
Chapter 2
Optimal State Feedback Control
for Discrete-Time Systems

2.1 Introduction

The optimal control problem of nonlinear systems has always been the key fo-
cus of control fields in the past several decades. Traditional optimal control ap-
proaches are mostly based on linearization methods or numerical computation meth-
ods. However, closed-loop optimal feedback control is desired for most researchers
in practice. Therefore, in this chapter, several near-optimal control scheme will be
developed for different nonlinear discrete-time systems by introducing the different
iterative ADP algorithms.

First, an infinite-horizon optimal state feedback controller is developed for a
class of discrete-time systems based on DHP. Then, due to the special advantages
of GDHP algorithm, a new optimal control scheme is developed with discounted
cost functional. Moreover, based on GHJB algorithm, an infinite-horizon optimal
state feedback stabilizing controller is designed. Further, most existing controllers
are implemented in infinite time horizon. However, many real-world systems need
to be effectively controlled within a finite time horizon. Therefore, we further pro-
pose a finite-horizon optimal controllers with ε-error bound, where the number of
optimal control steps can be determined definitely.

2.2 Infinite-Horizon Optimal State Feedback Control Based
on DHP

Saturation, dead-zone, backlash, and hysteresis are the most common actuator non-
linearities in practical control system applications. Due to the nonanalytic nature
of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear
functions are unknown, the systems with saturation present a challenge to control
engineers. In this section, we study this problem in the framework of the HJB equa-
tion from optimal control theory. First, based on nonquadratic functionals, the HJB
equation is formulated, whose solution results in a smooth saturated controller. Then
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a new iterative ADP algorithm is presented with convergence proof to solve the HJB
equation derived.

2.2.1 Problem Formulation

Consider a class of discrete-time affine nonlinear systems as follows:

x(k + 1) = f (x(k)) + g(x(k))u(k), (2.1)

where x(k) ∈ R
n is the state vector, and f : Rn → R

n and g : Rn → R
n×m are

differentiable in their arguments with f (0) = 0. Assume that f + gu is Lips-
chitz continuous on a set Ω in R

n containing the origin, and that the system
(2.1) is controllable in the sense that there exists at least a continuous control law
on Ω that asymptotically stabilizes the system. We denote Ωu = {u(k) | u(k) =
[u1(k), u2(k), . . . , um(k)]T ∈ R

m, |ui(k)| ≤ ūi , i = 1, . . . ,m}, where ūi is the sat-
urating bound for the ith actuator. Let Ū ∈ R

m×m be the constant diagonal matrix
given by Ū = diag{ū1, ū2, . . . , ūm}.

In this subsection, we mainly discuss how to design an optimal state feedback
controller for this class of constrained discrete-time systems. It is desired to find the
optimal control law v(x) so that the control sequence u(·) = (u(i), u(i + 1), . . . )

with each u(i) ∈ Ωu minimizes the generalized cost functional as follows:

J (x(k), u(·)) =
∞∑

i=k

{
xT(i)Qx(i) + W(u(i))

}
, (2.2)

where u(i) = v(x(i)), W(u(i)) ∈ R is positive definite, and the weight matrix Q is
also positive definite.

For optimal control problems, the state feedback control law v(x) must not only
stabilize the system on Ω but also guarantee that (2.2) is finite. Such a control law
is said to be admissible.

Definition 2.1 A control law v(x) is said to be admissible with respect to (2.2) on
Ω if v(x) is continuous with v(x(k)) ∈ Ωu for ∀x(k) ∈ Ω and stabilizes (2.1) on Ω ,
v(0) = 0, and for ∀x(0) ∈ Ω , J (x(0), u(·)) is finite, where u(·) = (u(0), u(1), . . . )

and u(k) = v(x(k)), k = 0,1, . . . .

Based on the above definition, we are ready to explain the admissible control
law sequence. A control law sequence {ηi} = (η0, η1, . . . , η∞) is called admissible
if the resultant control sequence (u(0), u(1), . . . , u(∞)) stabilizes the system (2.1)
with any initial state x(0) and guarantees that J (x(0), u(·)) is finite. It should be
mentioned that, in this case, each control action obeys a different control law, i.e.,
u(i) is produced by a control law ηi for i = 0,1, . . . . The control law sequence
{ηi} = (η0, η1, . . . , η∞) is also called a nonstationary policy in the literature [2].
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For convenience, in the sequel J ∗(x(k)) is used to denote the optimal value func-
tion which is defined as J ∗(x(k)) = minu(·) J (x(k), u(·)), and u∗(x) is used to de-
note the corresponding optimal control law.

For the unconstrained control problem, W(u(i)) in the performance functional
(2.2) is commonly chosen as the quadratic form of the control input u(i). How-
ever, in this subsection, to confront the bounded control problem, we employ a non-
quadratic functional as follows:

W(u(i)) = 2
∫ u(i)

0
ϕ−T(Ū−1s)ŪRds, (2.3)

ϕ−1(u(i)) = [ϕ−1(u1(i)), ϕ
−1(u2(i)), . . . , ϕ

−1(um(i))]T,

where R is positive definite and assumed to be diagonal for simplicity of analysis,
s ∈ R

m, ϕ ∈ R
m, ϕ(·) is a bounded one-to-one function satisfying |ϕ(·)| ≤ 1 and

belonging to Cp (p ≥ 1) and L2(Ω). Moreover, it is a monotonic increasing odd
function with its first derivative bounded by a constant M . Such a function is easy
to find, and one example is the hyperbolic tangent function ϕ(·) = tanh(·). It should
be noticed that, by the definition above, W(u(i)) is ensured to be positive definite
because ϕ−1(·) is a monotonic odd function and R is positive definite.

According to Bellman’s principle of optimality, the optimal value function J ∗(x)

should satisfy the following HJB equation:

J ∗(x(k)) =min
u(·)

∞∑

i=k

{
xT(i)Qx(i) + 2

∫ u(i)

0
ϕ−T(Ū−1s)ŪRds

}

=min
u(k)

{
xT(k)Qx(k) + 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ J ∗(x(k + 1))
}
. (2.4)

The optimal control law u∗(x) should satisfy

u∗(x(k)) = arg min
u(k)

{
xT(k)Qx(k) + 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ J ∗(x(k + 1))
}
. (2.5)

The optimal control problem can be solved if the optimal value function J ∗(x)

can be obtained from (2.4). However, there is currently no method for solving this
value function of the constrained optimal control problem. Therefore, in the next
subsection we will discuss how to utilize the iterative ADP algorithm to seek the
near-optimal control solution.
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2.2.2 Infinite-Horizon Optimal State Feedback Control via DHP

Since direct solution of the HJB equation is computationally intensive, we develop
in this subsection an iterative ADP algorithm, based on Bellman’s principle of opti-
mality and the greedy iteration principle.

First, we start with initial value function V0(·) = 0 which is not necessarily the
optimal value function. Then, we find the law of single control vector v0(x) as fol-
lows:

v0(x(k)) = arg min
u(k)

{
xT(k)Qx(k) + 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ V0(x(k + 1))
}
, (2.6)

and we update the value function by

V1(x(k)) = xT(k)Qx(k) + 2
∫ v0(x(k))

0
ϕ−T(Ū−1s)ŪRds. (2.7)

Therefore, for i = 1,2, . . . , the iterative ADP algorithm iterates between

vi(x(k)) = arg min
u(k)

{
xT(k)Qx(k) + 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ Vi(x(k + 1))
}

(2.8)

and

Vi+1(x(k)) =min
u(k)

{
xT(k)Qx(k) + 2

∫ u(k)

0
ϕ−T(Ū−1s)ŪRds

+ Vi(x(k + 1))
}
. (2.9)

It can be seen that, based on (2.8), (2.9) can further be written as

Vi+1(x(k)) = xT(k)Qx(k) + 2
∫ vi (x(k))

0
ϕ−T(Ū−1s)ŪRds + Vi (x(k + 1)) ,

(2.10)

where x(k + 1) = f (x(k)) + g(x(k))vi(x(k)).
In summary, in this iterative algorithm, the value function sequence {Vi} and con-

trol law sequence {vi} are updated by implementing the recurrent iteration between
(2.8) and (2.10) with the iteration number i increasing from 0 to ∞.

To further explain the iteration process, next we are ready to analyze this iterative
algorithm. First, based on (2.10) we obtain
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Vi(x(k + 1)) = xT(k + 1)Qx(k + 1) + 2
∫ vi−1(x(k+1))

0
ϕ−T(Ū−1s)ŪRds

+ Vi−1 (x(k + 2)) , (2.11)

where x(k + 2) = f (x(k + 1)) + g(x(k + 1))vi−1(x(k + 1)). Then, by further ex-
panding (2.10), we have

Vi+1(x(k)) = xT(k)Qx(k) + 2
∫ vi (x(k))

0
ϕ−T(Ū−1s)ŪRds

+ xT(k + 1)Qx(k + 1) + 2
∫ vi−1(x(k+1))

0
ϕ−T(Ū−1s)ŪRds

+ · · · + xT(k + i)Qx(k + i)

+ 2
∫ v0(x(k+i))

0
ϕ−T(Ū−1s)ŪRds + V0 (x(k + i + 1)) , (2.12)

where V0 (x(k + i + 1)) = 0.
From (2.12), it can be seen that during the iteration process, the control actions

for different control steps obey different control laws. After the iteration number
i + 1, the obtained control law sequence is (vi, vi−1, . . . , v0). With the iteration
number i increasing to ∞, the obtained control law sequence has a length of ∞. For
the infinite-horizon problem, both the optimal value function and the optimal control
law are unique. Therefore, it is desired that the control law sequence will converge
when the iteration number i → ∞. In the following, we will prove that both the
value function sequence {Vi} and the control law sequence {vi} are convergent.

In this subsection, in order to prove the convergence characteristics of the itera-
tive ADP algorithm for the constrained nonlinear system, we first present two lem-
mas before presenting our theorems. For convenience, the nonquadratic functional
2
∫ u(k)

0 ϕ−T(Ū−1s)ŪRds will be written as W(u(k)) in the sequel.

Lemma 2.2 Let {μi} be an arbitrary sequence of control laws, and {vi} be the
control law sequence as in (2.8). Let Vi be as in (2.9) and Λi be

Λi+1(x(k)) = xT(k)Qx(k) + W(μi(x(k))) + Λi(x(k + 1)). (2.13)

If V0(·) = Λ0(·) = 0, then Vi(x) ≤ Λi(x), ∀i.

Proof It is clear from the fact that Vi+1 is the result of minimizing the right hand
side of (2.9) with respect to the control input u(k), while Λi+1 is a result of arbitrary
control input. �

Lemma 2.3 Let the sequence {Vi} be defined as in (2.9). If the system is control-
lable, then there is an upper bound Y such that 0 ≤ Vi(x(k)) ≤ Y, ∀i.
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Proof Let {ηi(x)} be a sequence of stabilizing and admissible control laws, and let
V0(·) = P0(·) = 0, where Vi is updated by (2.9) and Pi is updated by

Pi+1(x(k)) = xT(k)Qx(k) + W(ηi(x(k))) + Pi(x(k + 1)). (2.14)

From (2.14), we further obtain

Pi(x(k + 1)) = xT(k + 1)Qx(k + 1) + W(ηi−1(x(k + 1)))

+ Pi−1(x(k + 2)). (2.15)

Thus, the following relation can be obtained:

Pi+1(x(k)) = xT(k)Qx(k) + W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1) + W(ηi−1(x(k + 1)))

+ Pi−1(x(k + 2))

= xT(k)Qx(k) + W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1) + W(ηi−1(x(k + 1)))

+ xT(k + 2)Qx(k + 2) + W(ηi−2(x(k + 2)))

+ Pi−2(x(k + 3))

...

= xT(k)Qx(k) + W(ηi(x(k)))

+ xT(k + 1)Qx(k + 1) + W(ηi−1(x(k + 1)))

+ xT(k + 2)Qx(k + 2) + W(ηi−2(x(k + 2)))

+ . . .

+ xT(k + i)Qx(k + i) + W(η0(x(k + i)))

+ P0(x(k + i + 1)), (2.16)

where P0(x(k + i + 1)) = 0.
Let li (x(k)) = xT(k)Qx(k)+W(ηi(x(k))), and then (2.16) can further be written

as

Pi+1(x(k)) =
i∑

j=0

li−j (x(k + j))

=
i∑

j=0

{
xT(k + j)Qx(k + j) + W(ηi−j (x(k + j)))

}
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≤ lim
i→∞

i∑

j=0

{
xT(k + j)Qx(k + j) + W

(
ηi−j (x(k + j))

)}
. (2.17)

Note that {ηi(x)} is an admissible control law sequence, i.e., x(k) → 0 as k →
∞. Therefore there exists an upper bound Y such that

∀i : Pi+1(x(k)) ≤ lim
i→∞

i∑

j=0

li−j (x(k + j)) ≤ Y. (2.18)

Combining with Lemma 2.2, we obtain

∀i : Vi+1(x(k)) ≤ Pi+1(x(k)) ≤ Y. (2.19)

This completes the proof. �

Next, Lemmas 2.2 and 2.3 will be used in the proof of our main theorems.

Theorem 2.4 (cf. [17]) Define the value function sequence {Vi} as in (2.10) with
V0(·) = 0, and the control law sequence {vi} as in (2.8). Then, we can conclude that
{Vi} is a nondecreasing sequence satisfying Vi+1(x(k)) ≥ Vi(x(k)), ∀i.

Proof For convenience of analysis, define a new sequence {Φi} as follows:

Φi+1(x(k)) = xT(k)Qx(k) + W(vi+1(x(k))) + Φi(x(k + 1)), (2.20)

where Φ0(·) = V0(·) = 0. The control law sequence {vi} is updated by (2.8) and the
value function sequence {Vi} is updated by (2.10).

In the following, we prove that Φi(x(k)) ≤ Vi+1(x(k)) by mathematical induc-
tion.

First, we prove that it holds for i = 0. Noticing that

V1(x(k)) − Φ0(x(k)) = xT(k)Qx(k) + W(v0(x(k))) ≥ 0, (2.21)

thus for i = 0, we have

V1(x(k)) ≥ Φ0(x(k)). (2.22)

Second, we assume that it holds for i − 1. That is to say, for any x(k), we have
Vi(x(k)) ≥ Φi−1(x(k)). Then, for i, since

Φi(x(k)) = xT(k)Qx(k) + W(vi(x(k))) + Φi−1(x(k + 1)) (2.23)

and

Vi+1(x(k)) = xT(k)Qx(k) + W(vi(x(k))) + Vi(x(k + 1)) (2.24)

hold, we obtain

Vi+1(x(k)) − Φi(x(k)) = Vi(x(k + 1)) − Φi−1(x(k + 1)) ≥ 0, (2.25)
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i.e., the following equation holds:

Φi(x(k)) ≤ Vi+1(x(k)). (2.26)

Therefore, (2.26) is proved for any i by mathematical induction.
Furthermore, from Lemma 2.2 we know that Vi(x(k)) ≤ Φi(x(k)). Therefore we

have

Vi(x(k)) ≤ Φi(x(k)) ≤ Vi+1(x(k)). (2.27)

The proof is completed. �

Next, we are ready to exploit the limit of the value function sequence {Vi} when
i → ∞.

Let {η(l)
i } be the lth admissible control law sequence, similar to the proof of

Lemma 2.3, we can construct the associated sequence P
(l)
i (x) as follows:

P
(l)
i+1(x(k)) = xT(k)Qx(k) + W(η

(l)
i (x(k))) + P

(l)
i (x(k + 1)), (2.28)

with P
(l)
0 (·) = 0.

Let l
(l)
i (x(k)) = xT(k)Qx(k) + W(η

(l)
i (x(k))). Then, the following relation can

be obtained similarly:

P
(l)
i+1(x(k)) =

i∑

j=0

l
(l)
i−j (x(k + j)). (2.29)

Let i → ∞; we have

P (l)∞ (x(k)) = lim
i→∞

i∑

j=0

l
(l)
i−j (x(k + j)). (2.30)

Combining (2.29) with (2.30), we obtain

P
(l)
i+1(x(k)) ≤ P (l)∞ (x(k)). (2.31)

Theorem 2.5 (cf. [17]) Define P
(l)∞ (x(k)) as in (2.30), and the value function se-

quence {Vi} as in (2.10) with V0(·) = 0. For any state vector x(k), define J ∗(x(k)) =
infl{P (l)∞ (x(k))}, which can be considered as the “optimal” value function starting
from x(k) under all admissible control law sequences with length of ∞. Then, we
can conclude that J ∗ is the limit of the value function sequence {Vi}.

Proof According to the definition of P
(l)∞ (x(k)), the associated control law sequence

{η(l)
i (x)} is admissible. Thus, it is guaranteed that limi→∞

∑i
j=0 l

(l)
i−j (x(k + j)) is
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finite, i.e., P
(l)∞ (x(k)) is finite. Hence for any l, there exists an upper bound Yl such

that

P
(l)
i+1(x(k)) ≤ P (l)∞ (x(k)) ≤ Yl. (2.32)

Combining with Lemma 2.2, we further obtain

∀l, i : Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl. (2.33)

Since J ∗(x(k)) = infl{P (l)∞ (x(k))}, for any ε > 0, there exists a sequence of
admissible control laws {η(K)

i } such that the associated value function satisfies

P
(K)∞ (x(k)) ≤ J ∗(x(k)) + ε. According to (2.33), we have Vi(x(k)) ≤ P

(l)
i (x(k))

for any l and i. Thus, we obtain limi→∞ Vi(x(k)) ≤ P
(K)∞ (x(k)) ≤ J ∗(x(k)) + ε.

Noting that ε is chosen arbitrarily, we have

lim
i→∞Vi(x(k)) ≤ J ∗(x(k)). (2.34)

On the other hand, since Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl,∀l, i, we have limi→∞

Vi(x(k)) ≤ infl {Yl}. According to the definition of admissible control law sequence,
the control law sequence associated with the value function limi→∞ Vi(x(k)) must
be an admissible control law sequence, i.e., there exists a sequence of admissible
control laws {η(N)

i } such that limi→∞ Vi(x(k)) = P
(N)∞ (x(k)). Combining with the

definition J ∗(x(k)) = infl{P (l)∞ (x(k))}, we can obtain

lim
i→∞Vi(x(k)) ≥ J ∗(x(k)). (2.35)

Therefore, combining (2.34) with (2.35), we can conclude that limi→∞ Vi(x(k))

= J ∗(x(k)), i.e., J ∗ is the limit of the value function sequence {Vi}.
The proof is completed. �

Next, let us consider what will happen when we make i → ∞ in (2.9). The left
hand side is simply V∞(x). But for the right hand side, it is not obvious to see since
the minimum will reach at different u(k) for different i. However, the following
result can be proved.

Theorem 2.6 For any state vector x(k), the “optimal” value function J ∗(x) satis-
fies the HJB equation

J ∗(x(k)) = inf
u(k)

{
xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))

}
.

