
Chapter 2
Cyber-physical Modeling of Hybrid Vehicles

2.1 Introduction

For model-based control of hybrid vehicles, an appropriate model is essential. Here,
we explain that “appropriate” needs to be read in the context of the goal of the
model. It does not make much sense to derive a model taking all possible physical
effects into account, to realize later that the data available to validate the model come
from experiments which are not particularly reproducible or do not provide enough
or accurate enough information, or that the model does not integrate well with com-
putational processes. We also do not need all possible accuracy for control because
feedback is quite robust. Therefore, we need to use, and have the freedom to use, ap-
proximate models, which should cover the main characteristics of the physics, allow
extensive analysis and be implementable in real-time situations for online control.
The last characteristic will shift in time, what is not possible today will be possible
in a few years. It allows us to aim for the boundaries of what is technically possible
today, knowing it will be easy to achieve in the future. All components of the drive-
train need those models, which means internal combustion engine, electric machine,
battery, and their interconnections. We primarily use prescribed or registered drive
cycles, so do not consider driving and drivability issues. We focus on system level
control, not on component level control. Thus, torque- or current-based models will
get limited attention. Power-based models will receive full consideration.

There are several approaches to modeling system components, and the complex-
ity of available models may vary widely. For example, combustion engine models
may be crank angle resolved, or crank angle averaged, or even quasi-static. The same
variety holds for electric machine models. Crank angle resolved or averaged models
are useful for the design of component controllers, e.g., engine controllers that de-
termine the valve, fuel injection or spark ignition timings, or that select the exhaust
gas recirculation or inlet manifold boost pressure. Those models are more compli-
cated than needed and do not allow an extensive analysis of the basic problem. They
also model phenomena that are of no interest for the basic problem. This is due to
the slow storage dynamics of the storage devices, which normally take on the or-
der of several minutes or hours to be discharged or charged. Some electro-chemical
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Fig. 2.1 Overview of drivetrain components in a parallel hybrid electric truck. Note the connecting
elements clutch, axle, gearbox, final drive, and power electronics besides the power converters
(engine and electric machine) and battery

Fig. 2.2 Schematic overview of a hybrid drivetrain including the internal combustion engine
(chemical to mechanical power converter), the electric machine (electrical to mechanical power
converter), and the battery (electro-chemical to electrical power converter). A switch, S, represents
the clutch. Other connecting elements are indicated by arrows representing power transfer over a
powernet (e.g., realized with a wiring harness). The arrows are one-sided for irreversible processes
and two-sided for reversible processes. Energy storage is represented by Ef (fuel tank) and Es

(battery). The solid circle represents power compounding. Compared to Fig. 1.5 Pl is omitted

processes in a battery may be much faster than that, however, but the dominant time
scale is in the order of minutes. It is also due to the slow temporal changes in power
flow in the vehicle, based both on data from the drive cycles, which are typically
time resolved at 1 [s] intervals, and on real practice, where a human driver will not
perpetually change his demands in split seconds because this is not compatible with
the normal flow of traffic. This implies that time needs to be resolved in the order of
seconds. Because the usual power converters have a cycle time below 0.1 [s], angle
resolved or even angle averaged models provide too much detail. We will, therefore,
use quasi-static models for the power converters and a low order dynamic model for
the storage device. The remainder of this chapter will provide details.

2.2 Hybrid Vehicle Definitions

Figure 2.1 shows an example of a drivetrain layout for a hybrid electric truck. An
overview of these components and their interconnections is presented in this section.

Figure 2.2 depicts a schematic overview of a hybrid electric drivetrain. The me-
chanical output power of the internal combustion engine Pp and electric machine
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Fig. 2.3 Schematic cost functions of (a) internal combustion (Diesel) engine and (b) electric ma-
chine and battery. Note that with the clutch open the engine may run at idle speed, indicated by
the �, but could also be stopped to achieve Pf = 0. Furthermore, for Pp < 0 the fuel use Pf is
interpolated, but for some engines, e.g., Otto engines, this is not possible and the only feasible
operating point is then Pp = P p when the fuel flow is cut off

Pm matches the power requested by the driver or cruise controller Pr :

Pr = Pp + Pm (2.1)

because there is no possibility to store energy in this point. The torque conversion
is supposed to be perfect, so power is just added or subtracted, which is most easily
achieved if combustion engine and electric machine are put on the same axle.

The conversion of fuel power Pf to the engine output power Pp is modeled as a
function of the power throughput:

Pf (S,ω,Pp) =
{

Pf,i for S = 0,

Pf,p(ω,Pp) for S = 1,
(2.2)

where S is a Boolean variable modeling clutch opening, Pf,i ≥ 0 is the fuel power
during idling, Pf,p is the fuel power if tractive power is delivered, and ω is the
rotational velocity. If S = 0 than Pp = 0. When stop-start of the engine is possible
then Pf,i = 0 if S = 0, see Fig. 2.3a. Section 2.3.1 presents typical relations for Pf .

The fuel power Pf is related to the fuel mass flow rate ṁf (or fuel rate, for short)
by the lower heating value, h

Pf = hṁf .

