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The governing equations for problems solved by the finite element method are 
typically formulated by partial differential equations in their original form. 
These are rewritten into a weak form, such that domain integration can be uti-
lized to satisfy the governing equations in an average sense. A functional � is set 
up for the system, typically describing the energy or energy rate and implying 
that the solution can be found by minimization. For a generic functional, this is 
written as

where the functional is a function of the coordinates xi and the primary variable 
ui being e.g. displacements or velocities for mechanical problems depending on 
the formulation. The domain integration is approximated by a summation over a 
finite number of elements discretizing the domain. Figure 2.1 illustrates a three-
dimensional domain discretized by hexahedral elements with eight nodes. The var-
iables are defined and solved in the nodal points, and evaluation of variables in the 
domain is performed by interpolation in each element. Shared nodes give rise to 
an assembly of elements into a global system of equations of the form

where K is the stiffness matrix, u is the primary variable and f is the applied load, 
e.g. stemming from applied tractions F on a surface SF in Fig. 2.1. The system of 
equations  (2.2) is furthermore subject to essential boundary conditions, e.g. pre-
scribed displacements or velocities u along a surface SU.

The basic aspects of available finite element formulations in terms of mod-
eling and computation are briefly reviewed in this chapter. This will support 
the choice of formulation to be detailed and applied in the remaining chapters, 
where an electro-thermo-mechanical finite element formulation is presented 
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4 2  Finite Element Formulations

together with a range of aspects to complete a computer program capable of 
modeling manufacturing processes such as metal forming and resistance weld-
ing. This chapter is focused on the mechanical formulations because they rep-
resent major differences and because the mechanical model plays a central role 
in the overall modeling strategy. From a process point of view the mechanical 
model is responsible for material flow, contact and stress distribution, and from 
a computational point of view is responsible for the largest amount of CPU 
time. In addition, the overall structure of the presented computer program is 
built upon the mechanical formulation with the remaining thermal and electrical 
modules integrated.

One fundamental difference between the finite element formulations is 
the governing equilibrium equation, being either quasi-static or dynamic in 
the modeling of manufacturing processes. Another fundamental choice to 
cover is the material model suited for describing the materials under consid-
eration, bearing in mind the process to simulate and thereby the expected 
range of deformation and deformation rate. The available constitutive mod-
els to utilize in the material description are rigid-plastic/viscoplastic and 
elasto-plastic/viscoplastic.

Table  2.1, after Tekkaya and Martins [1], provides an overview of the quasi-
static formulations and the dynamic formulation. The quasi-static formulations are 
represented by the flow formulation and the solid formulation, distinguishable by 
the underlying constitutive equations. The following two sections are devoted to 
give a brief overview of the quasi-static and dynamic formulations including their 
advantages and disadvantages.

Presentation of the quasi-static and dynamic formulations follows the gen-
eral outline given by Tekkaya and Martins [1] and additional information can be 
found in major reference books by Zienkiewicz and Taylor [2], Banabic et al. [3], 
Wagoner and Chenot [4] and Dunne and Petrinic [5].
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Fig. 2.1   Illustration of three-dimensional finite element model composed of isoparametric, hex-
ahedral elements with eight nodes. Each node has three degrees of freedom for representation of 
vector fields and one degree of freedom for representation of scalar fields
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2.1 � Quasi-Static Formulations

The quasi-static formulations are governed by the static equilibrium equation, 
which in the absence of body forces takes the following form,

where σi j , j denotes the partial derivatives of the Cauchy stress tensor with respect 
to the Cartesian coordinates x j. This equation expresses the equilibrium in the cur-
rent configuration, i.e. in the mesh following the deformation.

By employing the Galerkin method, it is possible to write an integral form of 
Eq. (2.1.1) that fulfills the equilibrium in an average sense over the entire domain 

(2.1.1)σi j, j = 0

Table 2.1   Overview of finite element formulations and commercial computer programs applied 
in the metal forming industry

Quasi-static formulations Dynamic
formulationFlow formulation Solid formulation

Equilibrium  
equation:

Quasi-static Quasi-static Dynamic

Constitutive  
equations:

Rigid-plastic/ 
viscoplastic

Elasto-plastic/ 
viscoplastic

Elasto-plastic/ 
viscoplastic

Main structure: Stiffness matrix  
and force vector

Stiffness matrix  
and force  
vector

Mass and damping  
matrices and internal  
and external  
force vectors

Solution schemea: Implicit Implicit Explicit
Size of  

incremental  
step:

Large Medium to large Very small

CPU time per  
incremental step:

Medium Medium to long Very short

Time integration  
schemeb:

Explicit Implicit Explicit

Accuracy of  
the results  
(stress and strain  
distributions):

Medium to high High Medium to low

Springback and  
residual stresses:

No (although the basic 
formulation can be 
modified to include 
elastic recovery)

Yes Yes/no

Commercial FEM  
computer  
programs related  
to metal forming

FORGEc, DEFORMc,  
QFORM,
eesy-2-form

Abaqus (implicit),  
Simufact.forming,  
AutoForm, Marc

Abaqus (explicit),  
DYNA3D,  
PAM-STAMP

aExplicit/implicit if the residual force is not/is minimized at each incremental step.
b�Explicit/implicit if the algorithm does not/does need the values of the next time step to compute 
the solution.

cElasto-plastic options available.

