Chapter 2
Kinematic Synthesis

J. Michael McCarthy

2.1 Kinematics Equations of a Serial Chain

To study the relative movement at each joint of a spatial linkage,! we introduce three
4 x 4 matrices that we call coordinate screw displacements. Each of these matrices
defines a translation along one coordinate axis combined with a rotation about that
axis. This is the movement allowed by an RP open chain that has the axis of the
revolute joint parallel to the guide of the slider. This assembly is called a cylindric
joint, or C-joint, because trajectories traced by points in the moving body lie on
cylinders about the joint axis.

Let S be the axis of a cylindric joint that connects a link S;S; to ground. Locate
the fixed frame F so that its z-axis is along S; and its origin is the point p. Attach
the link frame B so that its z-axis is along S; and its x-axis is along the common
normal N from S; and S;. The displacement of B relative to F' consists of a slide d
and rotation 6 along and around the z-axis of F'. Combine the rotation matrix and
translation vector for this displacement to form the 4 x 4 homogeneous transform,
given by
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This defines the transformation of coordinates x in B to X in F' that represents the
movement allowed by a cylindric joint. Notice that we do not distinguish between
point coordinate vectors with and without the fourth component of 1. In what fol-
lows the difference should be clear from the context of our calculations.

The transform [Z (0, d)] is the coordinate screw displacement about the z-axis.
We can define similar screw displacements [X (-, -)] and [Y (-, -)] about the x- and
y-axes,

1 0 0 d
0 cosf® —sinf O
[X(Q’d)]_ 0 sin@ cos6 O]’
0 0 0 1
2.3)
cosf O sinfd O
0 1 0 d
[Y(@,d)]: —sinf 0 cosfd O
0 0 0 1

We use these coordinate screw displacements to formulate the kinematics equations
for spatial linkages.

It is useful to note that the inverse of a coordinate screw displacement can be
obtained by negating its parameters. For example,

cosf sinf 0 O
(20, )" =[Z(~0,-d)] = _35“9 00059 (1) _Od 2.4)
0o 0 0 1

Notice that [Z(#, d)~'] is not the transpose of [Z (8, d)].

2.1.1 The Denavit-Hartenberg Convention

A spatial open chain can be viewed as a sequence of joint axes S; connected by
common normal lines, Fig. 2.1. Let A;; be the common normal from joint axis S;
to S;. The Denavit-Hartenberg convention attaches the link frame B; such that its
z-axis is directed along the axis S; and its x-axis is directed along the common
normal A;;. This convention leaves undefined the initial and final coordinate frames
F and M. These frames usually have their z-axes aligned with the first and last axes
of the chain. However, their x-axes can be assigned any convenient direction.

This assignment of standard frames B; allows us to define the 4 x 4 transforma-
tion [D] that locates the end-link of a spatial open chain as the sequence of trans-
formations

[D]= [2(91, dl)][X(alz, alz)][Z(Gz, dz)] e [X(an—l,ns an—1,n)][Z(9n, dn)],
2.5)
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Fig. 2.1 Joint axes Sy, S»,
and S3 and the link frames B
and B

where «;; and a;; are the twist angle and offset between the axes S; and S;. This
matrix equation defines the kinematics equations of the open chain.

The 4 x 4 transform [T;] = [X (e}, a;;)][Z(8}, d})] is the transformation from
frame B; to B;. Equation (2.5) is often written as

[D]=[N[T2]---[T,]. (2.6)

Notice that [T1] = [Z(01, d1)].

2.2 The Product of Exponentials Form of the Kinematics
Equations

The synthesis equations for a spatial serial chain are obtained from the matrix ex-
ponential form of its kinematics equations. This form of the kinematics equations
replaces the Denavit-Hartenberg parameters with the coordinates of the n joint axes,
S;,i =1, ...n.Itis the coordinates of these axes that are the unknowns of the design
problem.

Consider a displacement defined such that the moving body rotates the angle
¢ and slides the distance k around and along the screw axis S = (S, C x S). Let
u =k/¢, then we can introduce the screw J = (S, V) = (S, C x S + uS), where u
is called the pitch of the screw. The components of J define the 4 x 4 twist matrix,

0 —s; sy vy
J=| % 0 sl 2.7)
—Sy  Sx 0 v

0 0 0 o

and we find that the 4 x 4 homogeneous transform representing a rotation ¢ and
a translation k£ about and along an axis S, [T (¢, k, S)], is defined as the matrix
exponential

[T,k 9)]=e". (2.8)
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The matrix exponential takes a simple form for the matrices [Z(6;,d;)] and
[X (ci i+1,aii+1)]. The screws defined for these two transformations are K =
(k, vKk) and | = (z, A1), where v =d;/6; and A = a; ;+1/a; ;41 are their respective
pitches. Thus, we have

[Z@;.d)]=e"" and [X(aiit1,aiiv)] =it (2.9)
and the kinematics equations become
[D] = [G1e?1 K @121 2K pon—1nl oOnK [ ), (2.10)

This is one way to write the product of exponentials form of the kinematics equa-
tions. In the next section, we modify this slightly for use as our design equations.

2.2.1 Relative Displacements

If we choose a reference position for the end-effector, denoted by [Dg], then the
associated joint angle vector f can be determined, as well as the world frame coor-
dinates of each of the joint axes. The transformation [ Dy] is often selected to be the
configuration in which the joint parameters are zero and is called the zero reference
position by Gupta (1986) [1].

The displacement of the serial chain relative to this reference configuration is
defined by [D(A0)] = [D(0)][D(00)]’] and yields a convenient formulation for
the kinematics equations. Assume that [ Dy] is a general position of the end-effector
defined by joint parameters 0, so A@ =6 — 0. Then, using the usual kinematics
equations, we have

[D(A0)] = (IG1[Z 1, dD)]. .. [Z (. dn) |[H])
(IG1[Z (610, d10)] - - [Z(6no, duo) JIHT) ™" @.11)
In order to expand this equation, we introduce the partial displacements
[Aio] = [G][Z(B10. d10)|[ X (12, a12)]. .. [ X (@i—1.i, ai—1.)]. (2.12)
where, for example,
[A10]=[G], and [A]=I[GI[Z(B10.d10)][X (@12, a12)].

Now, insert the identity [Z(6;.0)1~'[Ai0] ' [Ai0][Z(6i0)] = [I] after the first n — 1
joint transforms [Z(6;, d;)] in (2.11), in order to obtain the sequence of terms

[T(A6;, )] = [Ail[Z6:, d)][Z:0)] A0l = [Ai0][Z(A6;, Ad)][Aio] .
(2.13)
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The result is the relative transformation that takes the form
[D(A0)] = [T (461, SD][T(A62,52)]...[T(46,.8y)]. (2.14)

where S; are the Plucker coordinates of each joint axis obtained by transforming
the joint screw K to the world frame by the coordinate transformations defined in
(2.13).

Using the exponential form the transformations [T (A6;, S;)], we write the rela-
tive kinematics equations (2.14) as

[D(A0)] = 21516425 | A0S, (2.15)
where the matrices S; are defined as
Si=AiK Ay (2.16)

The product of exponentials form of the kinematics equations (2.10) is now obtained
as

[D]=[D(A0)][Do] = e2%51e4%%2  eA%Sn[ Dy (2.17)

The difference between this equation and (2.10) is that here the coordinates of the
joint axes of the serial chain are defined in the world frame.

2.3 The Even Clifford Algebra C*(P3)

The Clifford algebra of the projective three space P3 is a sixteen-dimensional vector
space with a product operation that is defined in terms of a scalar product, see Mc-
Carthy (1990) [2]. The elements of even rank form an eight-dimensional subalgebra
Ct(P?) that can be identified with the set of 4 x 4 homogeneous transforms.

