Chapter 2
Assessment Based on Minimum-Variance
Principles

An important goal of quality improvement in manufacturing is the reduction of vari-
ability in product attributes. Producing more consistent output improves product
performance and may reduce manufacturing costs. Therefore, the standard control
performance assessment methods are based on the MV principle or modifications
of it. The key point is that the MV benchmark (as a reference performance bound)
can be estimated from routine operating data without additional experiments, pro-
vided that the system delay is known or can be estimated with sufficient accuracy.

This chapter provides an introduction to the theory of MV performance as-
sessment. Some basic notations and concepts are given in Sect. 2.1. The deriva-
tion of minimum variance control is recalled in Sect. 2.2. In Sect. 2.3, the auto-
correlation test to check minimum variance is considered. Section 2.4 presents the
celebrated MVC-based performance index, known as the Harris index, and how to
estimate it using different algorithms. In Sect. 2.5, the extension of MV assessment
to feedback-plus-feedback loops is described. Its extension to the assessment of
set-point tracking and cascade control will be provided in Sect. 2.6. All methods
presented are illustrated using many examples.

2.1 System Descriptions and Basics

For the description of the methods in this chapter, we assume generic feedback
control systems shown in Fig. 2.1, where r (k) is the set point, u(k) the controller
output, e(k) the control error, y(k) the process output, and £(k) is the unmeasured
disturbance. G, G, and G denote the transfer functions of the feedback controller,
the process and disturbance dynamics, respectively. The set point is set to zero by
convenience, and the disturbances are assumed to be zero mean. If the reference
value and/or the mean of the disturbances are not zero, they can be made mean-free
by a simple transformation.

Let the system under consideration be described by an ARMAX model (see
Fig. 2.1)

A(@)y(k) = q~" B(q)u(k) + C(gq)e(k), 2.1)
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Fig. 2.1 Generic feedback control system structure

where e(k) is a zero-mean white noise with the variance 082, also referred to as
chocks. A(q), B(g) and C(g) are polynomials' in ¢~! of order n, m and p, respec-
tively:

AQ)=14+aiqg " +ag™ +-+ang ™",
B(q)=bo+big” ' +bg >+ +bug ", 2.2)
Cg)=1 —l—clcf1 +62q72 +-4cpg Tt

T is an integer number of sampling periods? (i.e. the dynamics contain a delay of
T samples), so that the leading term of B is non-zero constant. This means that B
is strictly rational or that the input # does not affect the output y immediately, i.e.,
there is at least one-sample delay (v > 1). Also note that the polynomials A and C
are monic, because their leading term is unity.

The noise model of an ARMAX model includes only random steps. For a gener-
alisation of the treatment, an ARIMAX model of the form

C
A(q)y(k) =q " B(q)u(k) + %a(k) 2.3)

may be needed to describe drifting (non-stationary) disturbances. As before, u is
the input, y is the output, and ¢ is the white noise. A is the backward difference
operator, i.e. A =1 —¢~!. ARIMAX models are typically used for the design of
model predictive controllers, particularly DMC and GPC.

If the process is assumed to be stable, it can be expressed as the infinite impulse
response (IIR)

o0
Gplg) =) hig™'.  lim h; =0. 24

=T

IFollowing Ljung (1999), ¢ is chosen as an argument of the polynomials rather than ¢! (which
perhaps would be more natural in view of the right side) in order to be in formal agreement with
z-transform and Fourier-transform expressions.

2For discrete systems with no time delay, there is a minimum one-sample delay because the output
depends on the previous input, i.e. T = 1.
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In practice, the impulse response is truncated at time 7, called “time-to-steady-
state”:

p
Gpg)~ Y hig™.  lim h; =0. 2.5)
i=t

When considering an ARIMAX model, the disturbance transfer function is margin-
ally stable due to the pole at ¢ = 1, so it can be shown that

Gelg)=) eiq, (2.6)
i=0

where the coefficients e; converge to C(1)/A(1). Defining n. as the settling time of
the disturbance dynamics enables Eq. 2.6 to be expressed as

Ng o0
Gelq)=) eiq " +en, ». g @7
i=0 i=ng+1
As the “differenced” load transfer function, i.e. AGg, is stable, it can be written as
Cl@) >, i N, i
AGe(q)=——~=Y dig”'~) dig” (2.8)
OO — e
1= =l
withdy=ey=1,di =e¢; —e;_1 fori=1,2,...,n,.

2.1.1 Note on Input—QOutput Models

Following the system identification and control performance monitoring literature,
the polynomial operator form is used throughout this book for the description of
input—output models. This makes use of the backwards-shift (or unit delay) opera-
tor ¢! defined as

q ' fk)= fk—1).

For instance, the difference equation of a linear system

yk)+arytk—1)+---+a,ytk —n) =bou(k) + bjutk — 1) + -+ - + bputk — m)
2.9)
thus becomes

(1+aig™" +-+ang™)yk) = (bo+big™" + - +bug ™uk). (2.10)
This will simply be denoted by

A(q)y (k) = B(q)u(k), 2.11)
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where A(g) and B(q) are the following polynomials, in fact, depending on ¢! in
the form

AlQ)=1+aig "+ +ang™", (2.12)
B(g)=bo+big™" +-+bug ™. (2.13)

The ratio of both polynomials

B
Gg)= 2@ (2.14)

A(q)

is considered as the discrete transfer operator of the discrete transfer function
(strictly speaking, G (z) should be used in the latter case) of the system. For time-
invariant linear systems, the forward-shift operator ¢ and the complex variable z
defining the z-transform are equivalent. In this case, one can use either one (g is just
replaced with z), and the appropriate signification will result from the context; see
Ratjen and Jelali (2006).

However, the shift operator g and thus the transfer operator G(q) can be applied
for any discrete-time system, thus as well to linear systems with time-varying co-
efficients (e.g. in the context of adaptive control) or nonlinear systems, where the
z-transform and thus the concept of transfer function do not apply.

Note that the variable z is analytical: we speak of numerical values z; of the poles
of a transfer function G (z). The operator g does not possess any numerical values; it
gives the transfer function G(q), whose mathematical expression is strictly identical
to G(2).

2.2 Minimum-Variance Control (MVC)

The minimum-variance control (MVC), also referred to as optimal H; control and
first derived by Astrom (1979), is the best possible feedback control for linear sys-
tems in the sense that it achieves the smallest possible closed-loop output variance.
More specifically, the MVC task is formulated as minimisation of the variance of the
error between the set point and the actual output at k + 7, given all the information
up to time k:

J=E{[r—yk+0]’} (2.15)
or
J=E{y*k+D} (2.16)

when the set point is assumed zero (without loss of generality), i.e., the case of reg-
ulation or disturbance rejection is considered. The discrete time delay 7 is defined
as the number of whole periods of delay in the process, i.e. (Harris 1989)

t=1+f=1+in(Ty/Ty), 2.17)
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where Ty is the (continuous) process delay arising from true process dead time or
analysis delay, and T denotes the sampling time. f is the number of integer periods
of delay.

The design of minimum-variance controller requires a perfect system model and
a perfect disturbance model and will result in a complete cancellation of the er-
ror (other than measurement noise) one sample time after the system time delay t.
The test for detecting MVC follows immediately (see Sect. 2.3): if the sample auto-
correlations of the system output are zero beyond 7, then MVC is being achieved.’
Further, if there is no process noise, i.e. £(k) = 0, then MVC is equivalent to a dead-
beat controller.

