Chapter 2
Real-Time RGB-D Mapping and 3-D Modeling
on the GPU Using the Random Ball Cover

Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann,
and Joachim Hornegger

Abstract In this chapter, we present a system for real-time point cloud mapping
and scene reconstruction based on an efficient implementation of the iterative clos-
est point (ICP) algorithm on the graphics processing unit (GPU). Compared to state-
of-the-art approaches that achieve real-time performance using projective data asso-
ciation schemes which operate on the 3-D scene geometry solely, our method allows
to incorporate additional complementary information to guide the registration pro-
cess. In this work, the ICP’s nearest neighbor search evaluates both geometric and
photometric information in a direct manner, achieving robust mappings in real-time.
In order to overcome the performance bottleneck in nearest neighbor search space
traversal, we exploit the inherent computation parallelism of GPUs. In particular, we
have adapted the random ball cover (RBC) data structure and search algorithm, orig-
inally proposed for high-dimensional problems, to low-dimensional RGB-D data.
The system is validated on scene and object reconstruction scenarios. Our imple-
mentation achieves frame-to-frame registration runtimes of less than 20 ms on an
off-the-shelf consumer GPU.

S. Bauer () - J. Wasza - F. Lugauer - D. Neumann

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Martensstr. 3, 91058 Erlangen, Germany

e-mail: sebastian.bauer @cs.fau.de

J. Wasza
e-mail: jakob.wasza@cs.fau.de

F. Lugauer
e-mail: felix.lugauer @ gmail.com

D. Neumann
e-mail: dominik.neumann@ gmail.com

J. Hornegger

Erlangen Graduate School in Advanced Optical Technologies (SAOT) & Pattern Recognition
Lab, Department of Computer Science, Friedrich-Alexander-Universitit Erlangen-Niirnberg,
Martensstr. 3, 91058 Erlangen, Germany

e-mail: joachim.hornegger @cs.fau.de

A. Fossati et al. (eds.), Consumer Depth Cameras for Computer Vision, 27
Advances in Computer Vision and Pattern Recognition, DOI 10.1007/978-1-4471-4640-7_2,
© Springer-Verlag London 2013

mailto:sebastian.bauer@cs.fau.de
mailto:jakob.wasza@cs.fau.de
mailto:felix.lugauer@gmail.com
mailto:dominik.neumann@gmail.com
mailto:joachim.hornegger@cs.fau.de
http://dx.doi.org/10.1007/978-1-4471-4640-7_2

28 S. Bauer et al.

2.1 Introduction

In the past, the acquisition of dense 3-D range data was both tedious, time consum-
ing and expensive. Lately, advances in RGB-D sensor design have rendered metric
3-D surface acquisition at convenient resolutions (up to 300k points) and frame-
rates (up to 40 Hz) possible, holding potential for a variety of applications where
real-time demands form a key aspect. The advent of Microsoft’s Kinect [14], with
more than 10 million sales within a few months, has caused a furor in the field of
consumer electronics. In fact, the device has attracted the attention of various re-
search communities.

This chapter addresses the field of 3-D scene and model reconstruction that pro-
vides the basis for many practical applications. Among others, 3-D modeling is
a key component for the acquisition of virtual 3-D models from real objects, the
digitalization of archaeological buildings or sculptures for restoration planning or
archival storage [11], and the construction of environment maps in robot or vehi-
cle navigation [19, 28]. In particular, in the field of robotics, there is an increasing
interest in both 3-D environment reconstruction and simultaneous localization and
mapping (SLAM) solutions [2, 6, 32].

We present a framework that is capable of mapping RGB-D point cloud data
streams on-the-fly, enabling real-time 3-D scene modeling. We have implemented
a hybrid 6-D ICP variant that performs the alignment by considering both photo-
metric appearance and geometric shape [24]. Photometric (color) data may be an
essential source of information to guide the registration process in cases when geo-
metric surface information is not discriminative enough to achieve a correct align-
ment, see Fig. 2.1 for an example. Without loss of generality, we have designed the
framework in a manner that allows to incorporate further complementary informa-
tion into an n-dimensional point signature. In order to enable on-the-fly processing,
the corpus of the framework is implemented on the GPU. For the nearest neighbor
search, being the performance bottleneck in the majority of previous ICP imple-
mentations, we use a data structure that is specifically designed to benefit from the
parallel architecture of modern GPUs. In this work, we investigated the fitness of
the random ball cover (RBC) data structure and search algorithm [7, 8] for low-
dimensional 6-D data. Trading accuracy against runtime, we propose a modified
approximate RBC variant that is optimized in terms of performance. Please note
that this chapter is a substantial extension of previous work by the authors [30]. In
particular, we further enhanced the GPU implementation and achieved significant
speedups.

The remainder of this chapter is organized as follows. In Sect. 2.2, we review
relevant literature. We present our method for RGB-D mapping and 3-D modeling
in Sect. 2.3. Implementation details are given in Sect. 2.4. In Sect. 2.5, we evaluate
the proposed framework and discuss experimental results. Eventually, we draw a
conclusion in Sect. 2.6.

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 29

(d)

Fig. 2.1 Tllustration of the benefit of incorporating photometric information into the point cloud
alignment process in situations of non-salient surface geometry. The top row (a, b) depicts the
first and last frame of an RGB-D sequence capturing a colored poster stuck to a plane wall from
changing perspectives. Using scene geometry as the only source of information for the registra-
tion algorithm results in an erroneous alignment (c¢). Instead, by considering both geometric and
photometric information, the correct alignment is found using the proposed framework (d)

2.2 Related Work

The iterative closest point (ICP) algorithm is state-of-the-art for the rigid alignment
of 3-D point clouds [4, 9, 36], and the vast majority of related work builds upon
this established scheme. However, in the field of 3-D environment and model re-
construction, only few existing approaches have achieved interactive frame-rates
so far [12, 13, 19, 22]. Huhle et al. proposed a system for on-the-fly 3-D scene
modeling using a low resolution Time-of-Flight camera (160 x 120 px), typically
achieving per-frame runtimes of >2 s [22]. Engelhard et al. presented similar run-
times on Microsoft Kinect data (640 x 480 px) for an ICP-based RGB-D SLAM
framework [12]. The RGB-D mapping framework of Henry et al. performs ICP reg-
istration in an average of 500 ms [19].