The characteristics of the hybrid drivetrain components require a non-smooth
model in many hybrid vehicle applications, where charging and discharging is mod-
eled with a non-smooth continuous function, see Fig. 2.3b. The combined conver-
sion of storage power Ps to the electric power Pb , and of Pb to the mechanical power
Pm is, therefore, modeled as a non-smooth function of the power throughput:

Ps(Pm,Es) =
{

Ps_ch(Pm,Es) for Pm < 0,

Ps_dis(Pm,Es) for Pm ≥ 0,
(2.3)

with Ps_ch(0,Es) = Ps_dis(0,Es), in which Ps_ch is the storage power during charg-
ing of the battery and Ps_dis the storage power during discharging of the battery,
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see Fig. 2.3b. The conversion process (2.3) could depend (smoothly) on the stored
energy in the battery Es . It is assumed that the influence of other variables on the
conversion losses, e.g., rotational velocity of the electric machine, temperature, and
aging are known, and are incorporated in the power conversion function at time t .
Note also that the drag power of the electric machine is always present (since de-
coupling the electric machine from the wheels is not possible in the topology con-
sidered) and is incorporated in the power request Pr such that Pm = 0 if Ps = 0.
Typical relations for Pm and Pb are in Sect. 2.3.2 while those for Pb and Ps are in
Sect. 2.3.3.

2.3 Models of Hybrid Powertrain Components

Mathematical models will be presented, together with a physical interpretation of
models and model assumptions. Those models will describe the system dynamics in
a rudimentary form. They will represent, in an approximate way, the power losses
incurred by the power converters, and they will stress the physical, technical, and
economic limitations on power flows and energy levels.

2.3.1 Combustion Engine

The derived models try to give a sufficiently accurate relation between the mechan-
ical power delivered by an engine and the chemical power (fuel power) needed.
Several models are possible that try to represent experimental data but also try to
have a (very) simple representation. Different trade-offs are possible, resulting in
models of different complexities.

It is beneficial to analyze some experimental results, and extract characteristic
properties from these results, before presenting the models.

An example of the fuel use for a naturally aspirated spark-ignition (Otto) en-
gine for a mid-sized passenger car is given in Fig. 2.4. Another example is for a
compression-ignition (Diesel) engine used in a delivery truck in Fig. 2.5.

Note that both these figures represent the same type of data, but the data are
presented in a totally different way, enabling a different view on the data. A repre-
sentation like Fig. 2.4 of the data in Fig. 2.5 is given in Fig. 2.6.

The main contributing factors to fuel use are

1. the delivered mechanical power, Pp = ωTp , as can be seen from the slope of the
fuel use curve as a function of power, see Figs. 2.4 and 2.6,

2. the rotational speed, ω, which influences the drag losses as can be seen from the
drag torque curve, where Pf = 0, in Fig. 2.5.

There are many more factors influencing fuel use, such as air properties like temper-
ature, pressure, and humidity, fuel properties like fuel composition (blend), octane



2.3 Models of Hybrid Powertrain Components 19

Fig. 2.4 Interpolated line plot of spark-ignition engine fuel rate as a function of mechanical power
Pp at the crankshaft and of crankshaft rotational velocity ω under steady-state conditions, for a set
of different velocities. Note that these data, especially near maximum torque requests, need to
be approximated by at least a quadratic relation. The fuel rate increase near maximum torque is
typically related to an enriched fuel mixture commanded by the engine controller and meant to
cool the valves

Fig. 2.5 Interpolated and quantized contour plot of measured diesel engine fuel power consump-
tion Pf as a function of reconstructed crankshaft torque Tp and measured crankshaft rotational
velocity ωp under steady-state conditions, for a set of different velocities and gas pedal positions.
The dark line indicates the maximum engine torque, T p , and the gray line indicates the engine drag
torque, T p , while different color shades represent different fuel consumption levels as indicated
by the right-hand scale in [kW]. The most efficient operating points are those with a hyperbola
(constant mechanical power level) as tangent. The dip in maximum torque at ωp ≈ 1500 [rpm] is
due to emission restriction measures in the engine controller
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Fig. 2.6 Interpolated line plot of compression-ignition engine fuel rate as a function of mechanical
power Pp at the crankshaft and of crankshaft rotational velocity ω under steady-state conditions,
for a set of different velocities. Note that a straight line, with off-set depending on velocity ω,
could be used to approximate these data, but essentially the data do not quite lie on a straight line,
in particular at low speeds, and do not even represent a convex relation. On the other hand, some
variability in the data is created by the engine controller trying to meet emission standards in certain
critical operating points defined in the test procedure, but for a hybrid drivetrain with a lower fuel
throughput, so lower emissions, another calibration without this variability can be permitted

number, and volatility, engine properties like age, wear, and maintenance state, etc.,
but in particular measures built into the engine controller that aim at reducing emis-
sions. It is assumed that most of these effects are averaged out, are sufficiently small
to be neglected, or can be included via model parameters.

