Fig. 2.14 are
summed in the global matrix. Next, the mass matrices for the rotor disk and any
other contributing components are added into the global system by summing the
matrix entries to the appropriate blocks in M . For a component located at the ith
node of the shaft, the mass matrix of the component is added to the square block
of M between the column and row numbers 4i − 3 and 4i. The final global mass
matrix is a 4(n + 1) × 4(n + 1) square symmetric matrix, which is consistent with
the length of the displacement vector Q.
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Fig. 2.14 Global mass
matrix assembly

2.6 Conclusions

A brief introduction to rotor-dynamics was presented in this chapter, with the in-
tention of familiarizing the reader with the concepts that will be expanded in the
latter chapters of this book. The discussion in rotor dynamics was initiated here by
studying the equations of motion for the Jöppl/Jeffcott rotor. Based on this sim-
plified rotor-dynamic system, different characteristics that are used for describing
the dynamics of complex rotating machines were identified. Next, the gyroscopic
moment and the cross-coupling stiffness were defined, and their effects on rotating
shafts were discussed in some detail. These are generally known to be the two main
sources of instability in AMB supported systems, as we will later observe during the
design of the AMB levitation controller in Chap. 7. Finally, the API standard that
is widely used for auditing the rotor response in compressors were reviewed. Al-
though most of these standards were developed based on the response of traditional
passive bearings, many manufacturers and end-users rely on the API specifications
for auditing AMB systems.

As previously mentioned, many of the concepts introduced here will be revisited
during the characterization of the compressor test rig in Chap. 4 and the design of
the AMB levitation controller in Chap 7. Rotor dynamics is a very rich field of study.
It is not possible to present all the material with the same level of detail as found in
specialized books on the topic. Some concepts will play a more important role than
others in the development of the stabilizing AMB controllers for the rotor vibration
and the compressor surge. In this chapter we focused on a selected number of topics
that are relevant to the objectives of this book. For further reading on the theory of
rotor dynamics, we recommend the literature that was referenced throughout this
chapter.
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