Only recently, real-time frame-rates were reported for geometric ICP vari-
ants [13, 23, 31]. In particular, the KinectFusion framework [23, 31] has gained
popularity in the field of 3-D reconstruction. The fundamental core of this frame-
work is based on the work of Rusinkiewicz et al. [35], combining projective data
association [5] and a point-to-plane metric [9] for rigid ICP surface registration

30 S. Bauer et al.

and sensor pose estimation, respectively. While the original work was limited to a
frame-to-frame alignment [35], KinectFusion tracks the depth frame against a glob-
ally fused implicit surface model of the observed scene [10]. This limits the drift
behavior and results in an increased robustness and reconstruction accuracy, respec-
tively. Real-time capability is achieved using a parallelized implementation on the
GPU.

Compared to related methods based on projective data association [5] that pri-
marily consider the surface geometry for finding corresponding points, our approach
allows to incorporate multiple complementary sources of information (in our case
geometry and photometry) into the nearest neighbor search. Furthermore, explicitly
performing a nearest neighbor search according to a point signature potentially al-
lows one to extend the framework to handle large misalignments by a feature-based
initial pre-alignment [3].

More than a decade ago, Johnson and Kang presented the first approach to in-
corporate photometric information into the ICP framework (Color-ICP) in order to
improve its robustness [24]. The basic idea is that photometric information can com-
pensate for regions with non-salient topologies, whereas geometric information can
guide the pose estimation for faintly textured regions. In experiments, Johnson and
Kang observed that the additional use of color information decreased the registration
error by one order of magnitude. Recently, modifications have been proposed that
try to accelerate the color ICP’s nearest neighbor search by pruning the search space
w.r.t. photometrically dissimilar points [11, 25]. However, this reduction typically
comes with a loss in robustness.

Since modern RGB-D devices produce and propagate an immense data stream,
efficient implementations are inevitable in order to fulfill real-time constraints. For
the ICP algorithm in general, a comprehensive survey of efficient implementation
variants was given by Rusinkiewicz and Levoy [36]. However, their survey did not
include hardware acceleration techniques.

For the nearest neighbor search, being a major bottleneck in terms of runtime,
CPU architectures have shown to benefit from space-partitioning data structures like
k-d trees [1]. In contrast to algorithmic improvements, hardware acceleration tech-
niques are increasingly attracting the attention of the community. Garcia et al. have
shown that a GPU-based brute-force implementation outperforms a CPU-based k-d
tree [15]. The reason for this lies in the fact that the brute-force primitive can be
implemented efficiently using techniques known from the well understood problem
of GPU-based matrix—matrix multiplication. Implementations of traditional nearest
neighbor search acceleration strategies on the GPU are challenging due to the non-
parallel and recursive nature of construction and/or traversal of the underlying data
structures. For instance, Qiu et al. [33] achieved excellent frame-rates for GPU-
based k-d tree queries. However, the construction of the tree is performed on the
CPU, thus limiting performance when the tree must be constructed on a per-frame
basis as in the application scenarios considered in this chapter. Recently, space-
partitioning strategies that are specifically designed for GPU architectures have been
addressed. A promising approach is the random ball cover (RBC) proposed by Cay-
ton [7, 8]. The basic principle behind the RBC is a two-tier nearest neighbor search,

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 31

CPU GPU

RGB-D Frame Grabber Edge-preserving Denoising

L=
c
2-D/3-D Transformation 'E;
g
Instantaneous Point Set Transformed Previous Point Set s
2
o
Landmark Extraction Landmark Extraction .E
a
Moving Landmarks

Apply Initial Transformation - RBC Construction
not converged * ’5,’
RBC Nearest Neighbor Search <« RBC Data Structure ©
* o
=
Transformation Estimation (G
o
o
Transformation Accumulator)
i
Moving Landmarks Transformation 8
[=J
2
Convergence Check Transformed Moving Landmarks _g
\B] &

Instantaneous Point Set Transformation |—
converged

Transformed Instantaneous Point Set o
c
o
°
3-D Model Update I}
=
5
Rendering Engine ™

Fig. 2.2 Flowchart of the proposed 3-D scene reconstruction framework. Apart from the camera
hardware interface and the ICP control flow management, the corpus of the computational load of
both data preprocessing and photogeometric ICP alignment using RBC is outsourced to the GPU

building on the brute-force primitive, to prune the search space. In this work, we
adapted the random ball cover data structure and search algorithm, originally pro-
posed for high-dimensional problems, to low-dimensional RGB-D data for acceler-
ating the ICP alignment.

2.3 Methods

The proposed RGB-D mapping and modeling framework is composed of three
stages, as depicted in Fig. 2.2. In an initial stage, the sensor data consisting of or-
thogonal distance measurements and photometric color information are transferred
to the GPU where the corpus of the pipeline is executed. On the GPU, first, data
preprocessing and the transformation from orthogonal range measurements in the
2-D sensor domain to 3-D world coordinates are performed (Sect. 2.3.1). Second,
based on a set of extracted landmarks, the proposed color ICP variant is applied

32 S. Bauer et al.

(Sect. 2.3.2). Our method exploits the arithmetic power of modern GPUs for effi-
cient nearest neighbor search with an inherently parallel data structure and query
framework (RBC, Sect. 2.3.3). Third and last, the instantaneous point cloud is at-
tached to the global reconstructed model based on the estimated transformation. We
point out that the rigid body transformation is estimated in a frame-to-frame man-
ner, i.e. the pose of the instantaneous frame is estimated by registration against the
previous frame. In the remainder of this section, we outline the essential steps of the
proposed ICP framework. GPU implementation details are discussed in Sect. 2.4.

2.3.1 Data Preprocessing on the GPU

The Microsoft Kinect device acquires RGB-D data with VGA resolution (640 x
480 px) at 30 Hz. With respect to real-time constraints and regardless of the spe-
cific application, this spatial and temporal data density poses a challenge to data
processing solutions. Hence, in addition to the actual point cloud alignment, we
perform RGB-D data preprocessing on-the-fly on the GPU. First, we apply edge-
preserving denoising (e.g. guided image filtering [18, 37]) on the raw depth and
RGB data, respectively, as acquired by the Microsoft Kinect sensors. Next, the en-
hanced depth measurements are transformed to the 3-D world coordinate system.
Indeed, for each point x, € R2 in the camera plane, its depth value z(x.) describes a
world coordinate position vector x,, € R®. The transformation can be computed in-
dependently for each pixel, thus fitting perfectly for parallel processing on the GPU
(see Sect. 2.5.2).

