Chapter 2
Finite Element Formulations

The governing equations for problems solved by the finite element method are
typically formulated by partial differential equations in their original form.
These are rewritten into a weak form, such that domain integration can be uti-
lized to satisfy the governing equations in an average sense. A functional IT is set
up for the system, typically describing the energy or energy rate and implying
that the solution can be found by minimization. For a generic functional, this is
written as

om 8

d
. /f(xi,undv = ;fui,uimvj =0 (1)
\%4

where the functional is a function of the coordinates x; and the primary variable
u; being e.g. displacements or velocities for mechanical problems depending on
the formulation. The domain integration is approximated by a summation over a
finite number of elements discretizing the domain. Figure 2.1 illustrates a three-
dimensional domain discretized by hexahedral elements with eight nodes. The var-
iables are defined and solved in the nodal points, and evaluation of variables in the
domain is performed by interpolation in each element. Shared nodes give rise to
an assembly of elements into a global system of equations of the form

Ku=f 2.2)

where K is the stiffness matrix, u is the primary variable and f is the applied load,
e.g. stemming from applied tractions F on a surface Sr in Fig. 2.1. The system of
equations (2.2) is furthermore subject to essential boundary conditions, e.g. pre-
scribed displacements or velocities 4 along a surface Sy.

The basic aspects of available finite element formulations in terms of mod-
eling and computation are briefly reviewed in this chapter. This will support
the choice of formulation to be detailed and applied in the remaining chapters,
where an electro-thermo-mechanical finite element formulation is presented
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Fig. 2.1 Illustration of three-dimensional finite element model composed of isoparametric, hex-
ahedral elements with eight nodes. Each node has three degrees of freedom for representation of
vector fields and one degree of freedom for representation of scalar fields

together with a range of aspects to complete a computer program capable of
modeling manufacturing processes such as metal forming and resistance weld-
ing. This chapter is focused on the mechanical formulations because they rep-
resent major differences and because the mechanical model plays a central role
in the overall modeling strategy. From a process point of view the mechanical
model is responsible for material flow, contact and stress distribution, and from
a computational point of view is responsible for the largest amount of CPU
time. In addition, the overall structure of the presented computer program is
built upon the mechanical formulation with the remaining thermal and electrical
modules integrated.

One fundamental difference between the finite element formulations is
the governing equilibrium equation, being either quasi-static or dynamic in
the modeling of manufacturing processes. Another fundamental choice to
cover is the material model suited for describing the materials under consid-
eration, bearing in mind the process to simulate and thereby the expected
range of deformation and deformation rate. The available constitutive mod-
els to utilize in the material description are rigid-plastic/viscoplastic and
elasto-plastic/viscoplastic.

Table 2.1, after Tekkaya and Martins [1], provides an overview of the quasi-
static formulations and the dynamic formulation. The quasi-static formulations are
represented by the flow formulation and the solid formulation, distinguishable by
the underlying constitutive equations. The following two sections are devoted to
give a brief overview of the quasi-static and dynamic formulations including their
advantages and disadvantages.

Presentation of the quasi-static and dynamic formulations follows the gen-
eral outline given by Tekkaya and Martins [1] and additional information can be
found in major reference books by Zienkiewicz and Taylor [2], Banabic et al. [3],
Wagoner and Chenot [4] and Dunne and Petrinic [5].



2.1

Quasi-Static Formulations

Table 2.1 Overview of finite element formulations and commercial computer programs applied
in the metal forming industry

Quasi-static formulations Dynamic
Flow formulation Solid formulation formulation
Equilibrium Quasi-static Quasi-static Dynamic
equation:
Constitutive Rigid-plastic/ Elasto-plastic/ Elasto-plastic/
equations: viscoplastic viscoplastic viscoplastic
Main structure: Stiffness matrix Stiffness matrix Mass and damping
and force vector and force matrices and internal
vector and external
force vectors
Solution scheme®: Implicit Implicit Explicit
Size of Large Medium to large Very small
incremental
step:
CPU time per Medium Medium to long Very short
incremental step:
Time integration Explicit Implicit Explicit
scheme":
Accuracy of Medium to high High Medium to low
the results
(stress and strain
distributions):
Springback and No (although the basic Yes Yes/no

residual stresses:

Commercial FEM
computer
programs related
to metal forming

formulation can be
modified to include
elastic recovery)
FORGES, DEFORM¢®,
QFORM,
eesy-2-form

Abaqus (implicit),
Simufact.forming,
AutoForm, Marc

Abaqus (explicit),
DYNA3D,
PAM-STAMP

4Explicit/implicit if the residual force is not/is minimized at each incremental step.
PExplicit/implicit if the algorithm does not/does need the values of the next time step to compute

the solution.

