
Chapter 2
Linear Feedback Shift Registers

2.1 Basic Definitions

In a hardware realization of a finite state machine it is attractive to use flip-flops
to store the internal state. With n flip-flops we can realize a machine with up to
2n states. The update function is a Boolean function from {0,1}n to {0,1}n. We
can simplify both the implementation and the description if we restrict ourselves to
feedback shift registers.

In a feedback shift register (see Fig. 2.1) we number the flip-flops F0, . . . , Fn−1.
In each time step Fi takes the value of Fi−1 for i > 0 and F0 is updated according
to the feedback function f : {0,1}n → {0,1}. We will always assume that the value
of Fn−1 is the output of the shift register.

Feedback shift registers are useful tools in coding theory, in the generation of
pseudo-random numbers and in cryptography. In this chapter we will summarize
all results on linear feedback shift registers relevant to our study of stream ciphers.
For other applications of feedback shift registers I recommend the classical book of
Solomon W. Golomb [115].

Mathematically the sequence (ai)i∈N generated by a shift register is just a se-
quence satisfying the n-term recursion

ai+n = f (ai, . . . , ai+n−1). (2.1)

This definition is, of course, not restricted to binary sequences and most of our
results will hold for shift register sequences defined over any (finite) field or some-
times even for sequences defined over rings.

We will call a shift register linear if the feedback function is linear. Thus:

Definition 2.1 A linear feedback shift register (LFSR) sequence is a sequence
(ai)i∈N satisfying the recursion

ai+n =
n−1∑

j=0

cj ai+j . (2.2)

A. Klein, Stream Ciphers, DOI 10.1007/978-1-4471-5079-4_2,
© Springer-Verlag London 2013

17

http://dx.doi.org/10.1007/978-1-4471-5079-4_2

18 2 Linear Feedback Shift Registers

Fig. 2.1 A feedback shift
register

Since the next value depends only on the preceding n values, the sequence must
become periodic. The state (ai, . . . , ai+n−1) = (0, . . . ,0) leads to the constant se-
quence 0, thus the period of an LFSR sequence over Fq can be at most qn − 1. If in
addition c0 �= 0, we can extend the sequence backwards in time via

ai = c−1
0

(
ai+n −

n−1∑

j=1

cjaj+n

)

which proves that it is ultimately periodic.
As we have already seen in the introduction, a necessary condition for the secu-

rity of a system is that the generated pseudo-random sequence has a large period.
Thus the sequences of maximal period are of special interest.

Definition 2.2 An LFSR sequence over Fq with period qn − 1 is called an m-
sequence (maximal sequence).

2.2 Algebraic Description of LFSR Sequences

In this section we develop an algebraic description of LFSR sequences. We espe-
cially want to find a closed formula for an LFSR sequence. One way to reach this
goal is to study the companion matrix of the LFSR sequence. We have

⎛

⎜⎜⎜⎝

ak+1
...

ak+n−1
ak+n

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

0 1 0
...

. . .

0 0 1
c0 c1 . . . cn−1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ak

...

ak+n−2
ak+n−1

⎞

⎟⎟⎟⎠ (2.3)

and thus
⎛

⎜⎜⎜⎝

ak

...

ak+n−2
ak+n−1

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

0 1 0
...

. . .

0 0 1
c0 c1 . . . cn−1

⎞

⎟⎟⎟⎠

k⎛

⎜⎜⎜⎝

a0
...

an−2
an−1

⎞

⎟⎟⎟⎠ . (2.4)

Transforming the companion matrix to Jordan normal form makes it easy to com-
pute the k-th power and transforming it back gives a closed formula for the LFSR
sequence.

In the next section we will take another approach that is based on generating
functions.

2.2 Algebraic Description of LFSR Sequences 19

2.2.1 Generating Functions

This section contains the part of the theory of generating functions that we need, but
for those who want to learn more about generating functions, I recommend [119].

Definition 2.3 The generating function A(z) associated to a sequence (ai)i∈N is the
formal power series A(z) =∑∞

i=0 aiz
i .

A generating function is useful because it describes an entire sequence with a
single algebraic object.

By the recursion (2.2) we find:

A(z) −
n−1∑

j=0

cjA(z)zn−j = g(z)

⇐⇒ A(z)

(
1 −

n−1∑

j=0

cj z
n−j

)
= g(z) (2.5)

for some polynomial g(z) of degree at most n − 1.
The polynomial 1 −∑n−1

j=0 cj z
n−j is important enough to deserve a name.