Proof For any u(k) and i, according to (2.9), we have

Vi(x(k)) ≤ xT(k)Qx(k) + W(u(k)) + Vi−1(x(k + 1)). (2.36)
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According to Theorems 2.4 and 2.5, the value function sequence {Vi} is a non-
decreasing sequence satisfying limi→∞ Vi(x(k)) = J ∗(x(k)), hence the relation
Vi−1(x(k + 1)) ≤ J ∗(x(k + 1)) holds for any i. Thus, we obtain

Vi(x(k)) ≤ xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1)). (2.37)

Let i → ∞; we have

J ∗(x(k)) ≤ xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1)). (2.38)

Since u(k) in the above equation is chosen arbitrarily, the following equation holds:

J ∗(x(k)) ≤ inf
u(k)

{
xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))

}
. (2.39)

On the other hand, for any i the value function sequence satisfies

Vi(x(k)) = min
u(k)

{
xT(k)Qx(k) + W(u(k)) + Vi−1(x(k + 1))

}
. (2.40)

Combining with Vi(x(k)) ≤ J ∗(x(k)),∀i, we have

J ∗(x(k)) ≥ inf
u(k)

{
xT(k)Qx(k) + W(u(k)) + Vi−1(x(k + 1))

}
. (2.41)

Let i → ∞; then we obtain

J ∗(x(k)) ≥ inf
u(k)

{
xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))

}
. (2.42)

Combining (2.39) and (2.42), we have

J ∗(x(k)) = inf
u(k)

{
xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))

}
. (2.43)

The proof is completed. �

According to Theorems 2.4 and 2.5, we can conclude that Vi(x(k)) ≤ Vi+1(x(k)),
∀i and limi→∞ Vi(x(k)) = J ∗(x(k)). Furthermore, according to Theorem 2.6, we
have J ∗(x(k)) = infu(k){xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))}. Therefore, we
can conclude that the value function sequence {Vi} converges to the optimal value
function of the discrete-time HJB equation, i.e., Vi → J ∗ as i → ∞. Since the value
function sequence is convergent, according to (2.5) and (2.8), we can conclude that
the corresponding control law sequence {vi} converges to the optimal control law
u∗ as i → ∞.

It should be mentioned that the value function Vi(x) we constructed is a new
function that is different from ordinary cost function. Via Lemma 2.3 and Theo-
rem 2.4, we have showed that for any x(k) ∈ Ω , the function sequence {Vi(x(k))} is
a nondecreasing sequence, which will increase its value with an upper bound. This
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is in contrast to other work in the literature, e.g., [5], where the value functions are
constructed as a nonincreasing sequence with lower bound. Moreover, it should be
noted that we do not require every control law in the sequence {vi} to be admissible.
What we need is a control law sequence to be admissible, i.e., the resultant sequence
of control vectors can stabilize the system.

Next, we are ready to discuss the implementation of the iterative ADP algorithm.
(1) Derivation of the iterative DHP algorithm. First, we assume that the value

function Vi(x) is smooth. In order to implement the iteration between (2.8) and
(2.10), for i = 0,1, . . . , we further assume that the minimum of the right hand side
of (2.8) can be exactly solved by letting the gradient of the right hand side of (2.8)
with respect to u(k) equal to zero, i.e.,

∂
(
xT(k)Qx(k) + W(u(k))

)

∂u(k)
+
(

∂x(k + 1)

∂u(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
= 0. (2.44)

Therefore, for i = 0,1, . . . , the corresponding control law vi(x) can be obtained by
solving the above equation, i.e.,

vi(x(k)) = Ūϕ

(
−1

2
(ŪR)−1gT(x(k))

∂Vi(x(k + 1))

∂x(k + 1)

)
. (2.45)

From (2.45), we find that the control law vi(x) at each step of iteration has to
be computed by ∂Vi(x(k + 1))/∂x(k + 1), which is not an easy task. Furthermore,
at each iteration step of value function Vi+1(x(k)) in (2.10), there exists an integral
term 2

∫ vi (x(k))

0 ϕ−T(Ū−1s)ŪRds to compute, which is a large computing burden.
Therefore, in the following we will present another method called iterative DHP
algorithm to implement the iterative ADP algorithm.

Define the costate function λ(x) = ∂V (x)/∂x. Here, we assume that the value
function V (x) is smooth so that λ(x) exists. Then, the recurrent iteration between
(2.8) and (2.10) can be implemented as follows.

First, we start with an initial costate function λ0(·) = 0. Then, for i = 0,1, . . . ,
by substituting λi(x) = ∂Vi(x)/∂x into (2.45), we obtain the corresponding control
law vi(x) as

vi(x(k)) = Ūϕ
(

− 1

2
(ŪR)−1gT(x(k))λi(x(k + 1))

)
. (2.46)

For λi+1(x(k)) = ∂Vi+1(x(k))

∂x(k)
, according to (2.10) we can obtain

λi+1(x(k)) = ∂
(
xT(k)Qx(k) + W (vi(x(k)))

)

∂x(k)

+
(

∂vi(x(k))

∂x(k)

)T ∂
(
xT(k)Qx(k) + W(vi(x(k)))

)

∂vi(x(k))

+
(

∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
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+
(

∂vi(x(k))

∂x(k)

)T(
∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)

= ∂
(
xT(k)Qx(k) + W(vi(x(k)))

)

∂x(k)

+
(

∂vi(x(k))

∂x(k)

)T
[

∂
(
xT(k)Qx(k) + W(vi(x(k)))

)

∂vi(x(k))

+
(

∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)

]

+
(

∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
. (2.47)

According to (2.44) and (2.45), we have

∂
(
xT(k)Qx(k) + W(vi(x(k)))

)

∂vi(x(k))
+
(

∂x(k + 1)

∂vi(x(k))

)T
∂Vi(x(k + 1))

∂x(k + 1)
= 0. (2.48)

Therefore (2.47) can further be written as

λi+1(x(k)) = ∂
(
xT(k)Qx(k) + W(vi(x(k)))

)

∂x(k)

+
(

∂x(k + 1)

∂x(k)

)T
∂Vi(x(k + 1))

∂x(k + 1)
, (2.49)

i.e.,

λi+1(x(k)) = 2Qx(k) +
(

∂x(k + 1)

∂x(k)

)T

λi(x(k + 1)). (2.50)

Therefore, the iteration between (2.46) and (2.50) is an implementation of the
iteration between (2.8) and (2.10). From (2.46) the control law vi can directly be
obtained by the costate function. Hence the iteration of value function in (2.10)
can be omitted in the implementation of this iterative algorithm. Considering the
principle of DHP algorithm in Chap. 1, we call such iterative algorithm as iterative
DHP algorithm.

Next, we present a convergence analysis of the iteration between (2.46) and
(2.50).

Theorem 2.7 Define the control law sequence {vi} as in (2.8), and update the value
function sequence {Vi} by (2.10) with V0(·) = 0. Define the costate function se-
quence {λi} as in (2.50) with λ0(·) = 0. Then, the costate function sequence {λi}
and the control law sequence {vi} are convergent as i → ∞. The optimal value λ∗
is defined as the limit of the costate function λi when vi approaches the optimal
value u∗.
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Proof According to Theorems 2.4–2.6, we have proved that limi→∞ Vi(x(k)) =
J ∗(x(k)), and J ∗(x(k)) satisfies the corresponding HJB equation, i.e.,

J ∗(x(k)) = inf
u(k)

{xT(k)Qx(k) + W(u(k)) + J ∗(x(k + 1))}.

Therefore, we conclude that the value function sequence {Vi} converges to the
optimal value function of the DTHJB equation, i.e., Vi → J ∗ as i → ∞. With
λi(x(k)) = ∂Vi(x(k))/∂x(k), we conclude that the corresponding costate function
sequence {λi} is also convergent with λi → λ∗ as i → ∞. Since the costate func-
tion is convergent, we can conclude that the corresponding control law sequence
{vi} converges to the optimal control law u∗ as i → ∞. �

Remark 2.8 In the iterative DHP algorithm, via the costate sequence (2.50), the cor-
responding control law sequence can be directly obtained by (2.46), which does not
require the computation of ∂Vi(x(k + 1))/∂x(k + 1). Furthermore, in (2.10) there
is an integral term 2

∫ vi (x(k))

0 ϕ−T(Ū−1s)ŪRds to compute at each iteration step,
which is not an easy task. However, in (2.50) the integral term has been removed,
which greatly reduces the computational burden. On the other hand, in order to com-
pute the costate function by (2.50), the internal dynamics f (x(k)) and g(x(k)) of
the system are needed. In the implementation part of the algorithm, a model network
is constructed to approximate the nonlinear dynamics of the system, which avoids
the requirement of known f (x(k)) and g(x(k)).

(2) RBFNN implementation of the iterative DHP algorithm. In the iterative DHP
algorithm, the optimal control is difficult to solve analytically. For example, in
(2.46), the control at step k is a function of costate at step k + 1. A closed-form
explicit solution is difficult to solve, if not impossible. Therefore we need to use
parametric structures, such as fuzzy models [15] or neural networks, to approxi-
mate the costate function and the corresponding control law in the iterative DHP
algorithm. In this subsection, we choose radial basis function (RBF) NNs to ap-
proximate the nonlinear functions.

An RBFNN consists of three-layers (input, hidden and output). Each input value
is assigned to a node in the input layer and passed directly to the hidden layer with-
out weights. Nodes at the hidden layer are called RBF units, determined by a vector
called center and a scalar called width. The Gaussian density function is used as an
activation function for the hidden neurons. Then, linear output weights connect the
hidden and output layers. The overall input–output equation of the RBFNN is given
as

yi = bi +
h∑

j=1

wjiφj (X), (2.51)

where X is the input vector, φj (X) = exp(−‖X − Cj‖2/σj
2) is the activation func-

tion of the j th RBF unit in the hidden layer, Cj ∈ R
n is the center of the j th RBF
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unit, h is the number of RBF units, bi and wji are the bias term and the weight be-
tween hidden and output layer, and yi is the ith output in the m-dimensional space.
Once the optimal RBF centers are established over a wide range of operating points
of the plant, the width of the ith center in the hidden layer is calculated by the
following formula:

σi =

√√√√√
1

h

h∑

j=1

n∑

k=1

(‖cki − ckj‖), (2.52)

where cki and ckj are the kth value of the center of the ith and j th RBF units,
respectively. In (2.51) and (2.52), ‖ · ‖ represents the Euclidean norm. To avoid
the extensive computational complexity during training, the batch mode k-means
clustering algorithm is used to calculate the centers of the RBF units.

In order to implement the iterative ADP algorithm, i.e., implement the iteration
between (2.46) and (2.50), we employ RBFNNs to approximate the costate func-
tion λi(x) and the corresponding control law vi(x) at each iteration step i. In the
implementation of the iterative DHP algorithm, there are three networks, which are
model network, critic network and action network, respectively. All the neural net-
works are chosen as RBF networks. The inputs of the model network are x(k) and
vi(x(k)) and the inputs of the critic network and action network are x(k + 1) and
x(k), respectively. The diagram of the whole structure is shown in Fig. 2.1.

For unknown plants, before carrying out the iterative DHP algorithm, we first
train the model network. For any given x(k) and v̂i (x(k)), we obtain x̂(k + 1), and
the output of the model network is denoted

x̂(k + 1) = wT
mφ(Im(k)), (2.53)

where Im(k) = [xT(k)v̂T
i (x(k))]T is the input vector of the model network.

We define the error function of the model network as

em(k) = x̂(k + 1) − x(k + 1). (2.54)

The weights in the model network are updated to minimize the following perfor-
mance measure:

Em(k) = 1

2
eT
m(k)em(k). (2.55)

The weight updating rule for model network is chosen as a gradient-based adapta-
tion rule

wm(k + 1) = wm(k) − αm

[
∂Em(k)

∂wm(k)

]
, (2.56)

where αm is the learning rate of the model network.
After the model network is trained, its weights are kept unchanged.
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Fig. 2.1 The structure
diagram of the iterative DHP
algorithm

The critic network is used to approximate the costate function λi+1(x). The out-
put of the critic network is denoted

λ̂i+1(x(k)) = wT
c(i+1)φ(x(k)). (2.57)

The target costate function is given as in (2.50). Define the error function for the
critic network as

ec(i+1)(k) = λ̂i+1(x(k)) − λi+1(x(k)). (2.58)

The objective function to be minimized for the critic network is

Ec(i+1)(k) = 1

2
eT
c(i+1)(k)ec(i+1)(k). (2.59)

The weight updating rule for the critic network is a gradient-based adaptation given
by

wc(i+1)(j + 1) = wc(i+1)(j) − αc

[
∂Ec(i+1)(k)

∂wc(i+1)(j)

]
, (2.60)
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where αc > 0 is the learning rate of the critic network, and j is the inner-loop itera-
tion step for updating the weight parameters.

In the action network, the state x(k) is used as the input of the network and the
output can be formulated as

v̂i (x(k)) = wT
aiφ(x(k)). (2.61)

The target value of the control vi(x(k)) is obtained by (2.46). So we can define the
error function of the action network as

eai(k) = v̂i (x(k)) − vi(x(k)). (2.62)

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eai(k) = 1

2
eT
ai(k)eai(k). (2.63)

The updating algorithm is then similar to the one for the critic network. By the
gradient descent rule, we obtain

wai(j + 1) = wai(j) − αa

[
∂Eai(k)

∂wai(j)

]
, (2.64)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iteration step for updating the weight parameters.

From the neural-network implementation, we can find that in this iterative DHP
algorithm, ∂Vi(x(k + 1))/∂x(k + 1) is replaced by λ̂i (x(k + 1)), which is just the
output of the critic network. Therefore, it is more accurate than computing by back-
propagation through the critic network as in [1].

(3) Design procedure of the approximate optimal controller. Based on the itera-
tive DHP algorithm, the design procedure of the optimal control scheme is summa-
rized as follows:

1. Choose imax, ja
max, jc

max, εm, ε0, Ū , αm, αc, αa and the weight matrices Q

and R.
2. Construct the model network x̂(k + 1) = wT

mφ(Im(k)) with the initial weight
parameters wm0 chosen randomly from [−0.1,0.1] and train the model network
with a random input vector uniformly distributed in the interval [−1,1] and
arbitrary initial state vector in [−1,1] till the given accuracy εm is reached.

3. Set the iteration step i = 0. Set the initial weight parameters of critic network
wc0 as zero so that the initial value of the costate function λ0(·) = 0, and ini-
tialize the action network with the weight parameters wa0 chosen randomly in
[−0.1,0.1].

4. Choose an array of state vector x(k) = (x(1)(k), x(2)(k), . . . , x(p)(k)) ran-
domly from the operation region and compute the corresponding output target
vi(x(k)) = (vi(x

(1)(k)), vi(x
(2)(k)), . . . , vi(x

(p)(k))) by (2.46), where the state
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vector at the next time instant

x(k + 1) =
(
x(1)(k + 1), x(2)(k + 1), . . . , x(p)(k + 1)

)

is computed by the model network (2.53). With the same state vector x(k) =
(x(1)(k), x(2)(k), . . . , x(p)(k)) and

x(k + 1) =
(
x(1)(k + 1), x(2)(k + 1), . . . , x(p)(k + 1)

)
,

compute the resultant output target

λi+1(x(k)) =
(
λi+1(x

(1)(k)), λi+1(x
(2)(k)), . . . , λi+1(x

(p)(k))
)

by (2.50).
5. Set wc(i+1) = wci . With the data set (x(j)(k), λi+1(x

(j)(k))), j = 1,2, . . . , p,
update the weight parameters of the critic network wc(i+1) by (2.60) for jc

max

steps to get the approximate costate function λ̂i+1.
6. With the data set (x(j)(k), vi(x

(j)(k))), j = 1,2, . . . , p, update the weight pa-
rameters of the action network wai by (2.64) for ja

max steps to get the approxi-
mate control law v̂i .

7. If

‖λi+1(x(k)) − λi(x(k))‖2 < ε0,

go to Step 9; otherwise, go to Step 8.
8. If i > imax, go to Step 9; otherwise, set i = i + 1 and go to Step 4.
9. Set the final approximate optimal control law û∗(x) = v̂i (x).

10. Stop.

As stated in the last subsection, the iterative algorithm will be convergent with
λi(x) → λ∗(x) and the control sequence vi(x) → u∗(x) as i → ∞. However, in
practical applications, we cannot implement the iteration till i → ∞. Actually, we
iterate the algorithm for a max number imax or with a pre-specified accuracy ε0 to
test the convergence of the algorithm. In the above procedure, there are two levels
of loops. The outer loop starts from Step 3 and ends at Step 8. There are two inner
loops in Steps 5 and 6, respectively. The inner loop of Step 5 includes jc

max iterative
steps, and the inner loop of Step 6 includes ja

max iterative steps. The state vector
x(k) is chosen randomly at Step 4. Suppose that the associated random probability
density function is nonvanishing everywhere. Then we can assume that all the states
will be explored. So we know that the resulting networks tend to satisfy the formulas
(2.46) and (2.50) for all state vectors x(k). The limits of λ̂i and v̂i will approximate
the optimal ones λ∗ and u∗, respectively. The parameters ε0 and imax are chosen
by the designer. The smaller the value of ε0 is set, the more accurate the costate
function and the optimal control law will be. If the condition set in Step 7 is satisfied,
it implies that the costate function sequence is convergent with the pre-specified
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accuracy. The larger the value of imax in Step 8 is set, the more accurate the obtained
control law v̂(x) will be at the price of increased computational burden.

2.2.3 Simulations

In this section, two examples are provided to demonstrate the effectiveness of the
control scheme developed in this subsection.

Example 2.9 (Nonlinear Discrete-Time System) Consider the following nonlinear
system [5]:

x(k + 1) = f (x(k)) + g(x(k))u(k), (2.65)

where f (x(k)) = [ −0.8x2(k)

sin(0.8x1(k)−x2(k))+1.8x2(k)

]
, g(x(k)) = [ 0

−x2(k)

]
, and assume that

the control constraint is set to |u| ≤ 0.3.
Define the cost functional as

J (x(k), u(·)) =
∞∑

i=k

{
xT(i)Qx(i) + 2

∫ u(i)

0
tanh−T(Ū−1s)ŪRds

}
, (2.66)

where Ū = 0.3, and the weight matrices are chosen as Q = [ 1 0
0 1

]
and R = [0.5].

First, we perform the simulation of iterative ADP algorithm. In this iterative
algorithm, we choose RBFNNs as the critic network, the action network and the
model network with the structure 2–9–2, 2–9–1 and 3–9–2, respectively. The train-
ing sets are selected as −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1, which is the operation
region of the system. It should be mentioned that the model network should be
trained first. The initial state vectors are chosen randomly from [−1,1]. Under the
learning rate of αm = 0.1, the model network is trained until the given accuracy
εm = 10−6 is reached. After the training of the model network is completed, the
weights are kept unchanged. Then, the critic network and the action network are
trained with the learning rates αa = αc = 0.1 and the inner-loop iteration number
jc

max = ja
max = 2000. Meanwhile the pre-specified accuracy ε0 is set to 10−20. De-

note the outer loop iteration number as L. After implementing the outer loop itera-
tion for L = imax = 100, the convergence curves of the costate function are shown in
Fig. 2.2. It can be seen that the costate function is basically convergent with the outer
loop iteration L > 15. In order to compare the different actions of the control laws
obtained under different outer loop iteration numbers, for the same initial state vec-
tor x1(0) = 0.5 and x2(0) = 0.5, we apply different control laws to the plant for 30
time steps and obtain the simulation results as follows. The state curves are shown
in Figs. 2.3 and 2.4, and the corresponding control inputs are shown in Fig. 2.5. It
can be seen that the system responses are improved when the outer loop iteration
number L is increased. When L > 80, the system responses only improve slightly
in performance.
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Fig. 2.2 The convergence process of the costate function at x = (0.3,−0.5), x = (−0.2,0.2),
x = (0.8,0.6)

Fig. 2.3 The state trajectory x1 for L = 2,30,80,100

It should be mentioned that in order to show the convergence characteristics of
the iterative process more clearly, we set the required accuracy ε0 to a very small
number 10−20 and we set the max iteration number to twice of what is needed.
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Fig. 2.4 The state trajectory x2 for L = 2,30,80,100

Fig. 2.5 The control input u for L = 2,30,80,100

In this way, the given accuracy ε0 did not take effect even when the max iteration
number is reached. Therefore, it seems that the max iteration number imax becomes
the stopping criterion in this case. If the designer wants to save the running time, the
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Fig. 2.6 The state variables curves without considering the actuator saturation in the controller
design

pre-specified accuracy ε0 can be set to a normal value so that the iterative process
will be stopped once the accuracy ε0 is reached.

