
Chapter 2
Multi-stage Adaptive Sampling Algorithms

In this chapter, the goal is to accurately and efficiently estimate the optimal value
function under the constraint that there is a finite number of simulation replications
to be allocated per state in stage i. The straightforward approach to this would be
simply to sample each action feasible in a state equally, but this is clearly not an ef-
ficient use of computational resources, so the main question to be decided is which
action to sample next. The algorithms in this chapter adaptively choose which ac-
tion to sample as the sampling process proceeds, based on the estimates obtained up
to that point, and lead to value function estimators that converge to the true value
asymptotically in the number of simulation replications allocated per state. These
algorithms are targeted at MDPs with large, possibly uncountable, state spaces and
relatively smaller finite action spaces. The primary setting in this chapter will be
finite-horizon models, which lead to a recursive structure, but we also comment on
how the algorithms can be used for infinite-horizon problems. Numerical experi-
ments are used to illustrate the algorithms.

Once we have an algorithm that estimates the optimal value/policy for finite-
horizon problems, we can create a non-stationary randomized policy in an on-line
manner in the context of receding-horizon control for solving infinite-horizon prob-
lems. This will be discussed in detail in Chap. 5.

Letting V̂
Ni

i (x) denote the estimate of the optimal reward-to-go function, V ∗
i (x),

defined by Eq. (1.5) for a given state x and stage i, based on Ni simulations in
stage i, the objective is to estimate the optimal value V ∗(x0) for a given starting state
x0, as defined by Eq. (1.2). The approach will be to optimize over actions, based on
the recursive optimality equations given by (1.8) and (1.17). The former involves
an optimization over the action space, so the main objective of the approaches in
this chapter is to adaptively determine which action to sample next. Using a ran-
dom number w, the chosen action will then be used to simulate f (x, a,w) in order
to produce a simulated next state from x. This is used to update the estimate of
Q∗

i (x, a), which will be called the Q-function estimate and denoted by Q̂
Ni

i (x, a),

which in turn determines the estimate V̂
Ni

i (x), albeit not necessarily using Eq. (1.8)
as the estimate for the optimal value function. Figure 2.1 provides a generic algo-
rithm outline for the adaptive multi-stage sampling framework of this chapter.

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes,
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_2, © Springer-Verlag London 2013

19

http://dx.doi.org/10.1007/978-1-4471-5022-0_2

20 2 Multi-stage Adaptive Sampling Algorithms

General Adaptive Multi-stage Sampling Framework

Input: stage i < H , state x ∈ X, Ni > 0, other parameters.
(For i = H , V̂

NH

H (x) = V
NH

H (x) = 0.)
Initialization: algorithm parameters; total number of simulations set to 0.
Loop until total number of simulations reaches Ni :

• Determine an action â to simulate next state via f (x, â,w), w ∼ U(0,1).
• Update the following:

number of times action a has been sampled Ni
â
(x) ← Ni

â
(x) + 1,

Q-function estimate Q̂
Ni

i (x, â) based on R′(x, â,w) and V̂
Ni+1
i+1 (f (x, â,w)),

the current optimal action estimate (for state x in stage i),
and other algorithm-specific parameters.

Output: V̂
Ni

i (x) based on Q-function estimates {Q̂Ni

i (x, a)}.

Fig. 2.1 Adaptive multi-stage sampling framework

Specifically, Q∗
i (x, a) is estimated for each action a ∈ A(x) by a sample mean

based on simulated next states and rewards from a fixed state x:

Q̂
Ni

i (x, a) = 1

Ni
a(x)

Ni
a(x)∑

j=1

[
R′(x, a,wa

j

) + γ V̂
Ni+1
i+1

(
f

(
x, a,wa

j

))]
, (2.1)

where Ni
a(x) is the number of times action a has been sampled from state x in

stage i (
∑

a∈A(x) N
i
a(x) = Ni), and the sequence {wa

j , j = 1, . . . ,Ni
a(x)} contains

the corresponding random numbers used to simulate the next states f (x, a,wa
j).

Note that the number of next-state samples depends on the state x, action a, and
stage i.

In the general framework that estimates the Q-function via (2.1), the total number
of sampled (next) states is O(NH) with N = maxi=0,...,H−1 Ni , which is indepen-
dent of the state space size. One approach is to select “optimal” values of Ni

a(x) for
i = 0, . . . ,H −1, a ∈ A(x), and x ∈ X, such that the expected error between the val-
ues of V̂

N0
0 (x) and V ∗

0 (x) is minimized, but this problem would be difficult to solve.
Both algorithms in this chapter construct a sampled tree in a recursive manner to
estimate the optimal value at an initial state and incorporate an adaptive sampling
mechanism for selecting which action to sample at each branch in the tree. The
upper confidence bound (UCB) sampling algorithm chooses the next action based
on the exploration-exploitation tradeoff captured by a multi-armed bandit model,
whereas in the pursuit learning automata (PLA) sampling algorithm, the action is
sampled from a probability distribution over the action space, where the distribution
tries to concentrate mass on (“pursue”) the estimate of the optimal action. The anal-
ysis of the UCB sampling algorithm is given in terms of the expected bias, whereas
for the PLA sampling algorithm we provide a probability bound. Another algorithm
that also uses a distribution over the action space but updates the distribution in a
different manner using multiple samples, and can handle infinite action spaces, is
presented in Sect. 4.5.

2.1 Upper Confidence Bound Sampling 21

2.1 Upper Confidence Bound Sampling

The UCB sampling algorithm is based on the expected regret analysis for multi-
armed bandit problems, in which the sampling is done based on upper confidence
bounds generated by simulation-based estimates. The UCB algorithm determines
Ni

a(x) for i = 0, . . . ,H − 1, a ∈ A(x), and x ∈ X such that the expected differ-
ence is bounded as a function of Ni

a(x) and Ni , i = 0, . . . ,H − 1, and such that the
bound (from above and from below) goes to zero as Ni , i = 0, . . . ,H − 1, go to
infinity. The allocation rule (sampling algorithm) adaptively chooses which action
to sample, updating the value of Ni

a(x) as the sampling process proceeds, such that
the value function estimator is asymptotically unbiased (i.e., E[V̂ N0

0 (x)] → V ∗
0 (x)

as Ni → ∞,∀ i = 0, . . . ,H − 1), and an upper bound on the bias converges to
zero at rate O(

∑
i

lnNi

Ni
), where the logarithmic bound in the numerator is achiev-

able uniformly over time. The running-time complexity of the algorithm is at worst
O((|A|maxi=0,...,H−1 Ni)

H), which is independent of the state space size, but de-
pends on the size of the action space, because the algorithm requires that each action
be sampled at least once for each sampled state.

2.1.1 Regret Analysis in Multi-armed Bandits

The goal of the multi-armed bandit problem is to play as often as possible the
machine that yields the highest (expected) reward. The regret quantifies the explo-
ration/exploitation dilemma in the search for the true “optimal” machine, which is
unknown in advance. The goal of the search process is to explore the reward distri-
bution of different machines while also frequently playing the machine that is em-
pirically best thus far. The regret is the expected loss due to not always playing the
true optimal machine. For an optimal strategy the regret grows at least logarithmi-
cally in the number of machine plays, and the logarithmic regret is also achievable
uniformly over time with a simple and efficient sampling algorithm for arbitrary
reward distributions with bounded support.

Specifically, an M-armed bandit problem is defined by random variables ηi,j

for 1 ≤ i ≤ M and j ≥ 1, where successive plays of machine i yield “rewards”
ηi,1, ηi,2, . . . , which are independent and identically distributed according to an un-
known but fixed distribution ηi with unknown expectation μi , and the goal is to
decide the machine i at each play to maximize

E

[
n∑

j=1

ηi,j

]
.

The rewards across machines are also independently generated. Let Ti(n) be the
number of times machine i has been played by an algorithm during the first n plays.

22 2 Multi-stage Adaptive Sampling Algorithms

Define the expected regret ρ(n) of an algorithm after n plays by

ρ(n) = μ∗n −
M∑

i=1

μiE
[
Ti(n)

]
, where μ∗ := max

i
μi .

Any algorithm that attempts to minimize this expected regret must play a best ma-
chine (one that achieves μ∗) exponentially (asymptotically) more often than the
other machines, leading to ρ(n) = Θ(lnn). One way to achieve the asymptotic loga-
rithmic regret is to use upper confidence bounds, which capture the tradeoff between
exploitation—choosing the machine with the current highest sample mean—and ex-
ploration—trying other machines that might have higher actual means. This leads
to an easily implementable algorithm in which the machine with the current highest
upper confidence bound is chosen.

We incorporate these results into a sampling-based process for finding an op-
timal action in a state for a single stage of an MDP by appropriately converting
the definition of regret into the difference between the true optimal value and the
approximate value yielded by the sampling process. We then extend the one-stage
sampling process into multiple stages in a recursive manner, leading to a multi-stage
(sampling-based) approximation algorithm for solving MDPs.

2.1.2 Algorithm Description

Figure 2.2 presents the upper confidence bound (UCB) adaptive sampling algorithm
for estimating V ∗

0 (x) for a given state x. The inputs to the algorithm are the stage i,
a state x ∈ X, and the number of samples Ni ≥ maxx∈X |A(x)|, and the output is
V̂

Ni

i (x), the estimate of the optimal reward-to-go value from state x, V ∗
i (x), given

by (2.5), which is the weighted average of Q-value estimates over the sampled ac-
tions. (Alternative optimal value function estimators are presented in Sect. 2.1.3.)
Since the Q-function estimate given by (2.1) requires the optimal value estimate
V̂

Ni+1
i+1 (y) for the simulated next state y ∈ X in the next period i + 1, the algorithm

requires recursive calls at (2.2) and (2.4) in the Initialization and Loop portions of
the algorithm, respectively. The initial call to the algorithm is done with i = 0, the
initial state x0, and N0, and every sampling is done independently of previous sam-
plings. To help understand how the recursive calls are made sequentially, in Fig. 2.3,
we graphically illustrate the sequence of calls with two actions and H = 3 for the
Initialization portion.

For an intuitive description of the allocation rule, consider first only the one-stage
approximation. That is, we assume for now that the V ∗

1 (x)-value for each sampled
state x ∈ X is known. To estimate V ∗

0 (x), obviously we need to estimate Q∗
0(x, a∗),

where a∗ ∈ arg maxa∈A(x)(Q
∗
0(x, a)). The search for a∗ corresponds to the search

for the best machine in the multi-armed bandit problem. We start by sampling a
random number wa ∼ U(0,1) for each possible action once at x, which leads to
the next (sampled) state f (x, a,wa) according to f and reward R′(x, a,wa). We

2.1 Upper Confidence Bound Sampling 23

Upper Confidence Bound (UCB) Sampling Algorithm

Input: stage i < H , state x ∈ X, Ni ≥ maxx∈X |A(x)|.
(For i = H , V̂

NH

H (x) = V
NH

H (x) = 0.)