Nomenclature Let us introduce the notation for this chapter. Let M denote a
moving set of template points M = {m}, where m € R% concatenates a point’s geo-
metric and photometric information mg € R3 and m p € R3:

m
m— (mi) @1

The indices g and p denote that only the geometric and photometric part is con-
sidered, respectively. In order to compensate for inconsistencies due to changes in
illumination and viewpoint direction, the photometric information is transformed to
the normalized RGB space [16]:

Iy
. . =11 -
my, = (i; +ig +ip) ig |, 2.2)
ib
where iy, ig, ip denote the intensities of the red, green and blue photometric channel.

In analogy to the moving set of template points M, let F = {f} denote a fixed set
of | F| reference points f € R®, where f7 = (£, f[T,).

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 33

Landmark Extraction Considering the application of 3-D scene or object mod-
eling using a real-time, hand-held and steadily moved RGB-D device implies that a
portion of the scene that was captured in the previous frame Fisno longer visible in
the instantaneous data M and vice versa. Facing these issues, we heuristically dis-
card the set of points that correspond to range measurements at the edge of the 2-D
sensor domain in order to improve the robustness of ICP alignment. This clipping
is performed in conjunction with the extraction of the sparse sets of ICP landmarks,
denoted by M C Mand FC F.In practice, the landmark extraction is performed
by sub-sampling the clipped point set.

For the case of 3-D object reconstruction, we apply a dedicated scheme for land-
mark extraction. Instead of considering the entire scene, we segment the foreground
using a depth threshold. From the set of foreground pixels, we then select a set of
landmarks.

2.3.2 Photogeometric ICP Framework

Being the state-of-the-art in rigid point cloud alignment [4, 9, 36], the ICP estimates
the optimal rigid transformation (R, t) that brings M in congruence with F, where
R € R3*3 denotes a rotation matrix with RT = R~!, det(R)=1andte R3 denotes
a translation vector. Based on an initial guess (RO, tO), the ICP scheme iteratively
estimates this transformation by minimizing an error metric assigned to repeatedly
generated pairs of corresponding landmarks (m,y) where m € M and y € F. In
terms of correspondence search, our photogeometric ICP variant incorporates both
geometric and photometric information. Let us note that competing strategies, in-
cluding projective data association, typically rely on the pure geometry and cannot
incorporate additional information in a straightforward manner. We now outline the
essential steps of our photogeometric ICP variant.

In the geometric case, the distance d between an individual moving landmark m,
and the set of reference landmarks F, = {f, } is defined as

d(mg, F) = min |[fg — m, |3, (2.3)
8 &

8

where || - |2 denotes the Euclidean norm. In order to incorporate the additional pho-
tometric information available with modern RGB-D sensors, let us modify the dis-
tance metric d:

d(m, F) = min((1 — a)|lf; — mg |1 + a|If, —m,][3), (2.4)

in
feF
where « € [0, 1] is a non-negative constant weighting the influence of the photomet-
ric information. The benefit of this hybrid approach is that photometric information
compensates for regions with non-salient surface topology, and geometric informa-
tion compensates for faintly textured regions or photometric inconsistencies due to

34 S. Bauer et al.

changes in illumination and viewpoint direction. The landmark y € F yielding the
minimum distance to m is then given by

y=argrfr€1g1((1 —a)|Ifg —mg 3 +alif, —m,|3). (2.5)

By assigning a nearest neighbor y to all m € M, a set of nearest neighbors) is
given as Y = {y}, y € F, |V| = | M|, and the landmark correspondences can be
denoted by (M, Y). The GPU-based nearest neighbor search framework that we
use to establish these landmark correspondences is described in Sect. 2.3.3. Next,
based on the landmark correspondences (Mk, %) found in the kth ICP iteration,
the transformation (R,) is estimated by either minimizing a point-to-point error
metric in a least-squares sense using a unit quaternion optimizer [21],

(Rk tk) = arg m1n IM]‘I Z ” ka]; —i—tk) —y];,| 2 (2.6)

27
M/‘ yk

or by minimizing a point-to-plane distance metric [9] using a nonlinear solver,

> (Romf+¢) —y8) 'ng)® @D
M. Vg

1
Rk t“) = arg min
(R) =are min 77,

Here, Ny« denotes the surface normal associated with the point yg e F. After each
8
iteration, the global solution (R, t) is accumulated:

R=R'R, t=Rt+t, (2.8)

and /\/l’; is updated according to mlg‘, = Rmy + t. The two stages of first finding the

set of nearest neighbors)* and then estimating the optimal transformation for the
correspondences (M*, V¥) are repeated iteratively until a convergence criterion is
fulfilled, see Fig. 2.2 and Sect. 2.4.1.

2.3.3 6-D Nearest Neighbor Search Using RBC

The Random Ball Cover (RBC) is a novel data structure for efficient nearest neigh-
bor (NN) search on the GPU proposed by Cayton [7, 8]. By design, it exploits the
parallel architecture of modern graphics cards hardware. In particular, both the con-
struction of the RBC and dataset queries are performed using brute-force (BF) prim-
itives. Using techniques known from matrix—matrix multiplication, the BF search
can be performed in a highly efficient manner on the GPU. The RBC data structure
relies on randomly selected points r € F, called representatives. Each of them man-
ages a local subset of F. This indirection creates a hierarchy in the database such
that a nearest neighbor query is processed by (i) searching the nearest neighbor r
among the set of representatives and (ii) performing another search for the subset of

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 35

RBC Construction Scheme

@)) h ©

(d (e) ®

Fig. 2.3 Illustration of the RBC construction (a—c) and the two-tier nearest neighbor query scheme
(d—f) for the simplified case of 2-D data. (a) Selection of a set of representatives R (labeled in dark
blue) out of the set of database entries F (light blue). (b) Nearest representative search over the
set of database entries, to establish a landmark-to-representative mapping. (c¢) Nearest neighbor
set of each representative (shaded in blue). (d) Query data (orange) and set of representatives
R (dark blue). (e) Identification of the closest representative r, in a first brute-force (BF) run.
(f) Identification of the nearest neighbor (green) in the subset of entries managed by r (shaded in
blue), in a second BF run

entries managed by r. This two-tier approach outperforms a global BF search due
to the fact that each of the two successive stages explore a heavily pruned search
space.