Moreover, in order to make comparison with the controller designed without
considering the actuator saturation, we also present the system responses obtained
by the controller designed regardless of the actuator saturation. However, the ac-
tuator saturation is actually existing, therefore in the simulation if the control in-
put overrun the saturation bound, it is limited to the bound value. After simula-
tion, the state curves are as shown in Fig. 2.6, and the control curve is shown in
Fig. 2.7.

From the simulation results, we can see that the iterative costate function se-
quences do converge to the optimal ones with very fast speed, which also indicates
the validity of the iterative ADP algorithm for dealing with constrained nonlinear
systems. Comparing Fig. 2.5 with Fig. 2.7, we can see that in Fig. 2.5 the restriction
of actuator saturation has been overcome successfully, but in Fig. 2.7 the control
input has overrun the saturation bound and therefore be limited to the bound value.
From this point, we can conclude that the present iterative ADP algorithm is effec-
tive in dealing with the constrained optimal control problem.

Example 2.10 (Mass–Spring System) Consider the following discrete-time nonlin-
ear mass–spring system:

{
x1(k + 1) = 0.05x2(k) + x1(k),

x2(k + 1) = −0.0005x1(k) − 0.0335x3
1(k) + 0.05u(k) + x2(k),

(2.67)

where x(k) is the state vector, and u(k) is the control input.
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Fig. 2.7 The control input curve without considering the actuator saturation in the controller de-
sign

Define the cost functional as

J (x(k), u(·)) =
∞∑

i=k

{
xT(i)Qx(i) + 2

∫ u(i)

0
tanh−T(Ū−1s)ŪRds

}
, (2.68)

where the control constraint is set to Ū = 0.6, and the weight matrices are chosen
as Q = [ 0.5 0

0 0.5

]
and R = [1]. The training sets are −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1.

The critic network, the action network and the model network are chosen as RBF
neural networks with the structure of 2–16–2, 2–16–1 and 3–16–2, respectively.
In the training process, the learning rates are set to αa = αc = 0.1. The other pa-
rameters are set the same as those in Example 2.9. After implementing the outer
loop iteration for L = imax = 300, the convergence curves of the costate function
are shown in Fig. 2.8. It can be seen that the costate function is basically conver-
gent with the outer loop iteration L > 200. In order to compare the different actions
of the control laws obtained under different outer loop iteration numbers, for the
same initial state vector x1(0) = −1 and x2(0) = 1, we apply different control laws
to the plant for 300 time steps and obtain the simulation results as follows. The
state curves are shown in Figs. 2.9, 2.10, and the corresponding control inputs are
shown in Fig. 2.11. It can be seen that the closed-loop system is divergent when
using the control law obtained by L = 2, and the system’s responses are improved
when the outer loop iteration number L is increased. When L > 200, the system
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Fig. 2.8 The convergence process of the costate function at x = (−0.5,0.2), x = (0.4,−0.6),
x = (0,−0.3)

Fig. 2.9 The state trajectory x1 for L = 2,10,30,200

responses basically remain unchanged with no significant improvement in perfor-
mance.

In order to make comparison with the controller without considering the actua-
tor saturation, we also present the controller designed by iterative ADP algorithm
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Fig. 2.10 The state trajectory x2 for L = 2,10,30,200

Fig. 2.11 The control input u for L = 2,10,30,200

regardless of the actuator saturation. The state curves are shown in Fig. 2.12 and the
control curve is shown in Fig. 2.13.

From the simulation results, we can see that the iterative costate function se-
quence does converge to the optimal one very fast. Comparing Fig. 2.11 with
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Fig. 2.12 The state curves without considering the actuator saturation in controller design

Fig. 2.13 The control curves without considering the actuator saturation in controller design

Fig. 2.13, we can find that in Fig. 2.11 the restriction of actuator saturation has
been overcome successfully, which further verifies the effectiveness of the present
iterative ADP algorithm.
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2.3 Infinite-Horizon Optimal State Feedback Control Based
on GDHP

2.3.1 Problem Formulation

In this section, we will study the discrete-time nonlinear systems described by

x(k + 1) = f (x(k)) + g(x(k))u(k), (2.69)

where x(k) ∈ R
n is the state vector and u(k) ∈ R

m is the control vector, f (·) and
g(·) are differentiable in their arguments with f (0) = 0. Assume that f + gu is
Lipschitz continuous on a set Ω in R

n containing the origin, and that the system
(2.69) is controllable in the sense that there exists a continuous control law on Ω

that asymptotically stabilizes the system.
Let x(0) be an initial state and define uN−1

0 = (u(0), u(1), u(N −1)) be a control
sequence with which the system (2.69) gives a trajectory starting from x(0): x(1) =
f (x(0))+g(x(0))u(0), x(2) = f (x(1))+g(x(1))u(1), . . . , x(N) = f (x(N −1))+
g(x(N − 1))u(N − 1). We call the number of elements in the control sequence
uN−1

0 the length of uN−1
0 and denote it as |uN−1

0 |. Then, |uN−1
0 | = N . The final

state under the control sequence uN−1
0 can be denoted x(f )(x(0), uN−1

0 ) = x(N).
When the control sequence starting from u(0) has infinite length, we denote it as
u∞

0 = (u(0), u(1), . . .) and then the correspondingly final state can be written as
x(f )(x(0), u∞

0 ) = limk→∞ x(k).

Definition 2.11 A nonlinear dynamical system is said to be stabilizable on a
compact set Ω ∈ R

n, if for all initial conditions x(0) ∈ Ω , there exists a con-
trol sequence u∞

0 = (u(0), u(1), . . .), u(i) ∈ R
m, i = 0,1, . . . , such that the state

x(f )(x(0), u∞
0 ) = 0.

Let u∞
k = (u(k), u(k + 1), . . .) be the control sequence starting at k. It is desired

to find the control sequence u∞
k which minimizes the infinite-horizon cost functional

given by

J (x(k), u∞
k ) =

∞∑

i=k

γ i−kl(x(i), u(i)), (2.70)

where l is the utility function, l(0,0) = 0, l(x(i), u(i)) ≥ 0 for ∀x(i), u(i), and γ is
the discount factor with 0 < γ ≤ 1. Generally speaking, the utility function can be
chosen as the quadratic form as follows:

l(x(i), u(i)) = xT(i)Qx(i) + uT(i)Ru(i).

For optimal control problems, the designed feedback control must not only sta-
bilize the system on Ω but also guarantee that (2.70) is finite, i.e., the control must
be admissible.
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It is noted that a control law sequence {ηi} = (ηN , . . . , η1, η0), N → ∞, is called
admissible if the resultant control sequence (u(0), u(1), . . . , u(N)) stabilizes sys-
tem (2.69) with any initial state x(0) and guarantees that J (x(0), uN

0 ) is finite.
In this case, it should be mentioned that each control action obeys a different
control law, i.e., the control action u(i) is produced by the control law ηN−i or
u(i) = ηN−i (x(i)), for i = 0,1, . . . ,N , N → ∞.

Let

Ax(k) = {u∞
k : x(f )(x(k), u∞

k ) = 0
}

be the set of all infinite-horizon admissible control sequences of x(k). Define the
optimal value function as

J ∗(x(k)) = inf
u∞

k

{
J (x(k), u∞

k ) : u∞
k ∈ Ax(k)

}
. (2.71)

Note that (2.70) can be written as

J (x(k), u∞
k ) = xT(k)Qx(k) + uT(k)Ru(k) + γ

∞∑

i=k+1

γ i−k−1l(x(i), u(i))

= xT(k)Qx(k) + uT(k)Ru(k) + γ J (x(k + 1), u∞
k+1). (2.72)

According to Bellman’s optimality principle, it is known that, for the case of infinite-
horizon optimization, the optimal value function J ∗(x(k)) is time invariant and sat-
isfies the DTHJB equation

J ∗(x(k)) = min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γ J ∗(x(k + 1))

}
. (2.73)

The optimal control u∗ satisfies the first-order necessary condition, which is
given by the gradient of the right hand side of (2.73) with respect to u(k) as

∂
(
xT(k)Qx(k) + uT(k)Ru(k)

)

∂u(k)
+ γ

(
∂x(k + 1)

∂u(k)

)T
∂J ∗(x(k + 1))

∂x(k + 1)
= 0.

Then, we obtain

u∗(x(k)) = −γ

2
R−1gT(x(k))

∂J ∗(x(k + 1))

∂x(k + 1)
. (2.74)

By substituting (2.74) into (2.73), the DTHJB equation becomes

J ∗(x(k)) = xT(k)Qx(k) + γ 2

4

(
∂J ∗(x(k + 1))

∂x(k + 1)

)T

g(x(k))R−1

× gT(x(k))
∂J ∗(x(k + 1))

∂x(k + 1)
+ γ J ∗(x(k + 1)) (2.75)
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where J ∗(x(k)) is the optimal value function corresponding to the optimal control
law u∗(x(k)). When dealing with the linear quadratic regulator (LQR) optimal con-
trol problems, this equation reduces to the Riccati equation which can be efficiently
solved. In the general nonlinear case, however, the HJB equation cannot be solved
exactly.

2.3.2 Infinite-Horizon Optimal State Feedback Control Based
on GDHP

Four parts are included in this subsection. In the first part, the unknown nonlinear
system is identified via an NN system identification scheme with stability proof.
The iterative ADP algorithm is introduced in the second part, while in the third
part, the corresponding convergence proof is developed. Then, in the fourth part,
the implementation of the iterative ADP algorithm based on NN is described in
detail.

2.3.2.1 NN Identification of the Unknown Nonlinear System

For the design of the NN identifier, a three-layer NN is considered as the function
approximation structure. Let the number of hidden-layer neurons be denoted by l,
the ideal weight matrix between the input layer and hidden layer be denoted by ν∗

m,
and the ideal weight matrix between the hidden layer and output layer be denoted
by ω∗

m. According to the universal approximation property [8] of NN, the system
dynamics (2.69) has a NN representation on a compact set S, which can be written
as

x(k + 1) = ω∗T
m σ
(
ν∗T
m z(k)

)+ θ(k). (2.76)

In (2.76), z(k) = [xT(k) uT(k)]T is the NN input, θ(k) is the bounded NN func-
tional approximation error according to the universal approximation property, and
[σ(z̄)]i = (ez̄i − e−z̄i )/(ez̄i + e−z̄i ), i = 1,2, . . . , l, are the activation functions se-
lected in this work, where z̄(k) = ν∗T

m z(k), z̄(k) ∈ R
l . Additionally, the NN activa-

tion functions are bounded such that ‖σ(z̄(k))‖ ≤ σM for a constant σM .
In the system identification process, we keep the weight matrix between the input

layer and the hidden layer as constant while only tune the weight matrix between
the hidden layer and the output layer. So, we define the NN system identification
scheme as

x̂(k + 1) = ωT
m(k)σ (z̄(k)), (2.77)

where x̂(k) is the estimated system state vector, and ωm(k) is the estimation of the
constant ideal weight matrix ω∗

m.
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Denote x̃(k) = x̂(k) − x(k) as the system identification error. Combining (2.76)
and (2.77), we can obtain the identification error dynamics as

x̃(k + 1) = ω̃T
m(k)σ (z̄(k)) − θ(k), (2.78)

where ω̃m(k) = ωm(k)−ω∗
m. Let ψ(k) = ω̃T

m(k)σ (z̄(k)). Then, (2.78) can be rewrit-
ten as

x̃(k + 1) = ψ(k) − θ(k). (2.79)

The weights in the system identification process are updated to minimize the
following performance measure:

E(k + 1) = 1

2
x̃T(k + 1)x̃(k + 1). (2.80)

Using the gradient-based adaptation rule, the weights can be updated as

ωm(k + 1) = ωm(k) − αm

[
∂E(k + 1)

∂ωm(k)

]

= ωm(k) − αmσ(z̄(k))x̃T(k + 1), (2.81)

where αm > 0 is the NN learning rate.
We now give the following assumption before presenting the asymptotic stability

proof of the state estimation error x̃(k).

Assumption 2.12 The NN approximation error term θ(k) is assumed to be upper
bounded by a function of the state estimation error x̃(k) such that

θT(k)θ(k) ≤ θMk = δx̃T(k)x̃(k), (2.82)

where δ is the constant target value with δM as its upper bound, i.e., ‖δ‖ ≤ δM .

Next, the stability analysis of the present NN-based system identification scheme
is presented by using the Lyapunov theory.

Theorem 2.13 (cf. [10]) Let the identification scheme (2.77) be used to identify
the nonlinear system (2.69), and let the parameter update law given in (2.81) be
used for tuning the NN weights. Then, the state estimation error dynamics x̃(k) is
asymptotically stable while the parameter estimation error ω̃m(k) is bounded.

Proof Consider the following positive definite Lyapunov function candidate:

Lk = L1k + L2k, (2.83)

where

L1k = x̃T(k)x̃(k),
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L2k = 1

αm

tr
{
ω̃T

m(k)ω̃m(k)
}
.

Taking the first difference of the Lyapunov function (2.83) and substituting the iden-
tification error dynamics (2.79) and the NN weight update law (2.81) reveal that

ΔL1k = x̃T(k + 1)x̃(k + 1) − x̃T(k)x̃(k)

= ψT(k)ψ(k) − 2ψT(k)θ(k) + θT(k)θ(k) − x̃T(k)x̃(k)

ΔL2k = 1

αm

tr
{
ω̃T

m(k + 1)ω̃m(k + 1) − ω̃T
m(k)ω̃m(k)

}

= 1

αm

tr
{− 2αmψ(k)x̃T(k + 1)

+ α2
mx̃(k + 1)σ T(z̄(k))σ (z̄(k))x̃T(k + 1)

}

= −2ψT(k)x̃(k + 1) + αmσ T(z̄(k))σ (z̄(k))x̃T(k + 1)x̃(k + 1).

After applying the Cauchy–Schwarz inequality ((a1 + a2 + · · · + an)
T(a1 + a2 +

· · · + an) ≤ n(aT
1 a1 + aT

2 a2 + · · · + aT
n an)) to ΔL2k , we have

ΔL2k ≤ −2ψT(k)(ψ(k) − θ(k))

+ 2αmσ T(z̄(k))σ (z̄(k))
(
ψT(k)ψ(k) + θT(k)θ(k)

)
.

Therefore, we can find that

ΔLk ≤ −ψT(k)ψ(k) + θT(k)θ(k) − x̃T(k)x̃(k)

+ 2αmσ T(z̄(k))σ (z̄(k))
(
ψT(k)ψ(k) + θT(k)θ(k)

)
.

Considering ‖σ(z̄(k))‖ ≤ σM and (2.82), we obtain

ΔLk ≤ −(1 − 2αmσ 2
M

)‖ψ(k)‖2

− (1 − δM − 2αmδMσ 2
M

)‖x̃(k)‖2. (2.84)

Define αm ≤ ρ2/(2σ 2
M); then (2.84) becomes

ΔLk ≤ −(1 − ρ2)‖ψ(k)‖2 − (1 − δM − δMρ2)‖x̃(k)‖2

= −(1 − ρ2)∥∥ω̃T
m(k)σ (z̄(k))

∥∥2

− (1 − δM − δMρ2)‖x̃(k)‖2. (2.85)

From (2.85), we can conclude that ΔLk ≤ 0 provided 0 < δM < 1 and

max

{
−
√

1 − δM

δM

,−1

}
≤ ρ ≤ min

{√
1 − δM

δM

,1

}
,



2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 57

where ρ 
= 0. As long as the parameters are selected as discussed above, ΔLk ≤ 0 in
(2.85), which shows stability in the sense of Lyapunov. Therefore, x̃(k) and ω̃m(k)

are bounded, provided x̃0 and ω̃m(0) are bounded in the compact set S. Furthermore,
by summing both sides of (2.85) to infinity and taking account of ΔLk ≤ 0, we have

∣∣∣∣∣

∞∑

k=0

ΔLk

∣∣∣∣∣=
∣∣∣ lim
k→∞Lk − L0

∣∣∣< ∞.

This implies that

∞∑

k=0

{(
1 − ρ2)∥∥ω̃T

m(k)σ (z̄(k))
∥∥2 + (1 − δM − δMρ2)‖x̃(k)‖2

}
< ∞.

Hence, it can be concluded that the estimation error approaches zero, i.e.,
‖x̃(k)‖ → 0 as k → ∞. �

Remark 2.14 According to Theorem 2.13, after a sufficient learning session, the NN
system identification error converges to zero, i.e., we have

f (x(k)) + ĝ(x(k))u(k) = ωT
m(k)σ (z̄(k)), (2.86)

where ĝ(x(k)) denotes the estimated value of the control coefficient matrix g(x(k)).
Taking the partial derivative of both sides of (2.86) with respect to u(k) yields

ĝ(x(k)) = ∂
(
ωT

m(k)σ (z̄(k))
)

∂u(k)

= ωT
m(k)

∂σ (z̄(k))

∂z̄(k)
ν∗T
m

∂z(k)

∂u(k)
, (2.87)

where

∂z(k)

∂u(k)
=
[

0n×m

Im

]
,

and Im is the m × m identity matrix.

Next, this result will be used in the derivation and implementation of the iterative
ADP algorithm for the optimal control of unknown discrete-time nonlinear systems.

2.3.2.2 Derivation of the Iterative ADP Algorithm

In this part, we mainly present the iterative ADP algorithm. First, we start with the
initial value function V0(·) = 0, and then solve for the law of single control vector
v0(x(k)) as follows:

v0(x(k)) = arg min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γV0(x(k + 1))

}
. (2.88)



58 2 Optimal State Feedback Control for Discrete-Time Systems

Once the control law v0(x(k)) is determined, we update the cost function as

V1(x(k)) = min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γV0(x(k + 1))

}

= xT(k)Qx(k) + vT
0 (x(k))Rv0(x(k)). (2.89)

Therefore, for i = 1,2, . . . , the iterative ADP algorithm can be used to implement
the iteration between the control law

vi(x(k)) = arg min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γVi(x(k + 1))

}

= −γ

2
R−1ĝT(x(k))

∂Vi(x(k + 1))

∂x(k + 1)
(2.90)

and the value function

Vi+1(x(k)) = min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γVi(x(k + 1))

}

= xT(k)Qx(k) + vT
i (x(k))Rvi(x(k)) + γVi(x(k + 1)). (2.91)

In the above recurrent iteration, i is the iteration index of the control law and
value function, while k is the time index of the system’s control and state trajec-
tories. The value function and control law are updated until they converge to the
optimal ones. In the following part, we will present a proof of convergence of the
iteration between (2.90) and (2.91) with the value function Vi → J ∗ and the control
law vi → u∗ as i → ∞.

2.3.2.3 Convergence Analysis of the Iterative ADP Algorithm

Lemma 2.15 Let {μi} be an arbitrary sequence of control laws and {vi} be the
control law sequence described in (2.90). Define Vi as in (2.91) and Λi as

Λi+1(x(k)) = xT(k)Qx(k) + μT
i (x(k))Rμi(x(k)) + γΛi(x(k + 1)). (2.92)

If V0(x(k)) = Λ0(x(k)) = 0, then Vi(x(k)) ≤ Λi(x(k)), ∀i.

Proof It can easily be derived noticing that Vi+1 is the result of minimizing the right
hand side of (2.91) with respect to the control input u(k), while Λi+1 is a result of
arbitrary control input. �

Lemma 2.16 Let the value function sequence {Vi} be defined as in (2.91). If the
system is controllable, then there is an upper bound Y such that 0 ≤ Vi(x(k)) ≤ Y ,
∀i.