To enable minimisation of Eq. 2.15 with respect to the control input u, first we
need to relate the controlled output y to u. When both sides of Eq. 2.1 are multiplied
by E; and the left side is substituted using the Diophantine equation, also known as
the polynomial division identity,

Er(q9)A(q) = —q "Fr(q) + C(q), (2.18)

where
E(q)=eo+eiqg ' +exqg 2+ +er1g” ", (2.19)
Fe(@) = fo+ g™ + fog 2+ + farg” 7Y, (2.20)

we get the prediction of the output T steps ahead as

F:(q) E:(q)B(q)
k k) + E- k . 221
C@) y(k) + @ u(k) + E(q)e(k + 1) (2.21)

The right-hand side of this equation contains the three terms: present and past output
signals, present and past control signals and future error signals, respectively. As
future terms are not available at time k, only the realisable terms of the optimal
output prediction are then given by

. F:(q) E:(q)B(q)
k = k k). 2.22
yk+1) C@) y(k) + @ u(k) (2.22)

Now, the control action is selected to optimise the variance of the output (t steps
ahead), i.e.

yk+1)=

min J (k) = min E{y*(k + 1)}
u(k) u(k)

=min E
u(k)

F:(q) E:(q9)B(q) }
)+ 2 (k) + E; k . (223
{ @) y(k) + @ u(k) + E-(g)etk +7) (2.23)

30ne should here remember the linear correlation test used for the validation of identified linear
models; see Sect. 2.3.
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(The set point is first assumed to be zero.)* This equation contains past inputs, past
outputs and future disturbances. As the disturbance is assumed to be white noise, its
future values cannot be correlated with past signals. Therefore, the minimum will
be achieved when the sum of the first two components is set to zero:

Fr(q) E:(q)B(q)
k) + ———u(k) =0, 2.24
@ y(k) @ u(k) (2.24)
which gives the MVC law
F:(q)
k)= —————y(k). 225
=" E s’ 22
The same procedure applied to ARIMAX models (Eq. 2.3) leads to
Fi(q)
Au(k) = —————y(k). 2.26
B APy T (220

These control laws imply that, no matter what the system dynamics is, all system
poles (included in A(g) and thus F(q)) and zeros, included in B(g), are cancelled
by MVC. Consequently, the basic MVC design is restricted for stable and minimum-
phase systems. In practice, cancelling of system dynamics means to exert aggressive
control effort, which may not be tolerated from the operational point of view. An-
other limitation is the sensitivity against system changes, i.e. the lack of robustness
to modelling errors.

For non-minimum-phase systems, i.e. with unstable B(g), MVC can be designed
with some (minor) modifications. The unstable zeros are not inverted, similar to the
treatment in the IMC design (Morari and Zafiriou 1989). The control law for non-
minimum-phase (ARMAX) processes is given by

S
Au(k) = — % y(k), (2.27)

where S and R are the solution of the Diophantine equation

A@R(@) =—q""B(@)S(q) + C(q)B-(9)B; ' (9). (2.28)

The polynomial B is decomposed into a minimum phase part B_ and non-minimum
phase part B...

From the MVC laws given above it is clear that the main vehicle for calculating
minimum-variance controllers is the solution of the Diophantine Eqs. 2.18 and 2.28.
For simple cases, it is possible to get solutions; see Example 2.1. However, con-
structing solutions for Diophantine equations usually requires the use of a software

4The basic MVC is designed to solve regulation problems, where the objective is to compensate for
stochastic disturbances and not to follow a reference trajectory. However, MVC can be extended
to include variations in the reference, as described below.
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package. A standard one for this purpose is available from Kwakernaak and Sebek
(2000). Another solver is provided by Moudgalya (2007) in form of a MATLAB
function xdync.

Using the MVC, the minimum value of the output variance, shortly denoted min-
imum variance, is achieved:

Jnin(k) = ggg;E{y%k +1)} = E{E:(@)e(k + 1)}

T—1
= (Z e,.2> 02 =ogy (2.29)
i=0

where o2 is the (disturbance) noise variance. Note that oy is the same as the
variance of the prediction error y — 3. The achieved output of the closed-loop system
under MVC is

v(k) = E(q)e(k). (2.30)

Note that whereas the controller itself may require the specification of the system
model and disturbance model, both are not needed for MVC-based performance as-
sessment, as described below (Sect. 2.4). It is important to stress that the adoption
of MVC as a benchmark does not imply that it should be the goal towards which
the existing control should be driven, or that it is always practical, desirable, or even
possible to implement. Nevertheless, the performance bound set by the MVC is ex-
ceeded by all other (linear) controllers; hence, it serves as an appropriate benchmark
against which the performance of other controllers may be compared.

The reader is encouraged to consult the textbook by Moudgalya (2007: Chap. 11),
including many examples and MATLAB functions (mv for minimum phase systems,
mv_nm for non-minimum phase systems). Minimum variance control (placed in
a conventional feedback structure) can be viewed in an IMC structure or an SPC
structure; see Sect. 3.2. The equivalence between MVC and IMC was revealed by
Bergh and MacGregor (1987) to analyse the robustness of MVC. Refer also to Qin
(1998), who derived the MVC using the IMC structure.

Example 2.1 Consider the first-order system described by the transfer function

-7

k) = ——udh) + e(k) 2.31)

T 1tag 1 +aig™!
with a; = —0.9 and the time delay t = 3. This is an ARMAX model with
Alg ) =14ag7!, n=1,
B(q’l)zl, m=0,
Clg ) =1, p=0.
The Diophantine Eq. 2.18 takes the form

Es(g NA(g ) +q " F3(g7 ) =C(q7).
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(1 + elq_1 + ezq_z)(l +a1q_l) + foq_3 =1.

Comparing the same powers of ¢! gives

g% 1=1,

g e ta=0=e =—a,
¢ extaje;=0=e;=a7,
g3 aler+ fo=0= fo= —a13.

The closed loop is then given by (Eq. 2.30)
y(k)=E: (¢ Neth) = (1 —arg™" +alqg™> +--)ek).

In fact, the first three terms will be the same irrespective of the (linear) controller
used. The MVC law has the form (Eq. 2.25):

3
u(k) = —

1
(k).
1 —ag! +a%q_2y

This gives for a; = —0.9:

0.729

k) =— k).
“B) =100 1108142 ®

(2.32)

This control law can also be determined using the function mv from Moudgalya’s
MATLAB software (Moudgalya 2007: Sect. 11.4).

2.3 Auto-Correlation Test for Minimum Variance

Auto-correlation is a method that is used to determine how data in a time series are
related. Auto-correlation-based analysis provides to discover the nature of distur-
bances acting on the process and how they affect the system by comparing current
process measurements patterns with those exhibited in the past during “normal”
operation.

A fundamental test for assessing the performance of control loops is to check the
auto-correlation of the output samples: the autocorrelation should die out beyond
the time delay 7. Using a representative sample of measured output data, the sample
auto-correlation can be computed (i.e. estimated). Statistically significant values of
the estimated auto-correlations existing beyond the delay provide evidence that the
current controller is not minimum variance. Furthermore, if there exist many large
auto-correlation values that persist beyond t, the control performance deviates sub-
stantially from the MV performance bound. If only few slightly significant values
exist beyond t, the performance is close to that of MVC. Since the auto-correlations
are statistical estimates based on a finite sample of data, they will never be truly zero.
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Lag

Fig. 2.2 Example of auto-correlation test

Therefore, to assess whether the true auto-correlations pyy (j) might be zero or not,
their estimated values must be compared to their statistical confidence intervals, e.g.
95 % or 20. Box and Jenkins (1970) showed that, if oy, () is zero for j > 7, then
the variance is

1 7—1
o = var{pyy ()} & N|:1+2Zp)2,y(i):|, ji>t. (2.33)

i=1

Therefore, the 95 % confidence interval for pyy(j) is [-20, 20]. If most auto-
correlation coefficients pyy,(j) are inside this interval for j > r, the control is
roughly achieving minimum variance; otherwise, it is not.