The main differences between fuel rate results for Otto and Diesel engines or
between light and heavy-duty engines are that

1. the fuel rate as a function of delivered power appears to be straighter for a Diesel
engine than for an Otto engine, so for a Diesel engine an affine relation may be
appropriate, whereas for an Otto engine a strictly convex relation may be better,
although more careful analysis shows that this depends for a large part on the
engine controller calibration, so that is the distinguishing feature,

2. drag losses are higher for heavy-duty engines than for light-duty engines, leading
to higher overall losses for heavy-duty engines compared to light-duty engines
for the same power fraction, compare Figs. 2.4 and 2.6, but the dependency on
rotational speed looks similar and could be represented by a convex relation,

3. for Otto engines, at part load, throttling losses occur, contrary to Diesel engines,
leading to higher intermediate power losses for Otto engines compared to Diesel
engines from the same duty category, yielding a higher slope in an affine relation,

4. Diesel engines profit from a higher compression ratio and thus higher combustion
temperatures, yielding a shallower slope in an affine relation.
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It appears that static engine models do not need to distinguish between Otto and
Diesel engines or between light and heavy-duty engines, the same relations with
different numerical values could do. For engine models, one could distinguish be-
tween calibrations used in the engine controller, and, based on that, choose a differ-
ent model structure. We therefore present several models that differ in the descrip-
tion of the influence of power output and fuel use to accommodate this. All models
separate the influence of Pp and ω, i.e., the approximating functions are separable.

2.3.1.1 Willans Line (Affine) Model

The fuel consumption of an engine, e.g., the Diesel engine presented in the previous
section, at rotational velocity ω, can be approximated with a piecewise affine rela-
tion, sometimes referred to as a Willans line approximation (Guzzella and Sciarretta
2005, p. 44):

Pf (ω,Pp)

P p

= max

(
0, γp,0(ω) + γp,1

Pp

P p

)
, (2.4)

where Pf ≥ 0 is the fuel power, γp,0(ω) > 0 describes the velocity dependent en-
gine drag loss, ω represents the rotational velocity of the drivetrain, P p denotes the
maximum power output of the engine, and γp,1 > 1 is a fuel conversion parameter,
see Table 2.1, p. 29, for the values. For component sizing problems, it is convenient
to incorporate the maximum power output of the power converters in the cost func-
tions. This also make comparisons between engines, using normalized functions and
parameters, easier. At zero fuel consumption, Pf = 0, the engine drag power P p is:

P p(ω)

P p

= −γp,0(ω)

γp,1
< 0. (2.5)

The power of a combustion engine, or any other primary power converter, is
limited, where the limit depends on the rotational velocity:

P p(ω) ≤ Pp ≤ P p(ω), (2.6)

where the admissible range for Pp may be further restricted due to relation (2.1).

2.3.1.2 Strictly Convex Polynomial Equation Model

The fuel use of an engine, e.g., the Otto engine presented in the previous section, at
rotational velocity ω, can be described by a strictly convex function, for which we
choose a quadratic one with no provision for scaling as we will not use this model
for component sizing problems

Pf (ω,Pp) = max
(
0, γp,0(ω) + γp,1Pp + γp,2P

2
p

)
, (2.7)
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with γp,1 > 1 the linear fuel conversion parameter, and γp,2 > 0 the quadratic fuel
conversion parameter. These will be fitted in such a way that an accurate local ap-
proximation is achieved towards the measured fuel rate data. The interval of fitted
data will be determined by the nominal value of Pp and the range in power achiev-
able by manipulating the electric machine mechanical power, Pm, while still meet-
ing the traction power requested, Pr . Note that this model is only valid in a restricted
interval for Pp , because if Pp � 0 it gives Pf > 0, which will not occur in practice.
Relations similar to (2.6) also hold.

2.3.2 Electric Machine

Different electric machines are used in HEVs. They may range from up-scaled al-
ternators to powerful direct drive solutions. Here, we present a model for a powerful
44 [kW] motor/generator, but other electric machines could use the same model,
albeit with different numerical values.

The motor/generator model, including the power electronics (inverter) used to
get the correct DC conditions for the battery, is based on experimental data obtained
in equilibrium points. The model aims to present the power losses accurately, but
does not aim to represent transient behavior. The power losses could be represented
by a (multi-dimensional) table, but are here fitted with simple analytical expressions
to allow for deeper analysis.

The conversion of electric machine mechanical power, Pm, to electrical power,
Pb , and vice versa, is measured under steady-state conditions, see Fig. 2.7. An anal-
ysis of the data shows that a non-smoothness is present and that the relation is not
necessarily convex. To indicate this, the gradient ∂Pb/∂Pm, at one rotational veloc-
ity, is depicted in Fig. 2.8.

