
Chapter 2
Introduction

(Artificial) neural networks are information processing systems, whose structure and
operation principles are inspired by the nervous system and the brain of animals and
humans. They consist of a large number of fairly simple units, the so-called neurons,
which are working in parallel. These neurons communicate by sending information
in the form of activation signals, along directed connections, to each other.

A commonly used synonym for “neural network” is the term “connectionist
model.” The research area that is devoted to the study of connectionist models is
called “connectionism.” Furthermore, the expression “parallel distributed process-
ing” can often be found in relation to (artificial) neural networks.

2.1 Motivation

(Artificial) neural networks are studied for various reasons: in (neuro-)biology and
(neuro-)physiology, but also in psychology, one is mainly interested in their simi-
larity to biological nervous systems. In these areas (artificial), neural networks are
used as computational models with which one tries to simulate and thus to under-
stand the mechanisms of nerve and brain functions. Especially in computer science,
but also in other engineering sciences, one tries to mimic certain cognitive powers
of humans (especially learning ability) by using functional elements of the nervous
system and the brain. In physics, certain mathematical models that are analogous to
(artificial) neural networks are employed to describe specific physical phenomena.
An example are models of magnetism, for instance, the Ising model.

As can already be seen from this brief list, the study of (artificial) neural networks
is a highly interdisciplinary research area. However, in this book we widely neglect
the use of (artificial) neural networks in physics (even though we draw on examples
from physics to explain certain network models) and consider their biological basis
only very briefly (see the next section). Rather, we focus on the mathematical and
engineering aspects, particularly the use of (artificial) neural networks in the area of
computer science that is commonly called “artificial intelligence.”
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While the reasons why biologists study (artificial) neural networks are fairly ob-
vious, we may have to justify why neural networks are (or should be) studied in
artificial intelligence. The reason is that the paradigm of classical artificial intelli-
gence (sometimes called, in a somewhat pejorative manner, GOFAI—“good old-
fashioned artificial intelligence”) is based on a very strong hypothesis about how
machines can be made to behave “intelligently.” This hypothesis says that the es-
sential requirement for intelligent behavior is the ability to manipulate symbols and
symbol structures that are represented by physical structures. Here symbol means
a token that refers to an object or a situation. This relation is interpreted in an op-
erational manner: the system can perceive and/or manipulate the object referred to.
This hypothesis was first formulated explicitly by Newell and Simon (1976):

Physical Symbol System Hypothesis: A physical-symbol system has the
necessary and sufficient means for general intelligent action.

As a matter of fact, classical artificial intelligence concentrated, based on this hy-
pothesis, on symbolic forms of representing knowledge and in particular on propo-
sitional and predicate logic. (Artificial) neural networks, on the other hand, are no
physical symbol systems, since they do not process symbols, but rather much more
elementary signals, which, taken individually, rarely have a (clear) meaning. As a
consequence, (artificial) neural networks are often called “sub-symbolic.” However,
if the ability to process symbols is necessary to produce intelligent behavior, then it
is unnecessary to study (artificial) neural networks in artificial intelligence.

There is no doubt that classical artificial intelligence has achieved remarkable
successes: nowadays computers can automatically solve many types of puzzles and
brain-twisters and can play games like chess and Reversi (also known as Othello)
on an extremely high level. However, when it comes to mimicking perception (see-
ing, hearing etc.), computers usually perform fairly poorly compared to humans—at
least if symbolic representations are relied upon: here computers are often too slow,
too inflexible and too little tolerant to noise and faults. We may conjecture that the
problem is that in order to recognize patterns—a core task of perception—symbolic
representations are not very well suited, because there are no adequate symbols on
this level of processing. Rather “raw” (measurement) data needs to be structured and
summarized before symbolic methods can effectively be applied. Hence, it appears
to be reasonable to examine the mechanisms of sub-symbolic information process-
ing in natural intelligent systems—that is, animals and humans—in more detail and
possibly to exploit these mechanisms to mimic intelligent behavior.

Additional arguments why studying (artificial) neural networks may be beneficial
arise from the following observations:

• Expert systems that use symbolic representations usually become slower with a
larger knowledge base, because larger sets of rules need to be traversed. Human
experts, however, usually become faster. Maybe a non-symbolic representation
(as it is used in natural neural networks) is more efficient.

• Despite the fairly long switching time of natural neurons (in the order of several
milliseconds) essential cognitive tasks (like recognizing an object) are solved in a
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Fig. 2.1 Prototypical structure of biological neurons

fraction of a second. If neural processing were sequential, only about 100 switch-
ing operations could be performed (“100-step rule”). Hence, high parallelization
must be present, which is easy to achieve with neural networks, but much more
difficult to implement with other approaches.

• There is a large number of successful applications of (artificial) neural networks
in industry, commerce and finance.

2.2 Biological Background

As already mentioned, (artificial) neural networks are inspired by the structure and
the operation principles of the nervous system and particularly the brain of animals
and humans. In fact, the neural network models that we study in this book are not
very close to their biological original, since they are too simplified to model the
characteristics of natural neural networks correctly. Nevertheless, we briefly con-
sider natural neural networks here, because they formed the starting point for inves-
tigating artificial neural networks. The description follows (Anderson 1995).