Initialization: Simulate next state f (x, â,wa
1), wa

1 ∼ U(0,1) for each a ∈ A(x);
set Ni

a(x) = 1 ∀a ∈ A(x), n̄ = |A(x)|, and

Q̂
Ni

i (x, a) = Mi(x, a) = R′(x, a,wa
1

) + γ V̂
Ni+1
i+1

(
f

(
x, a,wa

1

)) ∀a ∈ A(x), (2.2)

where {wa
j } is the random number sequence for action a,

Ni
a(x) is the number of times action a has been sampled thus far,

and n̄ is the overall number of samples thus far.

Loop until n̄ = Ni :
• Generate wâ

Ni
â
(x)+1

∼ U(0,1) for current estimate of optimal action a∗:

â ∈ arg max
a∈A(x)

(
Q̂

Ni

i (x, a) + Rmax(H − i)

√
2 ln n̄

Ni
a(x)

)
, (2.3)

where

Q̂
Ni

i (x, a) = 1

Ni
a(x)

Ni
a(x)∑

j=1

[
R′(x, a,wa

j

) + γ V̂
Ni+1
i+1

(
f

(
x, a,wa

j

))]
. (2.4)

• Update Q-function estimate for a = â using simulated next state
f (x, â,wâ

Ni
â
(x)+1

):

Mi(x, â) ← Mi(x, â)

+ R′(x, â,wâ

Ni
â
(x)+1

) + V̂
Ni+1
i+1

(
f

(
x, â,wâ

Ni
â
(x)+1

))
,

Ni
â
(x) ← Ni

â
(x) + 1,

Q̂
Ni

i (x, â) ← Mi(x, â)

Ni
â
(x)

.

• n̄ ← n̄ + 1.

Output:

V̂
Ni

i (x) =
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a). (2.5)

Fig. 2.2 Upper confidence bound (UCB) sampling algorithm description

then iterate as follows (see Loop in Fig. 2.2). The next action to sample is the one
that achieves the maximum among the current estimates of Q∗

0(x, a) plus its current

upper confidence bound (cf. (2.3)), where the estimate Q̂
N0
0 (x, a) is given by the

24 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.3 Graphical illustration of a sequence of recursive calls made in Initialization of the UCB
sampling algorithm, where each circle corresponds to a simulated state, each arrow with associated
action signifies a sampling for the action (and a recursive call), and the boldface number near each
arrow indicates the sequencing for the recursive calls (for simplicity, an entire Loop process is
signified by a single number)

sample mean of the immediate reward plus V ∗
1 -values (multiplied by the discount

factor) at all of the simulated next states (cf. Eq. (2.4)).
Among the N0 samples for state x, N0

a (x) denotes the number of samples using
action a. If the sampling is done appropriately, we might expect that N0

a (x)/N0 pro-
vides a good estimate of the likelihood that action a is optimal in state x, because
in the limit as N0 → ∞, the sampling scheme should lead to N0

a∗(x)/N0 → 1 if a∗
is the unique optimal action, or if there are multiple optimal actions, say a set A∗,
then

∑
a∈A∗ N0

a (x)/N0 → 1, i.e., {N0
a (x)/N0}a∈A(x) should converge to a probabil-

ity distribution concentrated on the set of optimal actions. For this reason, we use
a weighted (by N0

a (x)/N0) sum of the currently estimated value of Q∗
0(x, a) over

A(x) to approximate V ∗
0 (x) (cf. Eq. (2.5)). Ensuring that the weighted sum concen-

trates on a∗ as the sampling proceeds will ensure that in the limit the estimate of
V ∗

0 (x) converges to V ∗
0 (x).

The running-time complexity of the UCB adaptive sampling algorithm is
O((|A|N)H), where N = maxi Ni . To see this, let Mi be the number of recur-
sive calls made to compute V̂

Ni

i in the worst case. At stage i, the algorithm makes
at most Mi = |A|NiMi+1 recursive calls (in Initialization and Loop), leading to
M0 = O((|A|N)H). In contrast, backward induction has O(H |A||X|2) running-
time complexity. Therefore, the main benefit of the UCB sampling algorithm is
independence from the state space size, but this comes at the expense of exponential

2.1 Upper Confidence Bound Sampling 25

(versus linear, for backwards induction) dependence on both the action space and
the horizon length.

2.1.3 Alternative Estimators

We present two alternative estimators to the optimal reward-to-go value function
estimator given by Eq. (2.5) in the UCB sampling algorithm. First, consider the
estimator that replaces the weighted sum of the Q-function estimates in Eq. (2.5) by
the maximum of the estimates, i.e., for i < H ,

V̂
Ni

i (x) = max
a∈A(x)

Q̂
Ni

i (x, a). (2.6)

For the non-adaptive case, it can be shown that this estimator is also asymptotically
unbiased, but with a finite-sample “optimistic” bias in the opposite direction as
the original estimator (i.e., upwards for maximization problems and downwards for
minimization problems such as the inventory control problem).

Next, consider an estimator that chooses the action that has been sampled the
most thus far in order to estimate the value function. It can be easily shown that this
estimator is less optimistic than the previous alternative, and so combining it with
the original estimator gives the following estimator:

V̂
Ni

i (x) = max

{
Q̂

Ni

i (x, â),
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a)

}
, â ∈ arg max

a

{
Ni

a(x)
}
,

(2.7)
which would again replace Eq. (2.5) in the algorithm. Intuitively, the rationale be-
hind combining via the max operator is that the estimator would be choosing the
best between two possible estimates of the Q-function.

It is conjectured that all of these alternatives are asymptotically unbiased, with
the estimator given by Eq. (2.6) having an “optimistic” bias (i.e., high for maxi-
mization problems, low for minimization problems). If so, valid, albeit conservative,
confidence intervals for the optimal value could also be easily derived by combining
the two oppositely biased estimators. Such a result can be established for the non-
adaptive versions of these estimators, but proving these results in our setting and
characterizing the convergence rate of the estimator given by Eq. (2.6) in a similar
manner as for the original estimator is considerably more difficult, so we restrict our
convergence analysis to the original estimator.

2.1.4 Convergence Analysis

Now we show the convergence properties of the UCB sampling algorithm. In par-
ticular, we show that the final estimate of the optimal value function generated by

26 2 Multi-stage Adaptive Sampling Algorithms

One-Stage Sampling Algorithm (OSA)

Input: state x ∈ X and n ≥ |A(x)|.

Initialization: Simulate next state f (x, a,wa
1),wa

1 ∼ U(0,1) for each a ∈ A(x); set T x
a (n̄) = 1

∀a ∈ A(x), n̄ = |A(x)|, and

Q̃(x, a) = R′(x, a,wa
1

) + γU
(
f

(
x, a,wa

1

)) ∀a ∈ A(x),

where {wa
j } is the random number sequence for action a,

T x
a (n̄) is the number of times action a has been sampled thus far,

and n̄ is the overall number of samples thus far.

Loop until n̄ = n:
• Generate wã∗

T x
â

(n̄)+1 ∼ U(0,1) for current estimate of optimal action:

â ∈ arg max
a∈A(x)

(
Q̃(x, a) + Umax

√
2 ln n̄

T x
a (n̄)

)
,

where

Q̃(x, a) = 1

T x
a (n̄)

T x
a (n̄)∑

j=1

[
R′(x, a,wa

j

) + γU
(
f

(
x, a,wa

j

))]
. (2.8)

• Update Q-function estimate for a = â via (2.8) using simulated next state
f (x, â,wâ

T x
â

(n̄)+1), with T x
â

(n̄) ← T x
â

(n̄) + 1.

• n̄ ← n̄ + 1.

Output:

Ṽ n(x) =
∑

a∈A(x)

T x
a (n)

n
Q̃(x, a). (2.9)

Fig. 2.4 One-stage sampling algorithm (OSA) description

the algorithm is asymptotically unbiased, and the bias can be shown to be bounded
by a quantity that converges to zero at rate O(

∑H−1
i=0

lnNi

Ni
).

We start with a convergence result for the one-stage approximation. Consider the
following one-stage sampling algorithm (OSA) in Fig. 2.4 with a stochastic value
function U defined over X, where U(x) for x ∈ X is a non-negative random vari-
able with unknown distribution and bounded above for all x ∈ X. As before, every
sampling is done independently, and we assume that there is a black box that re-
turns U(x) once x is given to the black box. Fix a state x ∈ X and index each action
in |A(x)| by numbers from 1 to |A(x)|. Consider an |A(x)|-armed bandit problem
where each a is a gambling machine. Successive plays of machine a yield “ban-
dit rewards” that are i.i.d. according to an unknown distribution ηa with unknown
expectation

Q(x,a) = E
[
R′(x, a,w) + γE

[
U

(
f (x, a,w)

)]]
, w ∼ U(0,1)

2.1 Upper Confidence Bound Sampling 27

and are independent across machines or actions. The term T x
a (n) signifies the num-

ber of times machine a has been played (or random number for action a has been
sampled) by OSA during the n plays. Define the expected regret ρ(n) of OSA after
n plays by

ρ(n) = V (x)n −
|A(x)|∑

a=1

Q(x,a)E
[
T x

a (n)
]
,

where V (x) = maxa∈A(x) Q(x, a), and let

Umax = max
x,a

Q(x, a) = max
x

V (x).

We now state a key theorem in [4], which will be the basis of our convergence
results for the OSA algorithm.

Theorem 2.1 For any x with |A(x)| > 1, if OSA is run on |A(x)|-machines having
arbitrary bandit reward distributions η1, . . . , η|A(x)| with finite Umax, then

ρ(n) ≤
∑

a:Q(x,a)<V (x)

[
8U2

max lnn

V (x) − Q(x,a)
+

(
1 + π2

3

)(
V (x) − Q(x,a)

)]
,

where

V (x) = max
a∈A(x)

(
E

[
R′(x, a,w) + γE

[
U

(
f (x, a,w)

)]])
, w ∼ U(0,1), ∀x ∈ X,

and Q(x,a) is the expected value of bandit rewards with respect to ηa .