The conversion characteristics of the electric machine are approximated with two
piecewise quadratic functions with a non-smooth convex union:

Pb(ω,Pm)

P m

=
⎧⎨
⎩

γm,0(ω) + γ +
m,1

Pm

P m
+ γ +

m,2(
Pm

Pm
)2, for Pm ≥ 0 (motoring)

γm,0(ω) + γ −
m,1

Pm

P m
+ γ −

m,2(
Pm

Pm
)2, for Pm < 0 (generating)

(2.8)
with the electric power Pb , electric machine drag function γm,0(ω) > 0, parameters
γ +
m,1 > 1, γ +

m,2 > 0, γ −
m,1 < 1, γ −

m,2 > 0, and the maximum motoring power of the

electric machine P m to allow for easy scaling of the size of the electric machine.
When the vehicle velocity and gearshift trajectory are prescribed, the rotational

velocity ω, and parameters γp,0 and γm,0, are also known. It is assumed that the
electric machine is always connected to the vehicle wheels such that the drag power
of the electric machine γm,0 is present anyway, and can, therefore, be incorporated
in the power request Pr . Furthermore, it is assumed that the relation Pm → Pb is
monotonically increasing in the domain of interest, i.e., ∂Pb/∂Pm ≥ 0, see Fig. 2.8.
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Fig. 2.7 Interpolated and quantized contour plot of electric power Pb as a function of electric
machine torque Tm and rotational velocity ωm. The upper dark line indicates the maximum elec-
tric machine torque T m, the lower dark line indicates the maximum generator torque T m, while
different color shades represent different electric power levels as indicated by the right-hand scale
in kW. The operating points with the smallest losses on a contour line are those with a hyperbola
(constant mechanical power level) as tangent

Fig. 2.8 Electric power gradient ∂Pb/∂Pm as a function of electric machine mechanical power Pm

for rotational velocity ω = 1000 [rpm]. The gradient is discontinuous, so the function Pb(ω,Pm)

is non-smooth. Furthermore, since this gradient is evidently not a monotonic increasing relation,
the functions Pb(ω,Pm), one for each interval of Pm, are not necessarily convex in Pm, but could
be approximated as convex ones without large errors

Just as for the combustion engine, the electric machine power is limited

P m(ω) ≤ Pm ≤ P m(ω). (2.9)
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Fig. 2.9 Equivalent circuit for a battery. The open-circuit voltage Uoc will be a function of the
state-of-energy Es , but in principle not of Ps , while the terminal voltage Ut will be a function of
Ps . The resistance R may be a function of temperature and of state-of-energy, or even of charging
history, and may also attain values that differ for charging and discharging

The admissible range for the electric machine power may even be smaller, due to
relation (2.1) and the limited power range for the primary power converter (2.6).

2.3.3 Storage Device

The main dynamics of an HEV storage device is rather slow compared to other
components in the drivetrain, i.e., the characteristic time in which this device is
charged or discharged is quite long. Therefore at least the storage dynamics needs
to be accounted for, which can be done by a conservation law

Es(t) = Es(t0) +
∫ t

t0

−Ps(τ )dτ, (2.10)

where Es is the energy stored in the battery and Ps is the power flow. The minus-
sign is due to the convention that Ps is positive for power flowing out of the battery.

Apart from the conservation law, we need some constitutive relations from which
the losses of the processes involved follow. These relations for storage devices—
here we only consider electro-chemical storage—may differ depending on the
electro-chemistry used. We consider two types, a battery model with Ohmic losses,
based on an equivalent circuit, and a simplified model that could be found by fitting
experimental data, but could also be found assuming a constant open-circuit voltage
(or constant electro-motive force in electro-chemistry parlance), independent of the
charge level. The constant open-circuit voltage assumption may be valid for Li-ion
batteries with a flat characteristic or for lead-acid batteries in a restricted range of
charge levels, but it will not be valid for, e.g., super capacitors in their full range.

To propose a reasonable model, first some experimental results are presented.
They describe the battery voltage as a function of charge state. From that, the bat-
tery internal resistance can be reconstructed. The idea is to model the battery based
on a circuit with a voltage source (battery open-circuit voltage) and a resistance,
while only the battery terminal voltage and current are measurable, see Fig. 2.9.
The power losses can then be computed from the current and the Ohmic loss due to
the resistance, see Pop et al. (2008).
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Fig. 2.10 Measured and
quantized battery open-circuit
voltage Uoc as a function of
the state-of-energy SOE
averaged over a slow
charging/discharging cycle.
This is a monotonic
increasing relation, almost a
straight line as indicated by
the approximation: an affine
relation

2.3.3.1 “Equivalent Circuit”-Based Battery Model

For a certain HEV storage system with Li-ion batteries, the open-circuit voltage
Uoc is estimated by discharging the battery with the lowest possible current request
(where the vehicle drives at a foot pace), see Fig. 2.10. Under the assumption that
the internal resistance R is equal for charging and discharging (Pop et al. 2008),
the measured terminal voltage Ut during charging and discharging is averaged to
estimate Uoc. The measured voltage is quantized with a 2 [V] quantization interval.
Given these data, obtained at an almost constant temperature, there is no way we
can model the influence of temperature on the (dis)charging process, so this influ-
ence is neglected. In practice, the battery pack temperature is tightly controlled to
avoid chemical process instabilities and is kept low to reduce battery wear, so this
assumption seems reasonable.

Figure 2.10 shows that a fully charged battery has a higher voltage than a depleted
battery. Therefore, a charged battery requires a lower current to deliver a certain
power request, and the internal losses are then also smaller.

