Chapter 2
Modeling of Uncertain Systems

As discussed in Chap. 1, it is well understood that uncertainties are unavoidable
in a real control system. The uncertainty can be classified into two categories: dis-
turbance signals and dynamic perturbations. The former includes input and output
disturbance (such as a gust on an aircraft), sensor noise and actuator noise, etc.
The latter represents the discrepancy between the mathematical model and the ac-
tual dynamics of the system in operation. A mathematical model of any real system
is always just an approximation of the true, physical reality of the system dynam-
ics. Typical sources of the discrepancy include unmodeled (usually high-frequency)
dynamics, neglected nonlinearities in the modeling, effects of deliberate reduced-
order models, and system-parameter variations due to environmental changes and
torn-and-worn factors. These modeling errors may adversely affect the stability and
performance of a control system. In this chapter, we will discuss in detail how dy-
namic perturbations are usually described so that they can be accounted for in sys-
tem robustness analysis and design.

2.1 Unstructured Uncertainties

Many dynamic perturbations that may occur in different parts of a system can, how-
ever, be lumped into one single perturbation block A, for instance, some unmodeled,
high-frequency dynamics. This uncertainty representation is referred to as “unstruc-
tured” uncertainty. In the case of linear, time-invariant systems, the block A may
be represented by an unknown transfer function matrix. The unstructured dynamics
uncertainty in a control system can be described in different ways, such as is listed
in the following, where G, (s) denotes the actual, perturbed system dynamics and
G, (s) a nominal model description of the physical system.

1. Additive perturbation (see Fig. 2.1):
Gp(s) =Gols) + Als) 2.1
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2. Inverse additive perturbation (see Fig. 2.2):
—1 -1
(Gp() ™' =(Go®) ™" + AGs) (22)
3. Input multiplicative perturbation (see Fig. 2.3):
Gp(s)=G,(s)[I + A(s)] (2.3)
4. Output multiplicative perturbation (see Fig. 2.4):
Gp(s)= [I + A(s)]G,,(s) 2.4)
5. Inverse input multiplicative perturbation (see Fig. 2.5):
-1 —1
(Gp(s)) = [I + A(s)] (Go(s)) (2.5)
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6. Inverse output multiplicative perturbation (see Fig. 2.6):
-1 -1
(Gp(s)) = (Go(s)) [I + A(s)] (2.6)

7. Left coprime factor perturbations (see Fig. 2.7):

Gp(s) =M+ Ay ' (N+ Ay 2.7)
8. Right coprime factor perturbations (see Fig. 2.8):

Gp(s) =(N+ AWM + Ay)~! 2.8)

The additive uncertainty representations give an account of absolute error be-
tween the actual dynamics and the nominal model, while the multiplicative repre-
sentations show relative errors.

In the last two representations, (M , N )/(M, N) are left/right coprime factoriza-
tions of the nominal system model G,(s), respectively; and (A, Aj)/(Ay, An)
are the perturbations on the corresponding factors [111].

The block A (or, (A, Aj)/(Ap, Ay) in the coprime factor perturbations
cases) is uncertain, but usually is norm-bounded. It may be bounded by a known
transfer function, say o[A(jw)] < §(jw), for all frequencies w, where 6 is a known
scalar function and o [-] denotes the largest singular value of a matrix. The uncer-
tainty can thus be represented by a unit, norm-bounded block A cascaded with a
scalar transfer function §(s).