Proof The proof is a slight modification of the proof of Theorem 1 in [4]. For
a ∈ A(x), define Δa := V (x) − Q(x,a) and Q̃m(x, a) = 1

m

∑m
j=1(R

′(x, a,wa
j) +

γU(f (x, a,wa
j))). Let cr,s = Umax

√
(2 ln r)/s. Let Mt = a be the event that ma-

chine a is played at time t . For any machine corresponding to an action a, we find
an upper bound on T x

a (n) for any sequence of plays. For an arbitrary positive inte-
ger �, we have

T x
a (n) = 1 +

n∑

t=|A(x)|+1

I {Mt = a}

≤ � +
n∑

t=|A(x)|+1

I
{
Mt = a, T x

a (t − 1) ≥ �
}

≤ � +
n∑

t=|A(x)|+1

I
{
Q̃T x

a∗ (t−1)

(
x, a∗) + ct−1,T x

a∗ (t−1)

≤ Q̃T x
a (t−1)(x, a) + ct−1,T x

a (t−1), T
x
a (t − 1) ≥ �

}

28 2 Multi-stage Adaptive Sampling Algorithms

≤ � +
n∑

t=|A(x)|+1

I
{

min
0<s<t

(
Q̃s

(
x, a∗) + ct−1,s

)

≤ max
�≤sa<t

(
Q̃sa (x, a) + ct−1,sa

)}

≤ � +
n∑

t=1

t−1∑

s=1

t−1∑

sa=�

I
{
Q̃s

(
x, a∗) + ct,s ≤ Q̃sa (x, a) + ct,sa

}
. (2.10)

Next observe that if I {Q̃s(x, a∗)+ ct,s ≤ Q̃sa (x, a)+ ct,sa } = 1, then at least one of
the following events must be true:

Q̃s

(
x, a∗) ≤ V (x) − ct,s , (2.11)

Q̃sa (x, a) ≥ Q(x,a) + ct,sa , (2.12)

V (x) < Q(x,a) + 2ct,sa . (2.13)

By using Hoeffding’s inequality [86] we can bound the probability of events (2.11)
and (2.12):

P
(
Q̃s

(
x, a∗) ≤ V (x) − ct,s

) ≤ e−4 ln t = t−4,

P
(
Q̃sa (x, a) ≥ Q(x,a) + ct,sa

) ≤ e−4 ln t = t−4.

Note that for sa ≥
(8U2
max ln t)/Δ2

a�, (2.13) cannot be true for any t , since

V (x) − Q(x,a) − 2ct,sa = V (x) − Q(x,a) − 2Umax
√

2 ln t/sa

≥ V (x) − Q(x,a) − Δa = 0.

Therefore, it follows that by taking � =
 8U2
max lnn

	2
a

� in (2.10), we have

E
[
T x

a (n)
] ≤ � +

n∑

t=1

t−1∑

s=1

t−1∑

sa=�

[
P

(
Q̃s

(
x, a∗) ≤ V (x) − ct,s

)

+ P
(
Q̃sa (x, a) ≥ Q(x,a) + ct,sa

)]

≤
⌈

8U2
max lnn

Δ2
a

⌉
+

∞∑

t=1

t−1∑

s=1

t−1∑

sa=1

2t−4

≤ 8U2
max lnn

Δ2
a

+ 1 + 2
∞∑

t=1

t−2

≤ 8U2
max lnn

(V (x) − Q(x,a))2
+ 1 + π2

3
. (2.14)

2.1 Upper Confidence Bound Sampling 29

By the definition of ρ(n), we have

ρ(n) = V (x)

|A(x)|∑

a=1

T x
a (n) −

|A(x)|∑

a=1

Q(x,a)E
[
T x

a (n)
]

=
|A(x)|∑

a=1

E
[
T x

a (n)
](

V (x) − Q(x,a)
)

≤
∑

a:Q(x,a)<V (x)

E
[
T x

a (n)
](

V (x) − Q(x,a)
)
,

and the proof is completed by applying the bound given by (2.14). �

Now let φ(x) be the set of non-optimal actions at state x, given by φ(x) = {a |
Q(x,a) < V (x), a ∈ A(x)}, and whenever φ(x) �= ∅, we define the difference be-
tween the largest and the second largest expected bandit rewards by

α(x) = min
a∈φ(x)

(
V (x) − Q(x,a)

)
. (2.15)

Throughout the analysis, we assume that α(x) satisfies the following condition.

Assumption 1 There exists a constant C > 0 such that

inf
x∈X

α(x) ≥ C.

Note that Assumption 1 is trivially satisfied if the state space X is finite.
The convergence of the OSA algorithm is summarized in the following lemma.

Lemma 2.2 Given a stochastic value function U defined over X with finite Umax,
suppose we run OSA with the input n for any x ∈ X with A(x) > 1. If Assumption 1
is satisfied, then

E
[
Ṽ n(x)

] → V (x) as n → ∞.

Proof Observe that maxa(V (x) − Q(x,a)) ≤ Umax and 0 < α(x) ≤ Umax. Define

Ṽ (x) =
|A(x)|∑

a=1

T x
a (n)

n
Q(x, a).

Applying Theorem 2.1, we have

0 ≤ V (x) − E
[
Ṽ (x)

] = ρ(n)

n

≤ 8U2
max(|A(x)| − 1) lnn

nα(x)
+

(
1 + π2

3

)
(|A(x)| − 1)Umax

n

30 2 Multi-stage Adaptive Sampling Algorithms

≤ C1 lnn

n
+ C2

n
, (2.16)

for some constants C1 and C2, where the last inequality follows from Assump-
tion 1 and the fact that ρ(n) = 0 if φ(x) = ∅. From the definition of Ṽ n(x) given by
Eq. (2.9), it follows that

V (x) − E
[
Ṽ n(x)

] = V (x) − E
[
Ṽ (x) − Ṽ (x) + Ṽ n(x)

]

= V (x) − E
[
Ṽ (x)

]

+ E

[∑

a∈A(x)

T x
a (n)

n

(
Q(x,a) − Q̃(x, a)

)]
. (2.17)

Letting n → ∞, the first term V (x)−E[Ṽ (x)] is bounded by zero from below with
convergence rate of O(lnn

n
) by (2.16). We show now that the second expectation

term is zero.
Note that for every finite n, T x

a (n) ≤ n < ∞ and the event {T x
a (n) = k} is inde-

pendent of {wa
k+1, . . .}. Let μa(x) = E[R′(x, a,wa

j) + γU(f (x, a,wa
j))]. Then,

E

[∑

a∈A(x)

T x
a (n)

n

(
Q(x,a) − Q̃(x, a)

)]

= E

[
∑

a∈A(x)

T x
a (n)

n

(
1

T x
a (n)

T x
a (n)∑

j=1

μa(x)

− 1

T x
a (n)

T x
a (n)∑

j=1

[
R′(x, a,wa

j

) + γU
(
f

(
x, a,wa

j

))]
)]

= 1

n

(
∑

a∈A(x)

E
[
T x

a (n)
]
μa(x)

−
∑

a∈A(x)

E

[T x
a (n)∑

j=1

[
R′(x, a,wa

j

) + γU
(
f

(
x, a,wa

j

))]
])

= 0,

by applying a result analogous to Wald’s equation.
Since

V (x) − E
[
Ṽ n(x)

] = V (x) − E
[
Ṽ (x)

]
,

the convergence follows directly from Eq. (2.17).
Therefore, because x was chosen arbitrarily, we have, for all x ∈ X,

E
[
Ṽ n(x)

] → V (x) as n → ∞,

which concludes the proof of Lemma 2.2. �

2.1 Upper Confidence Bound Sampling 31

We now state the main convergence theorem for the UCB sampling algorithm,
whose proof is based upon an inductive application of Lemma 2.2.

Theorem 2.3 Assume that |A(x)| > 1 for all x ∈ X. Suppose the UCB sampling
algorithm is run with the input Ni for stage i = 0, . . . ,H − 1, and an arbitrary
initial state x ∈ X. If Assumption 1 is satisfied, then

(i) limN0→∞ limN1→∞ · · · limNH−1→∞ E[V̂ N0
0 (x)] = V ∗

0 (x).
(ii) Moreover, the bias induced by the algorithm is bounded by a quantity that con-

verges to zero at rate O(
∑H−1

i=0
lnNi

Ni
), i.e.,

V ∗
0 (x) − E

[
V̂

N0
0 (x)

] ≤ O

(
H−1∑

i=0

lnNi

Ni

)
, x ∈ X.

Proof Part (i). From the definition of V̂
NH−1
H−1 ,

V̂
NH−1
H−1 (x) =

∑

a∈A(x)

1

NH−1

NH−1
a (x)∑

j=1

(
R′(x, a,wa

j

) + γ V̂
NH

H

(
f

(
x, a,wa

j

)))

≤
∑

a∈A(x)

NH−1
a (x)

NH−1
(Rmax + γ · 0) = Rmax, x ∈ X.

Similarly for V̂
NH−2
H−2 , we have

V̂
NH−2
H−2 (x) =

∑

a∈A(x)

1

NH−2

NH−2
a (x)∑

j=1

(
R′(x, a,wa

j

) + γ V̂
NH−1
H−1

(
f

(
x, a,wa

j

)))

≤
∑

a∈A(x)

NH−2
a (x)

NH−2
(Rmax + γRmax) = Rmax(1 + γ), x ∈ X.

Continuing this backwards, we have for all x ∈ X and i = 0, . . . ,H − 1,

V̂
Ni

i (x) ≤ Rmax

H−i−1∑

j=0

γ j ≤ Rmax(H − i).

Therefore, from Lemma 2.2 with Umax = Rmax(H − i), we have for i =
0, . . . ,H − 1, and for arbitrary x ∈ X,

E
[
V̂

Ni

i (x)
] Ni→∞−→ max

a∈A(x)

(
E

[
R′(x, a,w) + γE

[
V̂

Ni+1
i+1

(
f (x, a,w)

)]])
.

32 2 Multi-stage Adaptive Sampling Algorithms

But for arbitrary x ∈ X, because V̂
NH

H (x) = V ∗
H (x) = 0, x ∈ X,

E
[
V̂

NH−1
H−1 (x)

] NH−1→∞−→ V ∗
H−1(x),

which in turn leads to E[V̂ NH−2
H−2 (x)] → V ∗

H−2(x) as NH−2 → ∞ for arbitrary
x ∈ X, and by an inductive argument, we have

lim
N0→∞ lim

N1→∞· · · lim
NH−1→∞E

[
V̂

N0
0 (x)

] = V ∗
0 (x) for all x ∈ X,

which concludes the proof of the first part of Theorem 2.3.

Part (ii). We now argue that the bias of the optimal function estimator in the
UCB sampling algorithm is bounded by a quantity that converges to zero at rate
O(

∑H−1
i=0

lnNi

Ni
). Define Ψi ∈ B(X) such that Ψi(x) = E[V̂ Ni

i (x)] for all x ∈ X and
i = 0, . . . ,H − 1 and ΨH (x) = V ∗

H (x) = 0, x ∈ X. In the proof of Lemma 2.2 (see
Eq. (2.17)), we showed that for i = 0, . . . ,H − 1,

T (Ψi+1)(x) − Ψi(x) ≤ O

(
lnNi

Ni

)
, x ∈ X,

where T is defined in Eq. (1.18). Therefore, we have

T (Ψ1)(x) − Ψ0(x) ≤ O

(
lnN0

N0

)
, x ∈ X. (2.18)

and

Ψ1(x) ≥ T (Ψ2)(x) − O

(
lnN1

N1

)
, x ∈ X. (2.19)

Applying the T -operator to both sides of (2.19), and using the monotonicity prop-
erty of T , we have

T (Ψ1)(x) ≥ T 2(Ψ2)(x) − O

(
lnN1

N1

)
, x ∈ X. (2.20)

Therefore, combining (2.18) and (2.20) yields

T 2(Ψ2)(x) − Ψ0(x) ≤ O

(
lnN0

N0
+ lnN1

N1

)
, x ∈ X.