Given the estimated open-circuit voltage Uoc, the measured terminal voltage Ut

and current Is , the battery internal resistance is estimated with

R = Uoc − Ut

Is

= UR

Is

, (2.11)

where UR is the voltage drop over the resistor. Here, charging and discharging are
treated as equal. The computed internal resistance for one charge/discharge cycle is
depicted in Fig. 2.11.

The battery open-circuit voltage Uoc is approximated with an affine function of
the state-of-energy:

Uoc(Es) = U0 + φEs, (2.12)

where U0 is the voltage of a fully discharged battery, φ ≥ 0 is the battery open-
circuit voltage increase factor, and Es is the energy stored in the storage device.
This approximation is depicted in Fig. 2.10 and shows satisfactory agreement with
the experimental data.

When Es is expressed in a fraction (or %) of the fully charged Es , i.e., the battery
capacity Ec, it is denoted with SOE. The relation with the often used state-of-charge
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Fig. 2.11 Reconstructed
battery resistance R as a
function of the
state-of-energy SOE for
slowly charging and
discharging. Both graphs are
concave, are almost at the
same level, and could be
considered equal and constant
given the wide spread in the
data

Fig. 2.12 State-of-energy versus state-of-charge for a single Li-ion cell. The figure uses exper-
imental data directly (indicated with circles). Note that this graph can be shifted up or down,
depending on the initial condition used when solving differential equation (2.13) for Es , and it can
be stretched, depending on the assumed energy capacity Ec . Here, it is re-normalized to match the
diagonal (green) exactly in 2 points, so SOE and SOC are both equal at the values 0.25 and 0.90,
marking the interval for which data are used. The diagonal (green) is obtained if a fixed value for
Uoc, so φEs is constant in (2.13), is used to compute Es from Is

Qs(t) = Qs(t0) + ∫ t

t0
−Is(τ )dτ , or SOC when expressed as a fraction of the total

charge capacity of the battery, is via (2.12) and Ps = IsUoc, so

Ės = −Is(U0 + φEs). (2.13)

An example for the relation between Qs , or SOC, and Es , or SOE, is in Fig. 2.12.
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Fig. 2.13 Computed battery
power at the terminals versus
battery power stored for a
Li-ion battery with the lowest
possible Uoc = 280 [V],
representing the worst case
with the highest losses. Note
that for Pb > 61.25 [kW],
corresponding to 122.5 [kW]
for Ps , no solution is
possible, i.e., no more than
that amount of power can be
extracted from the battery
given the assumed electrical
model for the battery, which
becomes dubious for these
power levels where Ut

approaches Uoc/2

It is suggested to approximate the battery loss power with an internal resistance
model, Pop et al. (2008):

Ps(ω,Pm,Es) = IsUoc(Es) = RI 2
s + Pb(ω,Pm), (2.14)

or, as polynomial in Is ,

RI 2
s − UocIs + Pb(ω,Pm) = 0, (2.15)

where R is the internal resistance which, for simplicity, may be assumed to be con-
stant. Current Is is solved from the quadratic relation (2.15):

Is = Uoc(Es) − √
U2

oc(Es) − 4RPb(ω,Pm)

2R
, (2.16)

where Pm is limited from above such that U2
oc ≥ 4RPb(ω,Pm) or Ut ≥ Uoc/2. This

bound is the maximum amount of power that can be extracted from the battery and
corresponds to the case where the internal resistance R equals the resistance over

the terminals, when Ut = Uoc/2. If Pm is too large, i.e., Pb >
U2

oc
4R

, there is no (real)
solution for (2.14). Relation (2.14) is represented in graphical form in Fig. 2.13. The
model for a lead acid battery can be developed in the same way.

To protect the battery from under- or overcharging, the battery energy levels are
constrained:

Es(t) − Es ≤ 0, (2.17)

Es − Es(t) ≤ 0, (2.18)
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Fig. 2.14 Mixed constraints on battery state-of-energy and voltage. Variables UR and UR are the
voltage drops over the resistor due to the maximal and minimal power at the terminals. The voltage
bounds on Ut lead to combined input (power) and state (SOE) constraints in the neighborhood of
(Es , Ut ) and (Es , Ut )

here, Es < Ec is the maximum allowable state-of-energy of the storage device
which is lower than the maximum capacity Es > 0 is the minimum one. The al-
lowable range for Es lies strictly inside the physical possible range for Es , aiming
to reduce wear of the battery, which is largest near the boundaries of the physical
range. Equations (2.17) and (2.18) are “pure” state constraints meaning that they are
a function of the state only. Any of the variables Ps , Pb , or Pm can be used as in-
dependent variable such that the state constraints (2.17) and (2.18) are of first order,
meaning that the first time derivative of the constraints (2.17) and (2.18) contains
the control explicitly. It may also be necessary to use a combination of Ps and Es

to express constraints on the voltage level, so-called mixed state/input constraints.
Those mixed constraints are more difficult to handle than isolated input and state
constraints. See Fig. 2.14 for an example.