It should be noted that a successful robust control-system design would depend
on, to a certain extent, an appropriate description of the perturbation considered,
though theoretically most representations are interchangeable.
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Fig. 2.9 Absolute and relative errors in Example 2.1

Example 2.1 The dynamics of many control systems may include a “slow” part and
a “fast” part, for instance in a dc motor. The actual dynamics of a scalar plant may
be

Gp (s)= ggainGslow (5)Grast(5)

where ggain is constant, and

1 1
Gslow(s) = T; Gase(s) = TxasT oK1

sT asT
In the design, it may be reasonable to concentrate on the slow response part while
treating the fast response dynamics as a perturbation. Let A, and A,, denote the
additive and multiplicative perturbations, respectively. It can easily be worked out
that

Ay(s) = Gp - ggainGslow = ggainGslow(Gfast -1

o —asT
T8N T (1 + asT)
Gp — 80ainGss —asT
Ay (s) = p — 8gainUslow = G — 1 = oas
8gainGslow I +asT

The magnitude Bode plots of A, and A, can be seen in Fig. 2.9, where ggain
is assumed to be 1. The difference between the two perturbation representations is
obvious: though the magnitude of the absolute error may be small, the relative error
can be large in the high-frequency range in comparison to that of the nominal plant.
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2.2 Parametric Uncertainty

The unstructured uncertainty representations discussed in Sect. 2.1 are useful in
describing unmodeled or neglected system dynamics. These complex uncertainties
usually occur in the high-frequency range and may include unmodeled lags (time
delay), parasitic coupling, hysteresis, and other nonlinearities. However, dynamic
perturbations in many industrial control systems may also be caused by inaccurate
description of component characteristics, torn-and-worn effects on plant compo-
nents, or shifting of operating points, etc. Such perturbations may be represented by
variations of certain system parameters over some possible value ranges (complex or
real). They affect the low-frequency range performance and are called “parametric
uncertainties”.

Example 2.2 A mass—spring—damper system can be described by the following sec-
ond order, ordinary differential equation:

d®x(r)  dx(r)

a2 +c ” +kx(t)= f(1)

where m is the mass, ¢ the damping constant, k the spring stiffness, x(¢) the dis-
placement and f(¢) the external force. For imprecisely known parameter values, the
dynamic behavior of such a system is actually described by

d%x (1) dx(®)
(mo + (Sm)v + (co + 80)7

where m,, ¢,, and k, denote the nominal parameter values and §,,, §, and §; possible
variations over certain ranges.

+ (ko +8K)x (1) = f (1) 2.9

By defining the state variables x; and x, as the displacement variable and its
first order derivative (velocity), the second order differential equation (2.9) may be
rewritten into a standard state-space form

)51=)C2

1
Xp = ———|—(ky + 81)x1 — (cp + 8c)x2 +
2 m0+5m[(0 Kx1 — (o X2 f]
y =X

Further, the system can be represented by an analog block diagram as in Fig. 2.10.

Notice that m can be rearranged as a feedback in terms of % and §,,. Fig-
ure 2.10 can be redrawn as in Fig. 2.11, by pulling out all the uncertain variations.

Let z1, 22, and z3 be X3, x2, and x1, respectively, considered as another, fictitious
output vector; and, di, d»>, and d3z be the signals coming out from the perturbation
blocks 8, 8, and 8k, as shown in Fig. 2.11. The perturbed system can be arranged

in the following state-space model and represented as in Fig. 2.12:

. d

0 1 0
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Fig. 2.11 Structured uncertainties block diagram of Example 2.2
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The state-space model of (2.10) describes the augmented, interconnection system
M of Fig. 2.12. The perturbation block A in Fig. 2.12 corresponds to parameter
variations and is called “parametric uncertainty”. The uncertain block A is not a
full matrix but a diagonal one. It has certain structure, hence the terminology of
“structured uncertainty”’. More general cases will be discussed shortly in Sect. 2.4.
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2.3 Linear Fractional Transformations

The block diagram in Fig. 2.12 can be generalized to be a standard configuration
to represent how the uncertainty affects the input/output relationship of the control
system under study. This kind of representation first appeared in the circuit analysis
back in the 1950s [140, 141]. It was later adopted in the robust control study [145]
for uncertainty modeling. The general framework is depicted in Fig. 2.13.