In this work, we have investigated the fitness of the RBC for acceleration of the
6-D nearest neighbor search of our photogeometric ICP. Optimizing this particular
ICP stage is motivated by the fact that it is a major performance bottleneck—see
Sect. 2.5.2 and [30].

Cayton proposed two alternative RBC search strategies [8]. The exact search is
the appropriate choice when the exact nearest neighbor is required. Otherwise, if
a small error may be tolerated, the approximate one-shot search is typically faster.
Originally, in order to set up the one-shot data structure, the representatives are
chosen at random, and each r manages its s closest database elements. Depending
on s, points typically belong to more than one representative. However, this implies
a sorting of all database entries for each representative—hindering a high degree
of parallelization for implementation on the GPU—or the need for multiple BF
runs [7]. Hence, we introduce a modified version of the one-shot approach that is
even further optimized in terms of performance. In particular, we simplified the RBC
construction, trading off accuracy against runtime, see Fig. 2.3 (a—c). First, we select
a random set of representatives R = {r} out of the set of fixed points F. Second,

36 S. Bauer et al.

each representative r is assigned a local subset of F. This is done in an inverse
manner by simply computing the nearest representative r for each point f € F. The
query scheme of our modified one-shot RBC variant is basically consistent with
the original approach and can be performed efficiently using two subsequent BF
runs [8], see Fig. 2.3 (d—f). First, the closest representative is identified among R.
Second, based on the associated subset of entries managed by r, the nearest neighbor
is located.

Please note that this modified RBC construction scheme results in an approx-
imate nearest neighbor search being error-prone from a theoretical point of view.
In practice, facing the trade-off between accuracy and runtime, we tolerate this ap-
proximation, cf. Sect. 2.5.2. Let us further remark that the scheme is not limited
to 6-D data but can be applied to data of any dimension. For application in 3-D
reconstruction, this potentially allows us to extend the point signature from 6-D to
higher dimensions, e.g. appending additional complementary information or local
feature descriptors to the raw geometric and photometric measurements acquired by
the sensor, cf. [19].

2.4 Implementation Details

In this section, we discuss implementation details and comment on practical issues.
In particular, we address the RBC implementation on the GPU.

2.4.1 Details Regarding the ICP Framework

Regarding the quality and robustness of point cloud alignment, we observed a strong
impact of outliers that occur in RGB-D data particularly due to sensor noise, quanti-
zation, occlusion, and changes in viewpoint direction. Sensor noise and quantization
issues are reduced using edge-preserving denoising filters in the preprocessing stage
of the framework, recall Fig. 2.2. We typically apply the concept of guided image
filtering [18] or median filtering that both can be parallelized in an efficient manner
on the GPU [29, 37].

The remaining set of outliers arise from a change in viewpoint direction or occlu-
sion and cannot be eliminated by denoising. To take them into account, we option-
ally reject low-grade correspondences in the transformation estimation stage. The
term low-grade is quantified by comparing the distance of a corresponding pair of
landmarks (Eq. 2.4) w.r.t. an empirically set threshold §. The set of low-grade cor-
respondences is re-computed for each ICP iteration and discarded in the subsequent
transformation estimation step.

As initialization for the ICP alignment, we incorporate the estimated global trans-
formation (R?, t%) from the previously aligned frame, see Fig. 2.2, assuming a
smooth trajectory of the hand-guided acquisition device. In practice, this speeds
up convergence and reconstruction, respectively.

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 37

In our implementation, the ICP transformation is estimated by minimizing the
point-to-point distance metric (Eq. 2.6). The estimation of the transformation ma-
trix according to Horn [21] is performed on the GPU. Both the computation of the
centroids of F and M and the summation of the intermediate M-matrix are imple-
mented using the established parallel reduction technique [17]. For details on Horn’s
scheme we refer to [21]. Note that low-grade correspondences may have been re-
moved from F and M at this stage. The resulting eigenvalue problem is solved
using the iterative Jacobi scheme on the GPU. This is motivated by practical ex-
perience: on the one hand, using a CPU-based implementation of Jacobi’s scheme
would result in notable host-device and device-host transfer times, depending on the
number of ICP iterations. On the other hand, solving the eigenvalue problem on the
GPU using Ferrari’s closed form solution [26] as proposed by Loop and Blinn [27]
would imply a non-negligible number of branches and root calculations that are also
performed iteratively in hardware [34].

As ICP convergence criterion we analyze the variation of the estimated transfor-
mation over the iterations. In particular, we evaluate the change in translation mag-
nitude and rotation angle w.r.t. heuristically set thresholds of 0.01 mm and 0.001°,
respectively.

2.4.2 RBC Construction and Queries on the GPU

Originally designed for offline and high-dimensional data queries, utilizing the RBC
for real-time low-dimensional RGB-D mapping requires certain adaptations. We
found that the originally proposed RBC construction routine does not satisfy run-
time constraints imposed by the frame-rate of modern RGB-D imaging devices. We
therefore employ a different RBC construction routine as introduced in Sect. 2.3.3.
As a consequence, this implies a query approach that slightly differs from the origi-
nal proposal. Below, we describe the details and hardware related considerations of
our RBC implementation. An illustration of the workflow for RBC construction and
query, as well as data interaction, is depicted in Fig. 2.4.

RBC Construction As a first step in the RBC construction, we extract the
set of representatives R = {r} from the given fixed landmarks F. For each land-
mark f € F, we then compute the nearest representative r by a brute-force search
strategy. This can be done efficiently in parallel over the landmarks using block-
decomposition techniques known from matrix—matrix multiplication on the GPU.
These landmark-to-representative (LR) mappings are subsequently used to (i) set
up the RBC meta information and (ii) to generate a compact and cache friendly
permuted database of the original landmarks F for RBC queries. An illustration
is given in Fig. 2.5. For meta information generation, let us note that the number
of managed landmarks for each representative can be derived in the LR mapping
computation directly by using synchronized counters employing atomic operations.
We found this approach more performant compared to a separate approach. Next,

38 S. Bauer et al.

RBC Construction RBC Queries

(parallel over landmarks)

Fixed Landmarks (6-D Data) Moving Landmarks (6-D Data)
Rep. Selection Pull Query

v v
‘ LR Mapping Set of Rep. (6-D Data) - Search closest Rep.
(parallel over landmarks)