2.3 Infinite-Horizon Optimal State Feedback Control Based on GDHP 59

Proof Let {ηi(x)} be a sequence of admissible control laws, and let V0(·) = Z0(·) =
0, where Vi is updated as in (2.91) and Zi is updated by

Zi+1(x(k)) = xT(k)Qx(k) + ηT
i (x(k))Rηi(x(k)) + γZi(x(k + 1)). (2.93)

It is clear that

Zi(x(k + 1)) = xT(k + 1)Qx(k + 1) + ηT
i−1(x(k + 1))Rηi−1(x(k + 1))

+ γZi−1(x(k + 2)). (2.94)

Noticing that l(x(k), ηi(x(k))) = xT(k)Qx(k)+ηT
i (x(k))Rηi(x(k)), we can further

obtain

Zi+1(x(k)) = l(x(k), ηi(x(k))) + γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2Zi−1(x(k + 2))

= l(x(k), ηi(x(k))) + γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2l(x(k + 2), ηi−2(x(k + 2))) + γ 3Zi−2(x(k + 3))

...

= l(x(k), ηi(x(k))) + γ l(x(k + 1), ηi−1(x(k + 1)))

+ γ 2l(x(k + 2), ηi−2(x(k + 2)))

+ · · · + γ il(x(k + i), η0(x(k + i)))

+ γ i+1Z0(x(k + i + 1)), (2.95)

where Z0(x(k + i + 1)) = 0. Then, (2.95) can be written as

Zi+1(x(k)) =
i∑

j=0

γ j l(x(k + j), ηi−j (x(k + j)))

=
i∑

j=0

γ j
(
xT(k + j)Qx(k + j) + ηT

i−j (x(k + j))Rηi−j (x(k + j))
)

≤ lim
i→∞

i∑

j=0

γ j
(
xT(k + j)Qx(k + j)

+ ηT
i−j (x(k + j))Rηi−j (x(k + j))

)
. (2.96)
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Since {ηi(x)} is an admissible control law sequence, we have x(k) → 0 as k → ∞,
and there exists an upper bound Y such that

Zi+1(x(k)) ≤ lim
i→∞

i∑

j=0

γ j l(x(k + j), ηi−j (x(k + j))) ≤ Y, ∀i. (2.97)

By using Lemma 2.15, we obtain

Vi+1(x(k)) ≤ Zi+1(x(k)) ≤ Y, ∀i. (2.98)

�

Based on Lemmas 2.15 and 2.16, we now present our main theorems.

Theorem 2.17 Define the value function sequence {Vi} as in (2.91) with V0(·) =
0, and the control law sequence {vi} as in (2.90). Then, {Vi} is a monotonically
nondecreasing sequence satisfying Vi+1 ≥ Vi , ∀i.

Proof Define a new sequence

Φi+1(x(k)) = xT(k)Qx(k) + vT
i+1(x(k))Rvi+1(x(k)) + γΦi(x(k + 1)) (2.99)

with Φ0(·) = V0(·) = 0. Let the control law sequence {vi} and the value function
sequence {Vi} be updated as in (2.90) and (2.91), respectively.

In the following part, we prove that Φi(x(k)) ≤ Vi+1(x(k)) by mathematical
induction.

First, we prove that it holds for i = 0. Considering

V1(x(k)) − Φ0(x(k)) = xT(k)Qx(k) + vT
0 (x(k))Rv0(x(k)) ≥ 0

then, for i = 0, we get

V1(x(k)) ≥ Φ0(x(k)). (2.100)

Second, we assume that it holds for i −1, i.e., Vi(x(k)) ≥ Φi−1(x(k)), ∀x(k). Then,
for i, noticing that

Vi+1(x(k)) = xT(k)Qx(k) + vT
i (x(k))Rvi(x(k)) + γVi(x(k + 1))

and

Φi(x(k)) = xT(k)Qx(k) + vT
i (x(k))Rvi(x(k)) + γΦi−1(x(k + 1)),

we get

Vi+1(x(k)) − Φi(x(k)) = γ (Vi(x(k + 1)) − Φi−1(x(k + 1))) ≥ 0
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i.e.,

Vi+1(x(k)) ≥ Φi(x(k)). (2.101)

Thus, we complete the proof through mathematical induction.
Furthermore, from Lemma 2.15 we know that Vi(x(k)) ≤ Φi(x(k)), therefore,

we have

Vi+1(x(k)) ≥ Φi(x(k)) ≥ Vi(x(k)). (2.102)

�

We have reached the conclusion that the value function sequence {Vi} is a mono-
tonically nondecreasing sequence with an upper bound, and therefore, its limit ex-
ists. Now, we can derive the following theorem.

Theorem 2.18 For any state vector x(k), define

lim
i→∞Vi(x(k)) = V∞(x(k))

as the limit of the value function sequence {Vi}. Then, the following equation holds:

V∞(x(k)) = min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1))

}
.

Proof For any u(k) and i, according to (2.91), we can derive

Vi(x(k)) ≤ xT(k)Qx(k) + uT(k)Ru(k) + γVi−1(x(k + 1)).

Combining with

Vi(x(k)) ≤ V∞(x(k)), ∀i (2.103)

which is obtained from Theorem 2.17, we have

Vi(x(k)) ≤ xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1)), ∀i.

Let i → ∞, we can acquire

V∞(x(k)) ≤ xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1)).

Note that in the above equation, u(k) is chosen arbitrarily; thus, we obtain

V∞(x(k)) ≤ min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1))

}
. (2.104)

On the other hand, since the value function sequence satisfies

Vi(x(k)) = min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γVi−1(x(k + 1))

}
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for any i, considering (2.103), we have

V∞(x(k)) ≥ min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γVi−1(x(k + 1))

}
, ∀i.

Let i → ∞; we get

V∞(x(k)) ≥ min
u(k)

{
xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1))

}
. (2.105)

Based on (2.104) and (2.105), we can acquire the conclusion that V∞(x(k)) =
minu(k){xT(k)Qx(k) + uT(k)Ru(k) + γV∞(x(k + 1))}. �

Next, we will prove that the value function sequence {Vi} converges to the opti-
mal value function J ∗(x(k)) as i → ∞.

Theorem 2.19 (cf. [10]) Define the value function sequence {Vi} as in (2.91) with
V0(·) = 0. If the system state x(k) is controllable, then J ∗ is the limit of the value
function sequence {Vi}, i.e.,

lim
i→∞Vi(x(k)) = J ∗(x(k)).

Proof Let {η(l)
i } be the lth admissible control law sequence. We construct the asso-

ciated sequence {P (l)
i (x)} as follows:

P
(l)
i+1(x(k)) = xT(k)Qx(k) + η

(l)T
i (x(k))Rη

(l)
i (x(k)) + γP

(l)
i (x(k + 1)) (2.106)

with P
(l)
0 (·) = 0. Similar to the derivation of (2.95), we get

P
(l)
i+1(x(k)) =

i∑

j=0

γ j l
(
x(k + j), η

(l)
i−j (x(k + j))

)
. (2.107)

Using Lemmas 2.15 and 2.16, we have

Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl, ∀l, i (2.108)

where Yl is the upper bound associated with the sequence {P (l)
i+1(x(k))}. Denote

lim
i→∞P

(l)
i (x(k)) = P (l)∞ (x(k));

then, we obtain

V∞(x(k)) ≤ P (l)∞ (x(k)) ≤ Yl, ∀l. (2.109)
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Let the corresponding control sequence associated with (2.107) be

(l)û
k+i
k = ((l)û(k),(l) û(k + 1), . . . ,(l) ûk+i

)

= (η(l)
i (x(k)), η

(l)
i−1(x(k + 1)), . . . , η

(l)
0 (x(k + i))

);
then we have

J
(
x(k),(l) û

k+i
k

)=
i∑

j=0

γ j l
(
x(k + j), η

(l)
i−j (x(k + j))

)= P
(l)
i+1(x(k)). (2.110)

Letting i → ∞, and denoting the admissible control sequence related to P
(l)∞(x(k))

with length ∞ as (l)û
∞
k , we get

J
(
x(k),(l) û

∞
k

)=
∞∑

j=0

γ j l
(
x(k + j),(l) û(k + j)

)= P (l)∞ (x(k)). (2.111)

Then, according to the definition of J ∗(x(k)) in (2.71), for any ε > 0, there exists a
sequence of admissible control laws {η(M)

i } such that the associated cost function

J
(
x(k),(M) û

∞
k

)=
∞∑

j=0

γ j l
(
x(k + j),(M) û(k + j)

)= P (M)∞ (x(k)) (2.112)

satisfies J (x(k),(M) û
∞
k ) ≤ J ∗(x(k)) + ε. Combining with (2.109), we have

V∞(x(k)) ≤ P (M)∞ (x(k)) ≤ J ∗(x(k)) + ε. (2.113)

Since ε is chosen arbitrarily, we get

V∞(x(k)) ≤ J ∗(x(k)). (2.114)

On the other hand, because Vi+1(x(k)) ≤ P
(l)
i+1(x(k)) ≤ Yl,∀l, i, we can get

V∞(x(k)) ≤ infl{Yl}. According to the definition of admissible control law se-
quence, the control law sequence associated with the cost function V∞(x(k)) must
be an admissible control law sequence. We can see that there exists a sequence of
admissible control laws {η(N)

i } such that V∞(x(k)) = P
(N)∞ (x(k)). Combining with

(2.111), we get V∞(x(k)) = J (x(k),(N) û
∞
k ). Sine J ∗(x(k)) is the infimum of all

admissible control sequences starting at k with length ∞, we obtain

V∞(x(k)) ≥ J ∗(x(k)). (2.115)

Based on (2.114) and (2.115), we can conclude that J ∗ is the limit of the value
function sequence {Vi}, i.e., V∞(x(k)) = J ∗(x(k)). �

From Theorems 2.17 and 2.18, we can derive that the limit of the value function
sequence {Vi} satisfies the DTHJB equation, i.e., V∞(x(k)) = minu(k){xT(k)Qx(k)
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+ uT(k)Ru(k) + γV∞(x(k + 1))}. Besides, from Theorem 2.19, we can get the
result that V∞(x(k)) = J ∗(x(k)). Therefore, we can find that the cost function se-
quence {Vi(x(k))} converges to the optimal value function J ∗(x(k)) of the DTHJB
equation, i.e., Vi → J ∗ as i → ∞. Then, according to (2.74) and (2.90), we can con-
clude the convergence of the corresponding control law sequence. Now, we present
the following corollary.

Corollary 2.20 Define the value function sequence {Vi} as in (2.91) with V0(·) = 0,
and the control law sequence {vi} as in (2.90). If the system state x(k) is control-
lable, then the sequence {vi} converges to the optimal control law u∗ as i → ∞,
i.e.,

lim
i→∞vi(x(k)) = u∗(x(k)).

Remark 2.21 Like (2.95), when we further expand (2.91), we obtain a control law
sequence (vi, vi−1, . . . , v0) and the resultant control sequence (vi(x(0)), vi−1(x(1)),

. . . , v0(x(i))). With the iteration number increasing to ∞, the derived control law
sequence has the length of ∞. Then, using the corresponding control sequence, we
obtain a state trajectory. However, it is not derived from a single control law. For
infinite-horizon optimal control problem, what we should get is a unique optimal
control law under which we can obtain the optimal state trajectory. Therefore, we
only use the optimal control law u∗ obtained in Corollary 2.20 to produce a control
sequence when we apply the algorithm to practical systems.

2.3.2.4 NN Implementation of the Iterative ADP Algorithm Using GDHP
Technique

When the controlled system is linear and the cost function is quadratic, we can
obtain a linear control law. In the nonlinear case, however, this is not necessarily
true. Therefore, we need to use function approximation structure, such as NN, to
approximate both vi(x(k)) and Vi(x(k)).

Now, we implement the iterative GDHP algorithm in (2.90) and (2.91). In the
iterative GDHP algorithm, there are three networks, which are model network, critic
network and action network. All the networks are chosen as three-layer feedforward
NNs. The input of the critic network and action network is x(k), while the input
of the model network is x(k) and v̂i (x(k)). The diagram of the whole structure is
shown in Fig. 2.14, where

DER =
(

∂x̂(k + 1)

∂x(k)
+ ∂x̂(k + 1)

∂v̂i(x(k))

∂v̂i(x(k))

∂x(k)

)T

.

The training of the model network is completed after the system identification
process and its weights are kept unchanged. Then, according to Theorem 2.13, when
given x(k) and v̂i (x(k)), we can compute x̂(k + 1) by (2.77), i.e.,

x̂(k + 1) = ωT
m(k)σ

(
ν∗T
m [xT(k) v̂T

i (x(k))]T).
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Fig. 2.14 The structure diagram of the iterative GDHP algorithm

As a result, we avoid the requirement of knowing f (x(k)) and g(x(k)) during the
implementation of the iterative GDHP algorithm.

Next, the learned NN system model will be used in the process of training critic
network and action network.

The critic network is used to approximate both Vi(x(k)) and its derivative
∂Vi(x(k))/∂x(k), which is named the costate function and denoted λi(x(k)). The
output of the critic network is denoted

[
V̂i(x(k))

λ̂i(x(k))

]
=
[

ω1T
ci

ω2T
ci

]
σ
(
νT
cix(k)

)= ωT
ciσ
(
νT
cix(k)

)
, (2.116)

where

ωci = [ω1
ci ω2

ci

]
,

i.e.,

V̂i (x(k)) = ω1T
ci σ
(
νT
cix(k)

)
(2.117)

and

λ̂i (x(k)) = ω2T
ci σ
(
νT
cix(k)

)
. (2.118)

The target function can be written as

Vi+1(x(k)) = xT(k)Qx(k) + vT
i (x(k))Rvi(x(k)) + γ V̂i(x̂(k + 1)) (2.119)
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and

λi+1(x(k)) = ∂
(
xT(k)Qx(k) + vT

i (x(k))Rvi(x(k))
)

∂x(k)
+ γ

∂V̂i(x̂(k + 1))

∂x(k)

= 2Qx(k) + 2

(
∂vi(x(k))

∂x(k)

)T

Rvi(x(k))

+ γ

(
∂x̂(k + 1)

∂x(k)
+ ∂x̂(k + 1)

∂v̂i(x(k))

∂v̂i(x(k))

∂x(k)

)T

λ̂i (x̂(k + 1)). (2.120)

Then, we define the error function for training the critic network as

e1
cik = V̂i (x(k)) − Vi+1(x(k)) (2.121)

and

e2
cik = λ̂i (x(k)) − λi+1(x(k)). (2.122)

The objective function to be minimized in the critic network training is

Ecik = (1 − β)E1
cik + βE2

cik, (2.123)

where

E1
cik = 1

2
e1T
cike

1
cik (2.124)

and

E2
cik = 1

2
e2T
cike

2
cik. (2.125)

The weight updating rule for training the critic network is also gradient-based adap-
tation given by

ωci(j + 1) = ωci(j) − αc

[
(1 − β)

∂E1
cik

∂ωci(j)
+ β

∂E2
cik

∂ωci(j)

]
(2.126)

νci(j + 1) = νci(j) − αc

[
(1 − β)

∂E1
cik

∂νci(j)
+ β

∂E2
cik

∂νci(j)

]
(2.127)

where αc > 0 is the learning rate of the critic network, j is the inner-loop iteration
step for updating the weight parameters, and 0 ≤ β ≤ 1 is a parameter that adjusts
how HDP and DHP are combined in GDHP. For β = 0, the training of the critic
network reduces to a pure HDP, while β = 1 does the same for DHP.

In the action network, the state x(k) is used as input to obtain the optimal control.
The output can be formulated as

v̂i (x(k)) = ωT
aiσ
(
νT
aix(k)

)
. (2.128)
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The target control input is given as

vi(x(k)) = −γ

2
R−1ĝT(x(k))

∂V̂i(x̂(k + 1))

∂x̂(k + 1)
. (2.129)

The error function of the action network can be defined as

eaik = v̂i (x(k)) − vi(x(k)). (2.130)

The weights of the action network are updated to minimize the following perfor-
mance error measure:

Eaik = 1

2
eT
aikeaik. (2.131)

Similarly, the weight updating algorithm is

ωai(j + 1) = ωai(j) − αa

[
∂Eaik

∂ωai(j)

]
, (2.132)

νai(j + 1) = νai(j) − αa

[
∂Eaik

∂νai(j)

]
(2.133)

where αa > 0 is the learning rate of the action network, and j is the inner-loop
iteration step for updating the weight parameters.

Remark 2.22 According to Theorem 2.19, Vi(x(k)) → J ∗(x(k)) as i → ∞. Since
λi(x(k)) = ∂Vi(x(k))/∂x(k), we can conclude that the costate function sequence
{λi(x(k))} is also convergent with λi(x(k)) → λ∗(x(k)) as i → ∞.

Remark 2.23 From Fig. 2.14, we can see that the outputs of the critic network of the
iterative GDHP algorithm contain not only the cost function but also its derivative.
This is important because the information associated with the cost function is as
useful as the knowledge of its derivative. Besides, as is shown in (2.126) and (2.127),
training the critic network of the iterative GDHP algorithm utilizes an error measure
which is a combination of the error measures of HDP and DHP. Though it is more
complicated to do this, the resulting behavior is expected to be superior to simple
ADP methods.

2.3.3 Simulations

An example is provided in this subsection to demonstrate the effectiveness of the
control scheme derived by the iterative GDHP algorithm.

Example 2.24 Consider the following nonlinear system:

x(k + 1) = f (x(k)) + g(x(k))u(k),
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Fig. 2.15 The system identification error (x̃k1 and x̃k2 are denoted em1 and em2, respectively)

where x(k) = [x1(k) x2(k)]T ∈ R
2 and u(k) ∈ R are the state and control vari-

ables, respectively. The cost function is chosen as l(x(k), u(k)) = xT(k)x(k) +
uT(k)Ru(k). The system functions are given as

f (x(k)) =
[ − sin(0.5x2(k))

− cos(1.4x2(k)) sin(0.9x1(k))

]

g(x(k)) =
[

0
1

]
.

We choose three-layer feedforward NNs as model network, critic network and
action network with the structures 3–8–2, 2–8–3, 2–8–1, respectively. In the system
identification process, the initial weights between the input layer and the hidden
layer, and the hidden layer and the output layer are chosen randomly in [−0.5,0.5]
and [−0.1,0.1], respectively. We apply the NN identification scheme for 100 steps
under the learning rate αm = 0.05 and obtain the result as shown in Fig. 2.15. It is
clearly observed that the NN identifier successfully learns the unknown nonlinear
system. Then, we finish the training of the model network and keep its weights
unchanged.