The typical element of C*(P?) can be written as the eight dimensional vector
given by

A

A=ap+a1i +arj + azk + ase + asic + asje + azke, (2.18)

where the basis elements i, j, and k are the well-known quaternion units, and ¢ is
called the dual unit. The quaternion units satisfy the multiplication relations

i’=j*=k>=-1, ij=k, jk=iki=j, and ijk=-1. (2.19)

The dual number ¢ commutes with i, j, and k, and multiplies by the rule 2 =0.

In our calculations, it is convenient to consider the linear combination of quater-
nion units to be a vector in three dimensions, so we use the notation A = aji +
azj + azk and A° = asi + agj + a7k—the small circle superscript is often used to
distinguish coefficients of the dual unit. This allows us to write the Clifford algebra
element (2.18) as

A=ap+ A+ ase + A. (2.20)
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Now, collect the scalar and vector terms so this element takes the form
A=(ap+ase) + (A+A%)=a +A. (2.21)

The dual vector A = A + A°e can be identified with the pairs of vectors that define
lines and screws.

Using this notation the Clifford algebra product of elements A=a+Aand B=
b + B takes the form

C=0b+B)G+A) =ba—B-A)+ (GB+bA+B x A), (2.22)

where the usual vector dot and cross products are extended linearly to dual vectors.

2.3.1 Exponential of a Vector

The product operation in the Clifford algebra allows us to compute the exponential
of a vector 6S, where |[S| =1, as

62 63
e95=1+es+732+§33+---. (2.23)

Using (2.22) we can write S =0 + S and compute
S2=0+S)O0+S)=-1, S*=-8, S*=1, and S°=S, (224

which means we have

=cosf + sin6S. (2.25)

This is the well-known unit quaternion that represents a rotation around the axis S
by the angle ¢ = 26. The rotation angle ¢ is double that given in the quaternion,
because the Clifford algebra form of a rotation requires multiplication by both Q =
cosf + sin6S and its conjugate Q* = cosf — sin#S. In particular, if x and X are
the coordinates of a point before and after the rotation, then we have the quaternion
coordinate transformation equation

X = OxQ*. (2.26)

For this reason the quaternion is often written in terms of one-half the rotation angle,
that is Q = cos % + sin %S.
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2.3.2 Exponential of a Screw

The Pliicker coordinates S = (S, C x S) of a line can be identified with the Clifford
algebra element S =S + ¢C x S. Similarly, the screw J = (S, V) = (S, C x S+ uS)
becomes the element J =S 4 ¢V = (1 4 pe)S. Using the Clifford product we can
compute the exponential of the screw 6J,
02 03
9J=1+J+7J2+§J3+--~. (2.27)

Notice that S2 = —1, therefore

S=—(+pe)=—1+2ue), P =—(1+3pues,

(2.28)
JH=1+4pe, and =1+ 5ue)S,
and, we obtain
6% 0% 6 0
6J
(-5 ) (-5 s)
63 62
—9M€<9—§+ )—l—@,us(l—?—i--'-)s
= (cos6 — dsinfe) + (sinf + d cosH¢)S. (2.29)

Let d = 6 be the slide along the screw axis associated with the angle 6. At this
point it is convenient to introduce the dual angle 8 = 6 +de, so we have the identities

sinf = sin® + d cos fe, and cosf = cosf — d sin fe, (2.30)

which are derived using the series expansions of sine and cosine.
Equation (2.29) introduces the unit dual quaternion which is identified with spa-
tial displacements. To see the relationship we factor out the rotation term to obtain

Q:cosé—l—sinéS:(l + te)(cos O + sinHS), (2.31)

where
t=dS +sinfcosfC x S —sin’(C x S) x S. (2.32)

This vector is one-half the translation d = 2t of the spatial displacement associated
with this dual quaternion in the same way that we saw that the rotation angle is
¢ = 26. This is because the Clifford algebra form of the transformation of line co-
ordinates x to X by the rotation ¢ around an axis S with the translation d involves
multiplication by both the Clifford algebra element 0 = cos6 + sinfS and its con-
jugate Q* = cosf — sin@S, given by

X = Ox0*. (2.33)
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For this reason the unit dual quaternion is usually written in terms of the half rotation
angle and half displacement vector,

N N 1 o ¢
0 =cos > + sin 28 = (1 + zds) (cos 2 + sin 25), (2.34)
where
k
d=2(—s+sin9cos9cXS—sin2f(cxS)xs). (2.35)
2 2 2 2

Notice that we introduced the slide along S given by k = ¢u, so we have the dual
angle ¢ = ¢ + ke.

2.3.3 Clifford Algebra Kinematics Equations

The exponential of a screw defines a relative displacement from an initial position to
a final position in terms of a rotation around and slide along an axis. This means the
composition of Clifford algebra elements defines the relative kinematics equations
for a serial chain that are equivalent to (2.15) [21].

Consider the nC serial chain in which each joint can rotate an angle 6; around,
and slide the distance d; along, the axis S;, fori = 1,...,n. Let 8¢ and dg be the
joint parameters of this chain when in the reference configuration, so we have

AB = (0 +de) — (00 +doe) = (A, Abs, ..., ADy). (2.36)

Then, the movement from this reference configuration is defined by the kinematics
equation,

PP 465 40 Aby
D(AG)=e 2 Sie S22 Sn

Ab, N Aéls Aéer Aézs AD, N Aé,,s
=|{C— S—— C—— S—— --- 1 C S—— .
2 2 7! 2 2 2 2 2 "
(2.37)

Note that s and c denote the sine and cosine functions, respectively.

2.4 Design Equations for a Serial Chain

The goal of our design problem is to determine the dimensions of a spatial serial
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables.
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2.4.1 Specified Task Positions

Identify a set of task positions [P;], j =1,...,m. Then, the physical dimensions
of the chain are defined by the requirement that for each position [P;] there is a
joint parameter vector # ; such that the kinematics equations of the chain satisfy the
relations

[Pi1=[D®)]. i=1,....m. (2.38)

Now, choose [ P1] as the reference position and compute the relative displacements
(PP =[Pl j=2,...,m.

For each of these relative displacements [P;;] we can determine the dual unit
quaternion ﬁlj = COoS A¢2>1,~ + sin Mz)” Pij, j =2,...,m. The dual angle Aq;lj de-
fines the rotation about and slide along the axis P;; that defines the displacement
from the first to the jth position. Now writing (2.37) for the m — 1 relative displace-
ments, we obtain

e by wy
P1j=€ 2 Ple™2 2.2 ", J:Z,...,m. (239)

The result is 8(m — 1) design equations. The unknowns are the n joint axes S;,
i=1,...,n,and the n(m — 1) pairs of joint parameters A0;; = Af;; + Ad;je.

2.4.2 The Independent Synthesis Equations

The eight components of the unit Clifford algebra kinematics equations (2.39) are
not independent. It is easy to see that a dual unit quaternion satisfies the identity,

Qé*ze%se7%9’= 1, (240)

which imposes a two constraints. Thus, only six of the eight synthesis equations
obtained for each relative task position are independent, which means there are only
6(n — 1) independent synthesis equations for an n position task. Furthermore, the
axis S has unit magnitude with means that only four of its six components are inde-
pendent.