Definition 2.4 For an LFSR sequence with recursion formula (2.2) we call

f (z) = zn −
n−1∑

j=0

cj z
j (2.6)

the feedback polynomial of the LFSR. The reciprocal polynomial1 is denoted by

f ∗(z) = znf

(
1

z

)
= 1 −

n−1∑

j=0

cj z
n−j . (2.7)

From Eq. (2.5) we derive a closed formula for the generation function of an LFSR
sequence:

A(z) = g(z)

f ∗(z)
. (2.8)

For the derivation of the closed form of ai it is useful to begin with the case
where the feedback polynomial f (z) has no multiple roots.

1f ∗(z) is sometimes called the feedback polynomial. As the literature has not adopted a unique
notation, it is important to check which notation is being used.

20 2 Linear Feedback Shift Registers

2.2.2 Feedback Polynomials Without Multiple Roots

Let f (z) be a feedback polynomial without multiple roots and let ξ1, . . . , ξn be the
different zeros of f (z). Then f ∗(z) =∏n

j=1(1 − zξj) and thus we get the partial
fraction decomposition

A(z) = g(z)

f ∗(z)
=

n∑

j=1

bj

1 − zξj

. (2.9)

All we need to obtain a closed formula from the partial fraction decomposition
is the geometric sum

∞∑

i=0

zi = 1

1 − z

and thus

A(z) =
n∑

j=1

bj

1 − zξj

=
n∑

j=1

bj

∞∑

i=0

(ζj z)
i

=
∞∑

i=0

(
n∑

j=0

bj ζ
i
j

)
zi . (2.10)

This gives us the closed formula

ai =
n∑

j=0

bj ζ
i
j (2.11)

for the LFSR sequence.
Formula (2.11) holds if the feedback polynomial has no multiple roots. For sep-

arable irreducible feedback polynomials we can transform (2.11) to the following
theorem. Note that over finite fields and fields with characteristic 0 every polynomial
is separable. We will not deal with other fields in this book.

Theorem 2.1 Let (ai)i∈N be an LFSR sequence over Fq and let ξ be a zero of the
irreducible feedback polynomial. Then

ai = TrFqn /Fq

(
αξ i
)

(2.12)

for some α ∈ Fqn .

2.2 Algebraic Description of LFSR Sequences 21

Proof We have already proved that the sequence (ai)i∈N has a unique closed
form (2.11). Since the feedback polynomial is irreducible, its zeros have the form ξθ

where θ is an automorphism of Fqn/Fq . But aθ
i = ai for all i. Thus Equation (2.11)

is invariant under θ . Therefore the coefficients bj are conjugated, i.e.

ai =
∑

θ∈Aut(Fqn/Fq)

αθ
(
ξθ
)i = TrFqn /Fq

(
αξ i
)
.

�

Corollary 2.1 Under the conditions of Theorem 2.1 the period of the sequence is
the multiplicative order o(ξ) of ξ .

As already mentioned in the previous section, the period qn − 1 is of special
interest. Thus the following feedback polynomials are special.

Definition 2.5 An irreducible polynomial of degree n over Fq is primitive if the
order of its zeros is qn − 1.

2.2.3 Feedback Polynomials with Multiple Roots

Now we want to determine all possible periods of LFSR sequences.
First we consider the easy case where the feedback polynomial is reducible, but

has no multiple roots. In this case we can factor the feedback polynomial f and
write the generating function (see Eq. (2.8)) of (ai)i∈N as

A(z) = g(z)

f ∗(z)
=

k∑

j=1

gj (z)

f ∗
j (z)

where the polynomials fj are the different irreducible factors of the feedback poly-
nomial f .

Thus the sequence (ai)i∈N can be represented as a sum of k LFSR sequences
(a

(j)
i)i∈N with irreducible feedback polynomial. By Corollary 2.1 the period of

(a
(j)
i)i∈N divides qnj − 1 where nj = degfj and hence the sequence (ai)i∈N =
∑k

j=1(a
(j)
i)i∈N has period

p = lcm(π1, . . . , πk)

where πj is the period of (a
(j)
i)i∈N.