The interconnection transfer function matrix M in Fig. 2.13 is partitioned as

My My
M =
[le 1176)
where the dimensions of M1; conform with those of A. By routine manipulations,
it can be derived that

2= My + My AU — M1 4)"" M1y
if (I — M11 A4) is invertible. When the inverse exists, we may define
F(M, Ay = My + My A(I — M114)" My,

F(M, A) is called a linear fractional transformation (LFT) of M and A. Be-
cause the “upper” loop of M is closed by the block A, this kind of linear fractional
transformation is also called an upper linear fractional transformation (ULFT), and
denoted with a subscript u, i.e. F,(M, A), to show the way of connection. Similarly,
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there are also lower linear fractional transformations (LLFT) that are usually used
to indicate the incorporation of a controller K into a system. Such a lower LFT can
be depicted as in Fig. 2.14 and defined by

Fi(M, K) = M1 + MiaK (I = M2 K) ™' Moy

With the introduction of linear fractional transformations, the unstructured un-
certainty representations discussed in Sect. 2.1 may be uniformly described by
Fig. 2.13, with appropriately defined interconnection matrices Ms as listed below.

1. Additive perturbation:

0 I
M= |: 7 Go] (2.11)
2. Inverse additive perturbation:
_ _Go Go
M= |:—G0 Go] (2.12)
3. Input multiplicative perturbation:
0 I
M= |:G0 Goi| (2.13)
4. Output multiplicative perturbation:
{0 Gy
M= |: / Go] (2.14)
5. Inverse input multiplicative perturbation:
-1 1
M= 2.15
|: _Go Go ] ( )
6. Inverse output multiplicative perturbation:
=1 G,
M_|:—I Goi| (2.16)

7. Left coprime factor perturbations:

-mg' -G,
M= 0 1 (2.17)
G

-1
Mg 0
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where G, = M G 'NG, aleft coprime factorization of the nominal plant; and, the
perturbed plantis G, = (Mg + AM)_1 (NG + Ag).
8. Right coprime factor perturbations:

—1 —1
M:[[[__AéG 10]] Aéc] (2.18)

where G, = Ng MG_I, a right coprime factorization of the nominal plant; and,
the perturbed plantis G, = (Ng + Ay)(M¢ + AL

In the above, it is assumed that [/ — M A] is invertible. The perturbed system
is thus

G ,(s) = Fu(M, A)

In the coprime factor perturbation representations, (2.17) and (2.18), A =
[4;7 A5] and A = [i% ] respectively. The block A in (2.11)—(2.18) is supposed
to be a “full” matrix, i.e. it has no specific structure.

2.4 Structured Uncertainties

In many robust design problems, it is more likely that the uncertainty scenario is a
mixed case of those described in Sects. 2.1 and 2.2. The uncertainties under con-
sideration would include unstructured uncertainties, such as unmodeled dynamics,
as well as parameter variations. All these uncertain parts still can be taken out from
the dynamics and the whole system can be rearranged in a standard configuration
of (upper) linear fractional transformation F (M, A). The uncertain block A would
then have the following general form:

A=diag[di1y,, ..., 81y, A, ..., Asl, 8 €C,A;€C™¥™M (2.19)

where Y 7, ri + Z‘]f:l mj = n with n is the dimension of the block A. We may
define the set of such A as A. The total block A thus has two types of uncertain
block: s repeated scalar blocks and f full blocks. The parameters §; of the repeated
scalar blocks can be real numbers only, if further information of the uncertainties is
available. However, in the case of real numbers, the analysis and design would be
even harder. The full blocks in (2.19) need not be square, but by restricting them as
such makes the notation much simpler.

When a perturbed system is described by an LFT with the uncertain block of
(2.19), the A considered has a certain structure. It is thus called “structured un-
certainty”. Apparently, using a lumped, full block to model the uncertainty in such
cases, for instance in Example 2.2, would lead to pessimistic analysis of the system
behavior and produce conservative designs.
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