Example 2.2 Figure 2.2 depicts the auto-correlation estimates for a gauge control
loop and their 95 % confidence levels. It is observed that the auto-correlation func-
tions are far outside the confidence limits after the time delay of 10. Therefore,
we conclude that the control is not achieving minimum variance. Furthermore, the
auto-correlation function is oscillatory, indicating that oscillation exists in the orig-
inal data.

The motivation behind the use of auto-correlation function (ACF) is that it can
be easily estimated from plant response data. Moreover, the dynamic response char-
acteristics for data trends can be inferred without having to resort to the more com-
plicated tasks associated with the identification and interpretation of time-series
models. For example, a slowly decaying auto-correlation function implies an under-
tuned loop, and an oscillatory ACF typically implies an over-tuned loop. For multi-
variable systems, off-diagonal plots can be used to trace the source of disturbance or
the interaction between each process variables. Figure 2.3 shows an example taken
from Huang et al. (1999), clearly indicating that the first loop has relatively poor
performance while the second loop has very fast decay dynamics and thus good
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Fig. 2.3 Correlation functions of a multivariate process (Huang et al. 1999)

performance. The off-diagonal subplots indicate interaction between the two loops.
Note that the ACF plot of the multivariate system is not necessarily symmetric.

2.4 Minimum-Variance Index/Harris Index

In the following, we present algorithms that will use routine (closed-loop) operating
data to assess the performance of control loops against MVC as benchmark. MVC-
based assessment first described by Harris (1989) compares the actual system-output
variance oy to the output variance 0’1\2,[\, as obtained using minimum-variance con-
troller applied to an estimated time-series model from measured output data.

The Harris index is defined as

Oy
My = ——. (2.34)
o
y
This index will of course be always within the interval [0, 1], where values close
to unity indicate good control with respect to the theoretically achievable output
variance. “0” means the worst performance, including unstable control. No matter
what the current controller is, we need only the following information about the
system:
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e Appropriately collected closed-loop data for the controlled variable.
e Known or estimated system time delay (7).

Moreover, there are two advantages for using this index over a simple error vari-
ance metric:

1. Taking the ratio of the two variances results in a metric that is (supposedly) inde-
pendent of the underlying disturbances—a key feature in an industrial situation,
where the disturbances can vary widely.

2. The metric is scale independent, bounded between O and 1. This is an important
consideration for a plant user, who might be faced with evaluating hundreds or
even thousands of control loops.

2.4.1 Estimation from Time-Series Analysis

From the measured (closed-loop) output data, a time-series model, typically of
AR/ARMA type, is estimated:

_ D o, (2.35)
A(q)

A series expansion, i.e. impulse-response, of this model gives

y(k) = (Zeiq"‘)e(k)
i=0

=(eo+teig " +eqg P+ Fer1g V) el

y(k)

feedback-invariant
+(eeq " +erp1g TV 4 ) e (k). (2.36)

feedback-varying

The first T impulse response coefficients can be estimated through t-term polyno-
mial long division, or equivalently via resolution of the Diophantine identity:

C(q) = E: (@A) +q " F:(q), (2.37)

where ET is an estimate of E; in Eq. 2.18. The feedback-invariant terms are not
functions of the process model or the controller; they depend only on the character-
istics of the disturbance acting on the process.

Since the first T terms are invariant irrespective of the controller (Fig. 2.4), the
minimum-variance estimate corresponding to the feedback-invariant part is given
by

T—1
oy =Y _€jo;. (2.38)
i=0
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Fig. 2.4 An impulse
response showing the
contributions to the Harris
index

Loct pI,
" e;:
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The first coefficient of the impulse response, eq, is often normalised to be equal to
unity.

The estimate of the actual output variance can be directly estimated from the col-
lected output samples using the standard relation in Eq. 1.1. However, it is suggested
to use the (already) estimated time-series model also for evaluating the current vari-
ance. From the series expansion of the time-series model (Eq. 2.36), we obtain

o0
o= Zeizaz. (2.39)

Since the noise variance will be cancelled in Eq. 2.34, it is neither needed nor has
an effect on the performance index. This compares the sum of the t first impulse-
response coefficients squared to the total sum; see Fig. 2.4.

The performance index nyy corresponds to the ratio of the variance, which
could theoretically be achieved under minimum variance control, to the actual vari-
ance. nyyv is a number between O (far from minimum-variance performance) and 1
(minimum-variance performance) that reflects the inflation of the output variance
over the theoretical minimum variance bound. As indicated in Desborough and Har-
ris (1992), it is more useful to replace ay2 by the mean-squares error of y to account
for offset

Gy _ Gy
nmv = m = W (240)
See also Sect. 2.4.2. If nmv is considerably less than 1, re-tuning the controller will
yield benefits. If nyy is close to 1, the performance cannot be improved by re-tuning
the existing controller; only process or plant changes, such as changes in the location
of sensors and actuators, inspection of valves, other control loop components, or
even alterations to the control structure can lead to better performance.

Although ¢ (k) is unknown, it can be replaced by the estimated innovations se-
quence. This can be obtained by pre-whitening the system output variable y(k)
via time series analysis based on an AR or ARMA model (alternatively a Kalman
filter-based innovation model in state-space form); see Box and MacGregor (1974),
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Fig. 2.5 Schematic representation of the white noise or innovation sequence estimation

Soderstrom and Stoica (1989) and Goodwin and Sin (1984). An estimate for the
random chocks is then found, e.g. by inverting the estimated ARMA model

e=C" Ay, (2.41)

where y is the vector of the output data.

The aim of pre-whitening (or simply whitening) is at tracking back the source of
variations in a regulatory closed-loop system to white noise excitation (“the driving
force”), as shown in Fig. 2.5. This means reversing the relationship between y (k)
and & (k). The process of obtaining a “whitening” filter is analogous to time-series
modelling, where the final test of the adequacy of the model, i.e. validation, consists
of checking if the residuals are “white”. These residuals are the estimated white
noise sequence. In contrast to time-series modelling, where the estimation of the
model is of core interest, the residual or innovation sequence is the main item of
interest in the “whitening” process and thus in control performance assessment.

To summarise, the complete algorithm to evaluate the MVC-based (Harris) index
and to assess feedback controls contains the steps described in Procedure 2.1.

Procedure 2.1 Performance assessment based the Harris index.

1. Select the time-series-model type and orders.

2. Determine/estimate the system time delay .

3. Identify the closed-loop model from collected output samples [ar/arma(x)]
(Eq. 2.35).

4. Calculate the series expansion (impulse response) for the estimated model
(Eq. 2.36) [dimpulse].

5. Estimate the minimum variance from Eq. 2.38.

Estimate the actual output variance from Eqgs. 1.1 or 2.39.

7. Compute the (Harris) performance index (Eq. 2.34).

o
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2.4.2 Estimation Algorithms

In this section, some different algorithms are described for the estimation of the Har-
ris index from normal operating data, irrespective of the controller installed on the
process. These algorithms do not necessitate the solution of Diophantine equation.