In order to count the number of independent equations and unknowns in the
Clifford algebra synthesis equations, it is useful to identify the relationship between
the constraints on a dual unit quaternion and the constraints on the dual unit vector
that generates it. Therefore, we take a moment as verify

Remark 2.1 (Normality Condition) The dual quaternion arising from the product of
dual quaternions has unit magnitude if and only if each factor is the exponential of
dual unit vector.
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. A 4¢ . . .
Proof For the screw displacement Q = e 2 © the unit condition yields,

50¢ = (AP | AP\ ((AS_ AD) _ AP A Ad Ad
QQ_<c2+s28><c2 s28>_c202+323288.(2.41)

Notice that, if S-S =1, then
A Ap Ap AP Ap  Ap?  Ag?
QQ*=C—¢C—¢+S—¢S—¢=C—¢ +s—¢ =

1. (2.42)
2 2 2 2 2 2

Now, for a dual quaternion obtained as the composition of transformations about n
joint axes, we have

Agp Adn

00" = (7281 MHS) (o721 M8y, (2.43)

Expand this product and use the associative property of the Clifford algebra to obtain

A A Agy Ag —A¢, —49;
00" =e2 S‘...(e 7 Sne 2"8")...6 2 S1 (2.44)

Apng  ZAdn g .
such that the terms e 2 ®7¢™2 °» =1 when S,, - S;, = 1. The result is

Qé*zl <— S§;-§,=1, i=1...,n. (2.45)
O

This condition shows that six of the eight components of the dual quaternion
kinematics equations combine with the normal conditions on the Pliicker coordi-
nates of the joint axes to define the minimum set of independent synthesis equations
for the serial chain problem.

2.4.3 Counting the Equations and Unknowns

Consider a spatial serial chain that consists of r revolute joints and p prismatic
joints. A purely prismatic joint is defined by the unit vector S that defines the slide
direction, so it has two independent parameters. The revolute joint axis is defined by
Pliicker coordinate vectors, S; = S+ C x Se¢, that have four independent components
due to the normal conditions

ISl=1 and S-(CxS)=0. (2.46)

Thus, the joint axes that define this chain have K = 6r + 3p components, minus
2r + p Pliicker constraints, which yields 4r + 2p independent unknowns.

Revolute and prismatic joints each have a single joint parameter, either a rotation
angle or slide distance, which means that our chain has (r + p)(m — 1) unknown
joint parameters that define the m relative positions.
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Table 2.1 The number of

task positions that determine Chain K Task positions Total equations
the structural parameters for
five degree-of-freedom serial ~ PRPRP 21 15 91
chains RPRPR 24 17 104
RRRRP 27 19 117
RRRRR 30 21 130

Subtracting the number of equations from the number of unknowns, we obtain

E=4r4+2p+(r+p)im—1)—6(m—1)
=Q@r+p+6)+(+p—6m, (2.47)

where E excess of unknowns over equations. This excess can be made to equal zero
for chains with degree of freedom dof =r + p <5, in which case we specify

_3r+p+6—c

Py (2.48)

task positions. If fewer than this number of task positions are defined, or if the chain
has six or more degrees of freedom, then we are free to select values for the excess
design parameters. In (2.48) we have added ¢ to denote any extra constraint that
may be imposed on the axes. Table 2.1 presents the maximum number of positions
that can be defined for some chains with 5 degrees of freedom.

It is interesting to notice that, because the composition of displacements has
structure of semi-direct product, the rotations are obtained by operating rotations
only. A specific counting scheme can be generated for the rotations by consider-
ing the first quaternion of the dual quaternion only. We obtain that the maximum
number of task rotations is

3+r
mr= .
R 3—r

In some cases with r = 1 or 2, the rotation part of the design equations can be
used to determine the directions of these axes independently. Perez and McCarthy
[3] call these chains “orientation limited.”

(2.49)

2.5 Assembling the Design Equations

The structure of the Clifford algebra design equations provides a systematic ap-
proach to assembling the design equations for a broad range of serial chains. The
basic approach is to formulate the design equations for the nC serial chain, and then
(i) restrict the joint variables to form prismatic or sliding joints, and (ii) impose ge-
ometric conditions on the axes to form universal or spherical joints or to account for
specific geometry. The result is a systematic way of defining the design equations
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for a broad range of chains. Here we present the procedure for the 3C serial chain,
but it has been implemented in our numerical solver for the 2C, 4C and 5C cases, as
well.

2.5.1 The 3C Chain

The Clifford algebra form of the relative kinematics equations for the 3C chain can
be written as

A A 01 A91 Aéz Aéz A93 93
D(AG) = [c == +s—= +s—= 4= 2.
(A0) (c > s > Sl>< > s > S2>(c > S > S3> (2.50)

where S; = S; + S7¢ define the joint axes in the reference position, and Ab; =
A6; + Ad; define the rotation and slide of the cylindric joint around the ith axis.
Expand the right side of (2.50) using the Clifford product to obtain
D(AB) = (818 — 81351 - S2 + 818281 4 ¢18252 + 818281 X S2)(E3 +833)
= 616263 — §1§263S1 -Sy — §162§3S1 . 83 — é1§2§382 . 33
—§1828381 x Sy - S3 +81C2C83S81 4+ €182C3S, + 1628353
+8182€3S1 X Sy + 51628351 X S3+€15283S7 x S3

+818283((S1 x S2) x 83— (81 - $2) S3). (2.51)

A@

For convenience, we have introduced the notation ¢; = cos A29 and §; = sin 5%

Equation (2.51) can be written in matrix form to emphasize that it is the lmear
combination of the eight monomials formed as products of the joint angles, which
we assemble into an array in reversed lexicographic order obtained by reading right
to left,

A

V = (818283, 818283, 818283, 818283, 818283, 18283, 618283, 81%283) . (2.52)

To do this, we must introduce the vector form of the dual unit quaternion Q =
cos % + sin %S given by

sin 42 (5, + 5°¢)

oo Lo ATGA(S)’ +8%e) | _ {sin ﬁs} | 053
408 + S2) cos 5
Ccos A29

Collecting terms in (2.51), we obtain the matrix equation
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D(A0)
|:031 S7S3 81 xS S1 x83 Sy xS3 —(81-52)S3+ (St XSZ)XS31|V

10 0 0 —-S1-5,-5/-53-5,-S3 —81 xS-S3
(2.54)

The Clifford algebra notation is compact in that each column of this matrix ac-
tually forms a column of four dual coefficients, or eight real coefficients if we write
the dual components of the dual quaternion after the real components, forming an
eight-dimensional vector. Similarly, each of the monomials in A% expands into four
real terms, which we can list as

Ady . Ady. Ad
N= (V Ay, —2V 2*V>, (2.55)

where V is the array of real parts of V. Thus, (2.54) expands to an 8 x 32 matrix
equation. The number & of joint variable monomials in an nC serial chain is given
by

=@+ 12" (2.56)

Thus, these equations become 8 x 12 for 2C, 8 x 80 for 4C and 8 x 192 for 5C
chains.

The kinematics equations (2.54) can be used directly for the design of a 3C chain.
In what follows, we specialize these equations to obtain design equations for a vari-
ety of special serial chains.

2.5.2 RCC, RRC and RRR Chains

The ith cylindric joint in the 3C chain is converted to a revolute joint simply by set-
ting Ad; = 0. This can be done in seven different ways to define three permutations
of the RRC chain, three permutations of the RRC chain and the RRR chain [23-25].

For example, the monomials in (2.54) that define the RCC, CRC or CCR chains
are given by

Ady  Ads
RCC: N=(V, =2V, =2V,
Ady . Ad
CRC: N:(V, TIV, T*V) 2.57)

Ady Ady
CCR: N=|YV, TV, TV .
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Similarly, the RRC, RCR and CRR chains have the monomials

Ad
RRC: N= (V, —3V>,

2
Ady

RCR: N=(V,==V), (2.58)
A

CRR: N=<V, %V).

Finally, the RRR chain is defined by the monomial list
RRR: N=V. (2.59)

Notice that if an nC chain is specialized to have r revolute joints, then the number
of monomials is given by

k=m—r+1)2". (2.60)

2.5.3 PCC, PPC and PPP Chains

A two-step process is required to convert the ith cylindric joint to a prismatic joint.
The first step is to set Af; = 0. The second step consists of specializing the joint
axis S; = §;, so that its dual part is zero. This latter constraint arises because the
pure translation defined by a prismatic joint depends only on the direction, not the
location in space, of its axis.