» Read # Entries for closest Rep.
y ‘ L]
\ Compute Oﬁsé‘ for Rep. |<, Permuted Data Base Offset Sl Get Offset
(parallel scan) |

y
Sort LR Mapping Permuted Data Base Search NN in List of closest Rep.
(key-and-value, parallel sort)

Fig. 2.4 Flowchart describing the GPU workflow and data interaction for RBC construction (/eft)
and queries (right). Note the high degree of parallelism for both construction and queries. For
details on the landmark-to-representative (LR) mapping see Fig. 2.5

Fixed Landmarks Data Base

[S)
-
N
w
N
)
)
~

Landmark ID (value)

Rep. ID (key)

w
w
o
o
N
N
o
N

RBC Meta Information

Rep. ID 0|1]2]3 2136|457]0]1 Landmark ID
Number of Entries | 3 | 1 | 2 | 2 0|0|0|1]2]|2]|3]|3]| Rep.ID
X X X
Permuted Data Base Offset | 0 | 3 | 4 | 6

Fig. 2.5 Data structures for RBC construction and queries. Note the differentiation between meta
information (left) and the permuted database (right) to improve cache hit ratio for queries

we compute an offset table by performing a parallel scan [17] on the number of
managed entries. This offset table ultimately defines the unique position for each
representative’s first managed entry in the permuted database. To re-arrange the
original data into a cache friendly layout for RBC queries, we perform a key-and-
value sort [20] on the LR mappings. Here, a landmark ID denotes the value and the
associated representative ID defines the key. By using such a database layout, a rep-
resentative’s managed entries are located in contiguous memory regions, improving
cache hit ratio for RBC queries. We note that our approach still requires sorting,
however, sorting breaks down to |F| elements in contrast to |F| - [R| entries as
originally described [8].

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 39

RBC Nearest Neighbor Queries As described in Sect. 2.3.3, RBC queries rely
on a two-tier approach—each employing a brute-force search—to prune the search
space. The first tier consists of finding the nearest representative r for each query
element by a BF search. This is basically the same procedure as for deriving the
LR mappings during RBC construction and can be performed efficiently in parallel
over the query elements by using a block-decomposition scheme. The second tier
consists of finding the nearest entry managed by the representative r identified in the
first tier. Again, this is done by utilizing a BF search, however, an efficient block-
decomposition scheme is not a performant option here. In the first tier this scheme
is efficient and possible due to the prior knowledge that all query elements have to
visit exactly the same representatives. However, in the second tier, each query el-
ement must examine (i) different entries and/or (ii) a different number of entries.
Both are given by the entry’s nearest representative which in general is not consis-
tent across different query elements. Though sophisticated techniques to implement
a block-decomposition-like scheme can be used, in most cases they are counterpro-
ductive. We found that due to the computational overhead a potential performance
gain is lost. Instead, we employ a simple BF search over a representative’s contigu-
ous memory region in the permuted database which allows to increase the cache hit
ratio and results in lower runtimes.

2.5 Experiments and Results

We have evaluated the proposed framework for on-the-fly 3-D reconstruction and
modeling of real data (640 x 480 px, 30 Hz) from a hand-held Microsoft Kinect
sensor. Below, first, we present qualitative results for both indoor scene mapping
and object reconstruction scenarios, and investigate the influence of the parameter
settings (Sect. 2.5.1). Second, being a major focus of this system, we demonstrate its
real-time capability in a comprehensive performance study (Sect. 2.5.2). Third, we
compare our approximate RBC variant to an exact nearest neighbor search in terms
of accuracy (Sect. 2.5.3). For all experiments, the number of representatives was
set to |R| = +/]F] according to Cayton’s rule of thumb [8], if not stated otherwise.
The ICP transformation was estimated by minimizing the point-to-point distance
metric, see Eq. 2.6. The performance study was conducted on an off-the-shelf con-
sumer desktop computer equipped with an NVIDIA GeForce GTX 460 GPU and a
2.8 GHz Intel Core 2 Quad Q9550 CPU. The GPU framework is implemented using
CUDA.

2.5.1 Qualitative Results

Qualitative results for a scene reconstruction scenario in indoor environments are
depicted in Fig. 2.6. The three point cloud sequences were acquired from a static

40 S. Bauer et al.

A

¥

¥

Fig. 2.6 On-the-fly 3-D scene reconstruction for different types of room. First row: bedroom
(295 frames). Second row: lounge (526 frames). Third row: family room (380 frames). For each
sequence, the left column depicts a bird-eye view of the respective room layout. The remaining
columns provide a zoom-in for selected regions. All reconstructions were performed using our
default parameter settings as stated in Sect. 2.5.1. Note that for visualization of the reconstructed
scenes, we rendered a subset of the global model point cloud

observer location by rotating the hand-held sensor around the observer’s body axis.
RGB-D data were aligned on-the-fly. The different rooms were reconstructed us-
ing identical preprocessing pipeline and ICP/RBC parameter settings (default con-
figuration): Edge-preserving denoising (geometric median, geometric and photo-
metric guided image filter), |F| = |[M| = 16,384 ICP landmarks, 10 % edge clip-
ping, photogeometric weight @ = 0.8, no elimination of low-grade correspondences
(8 > 00).

In order to demonstrate the effectiveness of our system for reconstruction of
scenes with non-salient 3-D geometry, we refer to Fig. 2.1. Facing a colored poster
stuck to a plane wall, the reconstruction could benefit significantly from incorporat-
ing the photometric domain as a complementary source of information.

In addition to scene reconstruction, the proposed framework can also be em-
ployed for 3-D model digitalization scenarios. Here, the hand-held acquisition de-
vice is moved around an object to acquire RGB-D data from different perspectives
while continuously merging the data into a global model using the proposed frame-
work. As stated in Sect. 2.3.1, for the case of 3-D object reconstruction, we select
the set of landmarks from a defined foreground region only. Background data points

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 41

(b) ©

Fig. 2.7 3-D reconstruction of a female torso model, where the hand-held acquisition device was
moved around the model in a 360°-fashion in order to cover the entire object. RGB-D data from
different perspectives (525 frames) were merged into a global model on-the-fly. For visualization
of the reconstructed model, we rendered a subset of the global model point cloud

(a) (b) ©

Fig. 2.8 Influence of parameter settings, again for the reconstruction of the female torso model,
cf. Fig. 2.7(b). Subfigure (a) depicts the reconstruction result when edge-preserving denoising was
disabled. In subfigures (b, ¢), we increased the low-grade correspondence threshold to § = 10 mm
(b) and § — oo (c), leading to decreasing reconstruction quality. For instance, please note the
labeled issues regarding loop closure

that are located beyond a certain depth level are ignored within the ICP alignment
procedure. For object reconstruction, our default settings are: Edge-preserving de-
noising (geometric guided image filter), | F| = | M| = 16,384 ICP landmarks, « =0
(invariance to illumination issues), § = 3 mm.