Repeating this argument yields

T H (ΨH)(x) − Ψ0(x) ≤ O

(
H−1∑

i=0

lnNi

Ni

)
, x ∈ X. (2.21)

2.1 Upper Confidence Bound Sampling 33

Observe that T H (ΨH)(x) = V ∗
0 (x), x ∈ X. Rewriting (2.21), we finally have

V ∗
0 (x) − E

[
V̂

N0
0 (x)

] ≤ O

(
H−1∑

i=0

lnNi

Ni

)
, x ∈ X,

and we know that V ∗
0 (x) − E[V̂ N0

0 (x)] ≥ 0, x ∈ X. Therefore, it implies that
the worst possible bias is bounded by the quantity that converges to zero at rate

O(
∑H−1

i=0
lnNi

Ni
). �

2.1.5 Numerical Example

To illustrate the algorithm, we consider some computational experiments on a finite-
horizon inventory control problem with lost sales. The objective is to find the (non-
stationary) policy to minimize expected costs, which comprise holding, order, and
penalty costs. Demand is a discrete random variable. Given an inventory level, or-
ders are placed and received, demand is realized, and the new inventory level for the
period is calculated, on which costs are charged.

Let Dt denote the demand in period t , xt the inventory level at the end of period
t (which is the inventory at the beginning of period t + 1), at the order amount in
period t , p the per-period per-unit demand lost penalty cost, h the per-period per-
unit inventory holding cost, K the fixed (set-up) cost per order, and M the maximum
inventory level (storage capacity), i.e., xt ∈ {0,1, . . . ,M}. Then the state transition
follows the dynamics:

xt+1 = (xt + at − Dt)
+.

The objective function is the expectation of the total cost given by

H−1∑

t=0

[
K · I {at > 0} + hx+

t+1 + px−
t+1

]
,

where x0 is the starting inventory level, H is the number of periods (time horizon).
Note that we are ignoring per-unit order costs for simplicity.

We consider two versions: (i) fixed order amount q; (ii) any (integral) order
amount (up to capacity). In both cases, if the order amount would bring the in-
ventory level above the inventory capacity M , then that order cannot be placed, i.e.,
that order amount action is not feasible in that state. In case (i), there are just two
actions (order or no order), whereas in case (ii), the number of actions depends on
the capacity limit.

The examples presented here were chosen to be simple enough to allow the
optimal solution to be determined by standard techniques once the distribution is
given, so that the performance of the algorithms could be evaluated. However, the
algorithms themselves use no knowledge of the underlying probability distributions

34 2 Multi-stage Adaptive Sampling Algorithms

UCB Sampling Algorithm for Minimization Problems

Input: stage i �= H , state x ∈ X, Ni > maxx∈X |A(x)|.
(For i = H , V̂

NH

H (x) = V
NH

H (x) = 0.)

Initialization: Simulate wa
1 ∼ U(0,1) for each a ∈ A(x);

set Ni
a(x) = 1 ∀a ∈ A(x), n̄ = |A(x)|, and

Q̂
Ni

i (x, a) = R′(x, a,wa
1

) + γ V̂
Ni+1
i+1

(
f

(
x, a,wa

1

)) ∀a ∈ A(x).

Loop until n̄ = Ni :
• Sample wâ

Ni
â
(x)+1

∼ U(0,1) for current estimate of optimal action a∗:

â ∈ arg min
a∈A(x)

(
Q̂

Ni

i (x, a) − (H − i)

√
2 ln n̄

Ni
a(x)

)
,

where

Q̂
Ni

i (x, a) = 1

Ni
a(x)

Ni
a(x)∑

j=1

[
R′(x, a,wa

j

) + γ V̂
Ni+1
i+1

(
f

(
x, a,wa

j

))]
. (2.22)

• Update Q̂
Ni

i (x, â) estimate via (2.22) using simulated next state

f (x, â,wâ
T x

â
(n̄)+1), with Ni

â
(x) ← Ni

â
(x) + 1.

• n̄ ← n̄ + 1.

Output:

V̂
Ni

i (x) =
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a). (2.23)

Fig. 2.5 Modified UCB algorithm for minimization problems

driving the randomness in the systems, specifically in this case the demand distri-
bution. Furthermore, there is no structural knowledge on the form of the optimal
policy.

In actual implementation, a slight modification is required for this example, be-
cause it is a minimization problem, whereas the UCB sampling algorithm was writ-
ten for a maximization problem. Conceptually, the most straightforward way would
be to just take the reward as the negative of the cost function. However, we instead
leave the problem as a minimization, in which case we need to replace the “max”
operator with the “min” operator and the addition with subtraction in (2.3):

â ∈ arg min
a∈A(x)

(
Q̂

Ni

i (x, a) − (H − i)

√
2 ln n̄

Ni
a(x)

)
,

where Rmax has been replaced by 1, because empirical results indicated that this
“unscaled” version exhibited better performance for this particular inventory control

2.1 Upper Confidence Bound Sampling 35

problem. The explicit modified UCB algorithm for minimization problems is given
in Fig. 2.5.

The alternative estimators would then be obtained by replacing the final estimator
given by Eq. (2.23) in Fig. 2.5 by the following, corresponding to Eqs. (2.6) and
(2.7), respectively:

V̂
Ni

i (x) = min
a∈A(x)

Q̂
Ni

i (x, a), (2.24)

V̂
Ni

i (x) = min

{
Q̂

Ni

i (x, â),
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a)

}
, (2.25)

where the operator in defining â ∈ arg maxa{Ni
a(x)} remains a maximization opera-

tion.
With K = 0 (no fixed order cost), the optimal order policy is easily solvable

without dynamic programming, because the periods are decoupled, and the problem
reduces to solving a single-period inventory optimization problem. In case (i), the
optimal policy follows a threshold rule, in which an order is placed if the inventory
is below a certain level; otherwise, no order is placed. The threshold (order point) is
given by

s = min
x≥0

{
x : hE

[
(x + q − D)+

] + pE
[
(D − q − x)+

] ≥ hE
[
(x − D)+

]

+ pE
[
(D − x)+

]}
,

i.e., one orders in period t if xt < s (assuming that xt + q ≤ M ; also, if the set
is empty, then take s = ∞, i.e., an order will always be placed). In case (ii), the
problem becomes a newsboy problem, with a base-stock (order up to) solution given
by

S = F−1(p/(p + h)
)
,

i.e., one orders (S − xt)
+ in period t (with the implicit assumption S ≤ M).

For the K > 0 case (i), the optimal policy is again a threshold (order point) policy,
but the order point is non-stationary, whereas in case (ii), the optimal policy is of the
(s, S) type, again non-stationary. To obtain the true solutions, standard backwards
induction was employed, using knowledge of the underlying demand distribution.

For the numerical experiments, we used the following parameter settings: hori-
zon H = 3; capacity M = 20; initial inventory x0 = 5; demand Dt ∼ DU(0,9)

(discrete uniform); holding cost h = 1; penalty cost p = 1 and p = 10; fixed order
cost K = 0 and K = 5; fixed order amount for case (i): q = 10. Note that since the
order quantity is greater than the maximum demand for our values of the parameters,
i.e., q > Dt always, placing an order guarantees no lost sales.

Tables 2.1 and 2.2 give the performances of these estimators for each of the
respective cases (i) and (ii), including the optimal value and policy parameters. Fig-
ures 2.6, 2.7, 2.8, and 2.9 show the convergence of the estimates as a function of

36 2 Multi-stage Adaptive Sampling Algorithms

Table 2.1 Value function estimate for the inventory control example case (i) as a function of the
number of samples at each state: H = 3,M = 20, x0 = 5, Dt ∼ DU(0,9), q = 10, h = 1, where
each entry represents the mean based on 30 independent replications (standard error in parentheses)

(K,p) Optimal N Estimator 1 Estimator 2 Estimator 3

K = 0
p = 1

10.440
s = 0

4 15.03 (0.29) 9.13 (0.21) 9.56 (0.32)

8 12.82 (0.16) 10.21 (0.10) 10.30 (0.10)

16 11.75 (0.09) 10.33 (0.08) 10.38 (0.08)

32 11.23 (0.06) 10.45 (0.06) 10.49 (0.06)

K = 0
p = 10

24.745
s = 6

4 30.45 (0.87) 19.98 (0.79) 20.48 (0.82)

8 28.84 (0.49) 23.09 (0.55) 23.68 (0.52)

16 26.69 (0.38) 23.88 (0.44) 23.94 (0.45)

32 26.12 (0.14) 24.73 (0.19) 24.74 (0.18)

K = 5
p = 1

10.490
s1 = 0
s2 = 0
s3 = 0

4 18.45 (0.29) 10.23 (0.21) 10.41 (0.22)

8 14.45 (0.15) 10.59 (0.10) 10.62 (0.10)

16 12.48 (0.10) 10.51 (0.10) 10.52 (0.10)

32 11.47 (0.07) 10.46 (0.06) 10.46 (0.06)

K = 5
p = 10

31.635
s1 = 6
s2 = 6
s3 = 5

4 37.52 (0.98) 26.42 (0.88) 26.92 (0.89)

8 36.17 (0.43) 30.13 (0.49) 30.41 (0.51)

16 33.81 (0.40) 30.76 (0.43) 30.80 (0.43)

32 33.11 (0.16) 31.62 (0.22) 31.64 (0.22)

the number of samples at each stage for each of the respective cases (i) and (ii) con-
sidered. In each table and figure, estimator 1 stands for the original estimator using
Eq. (2.23), and estimators 2 and 3 refer to the estimators using Eqs. (2.24) and (2.25)
with a∗ ∈ arg maxa{Ni

a(x)} in place of Eq. (2.23), respectively. The results indicate
convergence of all three estimators, with the two alternative estimators providing
superior empirical performance over the original estimator. We conjecture that this
is due to the fact that the original estimator’s use of a weighted average is too con-
servative, thus leading to unnecessarily slow convergence. We suspect this would be
the case for the non-adaptive sampling version using a weighted average estimator,
too.

Choosing an appropriate sample size is critical in practical applications. The em-
pirical performance of the two alternative estimators indicates that a heuristic stop-
ping rule for choosing the number of samples at each stage could be based on these
two estimates, which showed rapid convergence in the numerical examples. This
convergence implies that in Eq. (2.7), the first term in the “max” operator dominates
the second term (i.e., the original estimator), and the actions that have been sampled
the most almost “always” yield the largest Q-function values; in other words, at this
point, estimators 2 and 3 are “almost” the same, so if they are biased in opposite di-
rections, they must have reached a sample size at which they are “nearly” unbiased.