In order to define the monomials for the three permutations of the PCC chain, we
introduce W1 = (cicac3, €182€3, €1€283, C15283), and similarly define W, and W3,
where the subscript i indicates that we make s; = 0. This allows us to define the
arrays of monomials,

Ady Ady Adj
PCC: N= <W1, —W Wl),

> W Wy

Ad Ad Ad

CPC: N= (W, ——w,, 22w, 2w, ), 2.61)
2 2 2
Ady Ady Ads

CCP: N= W3, TW?,, TW}, TW3 .

The monomials for the three permutations of the PPC chain are easily determined
by introducing the set of monomials Wiy = (cicac3, cic2s3), and similarly W3
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Table 2.2 Constraints that

specialize C-joints to R, P, T Joint Axes Constraints
and S joints
R S; Ad; =0
P S; A0; =0
C S; None
T Si, Sit1 Ad; =0, Ad;j 1 =0,
Si-Si+1=0
S Si, Si+1, Si+2 Adi =0, Adi+1 =0, Adi42 =0
Si - Si+1=0,Si4+1-Si+2=0,
Si-Sit2=0

and Wj3,

Ad Ad Ad

PPC: N= (Wi, =Wy, Z2Wp, =2 W), ),
2 2 2
Ad Ad: Ad

PCP: N= (W3, = W3, —2Wj3, = W3 ), (2.62)
2 2 2
Adj Ady Ads

CPP: N= W23’TW23’TW23’TW23 .

Finally, the PPP chain is defined by the monomial list

Ady Ady Ads
PPP: N={ (ciczc3), 7(010203), T(Clczcs), 7(016263) . (2.63)

The number of monomials in an nC chain with p of the joints restricted to be
prismatic is seen to be

k=(n+1)2""". (2.64)

Table 2.2 summarizes the constraints needed to transform the C joint into the
most common types of joints. Notice that, for the spherical joint and other special
cases, we use the approach of adding constraints between consecutive joint axes.
This will not yield the minimum set of joint parameters, but it gives satisfactory
results with the numerical solver.

This approach to the formulation of the design equations for special cases of the
CCC chain can be extended to any nC chain [22].

2.6 The Synthesis of SC and Related Chains

In this section, we present a numerical synthesis algorithm which uses the Clifford
algebra exponential design equations for the 5C serial chain, see Fig. 2.2. The spe-
cial cases of this chain include robots with up to five joints and up to ten degrees of
freedom.
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Fig. 2.2 The 5C serial robot

DL

The design equations for a specific serial robot are be obtained from the 5C robot
equations by imposing conditions on some of the axes or joint variables. The kine-
matics equations for the 5C robot are given by

A0, Aly Py Aly Ads
Osc=e 2517 927 83,7 84,755 (2.65)

or
0 Ab; N Ab, S Aby N Aby S
= | COS — SlIl _— COS — SlI‘l _—
5C ) ) 1 ) B 2

(cos ﬁ + sin A—9585> (2.66)
2 2

The kinematics equations for a serial chain consisting of revolute R, prismatic P,
universal T, cylindrical C or spherical S joints can be obtained from the 5C robot
using the approach presented in the previous section. For example, the kinematics
equation of the TPR serial chain are obtained by requiring the axes S; and S, to
be perpendicular and coincident, which is obtained by setting the joint variables d,
dy, 63 and dj to zero. The extra joint is eliminated by setting 65 and ds to zero.
Other joints, like the helical H or planar E joints can also be modeled by imposing
constraints on the axes and joint parameters.

In order to facilitate the specialization of the general 5C robot to a specific serial
chain topology,the kinematics equations are organized as a linear combination of the
products of joint angles and slides, which form the monomials of these equations
with coefficients that are given by the structural parameters of the chain. In this
way, the kinematics equations of the 5C serial chain is a linear combination of 192
monomials, which can be organized into six sets of 32 products of sines and cosines
of the A6; joint angles, given by,

V = (5152535455, (51525354C5)s5, (515253¢4€5) 10, (5152€3€4€5) 10,
(S1€2€3€4¢5)5, €1€2€3C4C5), (2.67)
)

where ¢; = cos 5+, 5; = sin 5+ 2 . The notation (); denotes j permutations of each
set of sines and cosines. The remaining five sets of monomials are obtained by
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multiplying V by the joint slides ATdi, so we have a total set of monomials N, where

V,—V,—V,—V,

N=(V Ad Ady  Ads Ady Ad5V (2.68)
U2 2 2 2 2 ' '

The kinematics equations of the 5C robot can now be written as the linear combina-
tion,

192
Osc = Z Kim;, m; €N. (2.69)

i=1

The coefficients K; are 8-dimensional vectors containing the structural variables
defining the joint axes.

This equation is adjusted to accommodate a revolute or prismatic joints inserted
as the jth joint axis by selecting the non-zero components of the vector N. Notice if
the jth C joint is restricted to be a revolute joint, then the slide Ad; is zero, which
eliminates 32 components in N. Similarly, if this joint is replaced by a prismatic
joint the angle becomes Af; = 0, which eliminates 16 terms from the vector V.

In order to construct these equations start with the array Lsc = {1,2, ..., 192} of
indices that denote the components of N for the general 5C chain, sorted as shown
above. Next define the arrays Lp ;s L P; and L¢ i that denote the non-zero compo-
nents of N for the cases when joint j is either a revolute, prismatic or cylindrical
joint, given by

Lgr. = i:(cosA—ej/\sinA—ej>em,~vA—dj¢mi},
/ 2 2 2

Lp. = i:(A—dj/\cosﬂ) em,-\/sinﬂ gémi}, (2.70)
/ 2 2 2

Lc. = i:<A—dj/\cosA—9j/\sinA—9j)emi}
J 2 2 2 ’

where A and V are the logical or, and operations, respectively. Finally, compute
the array of indices L for a specific serial chain topology by intersecting the arrays
obtained for all of the joints, that is,

5
L:ﬂ(LRjULPjULCj), (2.71)
j=1

where Lp, =¥ and L¢; =@ if j is a revolute joint, for example.
The kinematics equations for the specific serial chain is now given by

0=Y Kim. (2.72)

ieL
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Fig. 2.3 A planar 3R chain

. . as3 M
in the reference configuration

The synthesis equations for the chain are obtained by equating the kinematics
equations in (2.72) to the set of task positions Py;, that is

O="Py, i=2,....m, (2.73)

where the maximum number of task positions, m, is obtained for the chosen topol-
ogy using (2.48) and (2.49). Additional constraint equations may be added to ac-
count for the specialized geometry of T and S joints or for any other geometric
constraint present in the robot.

These synthesis equations are solved to determine the joint axes S; in the refer-
ence configuration, as well as for values for the joint variables that ensure that the
serial chain reaches each of the task positions.

2.6.1 The Synthesis Process

It is possible to automate the generation of the synthesis equations as cases of the
four classes of 2C, 3C, 4C and 5C related serial chains. The synthesis equations can
then be solved numerically given a random start value. The input data consists of
a set of task positions and topology of the serial chain. The topology of the chains
is used to construct its kinematics equations Q These equations are set equal to
the task positions Py to yield the synthesis equations as the difference 0 — Py,
i =2,...,m. The numerical solver finds values for the components of the joint axes
and Jomt variables that minimize this difference.

It is not necessary that the numerical solver use the minimum set of design equa-
tions as defined by (2.48). In fact, it is convenient to use all 8(m — 1) + ¢ synthesis
equations. For the cases of 3R, 4R and 5R serial chains this approach introduces
two, eight and 30 redundant equations, respectively. Experience shows that the ad-
ditional equations enhance the convergence of the numerical algorithm.