2.3.3.2 “Fitted” Battery Model

One of the most straightforward ways to develop a simplified battery model is to
assume a certain loss for charging, proportional to charging power squared. Because
the current corresponding to a certain power will depend on voltage, we also need to
access voltage. However, Li-ion batteries as well as, but to a lesser degree, lead-acid
batteries have a relatively weak relation between charge state and voltage. It may,
therefore, suffice to neglect this relation if the parameters of the relation are fitted
on a restricted interval of operating conditions.

Looking at battery model (2.14), we can also write this as

Ps = Pb + β2P
2
s , (2.19)

with β2 = R/U2
oc > 0, where β2 may depend on R and Uoc or may be considered

as a constant fitted to measured data corresponding to the interval of interest for the
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Fig. 2.15 Battery power
stored versus battery power at
the terminals for two different
approximating functions,
(2.19) (red and solid) and
(2.21) (green and dashed).
Note that both
approximations will only
agree in a restricted interval
around Pb = 0, but given the
size of the electric machine
(the 44 [kW] one) this is
precisely the interval of
interest

Table 2.1 Hybrid electric
delivery truck model
parameters; the electric
machine drag power is set to
0, but it may be assumed that
the power request Pr absorbs
this power

Name Description Value Unit

Es Upper capacity bound 4.08 MJ

Es Lower capacity bound 1.80 MJ

maxω P p Maximum combustion engine power 127.7 kW

maxω P m Maximum electric machine power 44.1 kW

R Battery internal resistance 0.32 �

U0 Discharged battery voltage 280 V

φ Voltage increase factor 21 V/MJ

γm,0 Drag electric machine 0 kW

γ +
m,1 Electric to mechanical cost 1.1200 –

γ +
m,2 Electric to mechanical cost 0.1323 –

γ −
m,1 Mechanical to electric cost 0.8800 –

γ −
m,2 Mechanical to electric cost 0.2205 –

γp,0 Engine drag 0.1181 –

γp,1 Incremental fuel cost 3.20 –

retrieved or stored power Ps . Solving for Ps gives

Ps = 1 − √
1 − 4β2Pb

2β2
, (2.20)

with again the bound Pb ≤ 1/4β2 corresponding to Ps ≤ 1/2β2 for a real solution.
The influence of temperature and state-of-energy of the battery on Uoc and R,

and of possible differences in R between charging and discharging, are all combined
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in the parameter β2. This parameter could attain different values depending on the
specific conditions for the battery. Those effects could be accounted for in the data
used to make a parameter fit for β2.

Relation (2.19) perfectly matches the graph in Fig. 2.13 for the nominal value
of β2 because it is exactly the same relation as (2.14). The only advantages of the
“equivalent circuit” based model (2.14) compared to the “fitted” model (2.19) are
that the former provides a physical interpretation for β2, or changes in β2, while the
latter does not, and that there is no interpretation possible of Ps in terms of current
and voltage for the latter model.

It is sometimes convenient to write the losses in terms of Pb , so

Ps = β1Pb + β2P
2
b , (2.21)

with β1 ≈ 1. This is a different approximating function, which will require a dif-
ferent value for β1 and β2 to generate an acceptable fit. The relation also does not
provide an upper bound for Pb , any value will do.

In a well designed HEV, the interval of Pb of interest normally allows one to use
any of the relations (2.14), (2.19), or (2.21), because they are close to each other.
Also, the bound on Pb from (2.14) or (2.19) will never be attained, being outside the
range that can be covered with the electric machine, see the example in Fig. 2.15.

2.4 Drive Cycles

To validate if engines or complete vehicles meet emission standards several test pro-
cedures with associated drive cycles1 are available. These cycles are also relevant to
address the benefits of hybrid vehicles because they allow to assess CO2-emissions
and fuel economy. The cycles differ with respect to the vehicle type (light or heavy-
duty), the main usage of the vehicle (urban, extra-urban, and highway), the regional
homologation bodies (Europe, Japan, USA, and others), and distinguish between
dynamic (transient) and static (individual operating points), and roller dynamome-
ter (vehicle) and engine dynamometer (engine only) tests.

For passenger or light-duty vehicles the NEDC (New European Driving Cycle)
(EEC 1970, pp. 67–73),2 see Fig. 2.16, the JC 08 (the new Japanese Cycle), see

1Most cycles are available in digital form at http://www.epa.gov/nvfel/testing/dynamometer.htm.
2The velocity profile during acceleration and deceleration phases for the NEDC is not explicitly
given in directive 70/220/EEC (EEC 1970) but is the result of specified acceleration levels and
declutch events. Note that there are data sources which do provide a velocity profile, but at least
one prominent source does provide a slightly incorrect profile for the urban (ECE) subcycle. In any
case, the official specification of the operating cycle contains a handful of obvious errors. Directive
70/220/EEC has been repealed with effect from January 2, 2013 and was replaced by Regulation
83 of the UN/ECE body (UN/ECE 2012). This regulation contains a copy of the same NEDC cycle
as in 70/220/EEC, including most of the errors.