2.2 Pursuit Learning Automata Sampling 37

Table 2.2 Value function estimate for the inventory control example case (ii) as a function of the
number of samples at each state: H = 3,M = 20, x0 = 5, Dt ∼ DU(0,9), h = 1, where each entry
represents the mean based on 30 independent replications (standard error in parentheses)

(K,p) Optimal N Estimator 1 Estimator 2 Estimator 3

K = 0
p = 1

7.500
S = 4

21 24.06 (0.16) 3.12 (0.17) 9.79 (0.21)

25 22.05 (0.12) 5.06 (0.12) 6.28 (0.19)

30 20.36 (0.11) 5.91 (0.09) 6.47 (0.09)

35 18.82 (0.11) 6.26 (0.10) 6.62 (0.11)

K = 0
p = 10

13.500
S = 9

21 29.17 (0.21) 6.04 (0.30) 13.69 (0.46)

25 28.08 (0.21) 9.28 (0.23) 12.06 (0.29)

30 27.30 (0.19) 11.40 (0.20) 13.28 (0.23)

35 26.06 (0.16) 12.23 (0.18) 13.07 (0.16)

K = 5
p = 1

10.490
s1 = 0, S1 = 0
s2 = 0, S2 = 0
s3 = 0, S3 = 0

21 33.05 (0.12) 8.73 (0.21) 18.62 (0.44)

25 29.99 (0.10) 10.96 (0.11) 11.79 (0.16)

30 27.45 (0.10) 11.22 (0.05) 11.52 (0.07)

35 25.33 (0.09) 10.96 (0.06) 11.12 (0.07)

K = 5
p = 10

25.785
s1 = 6, S1 = 9
s2 = 6, S2 = 9
s3 = 6, S3 = 9

21 39.97 (0.22) 17.78 (0.49) 26.76 (0.52)

25 39.01 (0.19) 22.68 (0.26) 25.09 (0.33)

30 38.03 (0.16) 24.35 (0.17) 25.45 (0.27)

35 36.89 (0.12) 24.71 (0.23) 25.51 (0.28)

Once this is the case, it may be preferable to perform more independent replications
at a particular action than to sample more actions (larger N).

2.2 Pursuit Learning Automata Sampling

The second algorithm in the chapter is the pursuit learning automata (PLA) sampling
algorithm. We analyze the finite-time behavior of the PLA sampling algorithm, pro-
viding a bound on the probability that a given initial state takes the optimal action,
and a bound on the probability that the difference between the optimal value and
the estimate of it exceeds a given error. Similar to the UCB algorithm, the PLA
sampling algorithm constructs a sampled tree in a recursive manner to estimate the
optimal value at an initial state and incorporates an adaptive sampling mechanism
for selecting which action to simulate at each branch in the tree. In the PLA algo-
rithm, the action is determined by sampling from a probability distribution, which
is iteratively updated based on a probability estimate for the optimal action. We also
discuss how to apply the PLA sampling algorithm in the direct context of partially
observable MDPs (POMDPs).

The PLA sampling algorithm extends in a recursive manner (for MDPs) the pur-
suit algorithm from learning automata that is designed to solve (non-sequential)

38 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.6 Convergence of value function estimate for the inventory control example case (i) q = 10
as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),

h = 1,K = 0

stochastic optimization problems. A learning automaton is associated with a finite
set of actions (candidate solutions) and updates a probability distribution over the set
by iterative interaction with an environment and takes (samples) an action accord-
ing to the newly updated distribution. The environment provides a certain reaction

2.2 Pursuit Learning Automata Sampling 39

Fig. 2.7 Convergence of value function estimate for the inventory control example case (i) q = 10
as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),

h = 1,K = 5

(reward) to the action taken by the automaton, where the reaction is random and the
distribution is unknown to the automaton. The automaton’s aim is to learn to choose
the action that yields the highest average reward. In the pursuit algorithm, the au-
tomaton pursues the current best action, which is estimated using sample average

40 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.8 Convergence of value function estimate for the inventory control example case (ii) as a
function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9), h = 1,

K = 0

rewards, by increasing the probability of selecting that action while decreasing the
probability of selecting all other actions.

Since learning automata are well-known adaptive decision-making devices op-
erating in unknown random environments, the PLA sampling algorithm’s sampling
process of taking an action is adaptive at each stage. At each given state in a given

2.2 Pursuit Learning Automata Sampling 41

Fig. 2.9 Convergence of value function estimate for the inventory control example case (ii) as
a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),

h = 1,K = 5

stage, a fixed sampling budget is allocated among feasible actions as in the UCB
sampling algorithm, and the budget is used with the current probability estimate for
the optimal action. A simulated state corresponds to an automaton and updates cer-
tain functions (including the probability distribution over the action space) at each
iteration of the algorithm.

42 2 Multi-stage Adaptive Sampling Algorithms

Based on the finite-time analysis of the pursuit algorithm, we analyze the finite-
time behavior of the PLA sampling algorithm, providing:

(i) a bound on the probability that the initial state at stage 0 takes the optimal
action, in terms of sampling parameters of the PLA sampling algorithm, and

(ii) a bound on the probability that the difference between the estimate of V ∗
0 (x0)

and V ∗
0 (x0) exceeds a given error.

2.2.1 Algorithm Description

Figure 2.10 presents the PLA sampling algorithm for estimating V ∗
i (x) for a given

state x. The inputs to the algorithm are similar to the UCB algorithm: a state x ∈
X and the stage i, plus sampling parameters Ni > 0 and μi ∈ (0,1), where the
latter is particular to the PLA sampling algorithm and the former does not require
sampling every action at least once, as in the UCB algorithm. The output is the same
as in the UCB algorithm: V̂

Ni

i (x), an estimate of V ∗
i (x), the optimal reward-to-go

value for state x and stage i, where V̂
NH

H (x) = V
NH

H (x) = 0 ∀NH ,x ∈ X, but it is
estimated using the Q-function value at the estimated optimal action (cf. Eq. (2.29)),
somewhat analogous to the UCB algorithm alternative estimator given by Eq. (2.7).

As in the UCB sampling algorithm, whenever V̂
Ni′
i′ (y) (for future periods i′ > i

and simulated next states y) is encountered in the Loop portion of the algorithm
at (2.26), a recursive call is required. The initial call to the algorithm is done with
stage i = 0, the initial state x0, N0, and μ0, and every sampling is independent of
previous samplings.

As in the UCB sampling algorithm, the PLA sampling algorithm builds a sam-
pled tree of depth H , with the root node being the initial state x0 at stage 0 and a
branching factor of Ni at each level i (level 0 corresponds to the root). The root
node x0 initializes the probability distribution over the action space Px0 as the uni-
form distribution (see the Initialization step in the PLA sampling algorithm). At
each iteration in the Loop step, an action is sampled from the probability distri-
bution Px0(k) and a random number wk is generated independently (an action and
a random number together corresponding to an edge in the tree). For the sampled
action a(k) ∈ A(x0), the Q-function estimate is updated using the simulated reward
R′(x0, a(k),wk) and next state f (x0, a(k),wk), and the count variable N0

a(k)(x0) is

incremented, where a recursive call is made to estimate V̂
N1
1 at the simulated next

state. This is followed by updating the estimate of the optimal action—an action
that achieves the current best Q-function value (cf. (2.27))—and then updating the
probability distribution Px0(k) in the direction of the current estimate of the optimal
action â (cf. (2.28)) by adding μi to its probability mass and subtracting a propor-
tional amount from all other actions. This “pursuit” of the current best action gives
the original algorithm its name in its non-recursive one-stage original version. After
N0 iterations, the algorithm estimates the optimal value V ∗

0 (x0) by the Q-function

2.2 Pursuit Learning Automata Sampling 43

Pursuit Learning Automata (PLA) Sampling Algorithm

Input: stage i < H , state x ∈ X, Ni > 0, μi ∈ (0,1).
(For i = H , V̂

NH

H (x) = V
NH

H (x) = 0.)

Initialization: Set Px(0)(a) = 1/|A(x)|,Ni
a(x) = 0,Mi(x, a) = 0 ∀a ∈ A(x);

k = 0.

Loop until k = Ni :
• Sample a(k) ∼ Px(k), wk ∼ U(0,1).
• Update Q-function estimate for a = a(k) only:

Mi

(
x, a(k)

) ← Mi

(
x, a(k)

)

+ R′(x, a(k),wk

) + V̂
Ni+1
i+1

(
f

(
x, a(k),wk

))
, (2.26)

Ni
a(k)(x) ← Ni

a(k)(x) + 1,

Q̂
Ni

i

(
x, a(k)

) ← M
Ni

i (x, a(k))

Ni
a(k)(x)

.

• Update optimal action estimate: (ties broken arbitrarily)

â ∈ arg max
a∈A(x)

Q̂
Ni

i (x, a). (2.27)

• Update probability distribution over action space:

Px(k + 1)(a) ← (1 − μi)Px(k)(a) + μiI {â = a} ∀a ∈ A(x). (2.28)

• k ← k + 1.

Output:

V̂
Ni

i (x) = Q̂
Ni

i (x, â). (2.29)

Fig. 2.10 Pursuit learning automata (PLA) sampling algorithm description

value at the currently estimated optimal action via Eq. (2.29), where

Q̂
N0
0 (x0, a) = 1

N0
a (x0)

∑

j :a(j)=a

[
R′(x0, a,wj) + V̂

N1
1

(
f (x0, a,wj)

)]
,

∑
a∈A(x0)

N0
a (x0) = N0. Note that here for notational simplicity we have not as-

sociated the random number streams {wj } with actions, as in the UCB sampling
algorithm, where we used {wa

j }, a ∈ A(x).
Analogous to the UCB sampling algorithm, the running-time complexity of the

PLA sampling algorithm is O(NH) with N = maxi Ni , independent of the state
space size. (For some performance guarantees, the value N depends on the size of
the action space; see the next section.)

44 2 Multi-stage Adaptive Sampling Algorithms

2.2.2 Convergence Analysis

All of the estimated optimal value and Q-values in the current section refer to the
values from the Output step of the algorithm. The following lemma provides a
probability bound on the estimate of the Q-value relative to the true Q-value when
the estimate of the Q-value is obtained under the assumption that the optimal value
for the remaining horizon is known (so that the recursive call is not required).

Lemma 2.4 (Cf. [146, Lemma 3.1]) Given δ ∈ (0,1) and positive integer K such
that 6 ≤ K < ∞, consider running the one-stage non-recursive PLA sampling al-
gorithm obtained by replacing (2.26) by

M
Ni

i (x, a) ← M
Ni

i (x, a) + R′(x, a,wk) + V ∗
i+1

(
f (x, a,wk)

)
(2.30)

with Ni > λ̄(K, δ) and 0 < μi < μ̄i(K, δ), where

λ̄(K, δ) =
⌈

2K

ln l
ln

[
Kl

ln l

(
K

δ

) 1
K

]⌉
, μ̄i(K, δ) = 1 − 2−1/λ̄(K,δ),

and l = 2|A(x)|
2|A(x)|−1 . Then for each action a ∈ A(x), we have

P

(
Ni∑

j=0

I
{
a(j) = a

} ≤ K

)
< δ.