2.7 Planar Serial Chains

We now specialize the kinematics equations defined above to the case of planar
serial chains. It is convenient for our purposes to focus on chains consisting only of
revolute joints, the nR chain [22].
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The Plucker coordinates of the axis of a typical revolute joint in a planar chain
are given by J = (k, C x k), where k = (0, 0, 1) is directed along the z-axis of the
base frame, and C = (cy, ¢y, 0) is the point of intersection of this axis with the x-y
plane. The associated twist matrix Jis

—

—Cy

<
I

(2.74)

co~o
coco !
cooco

Cx
0
0

Let the transformation to the base of the chain be a translation by the vector
G = (gx, 8y, 0), then he zero configuration of the nR planar chain has the points
Ci,i=1,...,n on the joint axes J; distributed along a line parallel to x-axis (see
Fig. 2.3), such that

8x 8z +an
Cl =18y (- C2 = 8y , e
0 0
(2.75)
g tappt+an+---+ap—1,
Cn = 8y
0

Substituting these points into (2.74) we obtain a twist matrix f, for each revolute
joint, and the product of exponentials kinematics equations

[D(8)] = 201714072 o20nTu ). (2.76)

The zero frame transformation [Dg] can be define by introducing [C] which is the
translation by the vector ¢ = (aj2 +az3 + - - - + a,—1,,)1 along the chain in the zero
configuration, so we have

[Dol =[GIICI[H]. (2.77)

The matrix exponential defining the rotation about J by the angle A6 can be
computed using formulas in Murray et al. (1994) [4] to yield,

cos A6 —sin A6 (I —cos AB)cy + sin Afcy

0
eAgj sin A6  cos Af (1) —sin Afcy + (1 — cos Af)cy, 2.78)
0

I ) 0 0
0 0 1

This matrix defines a displacement consisting of a planar rotation about the point C,
called the pole of the displacement.
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2.7.1 Complex Number Kinematics Equations

It is convenient at this point to introduce the complex numbers ¢'4? = cos A0 +
i sin Af and C = ¢, + icy to simplify the representation of the displacement (2.78).

Let X; = x 4+ iy be the coordinates of a point in the world frame in the first
position and X, = X +iY be its coordinates in the second position, then this trans-
formation becomes

X, =X + (1 —e'4%)C. (2.79)

The complex numbers [¢!4?, (1 — ¢/4?)C] define the rotation and translation, that

form the planar displacement 497 The point C is the pole of the displacement, and
the translation vector D associated with this displacement is given by

D=(1-¢4%)C. (2.80)

The composition of the exponentials €1 and %€ that define rotations about
the points C; and Cj, respectively, yields
P = eg'éleezéz, or
[ei¢, (1 — ei¢’)P] = [eiel, (1 — eiQ‘)Cl][eigz, (1 — eiez)Cz]
=[e! @t (1 — ) Cy + % (1 — %) Cs]. (2.81)

Here P denotes the pole of the composite displacement.
The complex form of the relative kinematics equations (2.15) is seen to be

[D(A0)] = [4%, (1= 2M)C ][ 4%, (1—€4%)Cs]... [ 4%, (1—€'4%)C,].

(2.82)
If we define the relative displacement of the end-effector to be [D] = [, (1 —
¢'49)P], then we can expand this equation and equate the rotation and translation
components to obtain,

eiA¢ — eiA91 eiA@z B .eiAQ,l — ei(A91-}-A(‘)z-}-'“-Q-AQn)7
(l _ eiA¢)P: (1 o eiAel)Cl + eiA@] (1 _ €iA92)C2 4.

+ ei(A91+A92+-~-+A9n71)(1 _ eiAGn)Cn' (2.83)

These complex vector equations can be used to design planar nR serial chains.
We will see shortly that they are exactly Sandor and Erdman’s standard form equa-
tions. However, in the next section we introduce an equivalent set of design equa-
tions using the Clifford algebra form of the kinematics equations.
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2.8 The Even Clifford Algebra C +(P?)

The even Clifford algebra of the projective plane P2 is a generalization of complex
numbers. It is a vector space with a product operation that is linked to a scalar
product. The elements of this Clifford algebra can be identified with the complex
vectors that define points in the plane, and with rotations and translations of these
coordinates. Our goal is a structure for the design equations that facilitates treating
the relative joint angles as design parameters and can be generalized to the design
of spatial serial chains [3].

Using homogeneous coordinates of points in the projective plane as the vectors
and a degenerate scalar product, we obtain an eight dimensional Clifford algebra,
C (Pz). See McCarthy (1990) [2]. This Clifford algebra has an even sub-algebra,
Ct(P?), which is a set of four dimensional elements of the form

A=ajie+azje+azk + ay. (2.84)
The basis elements i¢, je, k and 1 satisfy the following multiplication table,
| ie je k 1
ie| 0 0 —je ie
jel 0 0 ie je (2.85)

klje —ie —1 k
1|ie je k 1

Notice that the set of Clifford algebra elements z = x 4 ky formed using the basis
element k (k2= —1)is isomorphic to the usual set of complex numbers. This means
that we have e’ = cos6 4 ksin6.

Translation by the vector d = d, + kd, and rotation by the angle ¢ are repre-
sented by the Clifford algebra elements

1
T =1+ Edis and R(¢) = /2, (2.86)
and a general planar displacement D = T (d) R(¢) is given by
1
D= <1 + 5dig>e"¢/2. (2.87)

McCarthy (1993) [12] shows that a displacement defined to be a rotation by A6
about a point C has the associated Clifford algebra element

1
D= (1 + 5(1 - ekAg)Cic“)ekAe/z, (2.88)

which is the Clifford algebra version of the matrix exponential (2.78). Expand this
equation to obtain the four dimensional vector

D= (e—kAG/Z _ ekA@/z)C”3 1 kAo

N =
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Ab
= —sin Tst + k4072

in 29, i e +sin 20k 4 (2.89)
= SINn —1€& — SIn —Jé&€ sin — COS —. .
Cysiimriem e 5nJ 2 2

The components of this vector form the kinematic mapping used by Bottema and
Roth (1979) [26] to study planar displacements. Also see DeSa and Roth (1981) [5]
and Ravani and Roth (1983) [6].

2.8.1 Clifford Algebra Kinematics Equations

The relative kinematics equations of an nR planar chain (2.82) can be written in
terms of the Clifford algebra elements (2.89) to define,

A Ay
—sin T(bpjg 4 FA9/2 — (_ sin 214/ Cije + ekAel/z)

AB
X <— sin Tzczjs + ekA92/2>
A6
e <— sin T"C,,js + ekAen/Z). (2.90)

Expand this equations and equate coefficients of the basis elements to obtain

KAB/2 _ (A +A0r+-+26,)/2

sin 22p — gin 201 ¢, o~k + 2012 | a2 o A% o —k(abs 420,12
2 2 2
A
4.4 ek(A91+A92+'“+A9n—l)/2 Sin —zn Cn. (291)

These equations are equivalent to the complex vector equations presented above. In
fact, multiplication of (2.91) by ek49/2 directly yields (2.83), note we must replace
k by in the usual complex number i.

2.9 Design Equations for the Planar nR Chain

The goal of our design problem is to determine the dimensions of the planar nR
chain that can position a tool held by its end-effector in a given set of task positions.
The location of the base of the robot, the position of the tool frame, as well as the
link dimensions and joint angles are considered to be design variables [22].
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2.9.1 Relative Kinematics Equations for Specified Task Positions

Identify a set of planar task positions [P;], j =1, ..., m. Then, the physical dimen-
sions of the chain are defined by the requirement that for each position [ P;] there is
a joint parameter vector # ; such that the kinematics equations of the chain yield

[Pj1=[D®))]. i=1,....m. (2.92)

Now, choose [ P1] as the reference position and compute the relative displacements
[Pj][Pl_l] =[P1j], j =2,...,m. This formulation of the linkage design equations
can be found in Suh and Racliffe (1978) [7]. The result is the relative kinematics
equations

[P1j]= Aih Al A =0 m, (2.93)
where
AD;j=0;—0,=(A01},..., Abyj).
The complex number form of (2.93) yields the equations
¢ A9) = (i (A0 +A0++A0y)
(1- eiA‘f’.i)Plj =(1— eiAg'i)Cl + /4% (1- eiAgzj)Cz + -

+ei(A0]j+A92_j+“'+A0n—|,j)(1 _eiAQ,lj)Cn J=2 ..m

(2.94)

where A¢; = ¢; — ¢ and Py is the pole of the relative displacement [P ;]. These
are the equations we use to design the planar nR chain.