To analyze the case of multiple roots we need an additional tool. In this case the
partial fraction decomposition of the generation function yields:

A(z) = g(z)

f ∗(z)
=

n1∑

j=1

bj,1

1 − zξj

+
n2∑

j=1

bj,2

(1 − zξj)2
+ · · · +

nr∑

j=1

bj,r

(1 − zξj)r

22 2 Linear Feedback Shift Registers

with n1 ≥ n2 ≥ · · · ≥ nr ≥ nr+1 = 0 where ξnk+1, . . . , ξnk
are roots of f of multi-

plicity k. So to get a closed formula we need in addition the power series of 1
(1−z)k

.
We can find the power series either by computing the (k − 1)th derivative of

1
1−z

=∑∞
i=0 zi or we use the binomial theorem

(1 + x)r =
∞∑

i=0

(
r

i

)
xi .

For a negative integer we get

1

(1 − z)k
=

∞∑

i=0

(−k

i

)
(−1)izi

=
∞∑

i=0

(
k + i − 1

i

)
zi

=
∞∑

i=0

(
k + i − 1

k − 1

)
zi .

This leads to the closed formula

ai =
n1∑

j=0

bj,1ζ
i
j +

n2∑

j=0

bj,2

(
i + 1

1

)
ζ i
j + · · · +

nk∑

j=0

bj,k

(
i + k − 1

k − 1

)
ζ i
j

=
n1∑

j=0

b′
j,1ζ

i
j +

n2∑

j=0

b′
j,2iζ

i
j + · · · +

nk∑

j=0

b′
j,ki

k−1ζ i
j (2.13)

where the last transformation uses the fact that
(
k−1+i
k−1

)
, k = 1, . . . , n, is a basis for

the polynomials of degree less than k. Note that the converse is also true. Given a
sequence in the form of Eq. (2.13) we can reverse all previous steps and find the
linear recurrence satisfied by that sequence.

From Eq. (2.13) we can immediately see the period of the sequence (ai)i∈N.
The power series (ζ i

j)i∈N has a period πi where πi |qnj − 1 and nj is the degree
of the minimal polynomial of ζj . And since we are working in Fq , the period of a
polynomial series (ik)i∈N is the characteristic p of Fq . Thus

π = p lcm(π1, . . . , πk)

where π1, . . . , πk are the different orders of ζ1, . . . , ζn1 .
We summarize the results of this section in the following theorem.

Theorem 2.2 Let (ai)i∈N be an LFSR sequence over Fq , q = pe. Then the period
π of (ai)i∈N is either

π = lcm(π1, . . . , πk) (2.14)

2.2 Algebraic Description of LFSR Sequences 23

where πj |qnj − 1 and
∑k

j=1 nj ≤ n or

π = p lcm(π1, . . . , πk) (2.15)

where πj |qnj − 1 and n1 +∑k
j=1 nj ≤ n.

Proof We have already proved that the period π must have either the form (2.14) or
(2.14). Now we prove the converse that for each such π there is an LFSR sequence
with period πa.

Let π be of the form (2.14). Choose ζj ∈ Fq
nj such that ζj has order πj . Without

loss of generality we may assume that Fq(ζj) = Fq
nj , if not just replace nj by a

smaller n′
j . The sequence

xi =
k∑

j=1

TrF
q
nj /Fq

(
ζ i
j

)

is a linear shift register sequence with feedback polynomial

f (z) =
k∏

j=1

nj −1∏

l=0

(
1 − zζ

ql

j

)
.

The sequence ζj has period π since the “subsequences” ζ i
j and hence TrF

q
nj /Fq

(ζ i
j)

have period πj (1 ≤ j ≤ k).
If π is of the form (2.15), we find that the sequence

xi = i TrF
q
nj /Fq

(
ζ i

1

)+
k∑

j=2

TrF
q
nj /Fq

(
ζ i
j

)

is a linear shift register sequence with feedback polynomial

f (z) =
(nj −1∏

l=0

(
1 − zζ

ql

1

)2
)(

k∏

j=1

nj −1∏

l=0

(
1 − zζ

ql

j

)
)

and period π = p lcm(π1, . . . , πk). The additional factor p is for the period of the
polynomial i in Fq . �

2.2.4 LFSR Sequences as Cyclic Linear Codes

Another description of LFSR sequences is based on coding theory.