2.4.2.1 Direct Least-Squares Estimation

A simple way to estimate the Harris index nyy from closed-loop routine data is
to use linear regression methods, without the necessity of solving any Diophantine
equation or performing polynomial long divisions. From Eq. 2.21 the process output
under any installed feedback controller G(g) can be expressed as

Fr(@) — B(@)E:(q)Gc(q)
C(q)

Under the assumption of closed-loop stability, the second term in the previous equa-
tion can be approximated by a finite-length (n) AR model:

y(k)=Er(q)etk+1)+q~

y(k). (2.42)

Y =Y 0;y(k — 1 —i+ 1)+ E-(@)e(k) (2.43)
i=1

with the unknown model parameters ©);.
Running k over a range of values and stacking up similar terms yields

y=X0O + E.(q)e(k) (2.44)
with
V(N o,
YN = 1) 0
=" . e=| .
vt o) O
YN=7) y(N—1-1) -+ y(N—t—n+1)
YN—1—1) y(N—t—-2) -  y(N—t—n)
X = . . .
¥(n) ya—1 - ¥(1)

The parameter vector @ can be estimated with LS method, i.e. by fitting the
recorded closed-loop data {yi, y2, ..., yn} to the model Eq. 2.43. The LS solution
follows as

6 =(x"x)"'x"y. (2.45)
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An estimate of the minimum variance can be determined as the residual mean square
error

1
~2 T
=—  (y—X0@O -X0), 2.46
M =N 1 ) (y ) (2.46)
while the actual variance results as
1
) T
e R — . 2.47
TN ——ag1?? 247)

The Harris index can then be formed as

&134\,: N-t—n+1 (y—X0)T(y —X0O)
62 N-t—-2n+1 yTy

mv () = (2.48)

or

by N—1—n+1 (y—X0)T(y—X0O)
MSE N-t-2n+1yTy4+(N—1—n+1Dy*

nmv(t) = (2.49)

when the mean square error is used rather than the variance to penalise non-zero
steady-state errors; see Eq. 2.40. It is important to note that the signal y(k) has
always to be made free from the set point value prior to the index calculation.
Exact distributional properties of the estimated performance indices are compli-
cated and not amenable to a closed-form solution. Desborough and Harris (1992)
approximated first and second moments for the estimated performance indices and
resorted to a normal theory to develop approximate confidence intervals. Asymp-
totically, the performance indices are ratios of correlated quadratic forms, and as
such the distributions of the performance indices are non-symmetric. Refinements
to the confidence intervals developed in Desborough and Harris (1992) can be ob-
tained with little extra computational effort, by resorting to the extensive statistical
literature on the distributional properties of quadratic forms (Harris 2004).

2.4.2.2 Online/Recursive Least-Squares Estimation

One advantage of the LS approach is that recursive algorithms to find 7y (k) are
readably available. An online estimation of the index becomes possible. This is use-
ful to detect change points in control monitoring. Also, if the process is nonlinear
and the dynamics are slow enough that the process can be considered locally lin-
ear, recursive estimation of the performance index provides a local estimate of the
controller performance. Alternatively, yv (k) can be used online as a tuning tool
to immediately show whether the tuning changes have improved or degraded con-
trol performance (Desborough and Harris 1992). This assumes that the disturbance
model does not change significantly.
Typically, recursive LS (RLS) algorithms minimise a cost function of the form

V=(uy-XO0)TA(y—X0), (2.50)
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where A is a diagonal matrix with elements (A, AZ, AN ). A is the so-called for-
getting factor used to place more emphasis on recent data. An estimate of the MV
at time k is given by

oty (k) = Aoy (k — 1) 4+ 2(k). (2.51)

An estimate of the performance index is computed as

2
oxy (k)
vy (k) = MV~ 2.52
nmv (k) o2(k) (2.52)
where Gyz (k) is the exponentially weighted moving mean square error
200y 2 2
oy (k) =hroy(k—1) + y~ (k). (2.53)

Instead of an RLS method, a stochastic gradient algorithm, which does not need
matrix computations, can be used as well. This has been proposed by Ingimundarson
(2002, 2003) for performance assessment of A-tuned PI controllers.

As stated by Tyler and Morari (1995), the recursive estimation described works
well as long as the closed loop is accurately represented by an AR(MA) model. This
does not apply for closed-loop models with moving average parameters. An alter-
native approach to the recursive index estimation is therefore to use a hierarchical
method based on data windowing: the data are first broken into segments with sim-
ilar dynamic properties. Efficient algorithms, such as those proposed by Basseville
(1988), can be applied to rapidly detect changes in the closed-loop dynamics. Once
a change has been detected, the Harris index can be computed for the largest data
segment available with similar dynamics.

In practice, it is often sufficient to use moving windows to study the change
in performance of the process over time. Drops or drifts in the performance index
can be easily observed in such performance pictures like those shown in Fig. 2.6
(N = 500). However, care has to be taken to not use too small data windows; see
the guidelines in Sects. 7.1.2 and 7.3.2. In this example, a performance deterioration
caused by a big (non-stationary) disturbance appearing at time k = 2025 can be
observed.

2.4.2.3 Filtering and Correlation Analysis (FCOR) Method

Huang et al. (1997a, 1997b, 1997c, 2000) have developed a method to derive the
MVC-based performance index by filtering (i.e. pre-whitening) and subsequent cor-
relation analysis (thus called FCOR) between of the delay-free output and estimated
random shocks obtained by a pre-whitening filter. Calculation of the system corre-
lation eliminates the need to determine the impulse response coefficients from the
estimated closed-loop transfer function. The FCOR algorithm is presented in this
section following Huang and Shah (1999).
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Fig. 2.6 An example of the Harris index trend computed for moving data windows (gauge control

loop)

Consider the (stable) closed-loop system described by the infinite-order moving
average process in Eq. 2.36. Multiplying this equation by the error terms ¢ (k), € (k —
1), ..., e(k — t 4+ 1) respectively and then taking the expectation of both sides of

the equation yields
rye(0) = E{y(k)e (k) } = eoo?,
rye() =E{y(etk — D} = ej0?,
ryve(2) = B{y(k)e(k —2)} = ex0?,

rye(t — 1) =E{y(®)ek — v + 1)} =er_102.

Therefore, the minimum variance is

GMV—Ze —Z(ry;(l)) Zrys(l)/o :

i=0 &

Substituting Eq. 2.55 into Eq. 2.34 leads to the performance index

—1

nMVcor—Zryg(l)/ Z,O}E(l)—ZT

i=0

(2.54)

(2.55)

(2.56)

where Z is the cross-correlation coefficient vector between y (k) and e (k) for lags 0

to T — 1 and is denoted

Z .= [,Oys(o)a Pye(1), Pye(2), .oy pye(T — 1)]T~

(2.57)
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The corresponding sampled version of the performance index is therefore given by

7—1

N N . AT A
1MV, cor = Z ,033 =2 Z, (2.58)
i=0

where
Y M yek —1)
Sl v o e2(k)

&(k) can be determined from pre-whitening of y(k) via time series, as explained in
Sect. 2.4.1. The complete FCOR algorithm is described in Procedure 2.2.

Pye(l) =

Procedure 2.2 Filtering and correlation-based (FCOR) algorithm.

. Select the time-series-model type and orders.

. Determine/estimate the system time delay .

. Identify an appropriate closed-loop model from collected output samples y (k).

. Filter the system output data y(k) from the model to obtain an estimate for the
whitened sequence (Eq. 2.41).

5. Calculate the cross-correlation coefficients between y(k) and e (k) for lags O to

7 — 1 from Eq. 2.54.
6. Use Eq. 2.58 to compute the performance index.

RO I S

Note that FCOR is a general methodology rather than a specific algorithm. It
consists of two steps: filtering/whitening and correlation analysis. The advantage of
FCOR is its flexibility in the form of the filter and its suitability for MIMO systems
due to its simplicity in computation, namely computation of the Markov matrices
can be avoided. The filtering step in FCOR can use any algorithm, such as AR,
ARMA, state space, or even a nonlinear time series modelling algorithm.

2.4.2.4 Examples

The following examples illustrate the performance assessment results in terms of
the Harris index obtained using Procedure 2.2. Some controller tuning rules will be
evaluated using the MVC-based assessment introduced above.