In terms of elements of the Clifford algebra we obtain the equivalent set of design
equations,

KB /2 — (A j+ 8024446, [2.

A A6y _
sin %Plj =sin L C]e—k(Aez_/+--~+A9,z/)/2

+ k40112 6 Abyj Ce k(A8 ++A0,)/2

AByj

oo oK (A0 FAO ot A1, ) /2 i -

C., j=2,...,m.
(2.95)

Equations (2.95) allow the introduction of sin % and cos # as algebraic un-
knowns so these equations can be solved for the various joint angles as well as the
coordinates of the joints. This is demonstrated below in our algebraic solution of the
five position synthesis of a 2R chain.
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2.9.2 The Number of Design Positions and Free Parameters

If we specify m task positions, then (2.94) provide m — 1 rotation and 2(m — 1)
translation equations. The unknowns consist of the n(m — 1) relative joint angles,
and the 2n coordinates C;, i =1, ..., n.

It is useful to notice that the rotation equations are solved independently, which
means that they determine m — 1 of the relative joint angles. Thus, we have 2(m — 1)
translation equations to solve for (n — 1)(m — 1) joint variables and 2n coordinates
C;, thatis

E=2n+m—Dm—1)—2m—1)=m®n—23)+n+3, (2.96)

where E excess of unknowns over equations.

Notice that except for n = 1 and n = 2 the excess of variables over equations is
greater than zero. For n = 1, we see that m = 2 yields an exact formula for what
is equivalent to the pole of a relative displacement. For n = 2, we find that an ex-
act solution is possible for m = 5, which is Burmester’s result that a 2R chain can
be designed to reach five specified positions (Burmester 1886 [8], Hartenberg and
Denavit 1964 [9]).

Now consider the case n = 3, which has six unknown coordinates C;,i =1, 2, 3,
and 2(m — 1) joint variables that are determined by 2(m — 1) equations. The excess is
E = 6 no matter how many positions are specified. In order to formulate this design
problem, we specify the m — 1 relative joint angles around C;. This is equivalent
to adding m — 1 design equations, which means that (2.47) takes the form E =
6 — (m — 1). The result is that given seven positions, m = 7, we obtain a set of
equations that determine the six coordinates C;,i = 1,2, 3.

2.9.3 The Standard Form Equations

The synthesis of planar 2R chains is the primary step in the design of four-bar link-
ages, which are constructed by joining the end links of two 2R chains to form the
floating link, or coupler. Specializing the relative kinematics equations (2.94) to this
case, we obtain

eiA¢j :ei(A0|j+A92.f)’
(1 _ eiA¢>j)Plj — (1 _ eiA@]j)Cl +€iA0]j(1 _ eiAQZj)CZ’ ,]:27 L.

(2.97)

We now show that this is the standard form equation used by Sandor and Erdman
for planar mechanism synthesis.

The standard form equation is obtained by equating the relative displacement
vector between two positions to the difference of vectors along the chain in the two
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Fig. 2.4 Two positions of a
planar 2R chain

positions. See Fig. 2.4. Let C; be the fixed pivot and C; the moving pivot when the
tool frame of 2R chain is aligned with the first position.

Introduce the relative vectors W = C, — C| and Z =D — C,, where D is the
translation vector to the first task position. We can now form the vector equations

Di=Ci+W+7Z,
D,=C; + WeiA912 + Zei(4912+A922)’
(2.98)

D, =C; + We!40m | 7,01 (A0im+A00m)

Recall that multiplication by the complex exponential rotates a vector by an angle
measured relative to the x-axis of the fixed frame.
Subtract the first equation from the remaining m to obtain

81, =W('4 — 1) 4 Z(e!AHA%) 1) j=2,...,m, (2.99)

where §1; =D; — Dy. Notice that the rotation of the jth task frame relative to the
first position is

Apj = A0y} + Abs;. (2.100)

Sandor and Erdman (1984) [11] call (2.99) the standard form equation and they use
it to formulate a range of linkage synthesis problems based on the planar 2R chain.

Now substitute the definition of the relative vectors W, Z and §;; back into the
standard form equation to obtain

D; —D; = (Cy — C) (" — 1) + Dy — Cp) (! AP T4%2) — 1),
and simplify to obtain

D, _ DA = (1 _ eiAG[j)Cl +eiA91_,-(1 _eiAezj)Cz’ j=1,....,m. (2.101)
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In order to show that this equation is identical to (2.97) we compute the pole P;; in
terms of the trans_lation vectors D; and Dy.
Let[D;]1=[e'%,D;], j=1,...,m, and compute

[D1;1=[D;I[D1]"" =[e'® =), D; — D' 79V (2.102)

Now the pole Py of this relative displacement is defined as the point that has the
same coordinates before and after the displacement, which means it satisfies the
condition

P = ei(¢j*¢1)Plj +D; — D' @i—%D, (2.103)
Thus, we obtain
(1—¢'4%)P; =D; — Dye??, (2.104)

and substituting this into (2.101), we find that the relative kinematics equations
(2.97) are exactly Sandor and Erdman’s standard form equations.

2.9.4 Synthesis of 3R Serial Chains

The planar 3R robot has three degrees of freedom and can reach any set of positions
within its workspace boundary. The design equations for m task positions take the
form

EiA¢j — ei(A91j+A92j+A03j)’
(1 _ eiA¢j)P]j — (1 _ eiA@]_/)Cl +eiA91_/(1 _ eiA@z_/')Cz
+ e AT AR) (1 _ of A1) Cy,  j=2,...,m.  (2.105)

We consider the design of this chain for three, five and seven task positions with the
condition that the relative joint angles around C; are specified by the designer.

Three Task Positions If we specify three task positions, the result is four trans-
lation design equations, or two complex equations, which determine the six coordi-
nates of C; and the 2(3 — 1) = 4 relative joint angles around C; and C,. The joint
angles around Cj3 are determined by the rotation design equations.

If we specify the four unknown relative joint angles and Ci, then these four de-
sign equations are linear in the coordinates of C, and C3. The result is two complex
linear equations in two complex unknowns,

K12 :eiA912(1 _ eiA@zz)C2 +ei(A012+A922)(] _ eiA@32)c3’
2.106
K13 :eiA913(1 _eiA923)C2 +ei(A9|3+A923)(1 _eiA033)C3’ ( )

where k1 ; are the known complex numbers,

K1j= (1 — eiA¢f)Plj — (1 — eiAglf)C1. (2.107)
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Five Task Positions  If five task positions are specified, then we have eight transla-
tion design equations in fourteen unknowns, the six coordinate C; and eight relative
joint angles. Now specify the coordinates of C; and the four relative angles around
it to define six parameters. The result is the four complex equations

K12 :eiAelz(l _ €iA922)C2 +ei(A912+A922)(1 _ eiA932)C3’
(2.108)
K1s :eiA915(1 _ eiA@z_s)Cz +ei(A0|5+A925)(1 _ eiA035)C3,

where «1; are known complex number defined by (2.107). These equations have
exactly the same structure as Sandor and Erdman’s standard form (2.101) for five
position synthesis and are solved in the same way.