24 2 Linear Feedback Shift Registers

The LFSR defines a linear mapping from its initial state (a0, . . . , an−1) to its
output sequence (ai)i∈N. For fixed N we may interpret the mapping

C : (a0, . . . , an−1) �→ (a0, . . . , aN−1)

as a linear code of length N and dimension n.
A parity check matrix of the code is

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c0 . . . cn−1 −1 0 . . . 0
0 c0 . . . cn−1 −1 0 . . . 0

. . .
. . .

. . .

0 · · · 0 c0 . . . cn−1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (2.16)

If we look at a full period of the LFSR, i.e. if we choose N = p, then the resulting
linear code is cyclic and f ∗(z) is its parity check polynomial.

The code C also has a unique systematic generator matrix

G =
⎛

⎜⎝
1 0 cn,0 · · · cN−1,0

. . .
...

...

0 1 cn,n−1 · · · cN−1,n−1

⎞

⎟⎠ . (2.17)

We have (a0, . . . , aN−1) = (a0, . . . , an−1)G, i.e.

ak =
n−1∑

i=0

ck,iai . (2.18)

We will use this linear representation of the element ak in terms of the initial state
in several attacks.

2.3 Properties of m-Sequences

2.3.1 Golomb’s Axioms

Linear shift register sequences of maximal length (m-sequences) have many desir-
able statistical properties.

The best known of these properties is that they satisfy Golomb’s axioms for
pseudo-random sequences [115].

We study a periodic binary sequence (ai)i∈N with period length p. Then the three
axioms for (ai)i∈N to be a pseudo-random sequence are:

2.3 Properties of m-Sequences 25

(G1) In every period the number of ones is nearly equal to the number of zeros,
more precisely the difference between the two numbers is at most 1:

∣∣∣∣∣

p∑

i=1

(−1)ai

∣∣∣∣∣≤ 1.

(G2) For any k-tuple b, let N(b) denote the number of occurrences of the k-tuple
b in one period.
Then for any k with 1 ≤ k ≤ log2 p we have

∣∣N(b) − N
(
b′)∣∣≤ 1

for any k-tuples b and b′.
(G2′) A sequence of consecutive ones is called a block and a sequence of consecu-

tive zeros is called a gap. A run is either a block or a gap.
In every period, one half of the runs has length 1, one quarter of the runs has
length 2, and so on, as long as the number of runs indicated by these fractions
is greater than 1.
Moreover, for each of these lengths the number of blocks is equal to the
number of gaps.

(G3) The auto-correlation function

C(τ) =
p−1∑

i=0

(−1)ai (−1)ai+τ

is two-valued.

Axiom (G1) is called the distribution test, Axiom (G2) is the serial test and
Axiom (G3) is the auto-correlation test. In [115] Golomb uses (G2′) instead of
(G2). Axiom (G2) was introduced in [169] and is in some respects more useful than
the original axiom.

The distribution test (G1) is a special case of the serial test (G2). However, (G1)
is retained for historical reasons, and sequences which satisfy (G1) and (G3), but
not (G2), are also important.

Theorem 2.3 (Golomb [115]) Every m-sequence satisfies (G1)–(G3).

Proof An m-sequence is characterized by the fact that the internal state of the lin-
ear feedback shift register runs through all elements of F

n
2\{(0, . . . ,0)}. Since at

any time the next n output bits form the current internal state, this means that
(at , . . . , at+n−1) runs over all elements of Fn

2\{(0, . . . ,0)} where t runs from 0 to
2n − 1. This proves

N(a1, . . . , ak) =
{

2n−k − 1 for a1 = · · · = ak = 0,

2n−k otherwise.

26 2 Linear Feedback Shift Registers

Thus an m-sequence passes the serial test for blocks of length up to n and hence
it satisfies (G2) and (G1).

A run of length k is just a subsequence of the form 1,0,0, . . . ,0,1 with k ze-
ros and a block of length k is a subsequence of the form 0,1,1, . . . ,1,0. We have
already proved that an m-sequence contains exactly 2n−k−2 subsequences of type
k ≤ n − 2. This is the statement of (G2′).