“Elasto-plastic options available.

2.1 Quasi-Static Formulations

The quasi-static formulations are governed by the static equilibrium equation,
which in the absence of body forces takes the following form,

0ij,j =0 (2.1.1)

where 0jj,j denotes the partial derivatives of the Cauchy stress tensor with respect
to the Cartesian coordinates X j. This equation expresses the equilibrium in the cur-
rent configuration, i.e. in the mesh following the deformation.

By employing the Galerkin method, it is possible to write an integral form of
Eq. (2.1.1) that fulfills the equilibrium in an average sense over the entire domain
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instead of satisfying the equilibrium point-wise. This formulation allows domain
integration to substitute the more tedious solution of the original differential equa-
tions. The integral over domain volume V is

/a,,,jauidv =0 (2.1.2)
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with 8 u; being an arbitrary variation in the primary unknown u;, which is either
displacement or velocity depending on the implementation. Displacement is the
primary unknown in rate independent formulations and velocity is the primary
unknown in rate dependent formulations.

Applying integration by parts in Eq. (2.1.2), followed by the divergence theo-
rem and taking into account the natural and essential boundary conditions, it is
possible to rewrite Eq. (2.1.2) as follows,

/Ul.j Gup),; dV / t buidS = 0 2.13)
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where f; = o;jn; denotes the tractions with direction of the unit normal vector 7 ;
applied on the boundary surface S. Equation (2.1.3) is the “weak variational form”
of Eq. (2.1.1) because the static governing equilibrium equations are now only sat-
isfied under weaker continuity requirements.

The above listed equations together with appropriate constitutive equations
enable quasi-static finite element formulations to be defined by means of the fol-
lowing matrix set of non-linear equations,

Ku =F 2.1.4)

which express the equilibrium condition at the instant of time ¢ through the stiff-
ness matrix K, the generalized force vector F resulting from the loads, pressure
and friction stresses applied on the boundary. The equation system is non-linear
due to the stiffness matrix’s dependency of the primary unknown u to geometry
and material properties.

The quasi-static finite element formulations utilized in the analysis of metal
forming and resistance welding processes are commonly implemented in conjunc-
tion with implicit solution schemes. The main advantage of implicit schemes over
alternative solutions based on explicit procedures is that equilibrium is checked at
each increment of time by means of iterative procedures to minimize the residual
force vector R (u), which is computed as follows in iteration number n,

R, =K/ _ u, —F (2.1.5)

The non-linear set of equations (2.1.4), derived from the quasi-static implicit
formulations, can be solved by different numerical techniques such as the direct
iteration (also known as “successive replacement”) and the Newton—Raphson
methods. In the direct iteration method, the stiffness matrix is evaluated for the
displacements of the previous iteration in order to reduce Eq. (2.1.4) to a linear

set of equations. The method is iterative and converges linearly and uncondi-
tionally towards the solution during the earlier stages of the iteration procedure
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but becomes slow as the solution is approached. The standard Newton-Raphson
method is an alternative iterative method based on a linear expansion of the resid-
ual R(u) near the velocity estimate at the previous iteration,

dR7
R;=R;_1+[8u] 1A11;=0 (2.1.6a)
e
u, =u)_, + Auj, (2.1.6b)

This procedure is only conditionally convergent, but converges quadratically in
the vicinity of the exact solution. The iterative procedures are designed in order to
minimize the residual force vector R(u) to within a specified tolerance. Control
and assessment is performed by means of appropriate convergence criteria.

The main advantage of the quasi-static implicit finite element formulations is
that equilibrium conditions are checked at each increment of time in order to mini-
mize the residual force vector R (u) to within a specified tolerance.

The main drawbacks in the quasi-static implicit finite element formulations are
summarized as follows:

e Solution of linear systems of equations is required during each iteration;

e High computation times and high memory requirements;

e Computation time depends quadratically on the number of degrees of freedom
if a direct solver is utilized, and with the Newton-Raphson method the solution
is only conditionally convergent;

e The stiffness matrix is often ill-conditioned, which can turn the solution proce-
dure unstable and deteriorate the performance of iterative solvers;

e Difficulties in dealing with complex non-linear contact and tribological bound-
ary conditions are experienced, and that often leads to convergence problems.