The initial weights of the critic network and action network are all set to be ran-
dom in [−0.1,0.1]. Then, let the discount factor γ = 1 and the adjusting parameter
β = 0.5, we train the critic network and action network for 10 training cycles with
each cycle of 2000 steps. In the training process, the learning rate αc = αa = 0.05.
The convergence process of the value function and its derivative of the iterative
GDHP algorithm at time instant k = 0 are shown in Fig. 2.16. We can see that the
iterative value function sequence does converge to the optimal value function quite
rapidly, which also indicates the effectiveness of the iterative GDHP algorithm.
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Fig. 2.16 The convergence process of the value function and its derivative of the iterative GDHP
algorithm

Fig. 2.17 The state trajectory x1

Moreover, in order to make a comparison with the iterative ADP algorithm us-
ing HDP and DHP technique (iterative HDP algorithm and iterative DHP algorithm
for brief), we also present the controllers designed by iterative HDP algorithm and
iterative DHP algorithm, respectively. Then, for the given initial state x1(0) = 0.5
and x2(0) = 0.5, we apply the optimal control laws designed by iterative GDHP,
HDP and DHP algorithm to the controlled system for 20 time steps, respectively,
and obtain the state curves as shown in Figs. 2.17 and 2.18. The corresponding con-
trol curves are shown in Fig. 2.19. It can be seen from the simulation results that the
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Fig. 2.18 The state trajectory x2

Fig. 2.19 The control input u

controller designed by the iterative GDHP algorithm has better performance than
iterative HDP algorithm and iterative DHP algorithm. The most important property
that the iterative GDHP algorithm superior to the iterative DHP algorithm is the
former can show us the convergence process of the value function sequence. Be-
sides, the time that the iterative GDHP algorithm takes in the entire computation
process is much less than that of HDP. For the same problem, the iterative GDHP
algorithm takes about 26.6 seconds while the iterative HDP algorithm takes about
61.3 seconds before satisfactory results are obtained.
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2.4 Infinite-Horizon Optimal State Feedback Control Based
on GHJB Algorithm

2.4.1 Problem Formulation

Consider an affine nonlinear discrete-time system of the form

x(k + 1) = f (x(k)) + g(x(k))u(k), (2.134)

where x(k) ∈ Ω ∈ R
n, f : Rn → R

n, g : Rn → R
n×m. The input satisfies u(k) ∈

Ωu, Ωu = {u(k) = [u1(k), u2(k), . . . , um(k)]T ∈ R
m : |ui(k)| < ūi(k), i = 1,2,

. . . ,m}, where ūi (k) is the saturating bound of the ith actuator. Let Ū = diag{ū1, ū2,

. . . , ūm}. Assuming that f +gu is continuous on a set Ω ⊆ R
n containing the origin,

and system (2.134) is controllable in the sense that there exists a continuous con-
trol on Ω that asymptotically stabilizes the system. In this subsection, the infinite-
horizon optimal control problem for nonlinear discrete-time systems with actuator
saturation is investigated. It is desired to find the constrained state feedback input
u(x(k)) which minimizes a generalized cost functional as follows:

J (x(0), u) =
∞∑

k=0

Q(x(k)) + W(u(x(k))), (2.135)

where Q(x(k)) and W(u(x(k))) are positive definite on Ω . For optimal control
problem, it is worthy to note that u(x(k)) must both stabilize the system and make
the cost functional finite, i.e., it must be an admissible control.

For system (2.134), the nonlinear discrete-time GHJB equation without consid-
ering saturation is given as follows:

∇V T(x)(f (x) + g(x)u(x) − x) + Q(x) + W(u(x)) = 0, (2.136)

V (x)|x=0 = 0. (2.137)

For a given admissible control u, there exists a positive definite continuously
differentiable value function V (x) whose initial value V (x(0)) equals J (x(0), u).

For unconstrained control problem, a common choice of function W(u(x)) is
uT(x)Ru(x), where R ∈ R

m×m is positive definite. On substitution of the optimal
control u∗(x) = −R−1gT(x)∇J ∗(x)/2, where J ∗(x) is the optimal value function
corresponding to optimal control u∗(x), the GHJB equation (2.136) with the bound-
ary condition (2.137) becomes the well-known HJB equation as follows:

∇J ∗T(x)(f (x) + g(x)u(x) − x) + Q(x)

+ 1

4
∇J ∗T(x)g(x)R−1gT(x)∇J ∗(x) = 0, (2.138)

J ∗(x)|x=0 = 0. (2.139)
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However, the HJB equation above is not suitable for constrained optimal control
problem. To guarantee bounded controls, we introduce a generalized nonquadratic
functional as follows:

W(u(x)) = 2
∫ u(x)

0
Φ−T(Ū−1s)ŪRds, (2.140)

where W(u(x)) is a scalar, Φ(v) = [ϕ(v1), . . . , ϕ(vm)]T and

Φ−1(u) = [ϕ(u1)
−1, . . . , ϕ(um)−1]T

are bounded one-to-one functions that belong to Cp(p) ≥ 1 and L2(Ω), satisfy-
ing |ϕ(·)| ≤ 1. Moreover, ϕ(·) is a monotonic odd function with its first derivative
bounded by a constant M . It is not difficult to find such functions, such as the hyper-
bolic tangent function ϕ(·) = tanh(·). R is positive definite and assumed to be sym-
metric for simplicity of analysis. Substituting (2.140) into (2.136), the constrained
discrete-time GHJB equation with boundary condition is derived as follows:

∇V T(x)(f (x) + g(x)u(x) − x) + Q(x) + 2
∫ u(x)

0
Φ−T(Ū−1s)ŪRds = 0,

(2.141)

V (x)|x=0 = 0. (2.142)

According to the first-order necessary condition of the optimal control, the con-
strained optimal state feedback control law can be obtained as follows:

u∗(x) = ŪΦ

(
−1

2
(ŪR)−1gT(x)∇J ∗(x)

)
. (2.143)

Substitute (2.143) into (2.141), and the constrained discrete-time HJB equation
can be derived as follows:

∇J ∗T(x)

(
f (x) + gŪΦ

(
−1

2
(ŪR)−1gT∇J ∗(x)

)
− x

)

+ Q(x) + 2
∫ ŪΦ(− 1

2 (ŪR)−1gT(x)∇J ∗(x))

0
Φ−T(Ū−1s)ŪRds = 0,

J ∗(x)|x=0 = 0. (2.144)

If this HJB equation can be solved for the optimal value function J ∗(x), then
(2.143) gives the optimal constrained control. However, this equation is generally
impossible to solve.
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2.4.2 Constrained Optimal Control Based on GHJB Equation

Contrast to HJB equation (2.144) being nonlinear difference equation about
∇J ∗(x), the GHJB equation (2.141) is linear in ∇V (x). So it is easier to solve
the GHJB equation than the HJB equation from a theoretical viewpoint. That is the
reason why a successive approximation based on GHJB equation is introduced to
solve the HJB equation. Via solving a sequence of GHJB(V [i], u[i]) = 0 we can
obtain a sequence for V [i] and prove V [i] → J ∗.

Theorem 2.25 (cf. [6]) If u[i](x) ∈ Ψ (Ω), x(0) ∈ Ω , the value function V [i] is posi-
tive definite and continuously differentiable on Ω , and satisfies GHJB(V [i], u[i]) = 0
with the boundary condition V [i](0) = 0, then

u[i+1](x) = ŪΦ

(
−1

2
(ŪR)−1gT∇V [i](x)

)
(2.145)

is an admissible control for (2.134) on Ω . Moreover, if ϕ(·) is monotone odd, and
V [i+1] is the unique positive definite function, which satisfies GHJB(V [i+1], u[i+1])
= 0 with the boundary condition V [i+1](0) = 0, then we can conclude that
V (i+1)(x(0)) ≤ V [i](x(0)).

Proof First, we should prove that u[i+1] is admissible.
For simplicity, in the following we write f (x) as f , g(x) as g. Taking the dif-

ference of the system with the control u[i+1] along the system (f, g,u[i+1]), we
have

ΔV [i](x(k)) = V [i](x(k + 1)) − V [i](x(k))

≈ ∇V
[i]T
k

(
fk + gku

[i+1]
k − x(k)

)
, (2.146)

where

∇Vk = ∂V (x)

∂x

∣∣∣∣
x=x(k)

=
[

∂

∂x1
V (x),

∂

∂x2
V (x), . . . ,

∂

∂xn

V (x)

]T
∣∣∣∣∣
x=x(k)

,

fk = f (x(k)), gk = g(x(k)), and uk = u(x(k)). For any x(k) ∈ Ω , since
GHJB(V [i], u[i]) = 0, we have

∇V
[i]T
k

(
fk + gku

[i]
k − x(k)

)
+ Q(x(k)) + 2

∫ u
[i]
k

0
Φ−T(Ū−1s)ŪRds = 0.

(2.147)



74 2 Optimal State Feedback Control for Discrete-Time Systems

Substituting (2.147) into (2.146), we have

ΔV [i](x(k)) = ∇V
[i]T
k gk

(
u

[i+1]
k − u

[i]
k

)
− Q(x(k))

− 2
∫ u

[i]
k

0
Φ−T(Ū−1s)ŪRds. (2.148)

Since

∇V
[i]T
k (x)gk = −2Φ−T

(
Ū−1u

[i+1]
k

)
ŪR, (2.149)

we get

ΔV [i](x(k)) = −Q(x(k)) + 2

[
Φ−T

(
Ū−1u

[i+1]
k

)
ŪR

(
u

[i]
k − u

[i+1]
k

)

−
∫ u

[i]
k

0
Φ−T(Ū−1s)ŪRds

]
. (2.150)

Because ϕ and ϕ−1 are monotone odd, the second term of (2.150) is negative. This
implies that ΔV [i](x(k)) < 0 for x(k) 
= 0. Thus, V [i] is a Lyapunov function for
u[i+1] on Ω and the system (2.134) is asymptotically stable.

Next, we are ready to show that the value function of the system with the updated
control u[i+1] is finite.

Since u[i] is admissible, from Definition 2.1, we get

V [i](x(0)) = J (x(0), u[i]) < ∞, x(0) ∈ Ω. (2.151)

The value function for u[i+1] is

V (x(0), u[i+1]) =
∞∑

k=0

{
Q(x(k) + 2

∫ u
[i+1]
k

0
Φ−T(Ū−1s)ŪRds

}
, (2.152)

where x(k) is the state trajectory of system with admissible control u[i+1].
From (2.150) and (2.152), we have

V [i](x(∞))−V [i](x(0))

=
∞∑

k=0

ΔV [i](k)

=
∞∑

k=0

{
− Q(x(k)) + 2[Φ−T(Ū−1u

[i+1]
k )ŪR(u

[i]
k − u

[i+1]
k )

−
∫ u

[i]
k

0
Φ−1(Ū−1s)ŪRds]

}
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= − J (x(0), u[i+1]) + 2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k )ŪR(u

[i]
k − u

[i+1]
k )

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}
. (2.153)

Since x(∞) = 0 and V [i](x)|x=0 = 0, we get V [i](x(∞)) = 0. By rewriting
(2.152), we have

J (x(0), u[i+1]) = V [i](x(0)) + 2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k ŪR(u

[i]
k − u

[i+1]
k )

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}
. (2.154)

Since ϕ and ϕ−1 are monotone odd, and the second term of (2.154) is less than
0, we have

J (x(0), u[i+1]) < V [i](x(0)) = J (x(0), u[i]) < ∞. (2.155)

Because V [i] is continuously differentiable, and g : Rn → Rn×m is a Lipschitz
continuous function, u[i+1] is continuous. Since V [i] is positive definite and attains
its minimum at the origin, and ΔV [i] must approach 0 at the origin, from (2.145)
we have u[i+1](x)|x=0 = 0.

From Definition 2.1, we know that u[i+1] is an admissible control on Ω . Since
u[i+1] is admissible, there exists a V [i+1] satisfying GHJB(V [i+1], u[i+1]) = 0, and

V [i+1](x(0)) = J (x(0), u[i+1]). (2.156)

From (2.154) and (2.156), we get

V [i+1](x(0)) − V [i](x(0)) = −2
∞∑

k=0

{
Φ−T(Ū−1u

[i+1]
k )ŪR(u

[i]
k − u

[i+1]
k )

+
∫ u

[i+1]
k

u
[i]
k

Φ−T(Ū−1s)ŪRds

}

≤ 0. (2.157)

The proof is completed. �

Corollary 2.26 Given u[0](x) ∈ Ψ (Ω), if one iteratively solve the GHJB equation
GHJB (V [i], u[i]) = 0 and for i = 0,1,2, . . . , update the control as u[i+1](x) =
ŪΦ(− 1

2 (ŪR)−1gT∇V [i](x)), then it can be concluded that V [i](x) → J ∗(x).
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Proof According to Theorem 2.25, V [i] is a decreasing sequence with a lower
bound. Since V [i] > 0 , V [i+1] − V [i] < 0 , V [i] will converge to a positive defi-
nite function V [i+1] = V [i] = V d when i → ∞. Due to the HJB equation having a
unique solution, we just need to prove V d = J ∗. When V [i] = V [i+1] = V d , from
(2.145) we have

u[i](x) = u[i+1](x) = ŪΦ

(
−1

2
(ŪR)−1gTΔV [i](x)

)
. (2.158)

The GHJB equation with input u[i] can be written as

∇V [i](x)T
(

f (x) + gŪΦ

(
−1

2
(ŪR)−1gT∇V [i](x)

)
− x

)
+ Q(x)

+ 2
∫ ŪΦ(− 1

2 (ŪR)−1gT∇V [i](x))

0
Φ−T(Ū−1s)ŪRds = 0, (2.159)

V [i](x)|x=0 = 0. (2.160)

From (2.144), the conclusion can be drawn that (2.159) with boundary condition
(2.160) is the HJB equation. This implies that V [i](x) → J ∗(x), u[i](x) → u∗(x). �

In the next part, we are ready to discuss how to design the nearly optimal satu-
rated controller using NNs. In general, the closed-form solution of GHJB equation
(2.141) cannot be obtained even though solving GHJB equation (2.141) is easier
than solving HJB equation (2.144). In this section, a neural network is used to ap-
proximate the solution V (x) of constrained nonlinear discrete-time GHJB equation.
Finally, the nearly optimal state feedback control is obtained according to (2.143).

V (x) is approximated by a neural network as follows:

VL(x) =
L∑

j=1

wjσj (x) = WT
Lσ̄L(x), (2.161)

where wj are the weights of the neural network, σj (x) are the activation func-
tions, σj (x) are continuous and satisfy σj (x)|x=0 = 0. L is the number of hidden-
layer neurons. σ̄L(x) ≡ [σ1(x), σ2(x), . . . , σL(x)]T is the vector activation function,
WL(x) ≡ [w1(x),w2(x), . . . ,wL(x)]T is the vector weight. The control objective is
to make the residual error minimum in a least-square sense by tuning the weights.

Substituting (2.161) into (2.141), we have

GHJB

⎛

⎝VL =
L∑

j=1

wjσj ,u

⎞

⎠= eL(x). (2.162)



2.4 Infinite-Horizon Optimal State Feedback Control Based on GHJB Algorithm 77

The method of weighted residuals is used to find the least-square solution, i.e.,
〈
∂(eL(x))

∂WL(x)
, eL(x)

〉
= 0, (2.163)

where 〈f,g〉 = ∫
Ω

fgdx is a Lebesgue integral.
By expanding (2.163), we get

〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 · WL

+
〈
Q(x) + 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
= 0. (2.164)

Lemma 2.27 If the set {σj (x)}L1 is linearly independent and u ∈ Ωu, then the set
{∇σT

j Δx}L1 is also linearly independent.

From Lemma 2.27, 〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 is invertible. Therefore there exists
a unique solution as follows:

WL = −〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉−1

×
〈
Q(x) + 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
, (2.165)

and the control can be derived as

u = ŪΦ
(

− 1

2
(ŪR)−1gT∇σ T

LWL

)
. (2.166)

For reducing computation, the integration in (2.165) is approximated by the def-
inition of Riemann integration [4].

A mesh of points over the integral region can be introduced on Ω , with the size
δx chosen as small as possible. Moreover, p is required to be larger than L, and
the activation functions are linearly independent to guarantee (ATA) invertible. The
specific expressions are given as follows:

A = [∇σ̄L(x)Δx|x=x1
, . . . , ∇σ̄L(x)Δx|x=xp

]T, (2.167)

B =

⎡

⎢⎢⎢⎣

Q(x) + 2
∫ u(x)

0 Φ−T(Ū−1s)ŪRds

∣∣∣
x=x1

...

Q(x) + 2
∫ u(x)

0 Φ−T(Ū−1s)ŪRds

∣∣∣
x=xp

⎤

⎥⎥⎥⎦ , (2.168)

〈∇σ̄L(x)Δx,∇σ̄L(x)Δx〉 = lim‖δx‖→0
(ATA) · δx, (2.169)
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〈
Q(x) + 2

∫ u(x)

0
Φ−T(Ū−1s)ŪRds,∇σ̄L(x)Δx

〉
= lim‖δx‖→0

(ATB) · δx. (2.170)

Therefore, we get

WL = −(ATA)−1ATB. (2.171)

The design procedure of the optimal constrained controller of nonlinear discrete-
time systems with actuator saturation is given below:

1. Using a neural network to approximate V (x), i.e., we have V (x) = ∑L
j=1 ×

wjσj (x).
2. Select an initial admissible control u[0], then solve GHJB(V [0], u[0]) = 0 by ap-

plying the least-square method to obtain W[0], and accordingly V [0] is computed.
3. For i = 0,1,2, . . . , update the control u[i+1] = ŪΦ(− 1

2 (ŪR)−1gT∇V [i]).
4. For i = 0,1,2, . . . , solve GHJB(V [i+1], u[i+1]) = 0 by the least-square method

to obtain Wi+1, and then we can get V [i+1].
5. If V [i](0) − V [i+1](0) ≤ ε, where ε is a small positive constant, then J ∗ = V [i],

stop; else i = i + 1, go back to step 3 and go on.
6. After J ∗ being solved off-line, the optimal state feedback control u∗ =

ŪΦ(− 1
2 (ŪR)−1gT∇J ∗) will be implemented on-line.

2.4.3 Simulations

In order to demonstrate the effectiveness of the method developed in this section, an
example is presented in this subsection.

Example 2.28 Consider the following affine nonlinear discrete-time system with
actuator saturation:

x(k + 1) = f (x(k)) + g(x(k))u(k), (2.172)

where

f (x(k)) =
[−0.8x2(k)

sin(0.8x1(k) − x2(k)) + 1.8x2(k)

]
,

g(x(k)) =
[

0
−x2(k)

]
,

and the upper bound Ū of actuator saturation is 0.35.
The control objective is to design an optimal controller with bound less than 0.35.
Define the cost functional as

J (x(0), u) =
∞∑

k=0

{
xT(k)Qx(k) + 2

∫ u(x(k))

0
tanh−T(Ū−1s)ŪRds

}
, (2.173)

where the weight matrices are chosen as Q = [ 1 0
0 1

]
and R = 1.
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Fig. 2.20 Norm of neural-network weights at each step

To find a nearly optimal controller, a Volterra neural network is used to approxi-
mate the value function of the system as follows:

V (x) = w1x
2
1 + w2x

2
2 + w3x1x2 + w4x

4
1 + w5x

4
2 + w6x

3
1x2

+ w7x
2
1x2

2 + w8x1x
3
2 + w9x

6
1 + w10x

6
2 + w11x

5
1x2

+ w12x
4
1x2

2 + w13x
3
1x3

2 + w14x
2
1x4

2 + w15x1x
5
2 . (2.174)

The algorithm is implemented over the region Ω defined by |x1| ≤ 0.5, |x2| ≤
0.5. Select the initial control u0(k) = x1(k) + 1.5x2(k), which is admissible, and
then update the control by u[i+1] = Ū tanh(−(ŪR)−1gT∇V [i]/2), where u[i] and
V [i] satisfy the following GHJB equation:

∇V [i]T(x)(f (x) + g(x)u[i](x) − x) + xTQx

+2
∫ u[i](x)

0
tanh−T(Ū−1s)ŪRds = 0. (2.175)

In the simulation, the parameters are chosen as follows: the mesh size δx = 0.01,
the small positive constant ε = 0.01, and the initial states x1(0) = x2(0) = 0.5. Fig-
ure 2.20 shows the trajectory of the norm of neural-network weights at each iteration
step. Figure 2.21 shows that the value function converges to a constant very rapidly.
After 12 successive iterative steps, the nearly optimal saturated control can be ob-
tained off-line. Then, the controller is applied to the system with given initial states
for 100 time steps. Figure 2.22 shows the control trajectory and Fig. 2.23 shows
the state trajectories, whereas Figs. 2.24 and 2.25 illustrate the control trajectory
and state trajectories without considering actuator saturation, respectively. By com-
parison, we can see that saturated control and corresponding state trajectories have
fewer oscillations, and saturation has been overcome successfully.
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Fig. 2.21 The value function at each iteration step