2.1  Quasi-Static Formulations
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instead of satisfying the equilibrium point-wise. This formulation allows domain 
integration to substitute the more tedious solution of the original differential equa-
tions. The integral over domain volume V  is

with δ ui being an arbitrary variation in the primary unknown ui, which is either 
displacement or velocity depending on the implementation. Displacement is the 
primary unknown in rate independent formulations and velocity is the primary 
unknown in rate dependent formulations.

Applying integration by parts in Eq. (2.1.2), followed by the divergence theo-
rem and taking into account the natural and essential boundary conditions, it is 
possible to rewrite Eq. (2.1.2) as follows,

where ti = σi j n j denotes the tractions with direction of the unit normal vector n j 
applied on the boundary surface S. Equation (2.1.3) is the ‘‘weak variational form’’ 
of Eq. (2.1.1) because the static governing equilibrium equations are now only sat-
isfied under weaker continuity requirements.

The above listed equations together with appropriate constitutive equations 
enable quasi-static finite element formulations to be defined by means of the fol-
lowing matrix set of non-linear equations,

which express the equilibrium condition at the instant of time t through the stiff-
ness matrix K, the generalized force vector F resulting from the loads, pressure 
and friction stresses applied on the boundary. The equation system is non-linear 
due to the stiffness matrix’s dependency of the primary unknown u to geometry 
and material properties.

The quasi-static finite element formulations utilized in the analysis of metal 
forming and resistance welding processes are commonly implemented in conjunc-
tion with implicit solution schemes. The main advantage of implicit schemes over 
alternative solutions based on explicit procedures is that equilibrium is checked at 
each increment of time by means of iterative procedures to minimize the residual 
force vector R(u), which is computed as follows in iteration number n,

The non-linear set of equations  (2.1.4), derived from the quasi-static implicit 
formulations, can be solved by different numerical techniques such as the direct 
iteration (also known as “successive replacement”) and the Newton–Raphson 
methods. In the direct iteration method, the stiffness matrix is evaluated for the 
displacements of the previous iteration in order to reduce Eq.  (2.1.4) to a linear 
set of equations. The method is iterative and converges linearly and uncondi-
tionally towards the solution during the earlier stages of the iteration procedure 

(2.1.2)

∫

V

σi j, j δ ui dV = 0

(2.1.3)

∫

V

σi j (δui ), j dV −
∫

S

ti δui d S = 0

(2.1.4)K
t
u
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(2.1.5)R
t
n = K

t
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t
n − F

t



7

but becomes slow as the solution is approached. The standard Newton-Raphson 
method is an alternative iterative method based on a linear expansion of the resid-
ual R(u) near the velocity estimate at the previous iteration,

This procedure is only conditionally convergent, but converges quadratically in 
the vicinity of the exact solution. The iterative procedures are designed in order to 
minimize the residual force vector R(u) to within a specified tolerance. Control 
and assessment is performed by means of appropriate convergence criteria.

The main advantage of the quasi-static implicit finite element formulations is 
that equilibrium conditions are checked at each increment of time in order to mini-
mize the residual force vector R(u) to within a specified tolerance.
The main drawbacks in the quasi-static implicit finite element formulations are 
summarized as follows:

•	 Solution of linear systems of equations is required during each iteration;
•	 High computation times and high memory requirements;
•	 Computation time depends quadratically on the number of degrees of freedom 

if a direct solver is utilized, and with the Newton-Raphson method the solution 
is only conditionally convergent;

•	 The stiffness matrix is often ill-conditioned, which can turn the solution proce-
dure unstable and deteriorate the performance of iterative solvers;

•	 Difficulties in dealing with complex non-linear contact and tribological bound-
ary conditions are experienced, and that often leads to convergence problems.