Qualitative results for model reconstruction are depicted in Fig. 2.7. Note that by
setting a rather rigorous threshold for discarding low-grade correspondences (§ =
3 mm), our framework is able to achieve a sufficient degree of loop closure although
it relies on a frame-to-frame alignment.

The influence of different parameter settings is investigated in Fig. 2.8. As a base-
line, we refer to the reconstruction results in Fig. 2.7(b) using our default settings
(guided image filter denoising, § = 3 mm). Disabling edge-preserving denoising
increases issues regarding loop closure, see Fig. 2.8(a). Relaxing the low-grade cor-
respondence threshold § results in similar effects (Fig. 2.8(b), § = 10 mm) and can
eventually lead to model reconstruction failures (Fig. 2.8(c), § — o0).

42 S. Bauer et al.

Runtime Comparison: Brute Force vs. Exact RBC vs. Approximate RBC

—— Brute Force
—+— Exact RBC
[| = + — Exact RBC [30]
—e— Approximate RBC
| = = = Approximate RBC [30]

Runtime [ms]

0 L L L
1,024 2,048 4,096 8,192 16,384
Landmarks

Fig. 2.9 Comparison of the average runtime for a single ICP iteration based on a GPU brute-force
primitive, the exact RBC and our optimized approximate RBC variant as described in Sect. 2.3.3,
for increasing number of landmarks. The number of representatives is chosen according to Cay-
ton’s rule of thumb, |R| = /] F]. Note that our modified approximate RBC approach outperforms
the exact RBC up to a factor of 3. The BF primitive scales quadratically w.r.t. the number of land-
marks

2.5.2 Performance Study

The corpus of the proposed framework including both preprocessing and RGB-D
mapping is executed on the GPU, recall Fig. 2.2. This section presents quantitative
results for individual modules of the framework.

Preprocessing Pipeline Edge-preserving image filtering is parallelized in an effi-
cient manner on the GPU [29, 37]. The computation of 3-D world coordinates from
the measured depth values requires less than 1 ms for Microsoft Kinect data of VGA
resolution, including CPU-GPU memory transfer of the RGB-D data. The subse-
quent edge clipping and landmark extraction for M and F in scene reconstruction
scenarios depends on |[M| = | F|, denoting the number of landmarks (LMs), with
typical runtimes of less than 0.3 ms. Let us conclude that runtimes for data prepro-
cessing assume a minor role. As we target scene reconstruction in the first place,
landmark extraction for object reconstruction scenarios including foreground seg-
mentation and random landmark selection was implemented on the CPU with a
runtime of about 5 ms, as proof-of-concept.

ICP Using RBC Being the cornerstone of our framework, we have investigated
the performance of our GPU-based ICP/RBC implementation in detail. A single ICP
iteration consists of three steps: (i) nearest neighbor search using RBC, (ii) trans-
formation estimation and (iii) application of the transformation. With an increasing

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 43

Table 2.1 Runtimes [ms] for the construction of the RBC data structure (frpc,c) and ICP execu-
tion for reconstructing a typical indoor scene, for varying number of landmarks. In the first rows,
average runtimes for our default setting |R| = /| F] are given. In the second rows, we state perfor-
mance numbers for |R| being optimized in terms of runtime. Note that optimizing runtime comes
with a loss in accuracy, cf. Fig. 2.10. We state both the runtime for a single ICP iteration (t;cp) and
typical total ICP runtimes #; (including RBC construction) for 10 and 20 iterations, respectively

Landmarks IR| frRBC,C [mS] ticp [ms] tiot (10 its) [ms] tiot (20 its) [ms]
1,024 JIFI =32 0.58 0.25 3.13 5.68
1,024 128 0.59 0.12 1.79 3.00
2,048 JIF| =45 0.60 0.27 3.31 6.03
2,048 128 0.60 0.14 2.02 3.44
4,096 JIF| =64 0.63 0.32 3.80 6.97
4,096 128 0.67 0.21 2.76 4.86
8,192 JIF] =91 0.76 0.50 5.80 10.82
8,192 256 1.22 0.40 5.22 9.22

16,384 JVIFI=128 0.90 0.91 9.96 19.07

16,384 256 1.49 0.78 9.25 17.04

number of landmarks, the nearest neighbor search dominates the runtime consider-
ably [30]. Hence, we have put emphasis on optimizing the RBC construction and
query performance. Note that for all subsequent performance evaluations, runtimes
where averaged over several successive runs.

A comparison of absolute runtimes for a single ICP iteration is presented in
Fig. 2.9. Our modified approximate RBC outperforms both a BF search and our
reference implementation of Cayton’s exact RBC. Note that the BF search scales
quadratically with the number of landmarks. Our approximate RBC variant outper-
forms the exact RBC implementation up to a factor of 3. Compared to previous work
by the authors [30], significant runtime speedups were achieved using the permuted
database and its cache friendly layout as detailed in Sect. 2.4.2.

Typical scene reconstruction runtimes of the method are given in Table 2.1. From
our experiments in indoor scene mapping, we observed the ICP to converge after
10-20 iterations using the stopping criterion described in Sect. 2.4.1. Hence, as an
overall performance indicator, let us refer to the runtime of 19.1 ms for 16,384
landmarks, |R| = +/]F], for 20 iterations.