We find C(0) = 2n − 1 as one value of the auto-correlation function. We now
prove C(τ) = −1 for 0 < τ < 2n − 1. By Theorem 2.1 we have ai = TrF2n/F2(αξ i)

for a primitive element ξ of F2n and ai+τ = TrF2n/F2(α
′ξ i). Note that we have the

same ξ in both equations, since (ai)i∈N and (ai+τ)i∈N satisfy the same recurrence.
Thus ai + ai+τ = TrF2n/F2((α + α′)ξ i) and hence (ai + ai+τ)i∈N is also an m-
sequence. By (G1) we have

C(τ) =
p−1∑

i=0

(−1)ai+ai+τ = −1.

Thus the auto-correlation function takes just the two values 2n − 1 and −1. �

Besides the Golomb axioms, m-sequences also satisfy other interesting equa-
tions:

Theorem 2.4 Every m-sequence satisfies:

(a) For every 0 < k < 2n − 1 there exists a δ for which

ai + ai+k = ai+δ

for all i ∈N. This is called the shift-and-add property.
(b) There exists a τ such that

ai2j +τ = ai+τ

for all i, j ∈N. This is called the constancy on cyclotomic cosets.

Proof We have already used and proved the shift-and-add property when we demon-
strated that an m-sequence satisfies the auto-correlation test.

By Theorem 2.1 we know that ai = TrF2n/F2(αξ i) for some α ∈ F2n and a prim-
itive ξ ∈ F2n . We choose τ such that ξτ = α−1.

Then

ai+τ = TrF2n/F2

(
αξ i+τ
)

= TrF2n/F2

(
ξ i
)

= TrF2n/F2

(
ξ i2j)

since x �→ x2j

is an automorphism of F2n/F2

= TrF2n/F2

(
αξ i2j +τ

)

= ai2j +τ . �

2.3 Properties of m-Sequences 27

The shift-and-add property is of special interest since it characterizes the m-
sequences uniquely.

Theorem 2.5 Every sequence which satisfies the shift-and-add property is an m-
sequence.

Proof Let A = (ai)i∈N be a sequence of period p which has the shift-and-add prop-
erty. Then the p shifts of the sequence, together with the zero sequence, form an
elementary Abelian group. It follows that p + 1 = 2n for some n ∈ N. Let Ak de-
note the sequence (ai+k)i∈N. Any n successive shifts of the sequence A form a basis
of the elementary Abelian group, thus we can write An as a linear combination of
A0, . . . , An−1, i.e.

An =
n−1∑

k=0

ckAk.

Reading the last equation element-wise gives

ai+n =
n−1∑

k=0

ckai+k,

i.e. the sequence A satisfies a linear recurrence. Since the period of A is p = 2n − 1,
it is an m-sequence. �

2.3.2 Sequences with Two Level Auto-Correlation

It is a natural question whether the converse of Theorem 2.3 holds. Golomb conjec-
tured that it does and indicated in a passage of his book (Sect. 4.7 in [115]) that he
had a proof, but the actual answer turns out to be negative (see also [114]).

To put this answer in a bigger context we will study sequences which satisfy Ax-
iom (G3), which have a strong connection to design theory. We make the following
definition.

Definition 2.6 Let G be an additive group of order v and let D be a k-subset of G.
D is called a (v, k, λ)-difference set of G, if for every element h �= 0 in G the

equation

h = d − d ′

has exactly λ solutions with d, d ′ ∈ D. If G = Z/vZ is a cyclic group we speak of a
cyclic (v, k, λ)-difference set.

The connection between sequences satisfying (G3) and difference sets is given
by the following theorem.

28 2 Linear Feedback Shift Registers

Theorem 2.6 The following statements are equivalent.

(1) There exists a periodic sequence of period length v over F2 with two level auto-
correlation and k ones in its period.

(2) There exists a cyclic (v, k, λ)-difference set.

Proof Let a0, . . . , av−1 be the period of a sequence with two level auto-correlation.
This means the auto-correlation function satisfies C(0) = v and C(τ) = x < v for
1 ≤ τ ≤ v − 1.

For 1 ≤ τ ≤ v − 1 let λτ = |{i | ai = ai+τ = 1,0 ≤ i ≤ v − 1}|. Then
∣∣{i | ai = 1, ai+τ = 0,0 ≤ i ≤ v − 1}∣∣= k − λτ ,
∣∣{i | ai = 0, ai+τ = 1,0 ≤ i ≤ v − 1}∣∣= k − λτ ,
∣∣{i | ai = ai+τ = 0,0 ≤ i ≤ v − 1}∣∣= v + λτ − 2k.