Seven Task Positions If seven task positions are specified as well as the six rel-
ative joint angles around Cj, then we obtain 12 translation design equations in the
twelve unknowns consisting of the six joint coordinates C; and six relative joint
angles around C;. The result is six complex equations

(1 _ eiAd)z)Plz — (1 _ eiA@]z)Cl +eiA912(1 _eiAgzz)Cz

+ ei(A912+A922)(1 _ eiA‘)}z)C%

(2.109)
(1 _ eiA¢7)P17 — (1 _ eiA9]7)C1 +eiA9|7(1 _eiA927)C2

+ ei(A017+A927)(1 _ eiA037)C3.

This problem has been solved using matrix resultants by Lin and Erdman (1987) [13]
and using homotopy continuation by Subbian and Flugrad (1994) [14].

2.9.5 Single DOF Coupled Serial Chains

Krovi et al. (2002) [15] expand the standard form equations to nR chains in which
the joints are coupled by cable transmissions so the system has one degree of free-
dom. They call the chain a single degree-of-freedom coupled serial chain, or SD-
CSC. We formulate an equivalent form of their design equations using the relative
kinematics equations (2.94).

Consider a planar nR serial chain in which each joint is connected to ground
through a series of cables and pulleys located at each joint. Let each pulley have the
same diameter and the cables routed through the links so they form parallelogram
linkages. The result is n drive pulleys at the base of the chain that control the angle
«a; of the ith link relative to the x-axis of the world frame, which means each joint
angle is given by

9,' =; — 1. (2.110)
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We now introduce a single drive angle 8 such that each joint angle is given by
relation 8; = R; B, where R; denotes a constant speed ratio. The relations (2.110)
yield the transmission matrix [C] to the base drive angles are given by

o] 10 --- 0 Ry
o) 11 --- 0 R>
=1 . .| B (2.111)
oy 1 1 R,
or
o =[C][R]B, (2.112)

where [R] is the column matrix formed by the speed ratios. Our formulation differs
slightly from Krovi et al. (2002) [15] in that we have added the drive variable 8 and
therefore an additional speed ratio R;.

Consider the design of an nR chain in which the speed ratios R;,i =1, ..., n, are
specified. Substitute these speed ratios into the rotation term of the design equations
(2.94) to obtain

oAb zei(R|+R2+...+Rm)Aﬂj’ j=2,...,m, (2.113)

where AB; = B; — Bi is the relative rotation of the drive angle. We find for each
relative task position that

Aj

ABj = :
= R TRt 1 R

2.114)

Substitute this into the translation terms of (2.94) to define a linear equation in the

coordinates C;, i =1, ..., n for each relative task position,
(1 _eiAd)j)Plj — (1 _eiRlAﬂj)Cl +eiR1Aﬂj(1 _eiRzAﬂj)C2+
+ei(R1+R2+...+Rn_1)Aﬂj(1 _eiRnAﬂj)Cn’ j=2,...,m.

(2.115)

Given m = n + 1 task positions, we can solve these equations for the n complex
unknowns C;. The result is a coupled serial nR chain designed to reach n + 1 arbi-
trarily specified task positions.

2.10 Reachable Surfaces

In this section, we consider the design of spatial serial chains that guide a body
such that a point in the body moves on a specific algebraic surface. The problem
originates with Schoenflies [16], who sought points that remained in a given config-
uration for a given set of spatial displacements. Burmester [8] applied this idea to
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planar mechanism design by seeking the points in a planar moving body that remain
on a circle. Chen and Roth [10] generalized this problem to find points and lines in
a moving body that take positions on surfaces associated with the articulated chains
used to build robot manipulators.

2.11 Spatial Serial Chains

For our purposes, we consider five degree-of-freedom spatial serial chains that in-
clude a spherical wrist. Thus, the reachable surface is traced by the point, P, at the
wrist center of this chain under the movement of two remaining joints. Considering
only, revolute and prismatic joints, we can enumerate the seven possibilities:

1. The PPS chain, for which the wrist center, P, lies on a plane—notice that the
angle between the slide can be any angle o except zero, similarly the distance p
between the slides can be any value because a prismatic joint guides all points in
the body in the same direction;

2. The TS chain that has P on a sphere—recall the T joint is constructed from two
perpendicular intersecting revolute joints, that is with link angle o = /2 and
length p =0;

3. The CS chain for which P lies on a cylinder—the C joint is constructed from a
PR chain for which direction of the prismatic slide is parallel to the axis of the
revolute joint, that is « = 0, note p can be any value;

4. The RPS chain that guides P on the surface of a right circular hyperboloid—the
link angle o can be any value except zero;

5. The PRS chain in which the angle between of the prismatic slide and the axis of
the revolute is not zero guides P on an elliptic cylinder—the link angle o can be
any value except zero;

6. The “right” RRS chain in which the revolute joints are perpendicular but do not
intersect traces has P trace a right circular torus—the linkage angle o = ¢/2; and

7. The general RRS chain in which the revolute joint axes are not perpendicular nor
intersecting guides the wrist center on a general circular torus—the linkage angle
cannotbe o =0, /2.

The result is seven articulated chains and the associated algebraic surfaces that
are reachable by their wrist centers, Table 2.3. These algebraic equations of these
surfaces can be used to formulate the synthesis equations for these seven spatial
serial chains. In what follows, we determine the number of free parameters for each
chain, the associated number of task positions that define these parameters, and
assemble the synthesis equations. These equations can be solved using numerical
homotopy.
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Table 2.3 The basic serial

chains and their associated Case  Chain Angle Length  Surface
reachable surfaces
1 PPS a#0 o Plane
2 TS a=mr/2 p=0 Sphere
3 CS a=0 P Circular cylinder
4 RPS a#0 P Circular hyperboloid
5 PRS a#0 P Elliptic cylinder
6 RightRRS a=n/2 p Circular torus
7 RRS o P General torus

2.11.1 Linear Product Decomposition

The synthesis equations for the seven spatial serial chains describe above result in
polynomial systems of very high degree. Bezout’s theorem states that the number
of solutions to a polynomial system is less than or equal to the degree of the poly-
nomial system, which is obtained by multiplying the degrees of each of the polyno-
mials in the system. In what follows, we find that the synthesis equations of these
serial chains have so much internal structure that the total degree over-estimates the
number of solutions by two orders of magnitude.

In order to efficiently use numerical homotopy techniques to find all of the solu-
tions to our synthesis equations, it is useful to have a better estimate for the number
of solutions than the total degree. Here we present the linear product decomposi-
tion of a polynomial system and then use it to determine a bound on the number of
solutions for each of our systems of synthesis equations. The linear product decom-
position also serves as a convenient start system for numerical homotopy algorithms.

Morgan et al. [17] show that a “generic” system of polynomials that includes
every monomial of a specified system of polynomials will have as many or more
solutions as the specified polynomial system. The linear product decomposition of
a specified system of polynomials is a way of constructing this generic polynomial
system that includes all of the monomials of the specified system, so that it allows
convenient computation of the number of roots. Each polynomial in the linear prod-
uct decomposition consists of polynomials formed by the products of linear com-
binations of the variables and all of the monomials of the corresponding original
polynomial.