2.5.3 Approximate RBC

As motivated in Sect. 2.3.3, our approximate RBC construction and nearest neighbor
search trades exactness for runtime speedup. We quantitatively investigated the error

44 S. Bauer et al.

Mapping Error vs. Number of Representatives

5.5 .
—— 1,024 LMs
5[—— 2,048 LMs
45 —— 4,006 LMs
—— 8,192 LMs
4r| ——16,384 LMs
T 350 ’
£
— 3f
2 x
Yost %
8 X x
s 2f
X,
15F
1 X
[]
0.5}
0‘ ¥ h A b i e s +
4 16 64 256 1,024 2,048 4,096 8,192 16,384

Representatives

Fig. 2.10 Evaluation of the influence of |R| on mapping accuracy, compared to an exact BF
search, for varying number of landmarks. Given is the mean Euclidean distance [mm] between the
mapped points mgpc and mpg. Increasing the number of landmarks decreases the error. The graph
shows both discretized measurements and a trendline for each setting. Note the semi-log scale

that results from our approximate nearest neighbor search compared to an exact BF
scheme, considering the aligned point clouds /\;lRBc and MBF, see Fig. 2.10. The
error measures the mean pointwise Euclidean distance [mm] between the points
mgpc and mpg, being transformed w.r.t. different estimations for (R, t). With an
increasing number of representatives |R|, the mapping error rises increasingly un-
til dropping sharply when approaching |R| = |F|. In general, increasing the num-
ber of landmarks decreases the error. Please note that both situations of |R| =1
and |R| = |F| correspond to a BF search, hence yielding an identical transforma-
tion/mapping estimate and a mean error of zero.

In order to further illustrate the impact of the relation between the number of
landmarks and representatives on reconstruction accuracy, we refer to Fig. 2.11. For
|R| <« |.F|, decreasing |R| with a fixed number of landmarks reduces the error. This
results from our approximate RBC construction scheme, where the probability of
erroneous nearest neighbor assignments increases with the number of representa-
tives. Again, increasing the number of landmarks decreases the error. We remark
that by using our default configuration (16,384 LMs, |R| = +/|F]), the mapping er-
ror is less than 0.25 mm. This is an acceptable scale for the applications considered
in this work.

Furthermore, we have related the runtime per ICP iteration to |R|, see Fig. 2.12.
Apart from the runtime minimum that is located around |R| = 24/[F], the com-
putational load rises when increasing or decreasing the number of representatives.
Simultaneously, the error decreases, recall Fig. 2.10. Hence, the application-related
requirements in terms of runtime and accuracy motivates the choice of |R|. To-
gether, Figs. 2.10-2.12 illustrate the trade-off between error and runtime.

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 45

Mapping Error vs. Number of Landmarks

4.5 T
—%— IVIMs
4t
4 —+— 1+LMs
351 —e—2VIMs ||
= 9 —%— 5IMs |
£
= 2.5 i
S
i}
c 2f 1
©
[
= 1.5 q
1t i
0.5 i
0 L L L
1,024 2,048 4,096 8,192 16,384

Landmarks

Fig.2.11 Investigation of the mean mapping error vs. number of landmarks, for varying |R|. Here,
the analysis is restricted to |R| < |F|. Note that decreasing |R| with a fixed number of landmarks
reduces the error

Runtime of a single ICP Iteration vs. Number of Representatives

T T T

—#— 1,024 LMs
—¥%— 2,048 LMs
—+— 4,096 LMs
—e— 8,192 LMs| .
—¥%—16,384 LMs

Runtime [ms]

0125 " PR " P " YRl i i L i i i L
1 4 16 64 128 256 512 1,024 2,048 4,096 8192 16384

Representatives

Fig. 2.12 Runtimes of a single ICP iteration, for varying number of landmarks and representatives.
The runtime minimum is located around [R| = 2./|F|. Note the logarithmic scale

2.6 Discussion and Conclusions

In this chapter, we have proposed a GPU framework for real-time mapping and
modeling of textured point cloud streams enabling on-the-fly 3-D reconstruction
with modern RGB-D imaging devices. Our quantitative RBC experiments demon-
strate that using a data structure which is specifically designed to exploit the parallel

46 S. Bauer et al.

computing power of GPUs is beneficial even for low-dimensional (6-D) data. Using
our optimized approximate RBC for the photogeometric nearest neighbor search,
our system achieves reconstruction runtimes of less than 20 ms on an off-the-shelf
consumer GPU in a frame-to-frame scenario.

The proposed framework was evaluated using a point-to-point metric for estimat-
ing the transformation within ICP. In general, minimizing a point-to-plane distance
metric holds advantages over the point-to-point approach as it allows the surfaces
described by M and F to slide over each other [9], avoiding snap-to-grid effects.
However, solving the corresponding optimization problem as denoted in Eq. 2.7
would require an iterative scheme. We did not observe a negative impact on the
reconstruction results using the point-to-point approach in our experiments.

Compared to a conventional ICP that relies on the pure 3-D geometry [4, 9], in-
corporating photometric appearance as a complementary source of information is
advantageous in cases of non-salient surface topology, recall Fig. 2.1 and the ex-
perimental results in related work [24]. Approaches that combine dense geometric
point associations with a sparse set of correspondences derived from local photo-
metric features are limited to interactive frame-rates, as feature extraction is compu-
tationally expensive even if performed on the GPU [19]. In contrast, our approach
evaluates both geometric and photometric information in a direct and dense man-
ner, cf. [11, 24, 25]. We found that incorporating photometric appearance in such
an elementary manner gives the best compromise between reconstruction robust-
ness and runtime performance. Nonetheless, the proposed scheme using the RBC
for efficient nearest neighbor queries on the GPU can be potentially extended to
higher-dimensional point signatures.

Ongoing work includes the implementation of a multi-resolution ICP alignment
scheme in order to improve the convergence behavior, and the transition from frame-
to-frame to frame-to-model registration using an implicit surface model [10]. Fur-
thermore, an automatic scene-dependent weighting of the photogeometric weight o
by low-level analysis of the depth image as part of the preprocessing stage will be
subject of our upcoming research.

Acknowledgements S. Bauer and J. Wasza gratefully acknowledge the support by the European
Regional Development Fund (ERDF) and the Bayerisches Staatsministerium fiir Wirtschaft, Infra-
struktur, Verkehr und Technologie (StMWIVT), in the context of the R&D program [uK Bayern
under Grant No. IUK338. Furthermore, this research was supported by the Graduate School of
Information Science in Health (GSISH) and the TUM Graduate School.