Fig. 2.22 The control trajectory

2.5 Finite-Horizon Optimal State Feedback Control Based
on HDP

In this section, we will develop a new ADP scheme for the finite-horizon optimal
control problem. We will study the optimal control problem with an ε-error bound
using ADP algorithms. First, the HJB equation for finite-horizon optimal control of
discrete-time systems is derived. In order to solve this HJB equation, a new iterative
ADP algorithm is developed with convergence and optimality proofs. Second, the
difficulties of obtaining the optimal solution using the iterative ADP algorithm is
presented and then the ε-optimal control algorithm is derived based on the iterative
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Fig. 2.23 The state trajectories

Fig. 2.24 The control trajectory without considering the actuator saturation in the controller de-
sign

ADP algorithm. Next, it will be shown that the ε-optimal control algorithm can
obtain suboptimal control solutions within a fixed finite number of control steps that
make the value function converge to its optimal value with an ε-error. Furthermore,
in order to facilitate the implementation of the iterative ADP algorithms, we use
NNs to obtain the iterative value function and the optimal control policy. Finally, an
ε-optimal state feedback controller is obtained for the finite-horizon optimal control
problem.
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Fig. 2.25 The state trajectories without considering the actuator saturation in the controller design

2.5.1 Problem Formulation

In this section, we will study the following deterministic discrete-time systems:

x(k + 1) = F(x(k), u(k)), k = 0,1,2, . . . , (2.176)

where x(k) ∈ R
n is the state and u(k) ∈ R

m is the control vector. Let x(0) be
the initial state. The system function F(x(k), u(k)) is continuous for ∀x(k), u(k)

and F(0,0) = 0. Hence, x = 0 is an equilibrium state of system (2.176) under
the control u = 0. The cost function for state x(0) under the control sequence
uN−1

0 = (u(0), u(1), . . . , u(N − 1)) is defined as

J
(
x(0), uN−1

0

)=
N−1∑

i=0

l(x(i), u(i)), (2.177)

where l is the utility function, l(0,0) = 0, and l(x(i), u(i)) ≥ 0 for ∀x(i), u(i).
The sequence uN−1

0 defined above is a finite sequence of controls. Using this
sequence of controls, system (2.176) gives a trajectory starting from x(0): x(1) =
F(x(0), u(0)), x(2) = F(x(1), u(1)), . . . , x(N) = F(x(N − 1), u(N − 1)). We call
the number of elements in the control sequence uN−1

0 the length of uN−1
0 and

denote it as |uN−1
0 |. Then, |uN−1

0 | = N . The length of the associated trajectory
xN

0 = (x(0), x(1), . . . , x(N)) is N + 1. We denote the final state of the trajectory as
x(f )(x(0), uN−1

0 ), i.e., x(f )(x(0), uN−1
0 ) = xN . Then, for ∀k ≥ 0, the finite control

sequence starting at k can be written as uk+i−1
k = (u(k), u(k +1), . . . , u(k + i −1)),

where i ≥ 1 is the length of the control sequence. The final state can be written as
x(f )(x(k), uk+i−1

k ) = x(k + i).
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We note that the cost function defined in (2.177) does not have the term as-
sociated with the final state since in the present study we specify the final state
x(N) = F(x(N − 1), u(N − 1)) to be at the origin, i.e., x(N) = x(f ) = 0. For
the present finite-horizon optimal control problem, the feedback controller u(k) =
u(x(k)) must not only drive the system state to zero within a finite number of
time steps but also guarantee the cost function (2.177) to be finite, i.e., uN−1

k =
(u(x(k)), u(x(k + 1)), . . . , u(x(N − 1))) must be a finite-horizon admissible con-
trol sequence, where N > k is a finite integer.

Definition 2.29 A control sequence uN−1
k is said to be finite-horizon admissible for

a state x(k) ∈R
n, if x(f )(x(k), uN−1

k ) = 0 and J (x(k), uN−1
k ) is finite, where N > k

is a finite integer.

A state x(k) is said to be finite-horizon controllable (controllable for brief) if
there is a finite-horizon admissible control sequence associated with this state.

Let uk be an arbitrary finite-horizon admissible control sequence starting at k and
let

Ax(k) = {uk : x(f )
(
x(k), uk

)= 0
}

be the set of all finite-horizon admissible control sequences of x(k). Let

A
(i)
x(k) = {uk+i−1

k : x(f )
(
x(k), uk+i−1

k

)= 0,
∣∣uk+i−1

k

∣∣= i
}

be the set of all finite-horizon admissible control sequences of x(k) with length i.
Then, Ax(k) =⋃1≤i<∞ A

(i)
x(k). In this notation, a state x(k) is controllable if and

only if Ax(k) 
= ∅.
For any given system state x(k), the objective of the present finite-horizon

optimal control problem is to find a finite-horizon admissible control sequence
uN−1

k ∈ A
(N−k)
x(k) ⊆ Ax(k) to minimize the cost J (x(k), uN−1

k ). The control sequence

uN−1
k has finite length. However, before it is determined, we do not know its length

which means that the length of the control sequence |uN−1
k | = N − k is unspecified.

This kind of optimal control problems have been called finite-horizon problems
with unspecified terminal time [3] (but in the present case, with fixed terminal state
x(f ) = 0).

Define the optimal value function as

J ∗(x(k)) = inf
uk

{
J (x(k), uk) : uk ∈Ax(k)

}
. (2.178)

Then, according to Bellman’s principle of optimality, J ∗(x(k)) satisfies the discrete-
time HJB equation

J ∗(x(k)) = min
uk

{
l(x(k), u(k)) + J ∗(F (x(k), u(k)))

}
. (2.179)
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Now, define the law of optimal control sequence starting at k by

u∗(x(k)) = arg inf
uk

{
J (x(k), uk) : uk ∈ Ax(k)

}
,

and define the law of optimal control vector by

u∗(x(k)) = arg min
u(k)

{
l(x(k), u(k)) + J ∗(F (x(k), u(k)))

}
.

In other words, u∗(x(k)) = u∗
k and u∗(x(k)) = u∗

k . Hence, we have

J ∗(x(k)) = l(x(k), u∗
k) + J ∗(F (x(k), u∗

k)).

2.5.2 Finite-Horizon Optimal State Feedback Control Based
on HDP

In this subsection, a new iterative ADP algorithm is developed to obtain the finite-
horizon optimal controller for nonlinear systems. The goal of the present iterative
ADP algorithm is to construct an optimal control policy u∗(x(k)), k = 0,1, . . . ,
which drives the system from an arbitrary initial state x(0) to the singularity 0 within
a finite time, and simultaneously minimizes the performance index function. Con-
vergence proofs will also be given to show that the performance index function will
indeed converge to the optimum.

2.5.2.1 Derivation and Properties of the Iterative ADP Algorithm

We first consider the case where for any state x(k), there exists a control vector u(k)

such that F(x(k), u(k)) = 0, i.e., we can control the state of system (2.176) to zero
in one step from any initial state. For the case where F(x(k), u(k)) = 0 does not
hold, we will discuss and solve the problem later in the subsection.

In the iterative ADP algorithm, the value function and control policy are updated
by recursive iterations, with the iteration index number i increasing from 0 and with
the initial performance index function V0(x) = 0 for ∀x ∈ R

n.
The value function for i = 1 is computed as

V1(x(k)) =min
u(k)

{l(x(k), u(k)) + V0(F (x(k), u(k)))}
subject to F(x(k), u(k)) = 0

=min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k)) = 0

= l(x(k), u∗
k(x(k))), (2.180)
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where V0(F (x(k), u(k))) = 0 and F(x(k), u∗
k(x(k))) = 0. The control vector

v1(x(k)) for i = 1 is chosen as v1(x(k)) = u∗
k(x(k)). Therefore, (2.180) can also

be written as

V1(x(k)) =min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k)) = 0

= l(x(k), v1(x(k))), (2.181)

where

v1(x(k)) = arg min
u(k)

l(x(k), u(k)) subject to F(x(k), u(k)) = 0. (2.182)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

Vi(x(k)) = min
u(k)

{l(x(k), u(k)) + Vi−1(F (x(k), u(k)))}

= l(x(k), vi(x(k))) + Vi−1(F (x(k), vi(x(k)))), (2.183)

where

vi(x(k)) = arg min
u(k)

{l(x(k), u(k)) + Vi−1(x(k + 1))}

= arg min
u(k)

{l(x(k), u(k)) + Vi−1(F (x(k), u(k)))} . (2.184)

Equations (2.181)–(2.184) form the iterative ADP algorithm.

Remark 2.30 Equations (2.181)–(2.184) in the iterative ADP algorithm are similar
to the HJB equation (2.179), but they are not the same. There are at least two obvious
differences:

1. For any finite time k, if x(k) is the state at k, then the optimal value function
in HJB equation (2.179) is unique, i.e., J ∗(x(k)), while in the iterative ADP
equations (2.181)–(2.184), the value function is different for each iteration index
i, i.e., Vi(x(k)) 
= Vj (x(k)) for ∀ i 
= j in general.

2. For any finite time k, if x(k) is the state at k, then the optimal control law ob-
tained by HJB equation (2.179) possesses the unique optimal control expres-
sion, i.e., u∗

k = u∗(x(k)), while the control law solved by the iterative ADP algo-
rithm (2.181)–(2.184) is different from each other for each iteration index i, i.e.,
vi(x(k)) 
= vj (x(k)) for ∀ i 
= j in general.

Remark 2.31 According to (2.177) and (2.183), we have

Vi+1(x(k)) = min
uk+i

k

{
J
(
x(k), uk+i

k

) : uk+i
k ∈A

(i+1)
x(k)

}
. (2.185)
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Since

Vi+1(x(k)) = min
u(k)

{l(x(k), u(k)) + Vi(x(k + 1))}

= min
u(k)

{
l(x(k), u(k)) + min

u(k+1)

{
l(x(k + 1), u(k + 1))

+ min
u(k+2)

{
l(x(k + 2), u(k + 2)) + · · ·

+ min
u(k+i−1)

{l(x(k + i − 1), u(k + i − 1))

+V1(x(k + i))} · · ·}
}}

,

where

V1(x(k + i)) = min
u(k+i)

l(x(k + i), u(k + i))

subject to F(x(k + i), u(k + i)) = 0,

we obtain

Vi+1(x(k)) =min
uk+i

k

{l(x(k), u(k)) + l(x(k + 1), u(k + 1))

+· · · + l(x(k + i), u(k + i))}
subject to F(x(k + i), u(k + i)) = 0,

=min
uk+i

k

{
J
(
x(k), uk+i

k

) : uk+i
k ∈ A

(i+1)
x(k)

}
.

Using the notation in (2.184), we can also write

Vi+1(x(k)) =
i∑

j=0

l
(
x(k + j), vi+1−j (x(k + j))

)
. (2.186)

In the above, we can see that the value function J ∗(x(k)) solved by HJB equation
(2.179) is replaced by a sequence of iterative value functions Vi(x(k)) and the opti-
mal control law u∗(x(k)) is replaced by a sequence of iterative control law vi(x(k)),
where i ≥ 1 is the index of iteration. We can prove that J ∗(x(k)) defined in (2.178)
is the limit of Vi(x(k)) as i → ∞.

Theorem 2.32 Let x(k) be an arbitrary state vector. Suppose that A(1)
x(k) 
= ∅. Then,

the value function Vi(x(k)) obtained by (2.181)–(2.184) is a monotonically nonin-
creasing sequence for ∀ i ≥ 1, i.e., Vi+1(x(k)) ≤ Vi(x(k)) for ∀ i ≥ 1.
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Proof We prove this by mathematical induction. First, we let i = 1. Then, we have
V1(x(k)) given as in (2.181) and the finite-horizon admissible control sequence is
û

k
k = (v1(x(k))).

Next, we show that there exists a finite-horizon admissible control sequence û
k+1
k

with length 2 such that J (x(k), û
k+1
k ) = V1(x(k)). The trajectory starting from x(k)

under the control of û
k
k = (v1(x(k))) is x(k +1) = F(x(k), v1(x(k))) = 0. Then, we

create a new control sequence û
k+1
k by adding a 0 to the end of sequence û

k
k to obtain

the control sequence û
k+1
k = (û

k
k,0). Obviously, |ûk+1

k | = 2. The state trajectory
under the control of û

k+1
k is x(k + 1) = F(x(k), v1(x(k))) = 0 and x(k + 2) =

F(x(k + 1), û(k + 1)), where û(k + 1) = 0. Since x(k + 1) = 0 and F(0,0) = 0,
we have x(k + 2) = 0. So, û

k+1
k is a finite-horizon admissible control sequence.

Furthermore,

J (x(k), û
k+1
k ) = l(x(k), v1(x(k))) + l(x(k + 1), û(k + 1))

= l(x(k), v1(x(k)))

=V1(x(k))

since l(x(k + 1), û(k + 1)) = l(0,0) = 0. On the other hand, according to Re-
mark 2.31, we have

V2(x(k)) = min
uk+1

k

{
J
(
x(k), uk+1

k

) : uk+1
k ∈A

(2)
x(k)

}
.

Then, we obtain

V2(x(k)) =min
uk+1

k

{
J
(
x(k), uk+1

k

) : uk+1
k ∈A

(2)
x(k)

}

≤ J
(
x(k), û

k+1
k

)

= V1(x(k)). (2.187)

Therefore, the theorem holds for i = 1.
Assume that the theorem holds for any i = q , where q > 1. From (2.186), we

have

Vq(x(k)) =
q−1∑

j=0

l
(
x(k + j), vq−j (x(k + j))

)
.

The corresponding finite-horizon admissible control sequence is û
k+q−1
k =

(vq(x(k)), vq−1(x(k + 1)), . . . , v1(x(k + q − 1))).
For i = q + 1, we create a control sequence

û
k+q
k = (vq(x(k)), vq−1(x(k + 1)), . . . , v1(x(k + q − 1)),0

)
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with length q + 1. Then, the state trajectory under the control of û
k+q
k is x(k),

x(k + 1) = F(x(k), vq(x(k))), x(k + 2) = F(x(k + 1), vq−1(x(k + 1))), . . ., x(k +
q) = F(x(k + q − 1), v1(x(k + q − 1))) = 0, x(k + q + 1) = F(x(k + q),0) = 0.
So, û

k+q
k is a finite-horizon admissible control sequence. The value function under

this control sequence is

J (x(k), û
k+q
k ) = l(x(k), vq(x(k))) + l(x(k + 1), vq−1(x(k + 1)))

+ · · · + l(x(k + q − 1), v1(x(k + q − 1))) + l(x(k + q),0)

=
q−1∑

j=0

l
(
x(k + j), vq−j (x(k + j))

)

=Vq(x(k))

since l(x(k + q),0) = l(0,0) = 0.
On the other hand, we have

Vq+1(x(k)) = min
u

k+q
k

{
J
(
x(k), u

k+q
k

) : u
k+q
k ∈ A

(q+1)

x(k)

}
.

Thus, we obtain

Vq+1(x(k)) = min
u

k+q
k

{
J
(
x(k), u

k+q
k

) : u
k+q
k ∈ A

(q+1)

x(k)

}

≤ J
(
x(k), û

k+q
k

)

= Vq(x(k)),

which completes the proof. �

From Theorem 2.32, we know that the value function Vi(x(k)) ≥ 0 is a monoton-
ically nonincreasing sequence and is bounded below for iteration index i = 1,2, . . . .
Now, we can derive the following theorem.

Theorem 2.33 Let x(k) be an arbitrary state vector. Define the performance index
function V∞(x(k)) as the limit of the iterative function Vi(x(k)), i.e.,

V∞(x(k)) = lim
i→∞Vi(x(k)). (2.188)

Then, we have

V∞(x(k)) = min
u(k)

{l(x(k), u(k)) + V∞(x(k + 1))}.

Proof Let ηk = η(x(k)) be any admissible control vector. According to Theorem
2.32, for ∀ i, we have

V∞(x(k)) ≤ Vi+1(x(k)) ≤ l(x(k), ηk) + Vi(x(k + 1)).
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Let i → ∞, we have

V∞(x(k)) ≤ l(x(k), ηk) + V∞(x(k + 1)),

which is true for ∀ηk . Therefore,

V∞(x(k)) ≤ min
u(k)

{l(x(k), u(k)) + V∞(x(k + 1))}. (2.189)

Let ε > 0 be an arbitrary positive number. Since Vi(x(k)) is nonincreasing for i ≥ 1
and limi→∞ Vi(x(k)) = V∞(x(k)), there exists a positive integer p such that

Vp(x(k)) − ε ≤ V∞(x(k)) ≤ Vp(x(k)).

From (2.183), we have

Vp(x(k)) =min
u(k)

{l(x(k), u(k)) + Vp−1(F (x(k), u(k)))}

= l(x(k), vp(x(k))) + Vp−1(F (x(k), vp(x(k)))).

Hence,

V∞(x(k)) ≥ l(x(k), vp(x(k))) + Vp−1(F (x(k), vp(x(k)))) − ε

≥ l(x(k), vp(x(k))) + V∞(F (x(k), vp(x(k)))) − ε

≥ min
u(k)

{l(x(k), u(k)) + V∞(x(k + 1))} − ε.

Since ε is arbitrary, we have

V∞(x(k)) ≥ min
u(k)

{l(x(k), u(k)) + V∞(x(k + 1))}. (2.190)

Combining (2.189) and (2.190), we prove the theorem. �

Next, we will prove that the iterative value function Vi(x(k)) converges to the
optimal value function J ∗(x(k)) as i → ∞.

Theorem 2.34 (cf. [14]) Let V∞(x(k)) be defined in (2.188). If the system state
x(k) is controllable, then we have the value function V∞(x(k)) equal to the optimal
value function J ∗(x(k)), i.e.,

lim
i→∞Vi(x(k)) = J ∗(x(k)),

where Vi(x(k)) is defined in (2.183).

Proof According to (2.178) and (2.185), we have

J ∗(x(k)) ≤ min
uk+i−1

k

{
J (x(k), uk+i−1

k ) : uk+i−1
k ∈ A

(i)
x(k)

}
= Vi(x(k)).
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Then, let i → ∞, and we obtain

J ∗(x(k)) ≤ V∞(x(k)). (2.191)

Next, we show that

V∞(x(k)) ≤ J ∗(x(k)). (2.192)

For any ω > 0, by the definition of J ∗(x(k)) in (2.178), there exists η
k
∈ Ax(k) such

that

J (x(k), η
k
) ≤ J ∗(x(k)) + ω. (2.193)

Suppose that |η
k
| = p. Then, η

k
∈A

(p)

x(k). So, by Theorem 2.32 and (2.185), we have

V∞(x(k)) ≤ Vp(x(k))

= min
u

k+p−1
k

{
J (x(k), u

k+p−1
k ) : u

k+p−1
k ∈ A

(p)

x(k)

}

≤ J (x(k), η
k
)

≤ J ∗(x(k)) + ω.

Since ω is chosen arbitrarily, we know that (2.192) is true. Therefore, from (2.191)
and (2.192), we have proven the theorem. �

We can now present the following corollary.

Corollary 2.35 Let the value function Vi(x(k)) be defined by (2.183). If the system
state x(k) is controllable, then the iterative control law vi(x(k)) converges to the
optimal control law u∗(x(k)), i.e.,

lim
i→∞vi(x(k)) = u∗(x(k))

Remark 2.36 Generally speaking, for the finite-horizon optimal control problem,
the optimal value function depends not only on state x(k) but also on the time left
(see [7] and [11]). For the finite-horizon optimal control problem with unspecified
terminal time, we have proved that the iterative value functions converge to the
optimal as the iterative index i reaches infinity. Then, the time left is negligible and
we say that the optimal value function J ∗(x(k)) is only a function of the state x(k)

which is like the case of infinite-horizon optimal control problems.

According to Theorem 2.34 and Corollary 2.35, we know that if x(k) is control-
lable, then, as i → ∞, the iterative value function Vi(x(k)) converges to the optimal
value function J ∗(x(k)) and the iterative control law vi(x(k)) also converges to the
optimal control law u∗(x(k)). So, it is important to note that for controllable state
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x(k), the iterative value functions Vi(x(k)) are well defined for all i under the iter-
ative control law vi(x(k)).