The nervous system of animals consists of the brain (in so-called “lower” life
forms often only referred to as the “central nervous system”), the different sen-
sory systems, which collect information from the different body parts (visual, au-
ditory, olfactory, gustatory, thermal, tactile etc. information), and the motor system,
which controls movements. The greater part of information processing happens in
the brain/central nervous system, although the amount of pre-processing outside the
brain can be considerable, for example, in the retina of the eye.

W.r.t. processing information, the neurons are the most important components of
the nervous system.1 According to common estimates, there are about 100 billion
(1011) neurons in the human brain, of which a fairly large part is active in parallel.
Neurons process information mainly by interacting with each other.

1The nervous system consists not only of neurons, not even for the largest part. Besides neurons
there are various other cells, for instance, the so-called glia cells, which have a supporting function.
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A neuron is a cell that collects and transmits electrical activity. Neurons exist
in many different shapes and sizes. Nevertheless one can derive a “prototypical”
neuron that resembles all kinds of neurons to some degree (although this is a fairly
severe simplification). This prototype is shown schematically in Fig. 2.1. The cell
body of the neuron, which contains the nucleus, is also called soma. It has a diam-
eter of about 5 to 100 µm (micrometer, 1 µm = 10−6 m). From the cell body extend
several short, heavily ramified branches that are called dendrites. In addition, it has
a long extension called axon. The axon can be between a few millimeters and one
meter long. Axon and dendrites differ in the structure and the properties of the cell
membrane. In particular, the axon is often covered by a myelin sheath.

The axons are the fixed paths along which neurons communicate with each other.
The axon of a neuron leads to the dendrites of other neurons. At its end, the axon
is heavily ramified and possesses at the ends of these branches terminal buttons.
Each terminal button almost touches a dendrite or the cell body of another neuron.
The gap between a terminal button and a dendrite is usually between 10 and 50 nm
(nanometer; 1 nm = 10−9 m) wide. Such a place, at which an axon and a dendrite
almost touch each other, is called synapse.

The most common form of communication between neurons is that a terminal
button of the axon releases certain chemicals, the so-called neurotransmitters,
which act on the membrane of the receiving dendrite and change its polarization
(its electrical potential). Usually the inside of the cell membrane, which encloses
the whole neuron, is about 70 mV (millivolts; 1 mV = 10−3 V) more negative than
its outside, because the concentration of negative ions is greater on the inside, while
the concentration of positive ions is greater on the outside. Depending on the type of
the released neurotransmitter, the potential difference may be reduced or increased
on the side of the dendrite. Synapses that reduce the potential difference are called
excitatory, those that increase it are called inhibitory.

In an adult human, all connections between neurons are completely established
and no new connections are created (again this is a severe simplification). An aver-
age neuron possesses between 1000 and 10,000 connections to other neurons. The
change of the electrical potential that is caused by a single synapse is fairly small,
but the individual excitatory and inhibitory effects can accumulate (counting the ex-
citatory influences as positive and the inhibitory ones as negative). If the excitatory
net input is large enough, the potential difference in the cell body can be signifi-
cantly reduced. If the reduction is large enough, the axon’s base is depolarized. This
depolarization is caused by positive sodium ions entering the cell. As a consequence,
the inside of the cell becomes temporarily (for about one millisecond) more positive
than its outside. Afterwards the potential difference is rebuilt by positive potassium
ions leaving the cell. Finally, the original distribution of sodium and potassium ions
is reestablished by special ion pumps in the cell membrane.

The sudden, temporary change of the electrical potential, which is called action
potential, propagates along the axon. The propagation speed lies between 0.5 and
130 m/s, depending on the properties of the axon. In particular, it depends on how
heavily the axon is covered with a myelin sheath (the more myelin, the faster the



References 13

action potential is propagated). When this nerve impulse reaches the end of the axon,
it causes neurotransmitters to be released at the terminal buttons, thus passing the
signal on to the next cell, where the process is repeated.

In summary, changes of the electrical potential are accumulated at the cell body
of a neuron and, if they reach a certain threshold, are propagated along the axon.
This nerve impulse causes that neurotransmitters are released by the terminal but-
tons at the end of the axon, thus inducing a change of the electrical potential in the
receiving neuron. Even though this description is heavily simplified, it captures the
essentials of neural information processing on the level of individual neurons.

In the human nervous system, information is encoded by continuously changing
quantities, primarily two: the electrical potential of the neuron’s membrane and the
number of nerve impulses that a neuron transmits per second. The latter is also
called the firing rate of the neuron. It is commonly assumed that the number of
impulses is more important than their shape (in the sense of a change of the electrical
potential), although competing theories of neural coding exist. A neuron can emit
100 or even more impulses per second. The higher the firing rate, the higher the
influence a neuron has on connected neurons. However, in artificial neural networks
this frequency coding of information is usually not emulated.
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