Example 2.3 Consider the first-order system from Example 2.1. The MVC is used
here just to simulate the process under this ideal controller and to show that the
Harris index will take the value of 1 in this case. This is confirmed by the Harris
index value given in Table 2.1 (fourth row). In this simulation, £(k) was a normally
distributed noise with the variance o> = 0.01. The Harris index values have been
determined from using N = 1500 simulated data points (75 = 0.5) and modelling
the closed loop by an AR model of order n = 30.
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Table 2.1 Harris index value

for the different controllers Controller Ke 1
P1 0.05 0.62
P2 0.25 0.76
P3 0.50 0.37
MVC - 0.99

The impulse responses for a P-only controller with different gains and for the
MVC are illustrated in Fig. 2.7. It can be seen that P1 is a sluggish controller, P2
a well-tuned controller and P3 an aggressive controller. The figure also shows how
the impulse response for the MVC dies beyond t = 3. The first three (controller-
invariant) coefficients are marked with circles in the figure. From this example, it
can be learned that the Harris index for a well-tuned controller (n = 0.76) does not
always achieve that of MVC (n =0.99 =~ 1).

In the following, we consider two simulated processes used by Seborg et al.
(2004: Chap. 12) to compare different controller tuning rules in terms of (determin-
istic) set-point tracking and disturbance rejection. Here we evaluate the stochastic
control performance using the Harris index. For all processes, we assume that the
process model (without time delay) and disturbance model are identical and the
disturbance is normally distributed noise with the variance o2 = 0.01.

Example 2.4 A blending system with a measurement time delay modelled by

1.54 —1.07s

i (2.59)
5.93s + 1

Gp(s) =

and controlled by a PI controller is considered. Figure 2.8 illustrates the results
gained from modelling the closed loop by an AR model of order n = 20 using

]
\ = =P
08} ps

0.6 |-

== =MVCj

0.4 -

0.2 -

_0.2 |-
04l : ]

06} 1

_08 1 1 1 1 1
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Fig. 2.7 Impulse responses for different controllers
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Fig. 2.8 Harris index value for the blending process and different controllers

Table 2.2 Impulse responses

for the blending process and Controller/tuning rule Acronym K. i n
different controllers
IMC(A=T/3) IMC1 1.27 5.93 0.76
IMC (A =Ty) IMC2 1.80 5.93 0.81
Hiégglund and Astrom HA 1.10 2.95 0.65
ITAE (disturbance) ITAE1 2.97 2.75 0.59
ITAE (set point) ITAE2 1.83 5.93 0.81
Table 2.3 Harris index value B R
for the lag-dominant process Controller/tuning rule Acronym K. Ti 0
and different controllers
IMC (A =1.0) IMC1 0.5 100 0.63
IMC (A =2.0) based on IMC2 0.556 5 0.52
integrator approximation
IMC (A = 1.0) based on IMC3 0.5 8 0.56
Skogestad’s modification
Direct synthesis (disturbance) DS-d 0.551 491 0.52

1500 output samples. IMC and ITAE (set point) yield the best performance, and
ITAE (disturbance) the least performance, as a consequence of the most aggressive
settings; see Table 2.2. Note that IMC2 and ITAE (set point) have almost identical
impulse responses for this example, but this is not true in general.

Example 2.5 This example is a lag-dominant model with 74/ T = 0.01:

100
G =———¢"°. 2.60
P = 1005 4 1° (2.60)
Table 2.3 contains the results gained from modelling the closed loop by an AR
model of order n = 20 using 1500 output samples. IMC1 leads to the best per-
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Fig. 2.10 Generic feedback plus feedforward control system structure

formance and both IMC2 and DS-d to the least performance, which have almost
identical controller settings and thus almost identical impulse responses, as can be
seen in Fig. 2.9.

2.5 Assessment of Feedback/Feedforward Controls

Feedforward control (FFC) should always be introduced to reduce the process vari-
ability due to disturbances. An ineffective FFC will contribute to a large variance
due to the measured disturbances. Therefore, one additional task in assessing feed-
back/feedforward control loops is to diagnose whether a poor performance is due
to feedback control or feedforward control. This section focuses on the analysis
of variance (ANOVA), to quantify major contributions to system-output variance
(Desborough and Harris 1993; Huang and Shah 1999). A detailed derivation of the
algorithm can also be found by Ratjen and Jelali (2006).

The MV is calculated differently in feedback/feedforward control (Fig. 2.10) than
feedback control alone. The major difference is in the estimation of the variance of
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Table 2.4 Analysis of

variance for feedback plus Disturbance MV FB FF FB/FF Total
feedforward control 5 5 R
e(k) oMV, & OFBs — - 0y e
2 2 2 2
w1 (k) oMV T OfFw;  OFB/FF,w;  Cy.w
2 2 2 2
wp (k) OMV,w, OFF,w, OFB/FFw, Zy.uw,
2 2 2 2
Total Opy oy — oMy oy

the unmeasured disturbance (k). An ARMAX model of the MISO form

—1 -1
¥k = (q )(>+Z (q )d<k o) (2.61)

should be used for identifying the closed-loop model to include the effect of p
measured disturbances d;, as opposed to an AR(MA) model only. Then each
measured disturbance model is identified as an AR(I)MA time-series model, i.e.
Aj(q)dj(k) = Cj(q)w;(k), leading to

Cg™" (kHiB,-(q—l)cj(q—l)

k
VTP < A(g~HA; (g

wjk —1;). (2.62)

Time delays (r and 7;) are required and the model orders also need to be de-
termined. The identified closed-loop model is then used to carry out an ANOVA
table for the output y based on the time delays in the feedforward and feedback
paths. This method can yield valuable information about the sources of variability,
provided that all measured disturbances are mutually independent.

The cross-correlation between the measured disturbances (as potential feedfor-
ward variables) and the output can be used to determine which of them could be
used for FFC. The analysis of variance (Desborough and Harris, 1993) highlights
the contribution of the disturbances to the overall variance (Table 2.4):

Ny
2_ 2 2 2 2 2
0y = O, +Ofpe T ) (O8v.; + OFF.w; T OFB/FF.w; ) (2.63)
j=1
where
° 01\2,1\, .+ the minimum variance of the FBC, arising from unmeasured disturbance &

. UFZB .- the variance due to the non-optimality of the FBC

f 1 UI\Z/IV w; : the minimum variance of the FFC, coming from r measured dis-

turbances w;
Z?:] onF)wj: the variance due to the non-optimality of the FFC
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) Z?ZlanB JFR.w;* the variance due to the non-optimality of the combination
FBC/FFC.

The bottom row in Table 2.4 consists of, from left to right, the summation of the
minimum variances, the sum of all the variance due to non-optimality of the con-
troller components and the total variance. It is important to note that it is not pos-
sible to unambiguously attribute variance inflation to either the feedback controller
alone or the feedforward controller alone, hence the column labelled “FF/FB” in
the table. Note that if the process is invertible, it is always possible to eliminate
the variance inflation due to both this component and the feedforward component
using a feedforward controller, regardless of the feedback controller (Desborough
and Harris 1993). If one row contains a considerable portion of the total variance
in the columns FF and FB + FF, this implies that re-tuning is needed. If only the
term FB + FF is large, it can be expected that the feedback controller may handle
the disturbance satisfactory. The analysis of variance helps quantify how much the
performance of the control loop can be improved, which can be translated in terms
of increased product quality and/or material/energy consumption; see Sect. 13.2.3.

The procedure for variance estimation for feedforward/feedback control loops
can be outlined as follows. It is demonstrated in simulation studies discussed below.
An industrial application of this algorithm is presented in Sect. 16.3.1.

Procedure 2.3 Variance estimation for feedforward/feedback control.

1. Determine or estimate the time delays.

2. Fit an ARMAX model to the closed-loop output samples y(k) and measured
disturbance samples d; (k) as inputs.

Fit individual AR(IMA) models to each of the feedforward variables d; (k).
Calculate the series expansions (impulse responses) for the estimated models.