Let T0 = {0}. For i = 1,2, . . . , define

Ti = {x(k) ∈ R
n| ∃u(k) ∈R

m s.t. F(x(k), u(k)) ∈ Ti−1}. (2.194)

Next, we prove the following theorem.

Theorem 2.37 Let T0 = {0} and Ti be defined in (2.194). Then, for i = 0,1, . . . , we
have Ti ⊆ Ti+1.

Proof We prove the theorem by mathematical induction. First, let i = 0. Since T0 =
{0} and F(0,0) = 0, we know that 0 ∈ T1. Hence, T0 ⊆ T1.

Next, assume that Ti−1 ⊆ Ti holds. Now, if x(k) ∈ Ti , we have F(x(k),

ηi−1(x(k))) ∈ Ti−1 for some ηi−1(x(k)). Hence, F(x(k), ηi−1(x(k))) ∈ Ti by the
assumption of Ti−1 ⊆ Ti . So, x(k) ∈ Ti+1 by (2.194). Thus, Ti ⊆ Ti+1, which proves
the theorem. �

According to Theorem 2.37, we have

{0} = T0 ⊆ T1 ⊆ · · · ⊆ Ti−1 ⊆ Ti ⊆ · · · .

We can see that by introducing the sets Ti , i = 0,1, . . . , the state x(k) can be
classified correspondingly. According to Theorem 2.37, the properties of the ADP
algorithm can be derived in the following theorem.

Theorem 2.38

(i) For any i, x(k) ∈ Ti ⇔ A
(i)
x(k) 
= ∅ ⇔ Vi(x(k)) is defined at x(k).

(ii) Let T∞ =⋃∞
i=1 Ti . Then, x(k) ∈ T∞ ⇔ Ax(k) 
= ∅ ⇔ J ∗(x(k)) is defined at

x(k) ⇔ x(k) is controllable.
(iii) If Vi(x(k)) is defined at x(k), then Vj (x(k)) is defined at x(k) for every j ≥ i.
(iv) J ∗(x(k)) is defined at x(k) if and only if there exists an i such that Vi(x(k)) is

defined at x(k).

2.5.2.2 The ε-Optimal Control Algorithm

In the previous subsection, we have proved that the iterative value function
Vi(x(k)) converges to the optimal value function J ∗(x(k)) and J ∗(x(k)) =
minuk

{J (x(k), uk), u ∈Ax(k)} satisfies the Bellman’s equation (2.179) for any con-
trollable state x(k) ∈ T∞.

To obtain the optimal value function J ∗(x(k)), a natural strategy is to run the
iterative ADP algorithm (2.181)–(2.184) until i → ∞. But unfortunately, it is not
practical to do so. In many cases, we cannot find the equality J ∗(x(k)) = Vi(x(k))

for any finite i. That is, for any admissible control sequence uk with finite length,
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the cost starting from x(k) under the control of uk will be larger than, not equal
to, J ∗(x(k)). On the other hand, by running the iterative ADP algorithm (2.181)–
(2.184), we can obtain a control vector v∞(x(k)) and then construct a control
sequence u∞(x(k)) = (v∞(x(k)), v∞(x(k + 1)), . . . , v∞(x(k + i)), . . . ), where
x(k + 1) = F(x(k), v∞(x(k))), . . . , x(k + i) = F(x(k + i − 1), v∞(x(k + i − 1))),
. . . . In general, u∞(x(k)) has infinite length. That is, the controller v∞(x(k)) can-
not control the state to reach the target in finite number of steps. To overcome this
difficulty, a new ε-optimal control method using iterative ADP algorithm will be
developed.

First, we will introduce our method of iterative ADP with the consideration of
the length of control sequences. For different x(k), we will consider different length
i for the optimal control sequence. For a given error bound ε > 0, the number i will
be chosen so that the error between J ∗(x(k)) and Vi(x(k)) is within the bound.

Let ε > 0 be any small number and x(k) ∈ T∞ be any controllable state. Let the
value function Vi(x(k)) be defined by (2.183) and J ∗(x(k)) be the optimal value
function. According to Theorem 2.34, given ε > 0, there exists a finite i such that

|Vi(x(k)) − J ∗(x(k))| ≤ ε. (2.195)

Definition 2.39 (cf. [14]) Let x(k) ∈ T∞ be a controllable state vector. Let ε > 0 be
a small positive number. The approximate length of optimal control sequence with
respect to ε is defined as

Kε(x(k)) = min{i : |Vi(x(k)) − J ∗(x(k))| ≤ ε}. (2.196)

Given a small positive number ε, for any state vector x(k), the number Kε(x(k))

gives a suitable length of control sequence for optimal control starting from x(k).
For x(k) ∈ T∞, since limi→∞ Vi(x(k)) = J ∗(x(k)), we can always find i such that
(2.195) is satisfied. Therefore, {i : |Vi(x(k)) − J ∗(x(k))| ≤ ε} 
= ∅ and Kε(x(k)) is
well defined.

We can see that an error ε between Vi(x(k)) and J ∗(x(k)) is introduced into the
iterative ADP algorithm which makes the value function Vi(x(k)) converge within
a finite number of iteration steps. In this part, we will show that the corresponding
control is also an effective control that drives the value function to within error
bound ε from its optimal.

From Definition 2.39, we can see that all the states x(k) that satisfy (2.196) can
be classified into one set. Motivated by the definition in (2.194), we can further
classify this set using the following definition.

Definition 2.40 (cf. [14]) Let ε be a positive number. Define T (ε)
0 = {0} and for

i = 1,2, . . . , define

T (ε)
i = {x(k) ∈ T∞ : Kε(x(k)) ≤ i}.
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Accordingly, when x(k) ∈ T (ε)
i , to find the optimal control sequence which has

value less than or equal to J ∗(x(k)) + ε, one only needs to consider the control
sequences uk with length |uk| ≤ i. The sets T (ε)

i have the following properties.

Theorem 2.41 (cf. [14]) Let ε > 0 and i = 0,1, . . . . Then:

(i) x(k) ∈ T (ε)
i if and only if Vi(x(k)) ≤ J ∗(x(k)) + ε

(ii) T (ε)
i ⊆ Ti

(iii) T (ε)
i ⊆ T (ε)

i+1

(iv)
⋃

i T
(ε)

i = T∞
(v) If ε > δ > 0, then T (ε)

i ⊇ T (δ)
i

Proof (i) Let x(k) ∈ T (ε)
i . By Definition 2.40, Kε(x(k)) ≤ i. Let j = Kε(x(k)).

Then, j ≤ i and by Definition 2.39, |Vj (x(k)) − J ∗(x(k))| ≤ ε. So, Vj (x(k)) ≤
J ∗(x(k))+ ε. By Theorem 2.32, Vi(x(k)) ≤ Vj (x(k)) ≤ J ∗(x(k))+ ε. On the other
hand, if Vi(x(k)) ≤ J ∗(x(k)) + ε, then |Vi(x(k)) − J ∗(x(k))| ≤ ε. So, Kε(x(k)) =
min{j : |Vj (x(k)) − J ∗(x(k))| ≤ ε} ≤ i, which implies that x(k) ∈ T (ε)

i .

(ii) If x(k) ∈ T (ε)
i , Kε(x(k)) ≤ i and |Vi(x(k)) − J ∗(x(k))| ≤ ε. So, Vi(x(k))

is defined at x(k). According to Theorem 2.38 (i), we have x(k) ∈ Ti . Hence,
T (ε)

i ⊆ Ti .

(iii) If x(k) ∈ T (ε)
i , Kε(x(k)) ≤ i < i + 1. So, x(k) ∈ T (ε)

i+1. Thus, T (ε)
i ⊆ T (ε)

i+1.

(iv) Obviously,
⋃

i T
(ε)

i ⊆ T∞ since T (ε)
i are subsets of T∞. For any x(k) ∈ T∞,

let p = Kε(x(k)). Then, x(k) ∈ T (ε)
p . So, x(k) ∈⋃i T

(ε)
i . Hence, T∞ ⊆⋃i T

(ε)
i ⊆

T∞, and we obtain,
⋃

i T
(ε)

i = T∞.

(v) If x(k) ∈ T (δ)
i , Vi(x(k)) ≤ J ∗(x(k)) + δ by part (i) of this theorem. Clearly,

Vi(x(k)) ≤ J ∗(x(k)) + ε since δ < ε. This implies that x(k) ∈ T (ε)
i . Therefore,

T (ε)
i ⊇ T (δ)

i . �

According to Theorem 2.41(i), T (ε)
i is just the region where Vi(x(k)) is close

to J ∗(x(k)) with error less than ε. This region is a subset of Ti according to Theo-
rem 2.41(ii). As stated in Theorem 2.41(iii), when i is large, the set T (ε)

i is also large.
That means that, when i is large, we have a large region where we can use Vi(x(k))

as the approximation of J ∗(x(k)) under certain error. On the other hand, we claim
that if x(k) is far away from the origin, we have to choose long control sequence
to approximate the optimal control sequence. Theorem 2.41(iv) means that for ev-
ery controllable state x(k) ∈ T∞, we can always find a suitable control sequence
with length i to approximate the optimal control. The size of the set T (ε)

i depends

on the value of ε. Smaller value of ε gives smaller set T (ε)
i which is indicated by

Theorem 2.41(v).
Let x(k) ∈ T∞ be an arbitrary controllable state. If x(k) ∈ T (ε)

i , the iterative
value function satisfies (2.195) under the control vi(x(k)), we call this control the
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ε-optimal control and denote it as μ∗
ε(x(k)), i.e.,

μ∗
ε(x(k)) = vi(x(k)) = arg min

u(k)
{l(x(k), u(k)) + Vi−1(F (x(k), u(k)))} . (2.197)

We have the following corollary.

Corollary 2.42 (cf. [14]) Let μ∗
ε(x(k)) be expressed in (2.197) that makes the value

function satisfy (2.195) for x(k) ∈ T (ε)
i . Then, for any x′

k ∈ T (ε)
i , μ∗

ε(x
′
k) guarantees

|Vi(x
′
k) − J ∗(x′

k)| ≤ ε. (2.198)

Proof The corollary can be proved by contradiction. Assume that the conclusion
is not true. Then, the inequality (2.198) is false under the control μ∗

ε(·) for some

x′′
k ∈ T (ε)

i .

As μ∗
ε(x(k)) makes the value function satisfy (2.195) for x(k) ∈ T (ε)

i , we have
Kε(x(k)) ≤ i. Using the ε-optimal control law μ∗

ε(·) at the state x′′
k , according to

the assumption, we have |Vi(x
′′
k ) − J ∗(x′′

k )| > ε. Then, Kε(x
′′
k ) > i and x′′

k /∈ T (ε)
i .

It is in contradiction with the assumption x′′
k ∈ T (ε)

i . Therefore, the assumption is

false and (2.198) holds for any x′
k ∈ T (ε)

i . �

Remark 2.43 Corollary 2.42 is very important for neural-network implementation
of the iterative ADP algorithm. It shows that we do not need to obtain the optimal
control law by searching the entire subset T (ε)

i . Instead, we can just find one point of

T (ε)
i , i.e., x(k) ∈ T (ε)

i , to obtain the ε-optimal control μ∗
ε(x(k)) which will be effec-

tive for any other state x′
k ∈ T (ε)

i . This property not only makes the computational
complexity much reduced but also makes the optimal control law easily obtained
using neural networks.

Theorem 2.44 (cf. [14]) Let x(k) ∈ T (ε)
i and let μ∗

ε(x(k)) be expressed in

(2.197). Then, F(x(k),μ∗
ε(x(k))) ∈ T (ε)

i−1. In other words, if Kε(x(k)) = i, then
Kε(F (x(k),μ∗

ε(x(k)))) ≤ i − 1.

Proof Since x(k) ∈ T (ε)
i , by Theorem 2.41 (i) we know that

Vi(x(k)) ≤ J ∗(x(k)) + ε. (2.199)

According to (2.183) and (2.197), we have

Vi(x(k)) = l(x(k),μ∗
ε(x(k))) + Vi−1(F (x(k),μ∗

ε(x(k)))). (2.200)

Combining (2.199) and (2.200), we have

Vi−1(F (x(k),μ∗
ε(x(k)))) = Vi(x(k)) − l(x(k),μ∗

ε(x(k)))

≤ J ∗(x(k)) + ε − l(x(k),μ∗
ε(x(k))). (2.201)



2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 95

On the other hand, we have

J ∗(x(k)) ≤ l(x(k),μ∗
ε(x(k))) + J ∗(F (x,μ∗

ε(x(k)))). (2.202)

Putting (2.202) into (2.201), we obtain

Vi−1(F (x(k),μ∗
ε(x(k)))) ≤ J ∗(F (x(k),μ∗

ε(x(k)))) + ε.

By Theorem 2.41 (i), we have

F(x(k),μ∗
ε(x(k))) ∈ T (ε)

i−1. (2.203)

So, if Kε(x(k)) = i, we know that x(k) ∈ T (ε)
i and F(x,μ∗

ε(x(k))) ∈ T (ε)
i−1 ac-

cording to (2.203). Therefore, we have

Kε(F (x(k),μ∗
ε(x(k)))) ≤ i − 1,

which proves the theorem. �

Remark 2.45 From Theorem 2.44 we can see that the parameter Kε(x(k)) gives an
important property of the finite-horizon ADP algorithm. It not only gives an optimal
condition of the iterative process, but also gives an optimal number of control steps
for the finite-horizon ADP algorithm. For example, if |Vi(x(k))−J ∗(x(k))| ≤ ε for
small ε, then we have Vi(x(k)) ≈ J ∗(x(k)). According to Theorem 2.44, we can get
N = k + i, where N is the number of control steps to drive the system to zero. The
whole control sequence uN−1

0 may not be ε-optimal but the control sequence uN−1
k

is ε-optimal control sequence. If k = 0, we have N = Kε(x(0)) = i. Under this
condition, we say that the iteration index Kε(x(0)) denotes the number of ε-optimal
control steps.

Corollary 2.46 Let μ∗
ε(x(k)) be expressed in (2.197) that makes the value function

satisfy (2.195) for x(k) ∈ T (ε)
i . Then, for any x′

k ∈ T (ε)
j , where 0 ≤ j ≤ i, μ∗

ε(x
′
k)

guarantees

|Vi(x
′
k) − J ∗(x′

k)| ≤ ε. (2.204)

Proof The proof is similar to Corollary 2.42 and is omitted here. �

Remark 2.47 Corollary 2.46 shows that the ε-optimal control μ∗
ε(x(k)) obtained for

∀x(k) ∈ T (ε)
i is effective for any state x′

k ∈ T (ε)
j , where 0 ≤ j ≤ i. This means that

for ∀x′
k ∈ T (ε)

j , 0 ≤ j ≤ i, we can use a same ε-optimal control μ∗
ε(x

′
k) to control

the system.

According to Theorem 2.41(iii) and Corollary 2.42, the ε-optimal control
μ∗

ε(x(k)) obtained for an x(k) ∈ T (ε)
i is effective for any state x′

k ∈ T (ε)
i−1 (which
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Fig. 2.26 The control
process of the controllable
sate x(k) ∈ T (ε)

i using the
iterative ADP algorithm

is also stated in Corollary 2.46). That is to say: in order to obtain effective ε-optimal
control, the iterative ADP algorithm only needs to run at some state x(k) ∈ T∞. In
order to obtain an effective ε-optimal control law μ∗

ε(x(k)), we should choose the

state x(k) ∈ T (ε)
i \T (ε)

i−1 for each i to run the iterative ADP algorithm. The control
process using the iterative ADP algorithm is illustrated in Fig. 2.26.

From the iterative ADP algorithm (2.181)–(2.184), we can see that for any state
x(k) ∈R

n, there exists a control u(k) ∈R
m that drives the system to zero in one step.

In other words, for ∀x(k) ∈ R
n, there exists a control u(k) ∈ R

m such that x(k +
1) = F(x(k), u(k)) = 0 holds. A large class of systems possesses this property;
for example, all linear systems of the type x(k + 1) = Ax(k) + Bu(k) when B

is invertible and the affine nonlinear systems with the type x(k + 1) = f (x(k)) +
g(x(k))u(k) when the inverse of g(x(k)) exists. But there are also other classes of
systems for which there does not exist any control u(k) ∈ R

m that drives the state to
zero in one step for some x(k) ∈ R

n, i.e., ∃ x(k) ∈ R
n such that F(x(k), u(k)) = 0

is not possible for ∀u(k) ∈ R
m. In the following part, we will discuss the situation

where F(x(k), u(k)) 
= 0 for some x(k) ∈R
m.

Since x(k) is controllable, there exists a finite-horizon admissible control se-
quence uk+i−1

k = (uk, u(k + 1), . . . , uk+i−1) ∈A
(i)
x(k) that makes x(f )(x(k), uk+i−1

k )

= x(k + i) = 0. Let N = k + i be the terminal time. Assume that for k + 1, k +
2, . . . ,N −1, the optimal control sequence u

(N−1)∗
k+1 = (u∗(k+1), u∗

k+2, . . . , u
∗
N−1)∈

A
(N−k−1)
x(k+1) has been determined. Denote the value function for x(k + 1) as J (x(k +

1), u
(N−1)∗
k+1 ) = V0(x(k + 1)). Now, we use the iterative ADP algorithm to determine

the optimal control sequence for the state x(k).
The value function for i = 1 is computed as

V1(x(k)) = l(x(k), v1(x(k))) + V0(F (x(k), v1(x(k)))), (2.205)
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where

v1(x(k)) = arg min
u(k)

{l(x(k), u(k)) + V0(F (x(k), u(k)))}. (2.206)

Note that the initial condition used in the above expression is the value function V0
which is obtained previously for x(k + 1) and now applied at F(x(k), u(k)). For
i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

Vi(x(k)) = l(x(k), vi(x(k))) + Vi−1(F (x(k), vi(x(k)))), (2.207)

where

vi(x(k)) = arg min
u(k)

{l(x(k), u(k)) + Vi−1(F (x(k), u(k)))} . (2.208)

Theorem 2.48 Let x(k) be an arbitrary controllable state vector. Then, the value
function Vi(x(k)) obtained by (2.205)–(2.208) is a monotonically nonincreasing
sequence for ∀ i ≥ 0, i.e., Vi+1(x(k)) ≤ Vi(x(k)) for ∀ i ≥ 0.

Proof It can easily be proved by following the proof of Theorem 2.32, and the proof
is omitted here. �

Theorem 2.49 Let the value function Vi(x(k)) be defined by (2.207). If the system
state x(k) is controllable, then the value function Vi(x(k)) obtained by (2.205)–
(2.208) converges to the optimal value function J ∗(x(k)) as i → ∞, i.e.,

lim
i→∞Vi(x(k)) = J ∗(x(k)).

Proof This theorem can be proved following similar steps to the proof of Theo-
rem 2.34 and the proof is omitted here. �

We can see that the iterative ADP algorithm (2.205)–(2.208) is an expansion from
of the previous one (2.181)–(2.184). So, the properties of the iterative ADP algo-
rithm (2.181)–(2.184) is also effective for the current one (2.205)–(2.208). But there
also exist differences. From Theorem 2.32, we can see that Vi+1(x(k)) ≤ Vi(x(k))

for all i ≥ 1, which means that V1(x(k)) = max{Vi(x(k)) : i = 0,1, . . .}. While
Theorem 2.48 shows that Vi+1(x(k)) ≤ Vi(x(k)) for all i ≥ 0 which means that
V0(x(k)) = max{Vi(x(k)) : i = 0,1, . . .}. This difference is caused by the difference
of the initial conditions of the two iterative ADP algorithms.