Let (x, y, 1) represent the set of linear combinations of parameters x, y and 1,
which means a typical term is ax 4+ 8y + y € (x, y, 1), where «, § and y are arbi-
trary constants. Using this notation, we define the product of (x, y, 1)(u, v, 1) as the
set of linear combinations of the product of the elements of the two sets, that is

(x,y, ){(u,v, 1) = (xu, xv, yu, yv, x, y, u, v, 1). (2.116)

This product commutes, which means (x)(y) = (y){(x), and it distributes over
unions, such that (x)(y) U (x)(z) = (x)({y) U(z)) = (x){y, z). Furthermore, we rep-
resent repeated factors using exponents, so (x, y, 1)(x, y, 1) = (x, y, 1)2.
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In order to illustrate the construction of the linear product decomposition con-
sider the synthesis equations of the TS chain presented in the previous chapter, given
by

(P'—B)- (P —B)=R* i=1,...7, (2.117)

where the dot denotes the vector dot product. Now subtract the first equation from
the rest in order to eliminate R%. This reduces the problem to six equations in the
unknowns z = (x, y, z, 4, v, w), given by

Sy =P/ pA PP 2B (P —P) =0, j=1,...,6. (2.118)

We now focus attention on the monomials formed by the unknowns.
Recall that P' = [A;]p +d; where [A;] and d; are known, so it is easy to see that

2B- (P —P') € (u, v, w)(x, y,2,1). (2.119)
It is also possible to compute
p/tl.pitl _p!l.p! =2d;41-[Aj1]p—2d, '[Al]p+d3+1 —d%
€ {x,y,z,1). (2.120)

Thus, we find that each of the equations in (2.118) has the monomial structure given
by

(x,y, 2, DU, v, w)(x, y,z, 1) Cx, y, 2, ) {u, v, w, 1). (2.121)

This allows us to construct a generic set of polynomials as a product of linear factors
that contains our synthesis equations as a special case, that is

(aix + b1y +ciz+d)(eiu+ fiv+grw+ hy)
0(z) = : -0, (2122
(aex + bey + coz + de)(esu + fov + gew + he)

where the coefficients are known constants. This is the linear product decomposition
of the synthesis equations for the TS chain.

This linear product decomposition provides a convenient way to determine a
bound on the number of solutions for the original polynomial system. This is done
by assembling all combinations of the linear factors, one from each equation, that
can be set to zero and solved for the unknown parameters. The number of combina-
tions that yield solutions is the LPD bound for the original polynomial system.

In the example above, select three factors a;x + b;y + cijz + d; = 0 from the
six equations, and combine this with the three factors e;u + fiv + giw + h; =0 in
the remaining equations. A solution of this set of six linear equations is a root of
(2.122). Thus, we find that this system has (g) = 20 solutions, which matches the
known result for (2.118).

In the following sections, we determine the synthesis equations for each of the
seven spatial serial chains with a reachable surface. We evaluate its total degree,
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Fig. 2.5 A sphere traced by a
point at the wrist center of a
TS serial chain

compute its linear product decomposition bound, and then numerically solve a
generic problem to find the number of articulated chains that reach a specified set of
displacements.

2.11.2 The Sphere

We now return to our opening example in which a point P = (X, Y, Z) constrained
to lie on a sphere of radius R around the point B = (u, v, w), Fig. 2.5. This means
its coordinates satisfy the equation

X—u)l?+ ¥ -0’ +Z-w)?-R*=P-B)>-R>=0. (2.123)

We now consider P’ to be the image of a point p = (x, y, z) in a moving frame M
that takes positions in space defined by the displacements Qi.i=1,....n.

This problem has seven parameters, therefore we can evaluate (2.123) onn =7
displacements. We reduced these equations to the set of six quadratic polynomials,

S (P2 PPy _oB. (PIT1—PY) =0, j=1,....6. (2.124)

This system has total degree of 26 = 64.
We have already seen that the system (2.124) has the linear product decomposi-
tion
Siex,y, o, Yu,v,w, 1)[; =0, j=1,...,6. (2.125)
From this we can compute the LPD bound (g) = 20. Parameter elimination yields
a univariate polynomial of degree 20, so we see that this bound is exact. Innocenti
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Fig. 2.6 The circular torus
traced by the wrist center of a
right RRS serial chain

[18] presents an example that results in 20 real roots. Also see Liao and McCarthy
[19] and Raghavan [20].

The conclusion is that given seven arbitrary spatial positions there can be as many
as 20 points in the moving body that have positions lying on a sphere. For each real
point, it is possible to determine an associated TS chain.

2.11.3 The Circular Torus

A circular torus is generated by sweeping a circle around an axis so its center
traces a second circle. Let the axis be L(t) = B + tG, with Plucker coordinates
G = (G, B x G). See Fig. 2.6. Introduce a unit vector v perpendicular to this axis so
the center of the generating circle is given by Q — B = pv. Now define u to be the
unit vector in the direction G, then a point P on the torus is defined by the vector
equation,

P — B = pv+ R(cos¢v + sinpu), (2.126)

where ¢ is the angle measured from v to the radius vector of the generating circle.
An algebraic equation of the torus is obtained from (2.126) by first computing
the magnitude

(P—B)>=p?>+ R>+2pRcos¢. (2.127)

Next compute the dot product with u, to obtain
(P—B)-u=Rsing. (2.128)
Finally, eliminate cos ¢ and sin ¢ from these equations, and the result is
G*(P-B)* —p* - R2)2 +4p*((P—B) - G)2 =4p>G*R>. (2.129)

This is the equation of a circular torus. It has 11 parameters, the scalars p and R,
and the three vectors G, P and B.
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In contrast to what we have done previously, here we set the magnitude of G to
a constant, in order to simplify the polynomial (2.129),

4:G-G=1. (2.130)

Unfortunately, this doubles the number of solutions since —G and G define the same
torus, however, it reduces this polynomial from degree sixth to degree four.

Let [T;] = [A;, d;] be a specified set of displacements, so we have the 10 po-
sitions P! = [T;]p of a point p = (x, y, z) that is fixed in the moving frame M.
Evaluating (2.129) on these points, we obtain the polynomial system

Zi: (P —B)’ = p> — R2)* +40>((P' = B)-G)> —4p’R* =0, i=1,...,10,
4:G-G—-1=0.
(2.131)
The total degree of this system is 2(4!%) =2,097,152.
In order to simplify the polynomials .7; we introduce the parameters
H=2pG and k =B?—p’>—R? (2.132)
which yields the identity
H2
4p’R* =H? <B2 - k1>. (2.133)

Substitute these relations into .7; to obtain
2 j 2 i 2 2
T ((P)"—2P" -B+k) + ((P'—B)-H)" — H2<B2 -— k1> =0,
i=1,...,10. (2.134)

It is difficult to find a simplified formulation for these equations, even if we subtract
the first equation from the remaining in order to cancel terms.

Expanding the polynomial .7 and examining each of the terms, we can identify
the linear product decomposition

T € (x,y, 2, h1,ha, b3, )2 (x, y, 2, h1, ha, by, u, v, w, ky, 1)2. (2.135)

This allows us to compute the LPD bound on the number of roots as

6
10
LPD =210 § ( , ) = 868,352. (2.136)
J

j=0
Our POLSYS_GLP algorithm obtained 94,622 real and complex solutions for a
random set of specified displacements. However, this problem needs further study
to provide an efficient way to evaluate and sort the large number of right RRS chains.
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2.12 Summary

The exponential form of the kinematics equations of the chain are reformulated us-
ing Clifford algebra exponentials to obtain an efficient and systematic set of design
equations. These design equations can be obtained as special cases of those for 2C,
3C, 4C and 5C serial chains. The solution process is demonstrated by determining
the structural parameters of a CCS serial chain so that it reaches an arbitrarily spec-
ified 12 position task trajectory. While individual solutions can be obtained numer-
ically, these synthesis equations have not yet been formulated for complete solution
by numerical homotopy. The complexity of this problem is illustrated by 5R chain
synthesis to reach 21 task positions, which requires the solution of 130 equations in
130 unknowns.

We have also formulated the synthesis equations the special cases of serial chains
that can position a spherical wrist center on an algebraic surface. A linear product
decomposition provides a bound for the number of solutions to these equations.
We focus on the SS and RRS which show the challenges of solving the synthesis
equations. While algebraic techniques yield 20 solutions for the SS chain, numerical
homotopy was needed to compute the over 90,000 solutions for the RRS chain.

This chapter shows that we can derive the synthesis equations for spatial serial
chains, however, they are complex and difficult to solve.
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