Theorem 2.5 Let {Xi, i = 1,2, . . .} be a sequence of i.i.d. non-negative uniformly
bounded random variables, with 0 ≤ Xi ≤ D and E[Xi] = μ ∀i, and let M ∈Z+ be
a positive integer-valued random variable bounded by L. Then for any given ε > 0
and n ∈Z+, we have

P

(∣∣∣∣∣
1

M

M∑

i=1

Xi − μ

∣∣∣∣∣ ≥ ε,M ≥ n

)
≤ 2e−n(D+ε

D
ln D+ε

D
− ε

D
).

Proof Define ΛD(τ) := eDτ −1−τD

D2 , and let τmax be a constant satisfying τmax �= 0

and 1 + (D + ε)τmax − eDτmax = 0 (see Fig. 2.11).
Let Yk = ∑k

i=1(Xi − μ). It is easy to see that the sequence {Yk} forms a martin-
gale w.r.t. {Fk}, where Fj is the σ -field generated by {Y1, . . . , Yj }. Therefore, for
any τ > 0,

P

(
1

M

M∑

i=1

Xi − μ ≥ ε,M ≥ n

)

= P(YM ≥ Mε,M ≥ n)

= P
(
τYM − ΛD(τ)〈Y 〉M ≥ τMε − ΛD(τ)〈Y 〉M,M ≥ n

)
,

2.2 Pursuit Learning Automata Sampling 45

Fig. 2.11 Sketch of
functions f1(τ) = eτD and
f2(τ) = 1 + τ(D + ε)

where

〈Y 〉n =
n∑

j=1

E
[
(Yj)

2
∣∣Fj−1

]
, 	Yj = Yj − Yj−1.

Now for any τ ∈ (0, τmax), and for any n1 ≥ n0, where n0, n1 ∈ Z+,

τ(n1 − n0)ε ≥ eDτ − 1 − τD

D2
(n1 − n0)D

2

≥ ΛD(τ)

[
n1∑

j=1

E
[
(Yj)

2|Fj−1
] −

n0∑

j=1

E
[
(Yj)

2|Fj−1
]
]
,

which implies that

τn1ε − ΛD(τ)〈Y 〉n1 ≥ τn0ε − ΛD(τ)〈Y 〉n0 ∀τ ∈ (0, τmax).

Thus for all τ ∈ (0, τmax),

P

(
1

M

M∑

i=1

Xi − μ ≥ ε,M ≥ n

)

≤ P
(
τYM − ΛD(τ)〈Y 〉M ≥ τnε − ΛD(τ)〈Y 〉n,M ≥ n

)

≤ P
(
τYM − ΛD(τ)〈Y 〉M ≥ τnε − ΛD(τ)nD2,M ≥ n

)

= P
(
eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D2

,M ≥ n
)
.

It can be shown that (cf. Lemma 1 in [163, p. 505]) the sequence {Zt(τ) =
eτYt−ΛD(τ)〈Y 〉t , t ≥ 1} with Z0(τ) = 1 forms a non-negative supermartingale. From

46 2 Multi-stage Adaptive Sampling Algorithms

the above inequality, it follows that

P

(
1

M

M∑

i=1

Xi − μ ≥ ε,M ≥ n

)

≤ P
(
eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D2)

≤ P
(

sup
0≤t≤L

Zt (τ) ≥ eτnε−nΛD(τ)D2
)

≤ E[Z0(τ)]
eτnε−nΛD(τ)D2 by maximal inequality for supermartingales [163]

= e−n(τε−ΛD(τ)D2). (2.31)

By using a similar argument, we can also show that

P

(
1

M

M∑

i=1

Xi − μ ≤ −ε,M ≥ n

)
≤ e−n(τε−ΛD(τ)D2). (2.32)

Thus by combining (2.31) and (2.32), we have

P

(∣∣∣∣∣
1

M

M∑

i=1

Xi − μ

∣∣∣∣∣ ≥ ε,M ≥ n

)
≤ 2e−n(τε−ΛD(τ)D2). (2.33)

Finally, we optimize the right-hand side of (2.33) over τ . It is easy to verify that the
optimal τ ∗ is given by τ ∗ = 1

D
ln D+ε

D
∈ (0, τmax) and

τ ∗ε − ΛD

(
τ ∗)D2 = D + ε

D
ln

D + ε

D
− ε

D
> 0.

Hence Theorem 2.5 follows. �

Lemma 2.6 Consider the non-recursive PLA sampling algorithm obtained by re-
placing (2.26) by

M
Ni

i (x, a) ← M
Ni

i (x, a) + R′(x, a,wk) + V ∗
i+1

(
f (x, a,wk)

)
. (2.34)

Assume Ni > λ(ε, δ) and 0 < μi < μ∗
i (ε, δ), where

λ(ε, δ) =
⌈

2Mε,δ

ln l
ln

[
lMε,δ

ln l

(
2Mε,δ

δ

)1/Mε,δ
]⌉

, (2.35)

with

Mε,δ = max

{
6,

⌈
RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH) − ε

⌉}
,

2.2 Pursuit Learning Automata Sampling 47

l = 2|A(x)|/(2|A(x)| − 1), and μ∗
i (ε, δ) = 1 − 2−1/Ni . Consider a fixed i, x ∈ X,

ε > 0, and δ ∈ (0,1). Then, for all a ∈ A(x) at the Output step,

P
(∣∣Q̂Ni

i (x, a) − Q∗
i (x, a)

∣∣ ≥ ε
)
< δ.

Proof For any action a ∈ A(x), let Ij (a) be the iteration at which action a is cho-

sen for the j th time, let Q̂
Ni

i,k(x, a) be the current estimate of Q∗
i (x, a) at the kth

iteration, and let N
i,k
a (x) be the number of times action a is sampled up to the kth

iteration at x, i.e., N
i,k
a (x) = ∑k

j=0 I {a(j) = a}. By the PLA sampling algorithm,

the estimation Q̂
Ni

i,k(x, a) is given by (cf. (2.34))

Q̂
Ni

i,k(x, a) = 1

N
i,k
a (x)

N
i,k
a (x)∑

j=1

(
R′(x, a,wIj (a)) + V ∗

i+1

(
f (x, a,wIj (a))

))
. (2.36)

Since the sequence of random variables {wIj (a), j ≥ 1} is i.i.d., a straightforward
application of Theorem 2.5 yields

P
(∣∣Q̂Ni

i,k(x, a) − Q∗
i (x, a)

∣∣ ≥ ε, Ni,k
a (x) ≥ K

)

≤ 2e
−K(

RmaxH+ε
RmaxH

ln RmaxH+ε
RmaxH

− ε
RmaxH

)
. (2.37)

Define the events

Ak = {∣∣Q̂Ni

i,k(x, a) − Q∗
i (x, a)

∣∣ ≥ ε
}

and Bk = {
Ni,k

a (x) ≥ K
}
.

By the law of total probability,

P(Ak) = P(Ak ∩Bk) + P
(
Ak

∣∣Bc
k

)
P

(
Bc

k

) ≤ P(Ak ∩Bk) + P
(
Bc

k

)
.

Taking

K =
⌈

RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH) − ε

⌉
,

we get from (2.37) that P(Ak ∩Bk) ≤ δ/2. On the other hand, by Lemma 2.4

P
(
Bc

k

) = P
(
Ni,k

a (x) < K
)
<

δ

2
for k > λ̄(K, δ/2) and 0 < μi < 1 − 2

− 1
λ̄(K, δ

2) .

Therefore P(ANi
) = P(|Q̂Ni

i (x, a) − Q∗
i (x, a)| ≥ ε) < δ for Ni > λ(ε, δ) and 0 <

μi < μ∗
i (ε, δ), where

λ(ε, δ) =
⌈

2Mε,δ

ln l
ln

[
lMε,δ

ln l

(
2Mε,δ

δ

)1/Mε,δ
]⌉

,

Mε,δ = max

{
6,

⌈
RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH) − ε

⌉}
,

48 2 Multi-stage Adaptive Sampling Algorithms

μ∗
i (ε, δ) = 1 − 2

− 1
Ni < 1 − 2− 1

λ(ε,δ) .

Since a ∈ A(x) is arbitrary, the proof is complete. �

We now make an assumption for the purpose of the analysis. The assumption
states that at each stage, the optimal action is unique at each state. In other words,
the given MDP has a unique optimal policy. We will give a remark on this at the end
of this section.

Assumption 2 For all x ∈ X and i = 0,1, . . . ,H − 1,

θi(x) := Q∗
i

(
x, a∗) − max

a �=a∗ Q∗
i (x, a) > 0,

where V ∗
i (x) = Q∗

i (x, a∗).

Define θ := infx∈X,i=0,...,H−1 θi(x). Given δi ∈ (0,1), i = 0, . . . ,H − 1, define

ρ := (1 − δ0)

H−1∏

i=1

(1 − δi)
∏i

j=1 Nj . (2.38)

Lemma 2.7 Assume that Assumption 2 holds. Select Ni > λ(θ

2i+2 , δi) (see

Eq. (2.35)) and 0 < μi < μ∗
i = 1 − 2

− 1
Ni for a given δi ∈ (0,1), i = 0, . . . ,H − 1.

Then under the PLA sampling algorithm,

P

(∣∣V̂ N0
0 (x0) − V ∗

0 (x0)
∣∣ >

θ

2

)
< 1 − ρ,

where ρ is given by Eq. (2.38).

Proof Let Xi
s be the set of sampled states in X by the algorithm at stage i. Suppose

for a moment that for all x ∈ Xi+1
s , with some Ni+1,μi+1, and a given δi+1 ∈ (0,1),

P

(∣∣V̂ Ni+1
i+1 (x) − V ∗

i+1(x)
∣∣ >

θ

2i+2

)
< δi+1. (2.39)

Consider for x ∈ Xi
s ,

Q̃
Ni

i (x, a) = 1

Ni
a(x)

Ni
a(x)∑

j=1

[
R′(x, a,wa

j

) + V ∗
i+1

(
f

(
x, a,wa

j

))]
,

where {wa
j }, j = 1, . . . ,Ni

a(x) refers to the sampled random number sequence for
the sample execution of the action a in the algorithm. We find that for any sampled
x ∈ Xi

s at stage i,

2.2 Pursuit Learning Automata Sampling 49

Q̂
Ni

i (x, a) − Q̃
Ni

i (x, a)

= 1

Ni
a(x)

Ni
a(x)∑

j=1

(
V̂

Ni+1
i+1

(
f

(
x, a,wa

j

)) − V ∗
i+1

(
f

(
x, a,wa

j

)))
.