2.2 � Dynamic Formulation

The dynamic finite element formulation is based on the dynamic equilibrium 
equation in the current configuration, here written in the absence of body forces 
with the inertia term expressed through the mass density ρ and the acceleration üi,

Applying a mathematical procedure similar to that described in the previous 
section results in the following weak variational form of Eq. (2.2.1),

The above equation enables dynamic finite element formulations to be repre-
sented by the following matrix set of non-linear equations,

(2.1.6a)R
t
n = R

t
n−1 +

[

∂R

∂u

]t

n−1

∆u
t
n = 0

(2.1.6b)u
t
n = u

t
n−1 + ∆u

t
n

(2.2.1)σi j, j − ρ üi = 0

(2.2.2)

∫

V

ρ üiδui dV +
∫

V

σi j (δui ), j dV −
∫

S

ti δui d S = 0

(2.2.3)M
t
ü

t
+ F

t

int = F
t
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which express the dynamic equilibrium condition at the instant of time t. The sym-
bol M denotes the mass matrix, Fint = Ku is the vector of internal forces resulting 
from the stiffness, and F is the generalized force vector.

The non-linear set of equations (2.2.3), derived from the dynamic formulation, is 
commonly solved by means of an explicit central difference time integration scheme,

If the mass matrix M in Eq. (2.2.4a, b) is diagonalized (or lumped) its inversion 
is trivial, and the system of differential equations decouples. Its overall solution 
can then be performed independently and very fast for each degree of freedom. 
Further reductions of the computation time per increment of time stem from utili-
zation of reduced integration schemes that are often applied even to the deviatoric 
parts of the stiffness matrix, and finally numerical actions related to mass scaling 
and load factoring contribute. Load factoring is described ahead.

Additional computational advantages result from the fact that dynamic explicit 
schemes, unlike quasi-static implicit schemes, do not check equilibrium require-
ments at the end of each increment of time. The analogy between the dynamic 
equilibrium equation  (2.2.1) and the ideal mass-spring vibrating system allows 
concluding that explicit central difference time integration schemes (frequently 
referred as explicit integration schemes) are conditionally stable whenever the size 
of the increment of time ∆t satisfies

where Le is the typical size of the finite elements discretizing the domain, E  is the 
elasticity modulus and ce is the velocity of propagation of a longitudinal wave in the 
material. In case of metal forming applications, the stability condition Eq.  (2.2.5) 
requires the utilization of very small increments of time ∆t, say microseconds, and 
millions of increments to finish a simulation because industrial metal forming pro-
cesses usually take several seconds to be accomplished. This is the reason why com-
puter programs often make use of the following numerical actions in order to increase 
the increment of time ∆t and, consequently, reducing the overall computation time:

•	 Diagonalization of the mass matrix;
•	 Mass scaling—by increasing the density of the material and thus artificially 

reducing the speed ce of the longitudinal wave;
•	 Load factoring—by changing the rate of loading through an artificial increase in 

the velocity of the tooling as compared to the real forming velocity;
•	 Reduced integration of the deviatoric part of the stiffness matrix, which is usu-

ally fully integrated.

(2.2.4a)M
t

(

u̇
t+1/2 − u̇

t−1/2

∆ t t+1/2

)

+ F
t
int = F

t

(2.2.4b)u̇
t+1/2 =

(

M
t
)−1 (

F
t − F

t
int

)

∆ t t+1/2 + u̇
t−1/2

(2.2.4c)u
t+1 = u

t + u̇
t+1/2

∆ t t+1

(2.2.5)∆t ≤
Le√
E/ρ

=
Le

ce
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The above-mentioned numerical actions can artificially add undesirable inertia 
effects, and it is therefore necessary to include a damping term Ct

u̇
t in (2.2.3),

The damping term Ct
u̇

t is not only necessary because of the above-mentioned 
numerical actions to reduce the computation time but also to ensure fast conver-
gence of the solution towards the static solution describing the actual process.

This turns dynamic explicit formulations into close resemblance with damped 
mass-spring vibrating systems and justifies the reason why these formulations 
loose efficiency whenever the material is strain-rate sensitive or thermo-mechanical 
phenomena need to be taken into consideration.
The main advantages of the dynamic explicit formulations are:

•	 Computer programs are robust and do not present convergence problems;
•	 The computation time depends linearly on the number of degrees of freedom 

while in alternative quasi-static implicit schemes the dependency is more than 
linear (in case of iterative solvers) and up to quadratic (in case of direct solvers).

The main drawbacks of the dynamic explicit formulation can be summarized as 
follows:

•	 Utilization of very small time increments;
•	 Equilibrium after each increment of time is not checked;
•	 Assignment of the system damping is rather arbitrary;
•	 The formulation needs experienced users for adequately designing the mesh 

and choosing the scaling parameters for mass, velocity and damping. Otherwise 
it may lead to inaccurate solutions for the deformation, prediction of forming 
defects and distribution of the major field variables within the workpiece;

•	 Springback calculations are very time consuming and may lead to errors. This 
specific problem is frequently overtaken by combining dynamic explicit with 
quasi-static implicit analysis.

The last two drawbacks apply if the dynamic explicit formulations are used in the 
‘‘high-speed-mode’’.
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