5. Compute the variances as in Table 2.4.

Rl

Example 2.6 The system consists of a pure time-delay process affected by output
noise and a measurable disturbance. This linear system, adopted from Desborough
and Harris (1993), has the structure and parameters illustrated in Fig. 2.11. For the
simulation study, the driving noises were Gaussian random signals with the vari-
ances o2 and o2. A simple integral feedback controller was used as the initial con-
troller.

Five cases will be studied. The first case considers the effect of weak distur-
bances, i.e. with low disturbance variance. In the second case, we increase the dis-
turbance variance, compared to the first case. In the third case, the disturbance dy-
namics will be altered so that its average residence time will be significantly shorter.
In the first three cases, the system was operated under feedback-only control, so
the assessment method will give hints whether the loop should be extended with
feedforward control. In the fourth case, a feedforward component will be added
to the controller. Finally, the feedback controller will be re-tuned and evaluated
again.
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Fig. 2.11 Structure and transfer functions of the considered control loop
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Table 2.5 Analysis of

variance table [% of total Disturbance MV FB FF FB/FF Total
variance] for Case 1
e(k) 534 42.8 - - 96.3
w(k) 0 - 3.0 0.7 3.7
Total 53.4 46.5 100

Case 1. Weak Disturbances. The variances of the driving noises were o2 = 0.1 and
062 = 1. A simulation of the system was carried out, and equidistant data were
collected at a sampling time 75 = 0.1 s. Steady-state operating data with 1000
samples were selected for calculating the ANOVA table; see Table 2.5. From this
it can be deduced that the feedback controller (o}% e =96.3 %) is far from the

minimum achievable variance (01\24\,, . = 33.4 %) for the unmeasured noise. There
is a major portion of the variance (42.8 %) which can be handled by a feedback
tuning. However, the contribution (3.7 %) to the variance from the measured dis-
turbance is small. 3 % can be reduced if an optimal feedforward controller is
implemented. There is also a negligible portion of the variance (0.7 %) which can
be handled by a combination of feedforward/feedback tuning. The conclusion is
that the assessment method suggests that the feedback controller would benefit
from improved tuning. However, an implementation of a feedforward controller is
not recommended.

Case 2. Strong Disturbances. Here the transfer functions of the system are left
unchanged, but the noise variance of the disturbance has been increased, i.e.

02 = 02 = 1. Performing an ANOVA-analysis shows that the measured distur-
bance is now responsible for 27.7 % of the total variance, from which 22.6 % can
be handled by feedforward control, see Table 2.6. This implies that the control
loop will benefit from implementing a feedforward controller in this case.

Case 3. Speed-up of Disturbance Dynamics. In this case, the disturbance dynamics
have changed such that there is no time delay, i.e.

1+4s’

Ga(s) = (2.64)
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Table 2.6 Analysis of
variance table [% of total
variance] for Case 2

Table 2.7 Analysis of
variance table [% of total
variance] for Case 3

Table 2.8 Analysis of

variance table [% of total
variance] for Case 4 with
static feedforward control

Table 2.9 Analysis of
variance table [% of total
variance] for Case 4 with

dynamic feedforward control

53
Disturbance MV FB FF FB/FF Total
e(k) 40.5 31.9 - - 72.3
w(k) 0 - 22.6 5.0 27.7
Total 40.5 59.5 100
Disturbance MV FB FF FB/FF Total
e(k) 61.3 38.1 - - 99.4
w(k) 0 - 0.4 0.2 0.6
Total 61.3 38.7 100
Disturbance MV FB FF FB/FF Total
e(k) 46.1 38.1 - - 84.2
w(k) 0 - 15.4 0.4 15.8
Total 46.1 53.9 100
Disturbance MV FB FF FB/FF Total
e(k) 49.8 41.7 - - 91.6
w(k) 0 - 6.0 2.4 8.4
Total 49.8 50.1 100

The variances of the driving noises are the same as in Case 2. From performing
similar simulations and looking at the ANOVA table (Table 2.7), the same conclu-
sions can be drawn as in Case 1.
Case 4. Effect of Feedforward Control. The implementation of a simple propor-
tional feedforward controller Ggr = 0.5 leads to a 7 % decrease of the feedforward
portion of variance, as shown in the ANOVA Table 2.8, compared to the perfor-
mance in Case 2 (Table 2.6). This is due to the static feedforward which attempts
to compensate for changes in the feedforward variable before these changes ap-
pear in the output. When now a two-sample delay is included in the feedforward
controller, i.e. Grr = 0.5¢ 2, the feedforward portion of variance decreases up to
6 %, as shown in the ANOVA Table 2.9. From this table it can also be deduced that
re-tuning or redesigning the feedback controller will yield the largest return, since
it is still far from the minimum-variance performance.
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Table 2.10 Analysis of

variance table [% of total Disturbance MV FB FF FB/FF Total

variance] for Case 5 with

dynamic feedforward control ~ &(k) 71.4 14.1 - - 85.6

and re-tuned feedback control (k) 0 _ 8.5 6.0 14.4
Total 714 28.6 100

Case 5. Re-tuning of the Feedback Controller. Just an increase of the proportional
controller gain to K. = 0.31 yields substantial performance improvement for the
feedback controller, as can be seen in Table 2.10. A further decrease of variance
may be only achieved by redesigning the controller.

2.6 Assessment of Set-Point Tracking and Cascade Control

Most of the techniques presented above can be applied to single control loops op-
erating in a regulatory mode, i.e. with constant set point. However, when set-point
variations occur frequently, neglecting them will lead to under-estimation of the reg-
ulatory performance improvement. Equation 2.30 has to be extended to include the
transfer function relating the control error to the set-point changes. The superposi-
tion principle gives the resulting closed-loop relation

F;
(k) = (@)

=T (k) + E-()e (k). 2.65
Er(q)A(q)q r(k) + E-(q)e(k) (2.65)

The estimation procedure of Sect. 2.4 thus has to be modified by estimating an
ARMAX model with r (k) as the input signal, similar to the case of feedback plus
feedforward control; see Sect. 2.5.

2.6.1 Performance Assessment of Cascade Control Systems

In process control applications, the rejection of load disturbances is often of main
concern. To improve the control performance for this task, the implementation of a
cascade control system is a good option. Indeed, cascade control is widely used in
the process industries and is particularly useful when the disturbances are associated
with the manipulated variable or when the final control element exhibits nonlinear
behaviour (Shinskey 1996). Therefore, the main criterion to assess cascade con-
trol loops is its capability to reject load disturbances. Typical examples of cascade
control from the metal processing industry are strip thickness control and flatness
control systems; see Chap. 15.
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Fig. 2.12 Block diagram of a cascade control system

The minimum achievable variance with cascade control is generally lower than
that from single-loop feedback control and can provide useful information on po-
tential performance improvement. The above techniques can directly be used to
analyse the performance of the primary loop under the assumption of constant set
point, but require modifications for the analysis of the secondary loop. The relation-
ships for the minimum-variance assessment of cascade control systems (Fig. 2.12)
are derived following Ko and Edgar (2000).