Then under the assumption that (2.39) holds, for all a ∈ A(x) at any sampled x ∈ Xi
s

at stage i,

P

(∣∣Q̂Ni

i (x, a) − Q̃
Ni

i (x, a)
∣∣ ≤ θ

2i+2

)

≥ (1 − δi+1)
Ni

a(x) ≥ (1 − δi+1)
Ni+1 . (2.40)

This is because if for all wa
j ’s, j = 1, . . . ,Ni

a(x),

∣∣V Ni+1
i+1

(
f

(
x, a,wa

j

)) − V ∗
i+1

(
f

(
x, a,wa

j

))∣∣ ≤ ε

for ε > 0, then

1

Ni
a(x)

Ni
a(x)∑

j=1

∣∣V Ni+1
i+1

(
f

(
x, a,wa

j

)) − V ∗
i+1

(
f

(
x, a,wa

j

))∣∣ ≤ ε,

which further implies

1

Ni
a(x)

∣∣∣∣∣

Ni
a(x)∑

j=1

[
V

Ni+1
i+1

(
f

(
x, a,wa

j

)) − V ∗
i+1

(
f

(
x, a,wa

j

))]
∣∣∣∣∣ ≤ ε,

and therefore

P
(∣∣Q̂Ni

i (x, a) − Q̃
Ni

i (x, a)
∣∣ ≤ ε

)

≥
Ni

a(x)∏

j=1

P
(∣∣V Ni+1

i+1

(
f

(
x, a,wa

j

)) − V ∗
i+1

(
f

(
x, a,wa

j

))∣∣ ≤ ε
)
.

From Lemma 2.6, for all a ∈ A(x), with Ni > λ(θ/2i+2, δi) and μi ∈ (0,1 −
2−1/Ni) for δi ∈ (0,1),

P

(∣∣Q̃Ni

i (x, a) − Q∗
i (x, a)

∣∣ >
θ

2i+2

)
< δi, x ∈ Xi

s. (2.41)

Combining (2.40) and (2.41),

P

(∣∣Q̂Ni

i (x, a) − Q∗
i (x, a)

∣∣ ≤ θ

2i+2
+ θ

2i+2

)
≥ (1 − δi)(1 − δi+1)

Ni+1 ,

50 2 Multi-stage Adaptive Sampling Algorithms

and this yields the result that under the supposition of (2.39), for any x ∈ Xi
s ,

P

(∣∣Q̂Ni

i (x, a) − Q∗
i (x, a)

∣∣ ≤ θ

2i+1

)
≥ (1 − δi)(1 − δi+1)

Ni+1 .

This implies that at the Output step,

P

(
max
a∈A

∣∣Q̂Ni

i (x, a) − Q∗
i (x, a)

∣∣ <
θ

2

)
≥ (1 − δi)(1 − δi+1)

Ni+1 , x ∈ Xi
s. (2.42)

From the definition of θ , if

max
a∈A

∣∣Q̂Ni

i (x, a) − Q∗
i (x, a)

∣∣ < θ/2,

then Q̂
Ni

i (x, a∗) > Q̂
Ni

i (x, a) for all a �= a∗ with a∗ = arg maxa∈A Q∗
i (x, a) (cf. the

proof of Theorem 3.1 in [146]). Therefore, by the definition of V̂
Ni

i (x), (V̂ Ni

i (x) =
maxa∈A Q̂

Ni

i (x, a) = Q̂
Ni

i (x, a∗) and V ∗
i (x) = Q∗

i (x, a∗)), with our choice of Ni >

λ(θ

2i+2 , δi) and μi ∈ (0,1 − 2
− 1

Ni), we have

P

(∣∣V̂ Ni

i (x) − V ∗
i (x)

∣∣ >
θ

2i+1

)
< 1 − (1 − δi)(1 − δi+1)

Ni+1

if for all x ∈ Xi+1
s , with some Ni+1,μi+1, and a given δi+1 ∈ (0,1),

P

(∣∣V̂ Ni+1
i+1 (x) − V ∗

i+1(x)
∣∣ >

θ

2i+2

)
< δi+1.

Now apply an inductive argument: since V̂
NH

H (x) = V ∗
H (x) = 0, x ∈ X, with

NH−1 > λ(θ/2H+1, δH−1) ≥ λ(θ/2H , δH−1) and μH−1 ∈ (0,1 − 2−1/NH−1),

P

(∣∣V̂ NH−1
H−1 (x) − V ∗

H−1(x)
∣∣ >

θ

2H

)
< δH−1, x ∈ XH−1

s .

It follows that with NH−2 > λ(θ/2H , δH−2) and μH−2 ∈ (0,1 − 2−1/NH−2),

P
(∣∣V̂ NH−2

H−2 (x) − V ∗
H−2(x)

∣∣ > θ/2H−1) < 1 − (1 − δH−2)(1 − δH−1)
NH−1

for x ∈ XH−2
s and further follows that with NH−3 > λ(θ/2H−1, δH−3) and μH−3 ∈

(0,1 − 2−1/NH−3),

P

(∣∣V̂ NH−3
H−3 (x) − V ∗

H−3(x)
∣∣ >

θ

2H−2

)

< 1 − (1 − δH−3)(1 − δH−2)
NH−2(1 − δH−1)

NH−2NH−1

2.2 Pursuit Learning Automata Sampling 51

for x ∈ XH−3
s . Continuing this way, we have

P

(∣∣V̂ N1
1 (x) − V ∗

1 (x)
∣∣ >

θ

22

)

< 1 − (1 − δ1)(1 − δ2)
N2(1 − δ3)

N2N3 × · · · × (1 − δH−1)
N2···NH−1

for x ∈ X1
s . Finally, with N0 > λ(θ/4, δ0) and μ0 ∈ (0,1 − 2−1/N0),

P

(∣∣V̂ N0
0 (x0) − V ∗

0 (x0)
∣∣ >

θ

2

)

< 1 − (1 − δ0)(1 − δ1)
N1 × · · · × (1 − δH−1)

N1···NH−1 ,

which completes the proof. �

Theorem 2.8 Assume that Assumption 2 holds. Given δi ∈ (0,1), i = 0, . . . ,H − 1,
select Ni > λ(θ/2i+2, δi) and 0 < μi < μ∗

i = 1 − 2−1/Ni , i = 1, . . . ,H − 1. If

N0 > λ(θ/4, δ0) +
⌈

ln 1
ε

ln 1
1−μ∗

0

⌉

and 0 < μ0 < μ∗
0 = 1 − 2−1/λ(θ/4,δ0), then under the PLA sampling algorithm with

ρ in Eq. (2.38), for all ε ∈ (0,1),

P
(
Px0(N0)

(
a∗) > 1 − ε

)
> ρ,

where a∗ ∈ arg maxa∈A(x0)
Q∗

0(x0, a).

Proof Define the event

E′(k) = {
Px0(k)

(
a∗) > 1 − ε

}
,

where a∗ = arg maxa∈A Q∗
0(x0, a). Let λ(θ/4, δ0) = K . Then,

P
(
E′(κ + K)

) ≥ P
(
E′(κ + K)

∣∣E(K)
)
P

(
E(K)

)
, κ = 1,2, . . . ,

where the event E(K) is given as {maxa∈A |Q̂Ni

i (x, a) − Q∗
i (x, a)| < θ/2} at itera-

tion k = K .
By selecting N0 > K = λ(θ

4 , δ0) and Ni > λ(θ

2i+2 , δi), i = 1, . . . ,H − 1, and
μi ’s for δi ∈ (0,1), P(E(K)) ≥ ρ by Lemma 2.7. We will obtain l such that
P(E′(κ + K)|E(K)) = 1 if κ > l, proving the statement of the theorem.

From the choice of K = λ(θ/4, δ0), at iteration N0 > K , for each non-optimal ac-
tion a �= a∗, Px0(N0)(a) is decremented by (1 − μ0). Therefore, Px0(κ + K)(a∗) =
1 − ∑

a �=a∗ Px0(K)(a)(1 − μ0)
κ and

∑
a �=a∗ Px0(K)(a)(1 − μ0)

κ < ε is satisfied if

κ > l =
 ln ε
ln(1−μ∗

0)
�. �

52 2 Multi-stage Adaptive Sampling Algorithms

Based on the proof of Lemma 2.7, the following result follows immediately. We
skip the details.

Theorem 2.9 Assume that Assumption 2 holds. Given δi ∈ (0,1), i = 0, . . . ,H − 1

and ε ∈ (0, θ], select Ni > λ(ε

2i+2 , δi),0 < μi < μ∗
i = 1 − 2

− 1
Ni , i = 0, . . . ,H − 1.

Then under the PLA sampling algorithm with ρ in Eq. (2.38),

P

(∣∣V̂ N0
0 (x0) − V ∗

0 (x0)
∣∣ >

ε

2

)
< 1 − ρ.

From the statements of Lemma 2.7 and Theorems 2.8 and 2.9, the performance of
the PLA sampling algorithm depends on the value of θ . If θi(x) is very small or even
0 (failing to satisfy Assumption 2) for some x ∈ X, the PLA sampling algorithm
requires a very high sampling complexity to distinguish between the optimal action
and the second best action or multiple optimal actions if x is in the sampled tree
of the PLA sampling algorithm. In general, the larger θ is, the more effective the
algorithm will be (the smaller the sampling complexity). Therefore, in the actual
implementation of the PLA sampling algorithm, if multiple actions’ performances
are very close after “enough” iterations in the Loop portion, it would be advisable
to keep only one action among the competitive actions (transferring the probability
mass). The parameter θ can thus be viewed as a measure of problem difficulty.

Furthermore, to achieve a certain approximation guarantee at the root level of
the sampled tree (i.e., the quality of V̂

N0
0 (x0)), we need a geometric increase in the

accuracies of the optimal reward-to-go values for the sampled states at the lower
levels, making it necessary that the total number of samples at the lower levels
increases geometrically (Ni depends on 2i+2/θ). This is because the estimate error
of V ∗

i (xi) for some xi ∈ X affects the estimate of the sampled states in the higher
levels in a recursive manner (the error in a level “adds up recursively”).

However, the probability bounds in Theorems 2.8 and 2.9 are obtained with
coarse estimation of various parameters/terms. For example, we used the worst-
case values of θi(x), x ∈ X, i = 0, . . . ,H − 1 and (RmaxH)2 for bounding
supx∈X V ∗

i (x), i = 0, . . . ,H − 1, and used conservative bounds in (2.40) and in
relating the probability bounds for the estimates at the two adjacent levels. Consid-
ering this, the performance of the PLA sampling algorithm should probably be more
effective in practice than the analysis indicates here.

2.2.3 Application to POMDPs

The simulation model we consider in this chapter covers the dynamics of partially
observable MDPs (POMDPs) with finite state, action, and observation spaces, as
such a POMDP can be reduced to the equivalent model of an information-state
MDP, where the state space is the set of all possible probability distributions over
the state space of the corresponding POMDP.

2.2 Pursuit Learning Automata Sampling 53

PLA Sampling Algorithm for POMDPs

Input: stage i < H , information state Ii ∈ Xi , Ni > 0, μi ∈ (0,1).
(For i = H , V̂

NH

H (x) = V
NH

H (x) = 0.)

Initialization: Set Px(0)(a) = 1/|A(x)|,Ni
a(x) = 0,Mi(x, a) = 0 ∀a ∈ A(x);

k = 0.

Loop until k = Ni :
• Sample a(k) ∼ Px(k), y ∼ Ii , z ∼ P (·|y, a(k)), o ∼ O(·|z, a(k)).
• Obtain the information-state I k

i+1: for y ∈ X,

I k
i+1(y) = ηO

(
o|y, a(k)

) ∑

y′∈X

P
(
y|y′, a(k)

)
Ii

(
y′).