http://www.epa.gov/nvfel/testing/dynamometer.htm
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Fig. 2.16 New European Driving Cycle (NEDC) showing velocity and two profiles for manual
transmissions with a different number of gears plotted on top of each other. The “N” gear setting
means the gearbox is in neutral and the clutch is engaged, the half gear settings indicate that the
next higher gear is engaged but the clutch is disengaged. The 11.028 [km] long cycle consists of
a four times repeated urban (ECE) subcycle with low velocities taking 195 [s] each and a single
extra-urban (EUDC) subcycle with higher velocities starting from t = 780 [s] and taking 400 [s]
for a complete cycle length of 1180 [s]. The maximum speed is 120 [km/h], the average speed is
33.6 [km/h] including stops and 44.8 [km/h] excluding stops. There is a margin defined around the
nominal velocity profile of ±2 [km/h] and ±1 [s] which can be exploited to get an up to ≈2 %
better fuel economy. The declared value for CO2 emissions may be understated by up to 4 %
compared to the measured value (EEC 1980, p. 9). The test cycle is supposed to be started with a
cold engine. Because fuel maps of engines are measured at equilibrium conditions, a computation
with fuel maps will not exactly reproduce the measured NEDC fuel usage but will give a lower
number

Fig. 2.17, and the FTP 75 (Federal Test Procedure) city cycle (CFR40-20 2012b,
Appendix I(a) to part 86, pp. 543–546),3 see Fig. 2.18, are relevant.

For future work, the WLTC (World-wide Light-duty Test Cycle) drive cycle may
be relevant. This cycle is currently developed for future use (from 2017 on or later)
and should simplify homologation (type-approval) by using a single test procedure
and test cycle that is valid world-wide. Already several variants are proposed for the
test cycle “to accommodate regional differences”, that differ mainly in the maximum
speed and acceleration levels.

3The cycle specified here is the so-called UDDS (EPA Urban Dynamometer Driving Schedule for
Light-Duty Vehicles and Light-Duty Trucks). The FTP schedule is specified in (FR40-19 2012a,
86.135-12) and is composed of the first 1369 [s] of the 1372 [s] long UDDS, followed by the first
505 [s] of the UDDS to get a hot start phase.
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Fig. 2.17 Japanese Cycle (JC 08) showing velocity and two profiles for manual transmissions
with a different number of gears plotted on top of each other. The “N” gear setting means the
gearbox is in neutral and the clutch is engaged. The cycle represents congested urban traffic. The
measurements start after t = 172 [s], the part up to t = 172 [s] is repeated at the end, while the
8.16 [km] long measurement cycle takes 1204 [s] to complete. The maximum speed is 81.6 [km/h],
the average speed is 24.4 [km/h] including stops and 34.7 [km/h] excluding stops. The cycle is
performed twice, once with a cold and once with a hot engine

Fig. 2.18 Federal Test Procedure (FTP 75) velocity points. The 17.77 [km] long FTP 75 cycle
consists of three phases, where the first and the last one, taking 505 [s], are identical while the
middle one takes 864 [s] for a total cycle length of 1874 [s]. The maximum speed is 91.2 [km/h],
the average speed is 34.1 [km/h] including stops and 42.2 [km/h] excluding stops. There is a margin
defined around the nominal velocity profile of ±2 [mi/h] and ±1 [s] (CFR40-20 2012b, p. 546),
but the practice of smoothing the speed variations is discouraged. The cycle is started with a cold
engine

For heavy-duty vehicles several drive cycles are relevant, e.g., the HD-UDDS
(Heavy-Duty Urban Dynamometer Driving Schedule) (CFR40-20 2012b, Appendix
I(d) to part 86, pp. 566–573), see Fig. 2.19. Because the characteristics of driving
patterns depend on usage, there is a difference between cycles targeted at urban
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Fig. 2.19 Heavy-duty Urban Dynamometer Driving Schedule (HD-UDDS) speed points. The
8.9 [km] long cycle has two subcycles, one at the beginning and one at the end, that are identical,
and that are combined with another subcycle for a total cycle duration of 1060 [s]. The maximum
speed is 93.3 [km/h], the average speed is 30.3 [km/h] including stops and 45.4 [km/h] excluding
stops, so stops are manifest in the HD-UDDS cycle, approximately one third of the time the vehicle
is standing still and the engine is idling

Fig. 2.20 World Harmonised Transient Cycle (WHTC) engine test cycle. Speed and torque are
given as a fraction of the working range with the red torque points representing closed rack mo-
toring. There are three phases, an urban phase of 900 [s], an extra urban phase of 480 [s], and a
highway phase of 420 [s], so the total cycle takes 1800 [s] to complete. The average torque fraction
is 0.307 and the average power fraction is 0.201, excluding the closed rack motoring points and as-
suming idle speed to be 1/3 of maximum speed. This cycle is intended to reduce the homologation
effort by engine manufacturers

usage and highway usage for heavy-duty trucks. The vehicle and engine used to
perform the cycle need to be characteristic for the class of usage considered.