Subscript 1 in this figure refers to the primary control loop, while subscript 2
refers to the secondary control loop. Ci(k) and C,(k) are the process outputs of
primary loop and the secondary loop, respectively. Cy(k) is the deviation vari-
able from its set point, and C;(k) the deviation of the secondary output from its
steady-state value, which is required to keep the primary output at its set point.
G1(g) = Gi(q)g ™™ is the process transfer function in the primary loop with time
delay equal to 71, and G} (q) is the primary process model without any time delay.
It is assumed that G(g) has a stable inverse, i.e. all zeros lie inside the unit cir-
cle. The disturbance filters G 11(q) and Gy,12(g) are assumed to be rational func-
tions of ¢!, and they are driven by zero-mean white noise sequences ¢ (k) and
&2(k), respectively. Similarly, for the secondary loop, we have G2(q) = G5(q)g™ ™
as the process transfer function in the secondary loop with time delay equal to
72 and G3(q) is the secondary process model without any time delay. G2(q) is
also assumed to be minimum-phase. The combined effect of all unmeasured dis-
turbances to the secondary output is represented as a superposition of disturbance
filters G121(g) and Gp22(g) driven by zero-mean white noise sequences ¢1 (k) and
€2(k), respectively.

Using block-diagram algebra, from Table 2.11 it can simply be seen that:

Ci(k) = G1(g@)C2(k) + Grit(g)e1 (k) + GLia(g)e2(k),

(2.66)
Cr(k) = Ga(q)uz (k) + Gra1(q)e1 (k) + Graa(q)ea(k),
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where u; (k) is the manipulated variable in the secondary control loop. The MVC
algorithm for the equation system 2.66 is given by

e Primary Controller

G1(02nR21 — 021R») + (R11 + T1)Gr2 — (R12 + 12)GL2)

(@11 + 819 ™ (R12+ T2+ GiRn) — (Q12 4+ 20 " )(R11 + T1 + G{Ry)
(2.67)

Geimy =

e Secondary Controller

Gty = Q11+ S1g7 ™) (Ri2+ T2 + G{R») — (Q12+ S20 ") (R11 + T1 + GFRa1)
. GilGL11S2 — GL12S1 + (R11 Q12 — R12011)g 2] '
(2.68)

where Q11(g) and Q12(g) are polynomials in q_l of order 71 + o — 1, O21(q),
02(g), S1(q) and S>(q) are polynomials in q‘l of order 72 — 1, and R;;(q)
(i, j = 1, 2) are proper transfer functions that satisfy the following Diophantine
identities:

GrLi1 = Q11+ Rig "7 72,
GLi2= Q12+ Rppg™ "7 72,
Gra1 = 021+ R2197 7,
GrL = Q2+ Rng ™7,
G0 =81+Tiq7 7,
Gi0n=5+Nqg ™.

The primary output Cj (k) under this optimal control algorithm is an MA process
of order 7 + 1, — 1

(2.69)

Ci(k) =[Q11(@) + S1(q)g~ " Je1(k) + [Q12(q) + S2(g)g ™" Je2 k), (2.70)

and the MV of C (k) is

T1411—1
aélquztracei( Z NiTNi)Zg}, (2.71)
i=0

where N; (i =0,1, ..., 11+ 1 — 1) are defined as the coefficient matrices of the ma-
trix polynomial [(Q11+ S1¢™™)(Q 12+ S2g )], and ¥ is the variance-covariance
matrix of the white noise vector [](k)&2(k)]T. The derivation of the above relation-
ships can be found by Ko and Edgar (2000). Since the polynomials Q11, Q12, S1, $2
in Eq. 2.70 are all feedback-invariant, the expression for the primary output under
MYV cascade control can be estimated from the first 71 + 1o — 1 MA coefficients of
the closed-loop transfer functions relating 1 (k) to C1(k) and &>(k) to Ci(k). No
joint identification of the process dynamics and the disturbance model is needed.
The closed-loop transfer functions in this case can be obtained from the first row
of the transfer function matrix estimated via multivariate time-series analysis of
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[Ci(k), Cz(k)]T. For this analysis, an AR model [arx setting an empty input] can
be used efficiently with its computational speed. Alternatively, a state space model
can be estimated via the prediction error method [pem] or a subspace identification
method [n4sid]; see Sect. 7.2.6. The sample variance-covariance matrix of the resid-
ual vectors thus provides an estimate of the variance and the covariance elements of
the innovation sequences. The closed-loop impulse-response coefficients can then
be determined via simple correlation analysis between the output variables and the
estimated innovations sequences, or by solving a suitable Diophantine identity con-
cerning the estimated parameter matrix polynomial,

Ggl,MV = var{ (h]o +h1]q_1 + - +h1,f1+f171q_(rl+rl_l))81

+ (hZO + }121‘1_1 + -+ h2,r1+T1—1q_(T1+Tl_1))82}

T1+171—1
=Hm%< > Nﬂw)z4. (2.72)
i=0

The MV performance index for the cascade control system is defined as

2
9¢c, .MV
= (2.73)
O'Cl

Naturally, the question arises if the MV can be calculated by just applying uni-
variate analysis on C1 (k). Indeed, this would lead to similar results, but only in the
case where the net disturbance effect driven by &5 (k) is negligible. Otherwise, the
estimated performance index from univariate analysis is higher than the estimated
performance index value obtained through multivariate analysis. Thus, univariate
analysis of cascade control loops would yield an over-estimate of the control per-
formance.

Example 2.7 We consider the example of a process described by Egs. 2.66 with (Ko
and Edgar 2000)

q’ i
Gig)=——, G =—=7 G T1Z01g-1
(@) 690 Li1(g) o8 L12(q) 1—0.1g-"!
(2.74)
! g~ 1
Ga(q) = o5 T Grai(q) = =024 1 Gra(q) = 1-03g~"

to illustrate how the assessment procedure of cascade control systems works in de-
tail. For this system, the primary process time delay is two samples (71 = 2), and
the secondary process time delay is one sample (7 = 1). The process is subjected to
disturbances in the form of white noise sequences {e1 (k), £2(k)} with unity variance-

1.0 0.1

covariance matrix X, = [0 1o

]. A closed-loop simulation was performed using a
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e ¢ to C1
1+ 0 ¢g,to C1 H
= = = univariate

Impulse response coefficients
o
~
T

Lags

Fig. 2.13 Closed-loop impulse responses from simulated data

PI controller for the primary loop and P-only controller for the secondary loop. The
transfer functions for the controllers used are

0.48 — 0.4~

Ge(g) = 1 _C]71 ) Go(q)=0.7.

A data set of 2000 samples for the primary and secondary outputs was collected
and a multivariate AR model of 25th order was fitted to the gathered data. The es-

1.36 0.43]
0.43 1.304°

From this model the estimated closed-loop impulse responses have been obtained,
as shown in Fig. 2.13.
The estimated minimum variance by multivariate analysis is (Eq. 2.72)

oél!MV=trace{(|:(l)i|[l 0]+[8:§ﬂ[0.48 0.81],

0.49 136 043
+[1'03][0.49 1.03])[0'43 1'30}}%_01_ 275)

timated variance-covariance matrix of the white noise sequence is X, = [

This gives the estimated performance index (Eq. 2.73)

2
o 5.01
C,MV
Neymuli = —5— = 555 ~ 0.09. (2.76)
oc, 7.28

For a comparison, univariate analysis using an AR model of 25th order fitted to
the primary response data C1 (k) has also been carried out. The obtained univariate
closed-loop impulse response is also illustrated in Fig. 2.13. The estimated mini-
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mum variance by the univariate analysis is (Eq. 2.38)
o, v = (1.0° +0.836% + 0.534%)(2.822) = 5.596.

This yields the estimated performance index as

ot 5.596
C1,MV .
NCyuni =~ = T 2 0.79. 2.77)
oc, 7.28

The estimated performance index by univariate analysis is (13 %) higher than the
estimated performance index value obtained through a multivariate analysis. Thus,
univariate analysis of cascade control loops would yield an over-estimate of the
controller’s performance. Note that analysis of the inner loop yields an estimated
performance index of

2.76

NC,,uni = m ~ (.92,

indicating very good performance.