In the previous iterative ADP algorithm (2.181)–(2.184), it begins with the initial
value function V0(x(k)) = 0 since F(x(k), u(k)) = 0 can be solved. While in the
current iterative ADP algorithm (2.205)–(2.208), it begins with the value function
V0 for the state x(k +1) which is determined previously. This also causes the differ-
ence between the proofs of Theorems 2.32 and 2.34 and the corresponding results
in Theorems 2.48 and 2.49. But the difference of the initial conditions of the itera-
tive performance index function does not affect the convergence property of the two
iterative ADP algorithms.
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For the iterative ADP algorithm, the optimal criterion (2.195) is very difficult to
verify because the optimal value function J ∗(x(k)) is unknown in general. So, an
equivalent criterion is established to replace (2.195).

If |Vi(x(k)) − J ∗(x(k))| ≤ ε holds, we have Vi(x(k)) ≤ J ∗(x(k)) + ε and
J ∗(x(k)) ≤ Vi+1(x(k)) ≤ Vi(x(k)). These imply that

0 ≤ Vi(x(k)) − Vi+1(x(k)) ≤ ε, (2.209)

or

|Vi(x(k)) − Vi+1(x(k))| ≤ ε.

On the other hand, according to Theorem 2.49, |Vi(x(k)) − Vi+1(x(k))| → 0
implies that Vi(x(k)) → J ∗(x(k)). Therefore, for any given small ε, if |Vi(x(k)) −
Vi+1(x(k))| ≤ ε holds, we have |Vi(x(k)) − J ∗(x(k))| ≤ ε if i is sufficiently large.

We will use inequality (2.209) as the optimal criterion instead of the optimal
criterion (2.195).

Let ûK−1
0 = (u(0), u(1), . . . , u(K − 1)) be an arbitrary finite-horizon admissi-

ble control sequence and the corresponding state sequence be x̂K
0 = (x(0), x(1),

. . . , x(K)) where x(K) = 0.
We can see that the initial control sequence ûK−1

0 = (u(0), u(1), . . . , u(K − 1))

may not be optimal, which means that the initial number of control steps K may not
be optimal. So, the iterative ADP algorithm must complete two kinds of optimiza-
tion. One is to optimize the number of control steps. The other is to optimize the
control law. In the following, we will show how the number of control steps and the
control law are optimized simultaneously in the iterative ADP algorithm.

For the state x(K − 1), we have F(x(K − 1), u(K − 1)) = 0. Then, we run the
iterative ADP algorithm (2.181)–(2.184) at x(K − 1) as follows. The value function
for i = 1 is computed as

V 1
1 (x(K − 1)) = min

u(K−1)
{l(x(K − 1), u(K − 1)) + V0(F (x(K − 1), u(K − 1)))}

subject to F(x(K − 1), u(K − 1)) = 0

= l(x(K − 1), v1
1(x(K − 1))), (2.210)

where

v1
1(x(K − 1)) = arg min

u(K−1)
l(x(K − 1), u(K − 1))

subject to F(x(K − 1), u(K − 1)) = 0, (2.211)

and V0(F (x(K − 1), u(K − 1))) = 0. The iterative ADP algorithm will be imple-
mented as follows for i = 2,3,4, . . . :

V 1
i (x(K − 1)) = l(x(K − 1), v1

i (x(K − 1)))
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+ V 1
i−1(F (x(K − 1), v1

i (x(K − 1)))), (2.212)

where

v1
i (x(K − 1)) = arg min

u(K−1)

{
l(x(K − 1), u(K − 1))

+ V 1
i−1(F (x(K − 1), u(K − 1)))

}
, (2.213)

until the inequality
∣∣∣V 1

l1
(x(K − 1)) − V 1

l1+1(x(K − 1))

∣∣∣≤ ε (2.214)

is satisfied for l1 > 0. This means that x(K − 1) ∈ T (ε)
l1

and the optimal number of
control steps is Kε(x(K − 1)) = l1.

Considering x(K − 2), we have F(x(K − 2), u(K − 2)) = x(K − 1). Put
x(K − 2) into (2.214). If |V 1

l1
(x(K − 2)) − V 1

l1+1(x(K − 2))| ≤ ε holds, then

according to Theorem 2.41(i), we know that x(K − 2) ∈ T (ε)
l1

. Otherwise, if

x(K − 2) /∈ T (ε)
l1

, we will run the iterative ADP algorithm as follows. Using the

value function V 1
l1

as the initial condition, we compute, for i = 1,

V 2
1 (x(K − 2)) = l(x(K − 2), v2

1(x(K − 2)))

+ V 1
l1
(F (x(K − 2), v2

1(x(K − 2)))), (2.215)

where

v2
1(x(K − 2)) = arg min

u(K−2)
{l(x(K − 2), u(K − 2))

+ V 1
l1
(F (x(K − 2), u(K − 2)))}. (2.216)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

V 2
i (x(K − 2)) = l(x(K − 2), v2

i (x(K − 2)))

+ V 2
i−1(F (x(K − 2), v2

i (x(K − 2)))), (2.217)

where

v2
i (x(K − 2)) = arg min

u(K−2)

{
l(x(K − 2), uK−2)

+ V 2
i−1(F (x(K − 2), u(K − 2)))

}
, (2.218)

until the inequality
∣∣∣V 2

l2
(x(K − 2)) − V 2

l2+1(x(K − 2))

∣∣∣≤ ε (2.219)



100 2 Optimal State Feedback Control for Discrete-Time Systems

is satisfied for l2 > 0. We then obtain x(K − 2) ∈ T (ε)
l2

, and the optimal number of
control steps is Kε(x(K − 2)) = l2.

Next, assume that j ≥ 2 and x(K − j + 1) ∈ T (ε)
lj−1

, i.e.,

∣∣∣V j−1
lj−1

(x(K − j + 1)) − V
j−1
lj−1+1(x(K − j + 1))

∣∣∣≤ ε (2.220)

holds. Considering x(K − j), we have F(x(K − j), u(K − j)) = x(K − j + 1).
Putting x(K − j) into (2.220) and if

∣∣∣V j−1
lj−1

(x(K − j)) − V
j−1
lj−1+1(x(K − j))

∣∣∣≤ ε (2.221)

holds, then we know that x(K − j) ∈ T (ε)
lj−1

. Otherwise, if x(K − j) /∈ T (ε)
lj−1

, then we
run the iterative ADP algorithm as follows. Using the performance index function
V

j−1
lj−1

as the initial condition, we compute for i = 1,

V
j

1 (x(K − j)) = l(x(K − j), v
j

1 (x(K − j)))

+ V
j−1
lj−1

(F (x(K − j), v
j

1 (x(K − j)))), (2.222)

where

v
j

1 (x(K − j)) = arg min
u(K−j)

{l(x(K − j), u(K − j))

+ V
j−1
lj−1

(F (x(K − j), u(K − j)))}. (2.223)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

V
j
i (x(K − j)) = l(x(K − j), v

j
i (x(K − j)))

+ V
j

i−1(F (x(K − j), v
j
i (x(K − j)))), (2.224)

where

v
j
i (x(K − j)) = arg min

u(K−j)

{
l(x(K − j), u(K − j))

+ V
j

i−1(F (x(K − j), u(K − j)))
}
, (2.225)

until the inequality
∣∣∣V j

lj
(x(K − j)) − V

j

lj +1(x(K − j))

∣∣∣≤ ε (2.226)

is satisfied for lj > 0. We then obtain x(K − j) ∈ T (ε)
lj

, and the optimal number of
control steps is Kε(x(K − j)) = lj .
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Finally, considering x(0), we have F(x(0), u(0)) = x(1). If
∣∣∣V K−1

lK−1
(x(0)) − V K−1

lK−1+1(x(0))

∣∣∣≤ ε

holds, then we know that x(0) ∈ T (ε)
lK−1

. Otherwise, if x(0) /∈ T (ε)
lK−1

, then we run the

iterative ADP algorithm as follows. Using the performance index function V K−1
lK−1

as
the initial condition, we compute, for i = 1,

V K
1 (x(0)) = l(x(0), vK

1 (x(0))) + V K−1
lK−1

(F (x(0), vK
1 (x(0)))), (2.227)

where

vK
1 (x(0)) = arg min

u(0)
{l(x(0), u(0)) + V K−1

lK−1
(F (x(0), u(0)))}. (2.228)

For i = 2,3,4, . . . , the iterative ADP algorithm will be implemented as follows:

V K
i (x(0)) = l(x(0), vK

i (x(0))) + V K
i−1(F (x(0), vK

i (x(0)))), (2.229)

where

vK
i (x(0)) = arg min

u(0)

{
l(x(0), u(0)) + V K

i−1(F (x(0), u(0)))
}

, (2.230)

until the inequality
∣∣∣V K

lK
(x(0)) − V K

lK+1(x(0))

∣∣∣≤ ε (2.231)

is satisfied for lK > 0. Therefore, we obtain x(0) ∈ T (ε)
lK

, and the optimal number of
control steps is Kε(x(0)) = lK .

Starting from the initial state x(0), the optimal number of control steps is lK
according to our ADP algorithm.

Remark 2.50 For the case where there are some x(k) ∈ R
n, there does not exist

a control u(k) ∈ R
m that drives the system to zero in one step; the computational

complexity of the iterative ADP algorithm is strongly related to the original finite-
horizon admissible control sequence ûK−1

0 . First, we repeat the iterative ADP algo-
rithm at x(K −1), x(K −2), . . . , x(1), x(0), respectively. It is related to the control
steps K of ûK−1

0 . If K is large, it means that ûK−1
0 takes large number of control

steps to drive the initial state x(0) to zero and then the number of times needed to
repeat the iterative ADP algorithm will be large. Second, the computational com-
plexity is also related to the quality of control results of ûK−1

0 . If ûK−1
0 is close to

the optimal control sequence u
(N−1)∗
0 , then it will take less computation to make

(2.226) hold for each j .

Now, we summarize the iterative ADP algorithm as follows:

Step 1. Choose an error bound ε and choose randomly an array of initial states x(0).
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Step 2. Obtain an initial finite-horizon admissible control sequence ûK−1
0 =

(u(0), u(1), . . . , u(K − 1)) and obtain the corresponding state sequence

x̂K
0 = (x(0), x(1), . . . , x(K)),

where x(K) = 0.
Step 3. For the state x(K − 1) with F(x(K − 1), u(K − 1)) = 0, run the iterative

ADP algorithm (2.210)–(2.213) at x(K − 1) until (2.214) holds.
Step 4. Record V 1

l1
(x(K − 1)), v1

l1
(xK−1) and Kε(x(K − 1)) = l1.

Step 5. For j = 2,3, . . . ,K , if for x(K − j) the inequality (2.221) holds, go to Step
7; otherwise, go to Step 6.

Step 6. Using the value function V
j−1
lj −1 as the initial condition, run the iterative ADP

algorithm (2.222)–(2.225) until (2.226) is satisfied.
Step 7. If j = K , then we have obtained the optimal value function V ∗(x(0)) =
V K

lK
(x(0)), the law of the optimal control sequence u∗(x(0)) = vK

lK
(x(0)) and the

number of optimal control steps Kε(x(0)) = lK ; otherwise, set j = j + 1, and go
to Step 5.

Step 8. Stop.

2.5.3 Simulations

To evaluate the performance of our iterative ADP algorithm, we choose two exam-
ples with quadratic utility functions for numerical experiments.

Example 2.51 Our first example is chosen from [16]. We consider the following
nonlinear system:

x(k + 1) = f (x(k)) + g(x(k))u(k),

where x(k) = [x1(k) x2(k)]T and u(k) = [u1(k) u2(k)]T are the state and control
variables, respectively. The system functions are given as

f (x(k)) =
[

0.2x1(k) exp(x2
2(k))

0.3x3
2(k)

]
, g(x(k)) =

[−0.2 0
0 −0.2

]
.

The initial state is x(0) = [1 −1]T. The value function is in quadratic form with
finite time horizon expressed as

J
(
x(0), uN−1

0

)=
N−1∑

k=0

(
xT(k)Qx(k) + uT(k)Ru(k)

)
,

where the matrix Q = R = I , and I denotes the identity matrix with suitable dimen-
sions.

The error bound of the iterative ADP is chosen as ε = 10−5. Neural networks are
used to implement the iterative ADP algorithm and the neural-network structure can
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Fig. 2.27 Simulation results for Example 2.51. (a) The convergence of value function. (b) The
ε-optimal control vectors. (c) and (d) The corresponding state trajectories

be seen in [13, 16]. The critic network and the action network are chosen as three-
layer BP neural networks with the structures of 2–8–1 and 2–8–2, respectively. The
model network is also chosen as a three-layer BP neural network with the structure
of 4–8–2. The critic network is used to approximate the iterative value functions
which are expressed by (2.210), (2.212), (2.215), (2.217), (2.222), (2.224), (2.227),
and (2.229). The action network is used to approximate the optimal control laws
which are expressed by (2.211), (2.213), (2.216), (2.218), (2.223), (2.225), (2.228),
and (2.230). The training rules of the neural networks can be seen in [12]. For each
iteration step, the critic network and the action network are trained for 1000 itera-
tion steps using the learning rate of α = 0.05, so that the neural-network training
error becomes less than 10−8. Enough iteration steps should be implemented to
guarantee the iterative value functions and the control law to converge sufficiently.
We let the algorithm run for 15 iterative steps to obtain the optimal value function
and optimal control law. The convergence curve of the value function is shown in
Fig. 2.27(a). Then, we apply the optimal control law to the system for Tf = 10 time
steps and obtain the following results. The ε-optimal control trajectories are shown
in Fig. 2.27(b) and the corresponding state curves are shown in Figs. 2.27(c) and (d).

After seven iteration steps, we have |V6(x(0))−V7(x(0))| ≤ 10−5 = ε. Then, we
obtain the optimal number of control steps Kε(x(0)) = 6. We can see that after six
time steps, the state variable becomes x6 = [0.912 × 10−6, 0.903 × 10−7]T. The
entire computation process takes about 10 seconds before satisfactory results are
obtained.
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Example 2.52 The second example is chosen from [9] with some modifications. We
consider the following system:

x(k + 1) = F(x(k), u(k)) = x(k) + sin(0.1x(k)2 + u(k)), (2.232)

where x(k), u(k) ∈ R, and k = 0,1,2, . . . . The cost functional is defined as in Ex-
ample 2.51 with Q = R = 1. The initial state is x(0) = 1.5. Since F(0,0) = 0,
x(k) = 0 is an equilibrium state of system (2.232). But since (∂F (x(k), u(k))/

∂x(k))(0,0) = 1, system (2.232) is marginally stable at x(k) = 0 and the equilib-
rium x(k) = 0 is not attractive.

We can see that, for the fixed initial state x(0), there does not exist a control
u(0) ∈ R that makes x(1) = F(x(0), u(0)) = 0. The error bound of the iterative
ADP algorithm is chosen as ε = 10−4. The critic network, the action network, and
the model network are chosen as three-layer BP neural networks with the structures
of 1–3–1, 1–3–1, and 2–4–1, respectively. According to (2.232), the control can be
expressed by

u(k) = −0.1x(k)2 + sin−1(x(k + 1) − x(k)) + 2λπ, (2.233)

where λ = 0,±1,±2, . . . .
To show the effectiveness of our algorithm, we choose two initial finite-horizon

admissible control sequences.
Case 1. The control sequence is û

1
0 = (−0.225 − sin−1(0.7), −0.064 −

sin−1(0.8)) and the corresponding state sequence is x̂
2
0 = (1.5,0.8,0).

For the initial finite-horizon admissible control sequences in this case, run the
iterative ADP algorithm at the states x(k) = 0.8 and 1.5, respectively. For each it-
erative step, the critic network and the action network are trained for 1000 iteration
steps using the learning rate of α = 0.05 so that the neural-network training ac-
curacy of 10−8 is reached. After the algorithm has run for 15 iterative steps, we
obtain the performance index function trajectories shown in Figs. 2.28(a) and (b),
respectively. The ε-optimal control and state trajectories are shown in Figs. 2.28(c)
and (d), respectively, for 10 time steps. We obtain Kε(0.8) = 5 and Kε(1.5) = 8.

Case 2. The control sequence is û
3
0 = (−0.225 − sin−1(0.01), 2π − 2.2201 −

sin−1(0.29), −0.144 − sin−1(0.5), −sin−1(0.7)) and the corresponding state se-
quence is x̂

4
0 = (1.5,1.49,1.2,0.7,0).

For the initial finite-horizon admissible control sequence in this case, run the
iterative ADP algorithm at the states x(k) = 0.7, 1.2, and 1.49, respectively. For
each iteration step, the critic network and the action network are also trained for
1000 iteration steps using the learning rate of α = 0.05, so that the neural-network
training accuracy of 10−8 is reached. Then we obtain the value function trajectories
shown in Figs. 2.29(a)–(c), respectively. We have Kε(0.7) = 4, Kε(1.2) = 6, and
Kε(1.49) = 8.

After 25 iteration steps, the value function Vi(x(k)) is sufficiently convergent at
x(k) = 1.49, with V 3

8 (1.49) as the value function. For the state x(k) = 1.5, we have
|V 3

8 (1.5) − V 3
9 (1.5)| = 0.52424 × 10−7 < ε. Therefore, the optimal value function



2.5 Finite-Horizon Optimal State Feedback Control Based on HDP 105

Fig. 2.28 Simulation results for Case 1 of Example 2.52. (a) The convergence of value function
at x(k) = 0.8. (b) The convergence of value function at x(k) = 1.5. (c) The ε-optimal control
trajectory. (d) The corresponding state trajectory

Fig. 2.29 Simulation results for Case 2 of Example 2.52. (a) The convergence of value function
at x(k) = 0.7. (b) The convergence of value function at x(k) = 1.2. (c) The convergence of perfor-
mance index function at x(k) = 1.49. (d) The ε-optimal control trajectory and the corresponding
state trajectory



106 2 Optimal State Feedback Control for Discrete-Time Systems

at x(k) = 1.5 is V 3
8 (1.5) and, thus, we have x(k) = 1.5 ∈ T (ε)

8 and Kε(1.5) = 8. The
whole computation process takes about 20 seconds and then satisfactory results are
obtained.

Then we apply the optimal control law to the system for Tf = 10 time steps. The
ε-optimal control and state trajectories are shown in Fig. 2.29(d).

We can see that the ε-optimal control trajectory in Fig. 2.29(d) is the same as the
one in Fig. 2.28(c). The corresponding state trajectory in Fig. 2.29(d) is the same as
the one in Fig. 2.28(d). Therefore, the optimal control law is not dependent on the
initial control law. The initial control sequence û

K−1
0 can arbitrarily be chosen as

long as it is finite-horizon admissible.

Remark 2.53 If the number of control steps of the initial admissible control se-
quence is larger than the number of control steps of the optimal control sequence,
then we will find some of the states in the initial sequence to possess the same
number of optimal control steps. For example, in Case 2 of Example 2.52, we
see that the two states x = 1.49 and x = 1.5 possess the same number of opti-
mal control steps, i.e., Kε(1.49) = Kε(1.5) = 8. Thus, we say that the control u =
−0.225 − sin−1(0.01) that makes x = 1.5 run to x = 1.49 is an unnecessary control
step. After the unnecessary control steps are identified and removed, the number of
control steps will reduce to the optimal number of control steps and, thus, the initial
admissible control sequence does not affect the final optimal control results.

2.6 Summary

In this chapter, several infinite-time and finite-time optimal control schemes have
been developed to solve the corresponding control problems for several kinds of
nonlinear system. In Sects. 2.2, 2.3, and 2.4, the presented optimal controllers were
all infinite-time optimal state feedback controllers though the developed ADP algo-
rithms. The optimal control objective can be achieved when the number of control
steps tends to infinity. In Sect. 2.5, an effective iterative ADP algorithm has been
developed for the ε-optimal controller for a class of discrete-time nonlinear systems,
where the optimal control objective can be achieved with a finite number of control
steps.
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