• Update Q-function estimate for a = a(k) only:

Mi

(
x, a(k)

) ← Mi

(
x, a(k)

)

+
∑

z∈X

r
(
x, a(k), z

)
I k
i+1(z) + V̂

Ni+1
i+1

(
I k
i+1

)
,

Ni
a(k)(x) ← Ni

a(k)(x) + 1,

Q̂
Ni

i

(
x, a(k)

) ← M
Ni

i (x, a(k))

Ni
a(k)(x)

.

• Update optimal action estimate: (ties broken arbitrarily)

â ∈ arg max
a∈A(x)

Q̂
Ni

i (x, a).

• Update probability distribution over action space:

Px(k + 1)(a) ← (1 − μi)Px(k)(a) + μiI {â = a} ∀a ∈ A(x).

• k ← k + 1.

Output: Return V̂
Ni

i (x) = Q̂
Ni

i (x, â).

Fig. 2.12 Modified PLA sampling algorithm description for POMDPs

Consider a POMDP model parameterized as follows: X is a finite set of states,
A(x) is a finite set of admissible actions for each x ∈ X, O is a finite set of obser-
vations that provide incomplete state information, and I0 is the initial information-
state, i.e., a probability distribution over X (I0(x), x ∈ X denotes the probability
of being in state x ∈ X). At stage i, the system is in xi (where this state informa-
tion is unknown to the decision maker). The decision maker takes an action ai , the
system makes a transition to xi+1 by the probability P(xi+1|xi, ai), Ii represents
the decision maker’s knowledge of xi , and the decision maker obtains the reward of
r(xi, ai, xi+1). At stage i +1, the decision maker observes an observation generated
with the probability O(oi+1|xi+1, ai). The decision maker updates its information-

54 2 Multi-stage Adaptive Sampling Algorithms

Table 2.3 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (i) as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,
Dt ∼ DU(0,9), h = 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K,p) Optimal N PLA UCB NMS

K = 0
p = 1

7.700 4 7.61 (0.28) 7.08 (0.29) 6.97 (0.30)

10 7.57 (0.12) 7.64 (0.10) 7.36 (0.18)

15 7.63 (0.09) 7.64 (0.08) 7.46 (0.14)

25 7.70 (0.08) 7.68 (0.08) 7.66 (0.11)

K = 0
p = 10

16.318 4 14.40 (0.44) 13.13 (0.77) 12.98 (0.50)

10 16.15 (0.23) 16.58 (0.23) 14.30 (0.35)

15 16.17 (0.24) 16.34 (0.14) 14.69 (0.35)

25 16.26 (0.16) 16.45 (0.15) 15.86 (0.20)

K = 5
p = 1

10.490 4 10.46 (0.27) 10.84 (0.36) 10.05 (0.29)

10 10.72 (0.10) 10.94 (0.13) 10.50 (0.22)

15 10.52 (0.09) 10.80 (0.09) 10.70 (0.16)

25 10.66 (0.07) 10.70 (0.05) 10.54 (0.12)

K = 5
p = 10

27.322 4 24.48 (0.51) 22.19 (0.76) 21.97 (0.72)

10 26.25 (0.31) 27.00 (0.24) 24.28 (0.49)

15 26.55 (0.25) 26.85 (0.23) 25.22 (0.42)

25 27.19 (0.08) 27.48 (0.08) 26.23 (0.33)

state by

Ii+1(y) = ηO(oi+1|y, ai)
∑

x∈X

P (y|x, ai)Ii(x), y ∈ X,

where η is the normalizing constant. From this information-state update procedure,
we can induce the probability P(Ii+1|Ii, ai) and map this into a next-state func-
tion h : Ψ × [0,1] → XI , where Ψ = {(x, a)|x ∈ XI ,a ∈ A(x)} and XI is the set
of all possible information-states. The reward function RI : Ψ × [0,1] → �+ is
similarly induced. Once the equivalent information-state MDP is constructed, the
PLA sampling algorithm can be applied to the information-state MDP. Figure 2.12
presents the modification of the PLA algorithm (cf. Fig. 2.10) applied to the unre-
duced POMDP model.

2.2.4 Numerical Example

In this section, we compare the performance of the PLA sampling algorithm with
UCB sampling and with the non-adaptive multi-stage sampling (NMS) algorithm

2.2 Pursuit Learning Automata Sampling 55

Table 2.4 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (ii) as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,
Dt ∼ DU(0,9), h = 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K,p) Optimal N PLA UCB NMS

K = 0
p = 1

7.500 10 6.20 (0.19) 4.20 (0.30) 3.56 (0.28)

20 6.67 (0.14) 6.99 (0.12) 5.16 (0.18)

30 7.14 (0.09) 7.32 (0.07) 5.57 (0.16)

40 7.20 (0.06) 7.34 (0.05) 6.01 (0.16)

K = 0
p = 10

13.605 10 11.34 (0.28) 6.46 (0.45) 6.57 (0.56)

20 12.88 (0.26) 13.27 (0.24) 9.48 (0.54)

30 13.32 (0.17) 13.92 (0.15) 10.02 (0.34)

40 13.57 (0.14) 14.04 (0.14) 11.53 (0.20)

K = 5
p = 1

10.490 10 10.98 (0.20) 9.33 (0.32) 9.14 (0.40)

20 10.98 (0.10) 11.12 (0.09) 10.32 (0.20)

30 10.86 (0.11) 10.87 (0.05) 9.95 (0.19)

40 10.80 (0.07) 10.85 (0.05) 10.36 (0.18)

K = 5
p = 10

25.998 10 23.48 (0.37) 16.29 (0.71) 16.75 (0.74)

20 24.53 (0.19) 25.68 (0.16) 21.01 (0.47)

30 25.12 (0.13) 26.19 (0.15) 21.87 (0.34)

40 25.30 (0.14) 26.17 (0.10) 23.89 (0.22)

in [104], using the inventory control problem of Sect. 2.1.5. The numerical results
for UCB sampling are based on the alternative estimator 2 in Sect. 2.1.5 given by
(2.25). Similar to the PLA and UCB algorithms, NMS is also a simulation-tree based
method and estimates the value function at each visited state by taking the minimum
of the Q-value estimates. However, the difference between these algorithms is in
the way the actions are sampled at each decision period: both the PLA and the UCB
algorithms sample actions in an adaptive manner, whereas NMS simply samples
each action for a fixed number of times.

In the simulation experiments, we consider two cases for the action space, which
contains the possible order amounts to be placed: (i) at ∈ {0,5,10}, and (ii) at ∈
{0,2,4,6,8,10,12,14,16,18,20}, t = 0, . . . ,H − 1. All other parameter values
remain the same as in the examples of Sect. 2.1.5. For simplicity, the number of
samples at each stage, Ni , is taken to be the same for all i = 0, . . . ,H − 1, and this
quantity is denoted by N . Thus, the input parameter μi in the PLA algorithm is

chosen to be μi = 1 − 2− 1
N , independent of stage i. In NMS, whenever a state x is

visited, each admissible action at x is sampled
N/|A(x)|� times.

56 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.13 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9), h = 1,K = 0

The results, based on 30 independent simulation runs for each algorithm, are re-
ported in Tables 2.3 and 2.4. Figures 2.13, 2.14, 2.15, and 2.16 plot the (averaged)
value function estimates of the algorithms as a function of the total number of peri-
ods simulated. These results indicate that the PLA and UCB algorithms have com-
parable performance, and both outperform NMS in almost all test cases considered.
Moreover, both the PLA and the UCB estimates also show a significant reduction in
the standard error over the NMS estimate.

2.3 Notes 57

Fig. 2.14 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9), h = 1,K = 5

2.3 Notes

The expected regret analysis for multi-armed bandit models motivating the UCB
sampling algorithm goes back to [119] (see, also [27]). The specific index-based
policy used here was first proposed in [1], and the finite-time bounds are based on
the analysis in [4]. The assumption of bounded rewards can be relaxed by using a
result in [1], but the uniform logarithmic bound is not preserved.

58 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.15 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9), h = 1,K = 0

The pursuit algorithm designed with learning automata that motivated the PLA
sampling algorithm presented here for MDPs was introduced in [173] (see also [137]
and [155]). The finite-time analysis of the pursuit algorithm is based on [146], where
bounds on the number of iterations and the parameter of the learning algorithm for
a given accuracy of performance are provided. General introductory material on
learning automata can be found in the book [133] and in the overview survey article
[174], whereas application of learning automata for solving controlled (ergodic)

2.3 Notes 59

Fig. 2.16 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9), h = 1,K = 5

Markov chains in a model-free reinforcement learning (RL) framework for a loss
function defined on the chains can be found in the books [143, 144]. Controlling
ergodic Markov chains for the infinite-horizon average reward within a similar RL
framework is considered in [183]. A uniform bound on the empirical performance
of policies within a simulation model of (partially observable) MDPs is provided
in [99]. Reducing a POMDP to an equivalent information-state MDP model can be
found in [3].

60 2 Multi-stage Adaptive Sampling Algorithms

The UCB sampling algorithm was called the adaptive multi-stage sampling
(AMS) algorithm when first introduced in [42]; we chose to change the name in
the presentation here, because both of the algorithms in this chapter are multi-stage
algorithms with adaptive sampling. The PLA sampling algorithm was originally
called the recursive automata sampling algorithm (RASA) in [45]. Again, since
both algorithms in this chapter are recursive, we chose the more descriptive “pursuit
learning automata” (PLA) label.

The idea of multi-stage adaptive sampling has been adopted by the artificial in-
telligence (AI) game-playing community in the form of Monte Carlo tree search
(MCTS), where it has become perhaps the dominant approach, “due to its spectacu-
lar success in the difficult problem of computer Go” (abstract, [26]). The MCTS ap-
proach estimates the value of a potential move by building a sampled game tree us-
ing simulation, analogous to the multi-stage UCB sampling algorithm of Sect. 2.2.1
(see Fig. 2.3), the major difference being that because the state space is finite, nodes
may be revisited multiple times during the sampling process and hence values stored
to increase the computational efficiency substantially. In fact, what is declared “the
most popular algorithm in the MCTS family, the Upper Confidence Bound for Trees
(UCT) algorithm” (p. 7, Sect. 3.3, [26]) is acknowledged in [108] to be closely re-
lated to the multi-stage adaptive sampling UCB algorithm introduced in [42].

http://www.springer.com/978-1-4471-5021-3

	Chapter 2: Multi-stage Adaptive Sampling Algorithms
	2.1 Upper Conﬁdence Bound Sampling
	2.1.1 Regret Analysis in Multi-armed Bandits
	2.1.2 Algorithm Description
	2.1.3 Alternative Estimators
	2.1.4 Convergence Analysis
	2.1.5 Numerical Example

	2.2 Pursuit Learning Automata Sampling
	2.2.1 Algorithm Description
	2.2.2 Convergence Analysis
	2.2.3 Application to POMDPs
	2.2.4 Numerical Example

	2.3 Notes