References

1. Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. AK Peters, Nat-
ick, MA (2008)

2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE
Robot. Autom. Mag. 13(3), 108-117 (2006)

3. Bauer, S., Wasza, J., Haase, S., Marosi, N., Hornegger, J.: Multi-modal surface registration
for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor. In:

2 Real-Time RGB-D Mapping on the GPU Using the Random Ball Cover 47

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

International Conference on Computer Vision—Workshop on Consumer Depth Cameras for
Computer Vision, pp. 1175-1181 (2011)

Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach.
Intell. 14(2), 239-256 (1992)

Blais, G., Levine, D.M.: Registering multiview range data to create 3-D computer objects.
IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 820-824 (1995)

Castaneda, V., Mateus, D., Navab, N.: SLAM combining ToF and high-resolution cameras.
In: IEEE Workshop on Applications of Computer Vision, pp. 672-678 (2011)

Cayton, L.: A nearest neighbor data structure for graphics hardware. In: International Work-
shop on Accelerating Data Management Systems Using Modern Processor and Storage Ar-
chitectures (2010)

Cayton, L.: Accelerating nearest neighbor search on manycore systems. CoRR arXiv:
1103.2635 (2011)

Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis.
Comput. 10(3), 145-155 (1992)

Curless, B., Levoy, M.: A volumetric method for building complex models from range images.
In: Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 303-312.
ACM, New York (1996)

Druon, S., Aldon, M., Crosnier, A.: Color constrained ICP for registration of large unstruc-
tured 3D color data sets. In: IEEE International Conference on Information Acquisition,
pp. 249-255 (2006)

Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3D visual SLAM with
a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics, European
Robotics Forum (2011)

Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: RGB-D Workshop:
Advanced Reasoning with Depth Cameras, Robotics Science and Systems Conference (2011)
Garcia, J., Zalevsky, Z.: Range mapping using speckle decorrelation. US Patent No. 7433024
(2008)

Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In: IEEE
Conference on Computer Vision and Pattern Recognition—Workshop on Computer Vision on
GPU (2008)

Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recognit. 32(3), 453—
464 (1999)

Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In: GPU
Gems 3, pp. 851-876. Addison-Wesley, Reading (2007)

He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on Computer
Vision, pp. 1-14 (2010)

Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras
for dense 3D modeling of indoor environments. In: International Symposium on Experimental
Robotics (2010)

Hoberock, J., Bell, N.: Thrust: a parallel template library (2010). URL http://code.google.com/
p/thrust/. Version 1.3.0

Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc.
Am. 4(4), 629-642 (1987)

Huhle, B., Jenke, P., Strasser, W.: On-the-fly scene acquisition with a handy multi-sensor
system. Int. J. Intell. Syst. Technol. Appl. §, 255-263 (2008)

Izadi, S., Newcombe, R.A., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shot-
ton, J., Davison, A.J., Fitzgibbon, A.W.: KinectFusion: real-time dynamic 3D surface recon-
struction and interaction. In: ACM Symposium on User Interface Software and Technology,
p- 23 (2011)

Johnson, A., Kang, S.B.: Registration and integration of textured 3-D data. In: International
Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 234-241 (1997)

http://arxiv.org/abs/arXiv:1103.2635
http://arxiv.org/abs/arXiv:1103.2635
http://code.google.com/p/thrust/
http://code.google.com/p/thrust/

48

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

S. Bauer et al.

Joung, J.H., An, K.H., Kang, J.W., Chung, M.J., Yu, W.: 3D environment reconstruction using
modified color ICP algorithm by fusion of a camera and a 3D laser range finder. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3082-3088 (2009)

Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers: Definitions,
Theorems, and Formulas for Reference and Review. Dover, New York (2000)

Loop, C., Blinn, J.: Real-time GPU rendering of piecewise algebraic surfaces. ACM Trans.
Graph. 25(3), 664-670 (2006)

May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Niichter, A., Hertzberg, J.: Three-
dimensional mapping with time-of-flight cameras. J. Field Robot. 26, 934-965 (2009)
McGuire, M.: A fast, small-radius GPU median filter. In: ShaderX6, pp. 165-173. Charles
River Media (2008)

Neumann, D., Lugauer, F., Bauer, S., Wasza, J., Hornegger, J.: Real-time RGB-D mapping and
3-D modeling on the GPU using the random ball cover data structure. In: International Con-
ference on Computer Vision—Workshop on Consumer Depth Cameras for Computer Vision,
pp. 1161-1167 (2011)

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P.,
Shotton, J., Hodges, S., Fitzgibbon, A.W.: KinectFusion: real-time dense surface mapping and
tracking. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 127-136
(2011)

Niichter, A., Surmann, H., Lingemann, K., Hertzberg, J., Thrun, S.: 6D SLAM with an ap-
plication in autonomous mine mapping. In: IEEE International Conference on Robotics and
Automation, vol. 2, pp. 1998-2003 (2004)

Qiu, D., May, S., Niichter, A.: GPU-accelerated nearest neighbor search for 3D registration.
In: International Conference on Computer Vision Systems, pp. 194-203. Springer, Berlin
(2009)

Reis, G., Zeilfelder, F., Hering-Bertram, M., Farin, G.E., Hagen, H.: High-quality rendering
of quartic spline surfaces on the GPU. IEEE Trans. Vis. Comput. Graph. 14(5), 1126-1139
(2008)

Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans.
Graph. 21(3), 438-446 (2002)

Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Confer-
ence on 3-D Digital Imaging and Modeling, pp. 145-152 (2001)

Wasza, J., Bauer, S., Haase, S., Hornegger, J.: Real-time preprocessing for dense 3-D range
imaging on the GPU: defect interpolation, bilateral temporal averaging and guided filtering.
In: International Conference on Computer Vision—Workshop on Consumer Depth Cameras
for Computer Vision, pp. 1221-1227 (2011)

2 Springer
http://www.springer.com/978-1-4471-4639-1

Consumer Depth Cameras for Computer Vision
Research Topics and Applications

Fossati, A Gall,).; Grabner, H.; Ren, X.; Konolige, K
(Eds.)

2013, X\, 210 p., Hardcover

ISBEN: 978-1-4471-4639-1

	Chapter 2: Real-Time RGB-D Mapping and 3-D Modeling on the GPU Using the Random Ball Cover
	2.1 Introduction
	2.2 Related Work
	2.3 Methods
	2.3.1 Data Preprocessing on the GPU
	Nomenclature
	Landmark Extraction

	2.3.2 Photogeometric ICP Framework
	2.3.3 6-D Nearest Neighbor Search Using RBC

	2.4 Implementation Details
	2.4.1 Details Regarding the ICP Framework
	2.4.2 RBC Construction and Queries on the GPU
	RBC Construction
	RBC Nearest Neighbor Queries

	2.5 Experiments and Results
	2.5.1 Qualitative Results
	2.5.2 Performance Study
	Preprocessing Pipeline
	ICP Using RBC

	2.5.3 Approximate RBC

	2.6 Discussion and Conclusions
	References