2.2 Dynamic Formulation

The dynamic finite element formulation is based on the dynamic equilibrium
equation in the current configuration, here written in the absence of body forces
with the inertia term expressed through the mass density p and the acceleration ii;,

Oijj — piii =0 (2.2.1)

Applying a mathematical procedure similar to that described in the previous
section results in the following weak variational form of Eq. (2.2.1),

/pii,‘SMidV —i—/O',‘j (Bui) jdV —/ti Su;idS =0 (2.2.2)
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The above equation enables dynamic finite element formulations to be repre-
sented by the following matrix set of non-linear equations,

M’ +F =F (2.2.3)

int =
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which express the dynamic equilibrium condition at the instant of time 7. The sym-
bol M denotes the mass matrix, Fi,; = Ku is the vector of internal forces resulting
from the stiffness, and F is the generalized force vector.

The non-linear set of equations (2.2.3), derived from the dynamic formulation, is
commonly solved by means of an explicit central difference time integration scheme,

w2 172
o ( Ari+1/2 ) +F, =F (2.2.42)
W2 = M) (F - FL) ACT2 w2 (2.2.4b)
u = o alt2A ! (2.2.4¢)

If the mass matrix M in Eq. (2.2.4a, b) is diagonalized (or lumped) its inversion
is trivial, and the system of differential equations decouples. Its overall solution
can then be performed independently and very fast for each degree of freedom.
Further reductions of the computation time per increment of time stem from utili-
zation of reduced integration schemes that are often applied even to the deviatoric
parts of the stiffness matrix, and finally numerical actions related to mass scaling
and load factoring contribute. Load factoring is described ahead.

Additional computational advantages result from the fact that dynamic explicit
schemes, unlike quasi-static implicit schemes, do not check equilibrium require-
ments at the end of each increment of time. The analogy between the dynamic
equilibrium equation (2.2.1) and the ideal mass-spring vibrating system allows
concluding that explicit central difference time integration schemes (frequently
referred as explicit integration schemes) are conditionally stable whenever the size
of the increment of time Ar satisfies

' < e _Le
“VE/p  ce

where L, is the typical size of the finite elements discretizing the domain, E is the
elasticity modulus and c, is the velocity of propagation of a longitudinal wave in the
material. In case of metal forming applications, the stability condition Eq. (2.2.5)
requires the utilization of very small increments of time A¢, say microseconds, and
millions of increments to finish a simulation because industrial metal forming pro-
cesses usually take several seconds to be accomplished. This is the reason why com-
puter programs often make use of the following numerical actions in order to increase
the increment of time A and, consequently, reducing the overall computation time:

A (2.2.5)

e Diagonalization of the mass matrix;

e Mass scaling—by increasing the density of the material and thus artificially
reducing the speed c, of the longitudinal wave;

e Load factoring—by changing the rate of loading through an artificial increase in
the velocity of the tooling as compared to the real forming velocity;

e Reduced integration of the deviatoric part of the stiffness matrix, which is usu-
ally fully integrated.
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The above-mentioned numerical actions can artificially add undesirable inertia
effects, and it is therefore necessary to include a damping term C'@’ in (2.2.3),

M'i' + Ci' +Fj = F (2.2.6)

The damping term C'&’ is not only necessary because of the above-mentioned
numerical actions to reduce the computation time but also to ensure fast conver-
gence of the solution towards the static solution describing the actual process.

This turns dynamic explicit formulations into close resemblance with damped
mass-spring vibrating systems and justifies the reason why these formulations
loose efficiency whenever the material is strain-rate sensitive or thermo-mechanical
phenomena need to be taken into consideration.

The main advantages of the dynamic explicit formulations are:

e Computer programs are robust and do not present convergence problems;

e The computation time depends linearly on the number of degrees of freedom
while in alternative quasi-static implicit schemes the dependency is more than
linear (in case of iterative solvers) and up to quadratic (in case of direct solvers).

The main drawbacks of the dynamic explicit formulation can be summarized as
follows:

Utilization of very small time increments;

Equilibrium after each increment of time is not checked;

Assignment of the system damping is rather arbitrary;

The formulation needs experienced users for adequately designing the mesh
and choosing the scaling parameters for mass, velocity and damping. Otherwise
it may lead to inaccurate solutions for the deformation, prediction of forming
defects and distribution of the major field variables within the workpiece;

e Springback calculations are very time consuming and may lead to errors. This
specific problem is frequently overtaken by combining dynamic explicit with
quasi-static implicit analysis.

The last two drawbacks apply if the dynamic explicit formulations are used in the
“high-speed-mode”’.
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