Just to theoretically confirm the results achieved above, we now calculate the
minimum variance from the full knowledge of the process and disturbance models
by solving Diophantine Egs. 2.69 using

g™t 2.78
1—ag! —aq- Za ( )
This gives specifically for the considered case:’
1 1 2 -3 -3
-1
q - - — _
T—01g—1 ¢ '(1+0.1¢7' +0.01¢7%) = Q12+ Riag .
g 1 1
10241 g (=02 +Raug ",
1 _ _
1-03g-1 14+03¢7" = 0n+Rng ™',
1 -1
WQM =8S1+Tgq
1 —1
m 00 =8+Tq ,

SRemaining error terms are ignored here for simplicity.
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where Q11 and Q1> are polynomials in q_1 of order 2, Q»1, O, S; and S, are
constants, and Q;; and T; (i, j = 1, 2) are proper transfer functions. The solution of
these identities yields

Q11 =14+08¢""+0.64¢72, Ry =0.512,

Qn=q"40.1q72 Ri» =0.01,
021 =0, Ry =1,
O»n =1, Ry =0.3,
S1=0, T) =0,
Sz: 17 T2=09

Thus, from Eq. 2.70, the primary output C;(k) under minimum-variance cascade
control is given by

Ci(k) = [14+0.8¢7" +0.64g2]e1(k) +[¢7" + 1.1 *]ea(k). (2.79)

The minimum variance follows as (Eq. 2.72)

ogl,Mvztrace{<|:(1)i|[l O]+|:Oi81|[0.8 1]
+[01"614][0.64 1.1]) [0%1 Oil]}ae4.56, (2.80)

which is close to the value in Eq. 2.75, estimated only from the simulated closed-
loop data and the knowledge of process time delays.

2.6.2 Assessment of Different Tuning Strategies

The conventional strategy to tune a cascade control loop is to first tune the sec-
ondary controller with the primary controller in the manual mode. Then the primary
controller is transferred to automatic, and it is tuned. If the secondary controller is
re-tuned for some reason, usually the primary controller must also be re-tuned. It
has been devised by Seborg et al. (2004) to tune the slave loop tighter than the mas-
ter loop to get improved stability characteristics and thus allow larger values of K
to be used in the primary control loop. Note that the presence of an integrator in
the secondary loop is not strictly necessary since the null steady-state error can be
assured by the primary loop controller. If integral action is employed in both the
master and the slave controllers, the integrator windup should be carefully handled.
A typical approach is to stop the integration of the primary controller when the
output of the secondary controller attains its limits (Visioli 2006).
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Principally, any (appropriate) tuning method can be applied to both controllers.
However, there are some tuning methods explicitly tailored for cascade control sys-
tems, such as relay feedback simultaneous tuning, IMC-based simultaneous tuning
and SPC-based simultaneous tuning. These will not be described here, but the reader
is referred to Visioli (2006: Chap. 9) and the references included therein. As the
usual sequential tuning is time-consuming, simultaneous tuning methods should be
preferred.

Example 2.8 Consider the cascade system with the transfer functions

1 1
Gl(S)Zm, GZ(S)Im (281)

This system was used by Astrom and Higglund (2006) to show the improved per-
formance for deterministic load disturbance rejection of cascade control, compared
with conventional PI control. The parameters of the latter controller were K. = 0.37
and 71 = 2.2. For cascade control, a P controller with K. = 5 was placed in the sec-
ondary loop, and a PI controller with K, = 0.55 and 71 = 1.9 in the primary loop.
A high-gain controller is possible in the secondary loop, as its response to the con-
trol signal is quite fast.

We now evaluate the performance of both control systems in terms of stochastic
disturbance rejection using the MV index. The hypothetical disturbances dynamics
and variances are assumed to be the same as in Example 2.7. Under these circum-
stances, the computed performance index values were 1 yni = 0.62 for the conven-
tional controller and 71 ypi = 0.85, N1, muis = 0.77 for the cascade control. These
results reveal the increase of stochastic performance achieved by the cascade con-
trol.

Example 2.9 An evaluation and comparison of the cascade-control tuning methods
mentioned above in the context of CPM is provided using the following example:

_4g e—O.Zs

Ga(s) =

e
Gi(s) = —— .
1) =557 s+ 1

(2.82)

The different PID controller settings derived by Visioli (2006) are given in Ta-
ble 2.11. This also contains achieved values of the performance indices, the MV
index 712 yni for the inner loop and the MV index 1 muli for the outer loop based
on the multivariable performance analysis. The results confirm again the need for
multivariable analysis; otherwise the performance is overestimated.

All tuning methods yields similar and satisfactory, but not excellent, control per-
formance in the primary loop, despite the excellent (stochastic) performance in the
inner loop. Therefore, there is still improvement potential for the primary loop from
stochastic performance view point. If, for instance, the primary controller is signif-
icantly detuned, i.e., X is increased, the variance is increased, however, only at the
expense of increased rise time.
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Table 2.11 Used controller parameters and assessment results

Primary Secondary Minimum-variance

controller controller assessment

K1 T Tpy K T, T 12, uni 1,uni N1, multi
Initial tuning 1.0 12.0 0 0.5 4.0 0 0.82 0.72 0.64

Relay feedback tuning  1.18  19.0 475 056 214 0 095 077 0.70
IMC-based tuning 1 094 10.0 1.89 331 1.06 007 081 0.71 0.63
IMC-based tuning 2 0.22 830 056 248 1.04 003 084 0.89 0383
SPC-based tuning 1.5 822 091 317 105 O 091 078 058

From this example we also learn that tuning cascade control should always be
driven towards maximising the Harris index (calculated using multivariable analy-
sis) of the primary loop, when the variance is the main point. Thereby, it is not nec-
essary to maximise the Harris index for the secondary loop. This conclusion seems
to be not in agreement with the conventional approach of tuning cascade controllers.
A similar conclusion was also pointed out by Teo et al. (2005) from their experience
on another example.

2.7 Summary and Conclusions

Performance assessment based on minimum variance control, as the standard
method for evaluating controllers, has been presented in detail. Besides batch cal-
culation, the performance index can also be computed recursively, enabling the use
of control charts for online monitoring of changes in controller performance. The
following advantages of MV benchmarking contributed to its popularity and usage
in the majority of CPM applications:

e Metrics based on MVC are the main criteria used in stochastic performance as-
sessment, providing a direct relationship between the variance of key variables
and product quality or energy/material consumption, which are correlated with
financial benefits.

e MV benchmarking is easy to apply and implement and remains valuable as an
absolute bound on performance against which real controllers can be compared.
Performance monitoring should always include at least a look at the Harris index,
as a first pass-assessment layer to bring obvious problems to immediate attention.

e Considering the MVC lower bound in setting performance targets will ensure
that overly optimistic and conservative performance targets are avoided. MVC
information can also be beneficial in incentive studies.

However, one should be aware about some serious drawbacks:

e A well-functioning loop in the process industry has frequently variance well
above the minimum variance. Also industrial controllers (usually of the PID-type)
do not have always a chance to match the MVC performance.
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e Even though, MV control action can lead to highly undesirable, aggressive con-
trol and poor robustness.

Principally, MVC-based assessment is useful irrespective of the type of controller
installed at the plant. However, tailored versions of MV assessment, such as those
for feedback-plus-feedforward control and cascade control, can also be applied
when the controller structure is known. Both control strategies are of widespread
use in the process industry. The analysis of variance for feedback-plus-feedforward
control helps quantify how much the performance of the control loop can be im-
proved by re-tuning the feedforward component or introducing such a component
if not yet implemented. For cascade control, it was shown that multivariate per-
formance analysis should be generally applied, since univariate analysis may yield
over-estimated loop performance, thus giving misleading conclusions. Also, tuning
cascade control should always be driven towards maximising the Harris index (cal-
culated using multivariable analysis) of the primary loop, when the variance is the
main point.
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