Some engine cycles are available that test only the engine on an engine dy-
namometer, not the complete vehicle on a roller dynamometer. Engine test cy-
cles are, e.g., the World Harmonised Transient Cycle (WHTC) (UN/ECE 2010,
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Fig. 2.21 FTP (Federal Test Procedure) Heavy Duty Diesel Transient Cycle (HDDTC). Normal-
ized speed and torque are given as a fraction of the working range, the red torque points represent
closed rack motoring, the engine torque corresponding to this condition depends on the engine
drag torque. Note that speed overrun (speed higher than rated speed, here a fraction >1) and speed
underrun (speed lower than curb idle speed, here a fraction <0) are specified in the cycle and need
to be unnormalized, see (CFR40-20 2012b, Part 86.1333). The cycle consists of four subcycles,
where the first is identical to the last, the cycle takes 1199 [s] to complete and is performed twice,
once with a cold and once with a hot engine. The average torque fraction is 0.283 and the average
power fraction is 0.229, excluding the closed rack motoring points and assuming idle speed to be
1/3 of rated speed

pp. L229/78–L229/89), sometimes called the World Heavy-duty Transient Cycle,
and the FTP diesel transient cycle (CFR40-20 2012b, Appendix I(f)(2) to part 86,
pp. 585–593). These cycles are depicted in Figs. 2.20–2.21. There are also station-
ary engine cycles, where the engine is run on a set of specific operating points.
An example is the World Harmonised Stationary Cycle (WHSC) (UN/ECE 2010,
p. L229/22).

Driving cycles are mostly characterized by a prescribed velocity and gear setting
profile as a function of time. This is useful for driving the cycles. For simulations
without a driver model, power at the wheel, or engine torque and speed are needed.
From velocity and gear profiles it is possible to derive the desired torque and engine
speed profile when the total gear ratios, mass, and air and tire resistance character-
istics are known, see Eq. (1.1). The resistance characteristics, or road load data, are
mostly obtained from preliminary roll-out tests also defined in the test procedures,
but for this, a specific vehicle type needs to be defined.

For engine cycles the engine torque and speed, so also engine power, are pre-
scribed as a function of time as can be seen from Figs. 2.20–2.21. For these cycles,
torque and speed are scaled towards the performance envelope of the engine under
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Fig. 2.22 Comparison of the
WHTC (red points), WHSC
(green circles), and the FTP
transient (blue points, speed
overrun corrected to match
normalized
speed—maximum instead of
rated—of other cycles)
engine cycles. The data
illustrate rather marked
differences between those
cycles, which will be
reflected in fuel economy
potential for hybrid systems
and their control laws

test. Cycles may be rather different as can be seen from a comparison of the WHTC,
WHSC, and FTP transient engine cycles in Fig. 2.22.

2.5 Bibliographical Notes

Several books are available on the subject of (hybrid) vehicles and some effort has
been made to introduce or develop (component) models, namely Miller (2004),
Guzzella and Sciarretta (2005), Ehsani et al. (2010), Pistoia (2010), Husain (2011),
German (2011).

One of the earlier papers on the modeling of hybrid vehicles stems from 1995
Bailey and Powell (1995). An overview of modeling methods is given in Chan et al.
(2010). A modeling approach rather similar to the one taken here is presented in He
and Hodgson (2002) while a more detailed model is found in Syed et al. (2006).

Efforts specifically targeted at model development for batteries are Johnson
(2002), Tremblay et al. (2007), Szumanowaski and Chang (2008). Most of those
works use experimental data and try to fit a model through their data, sometimes
using physically inspired basis functions. The temperature influence for batteries is
discussed in Pesaran (2002). For super capacitors, a modeling approach is presented
in Buller et al. (2002).

The inverter, the power electronics needed to couple battery pack and electric
machine, is analyzed in Mapelli et al. (2010), while the electric machine losses are
analyzed in Williamson et al. (2007).

One of the well known tools for modeling (hybrid) drivetrains is the simulation
package “ADVISOR”, see Markel et al. (2002), which mainly focused on reliable
prediction of behavior using simulation, for which it has been used frequently, see,
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e.g., Johnson et al. (2000), Gao et al. (2007). However, there is no emphasis on sim-
plified analytical models for online control purposes. Alternative tools are described
in Butler et al. (1999), Lin et al. (2001), Onoda and Emadi (2004). Specialized ap-
proaches, like gyrator theory, are used in Routex et al. (2000).

Models are also introduced when a specific control strategy for hybrid systems
is discussed. Examples are in Kao and Moskwa (1995), Shimizu et al. (1997), Tate
and Boyd (2000), Lin et al. (2003), West et al. (2003), Albert et al. (2004), Sciarretta
et al. (2004), Barsali et al. (2004), Lukic and Emadi (2004), Delprat et al. (2004),
Tyrus et al. (2004), Plett (2004), Baisden and Emadi (2004). The paper by Tate and
Boyd (2000) uses a particularly simple model.

Type-approval drive cycles are determined by regulatory bodies or by committees
trying to establish the common denominator between all participants. For an exam-
ple see the documents of the ECE-GRPE Working Party on Pollution and Energy
(ECE/Trans/WP.29/GRPE).4
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