Thus x = λτ + (v + λτ − 2k) − 2(k − λτ) = v − 4(k − λτ), i.e. λτ = λ independent
of τ .

Let D = {i | ai = 1}. Then h = d − d ′ has exactly λ = λh solutions with d, d ′ ∈
D.

For the converse, let D be a cyclic (v, k, λ)-difference set and define the sequence
(ai) by ai = 1 if i ∈ D and ai = 0 for i /∈ D. The definition of a difference set
says that there are λ indices with ai = ai+τ = 1 and, as above, we obtain C(τ) =
λτ + (v + λτ − 2k) − 2(k − λτ) = v − 4(k − λτ) for 1 ≤ t ≤ v − 1, i.e. the auto-
correlation function is two leveled. �

If we apply Theorem 2.6 to an m-sequence we obtain a difference set with pa-
rameters v = 2n − 1, k = 2n−1 and λ = 2n−3. This is an example of a Hadamard
difference set.

Definition 2.7 A (4n − 1,2n − 1, n − 1)-difference set is called a Hadamard dif-
ference set.

Hadamard difference sets are of course strongly connected with the well-known
Hadamard matrices.

Definition 2.8 A Hadamard matrix of order n is an n×n matrix H with entries ±1
which satisfies HHt = nI .

The connection is that we can construct a (4n) × (4n) Hadamard matrix from a
(4n− 1,2n− 1, n− 1)-difference set. Let D be a (4n− 1,2n− 1, n− 1)-difference
set over the group G = {g1, . . . , g4n−1} and define H = (hi,j)i,i=0,...,4n−1 by

hij =

⎧
⎪⎨

⎪⎩

1 if i = 0 or j = 0,

1 if i, j ≥ 1 and gi + gj ∈ D,

0 if i, j ≥ 1 and gi + gj /∈ D.

2.3 Properties of m-Sequences 29

Then a short calculation shows that H is a Hadamard matrix.
The opposite implication is false since the Hadamard difference set needs the

group G acting on it, whereas a Hadamard matrix need not have any symmetries.
Nevertheless, we see that there are many links between pseudo-random sequences
and other interesting combinatorial objects. (Besides those we have mentioned here,
there are also strong links to designs and coding theory.)

This is not the place to go deeper into the theory of Hadamard Matrices, but
to answer the question we posed at the beginning of this section we mention that
Cheng and Golomb [51] use the Hadamard (127,63,31)-difference set of type E
(given by Baumert [17]) to construct the sequence:

1111101111001111111001001011101010111100011000001001101110011000

110110111010010001101000010101001101001010001110110000101000000

which satisfies (G1), (G2) and (G3) but is not an m-sequence.

2.3.3 Cross-Correlation of m-Sequences

Sequences with low correlation are intensively studied in the literature (see [126]
for an overview). Since m-sequences have ideal auto-correlation properties, it is
interesting to study the cross-correlation function for pairs of m-sequences. Many
families of low correlation functions have been constructed in this way.

We use Eq. (2.12) to represent the m-sequence. We can shift it so that we get the
form

ai = Tr
(
ξ i
)
.

The second m-sequence can be assumed, without loss of generality, to be

bi = Tr
(
ξdi
)

for some d with gcd(d, qn − 1) = 1. The cross-correlation function depends only
on d . This motivates the following definition:

Definition 2.9 Let ξ be a primitive element of Fqn and let ω ∈ C be a q-th root of
unity. For each d with gcd(d, qn − 1) = 1 we define the cross-correlation function

θ1,d (τ) =
∑

x∈F∗
qn

ωTr(ξτ x−xd).

We will not need θ1,d in the following, so we keep this section short and just
sketch a link to bent functions, which are important in cryptography. We state the
following without proof.

30 2 Linear Feedback Shift Registers

Theorem 2.7 (Gold [106], Kasami [144]) Let q = 2 and ω = −1. For 1 ≤ k ≤ n let
e = gcd(n, k). If n/e is odd and d = 2k + 1 or d = 22k − 2k + 1, then θ1,d takes the
following three values:

• −1 + 2(n+e)/2 is taken 2n−e−1 + 2(n−e−2)/2 times.
• −1 is taken 2n − 2n−e − 1 times.
• −1 − 2(n+e)/2 is taken 2n−e−1 − 2(n−e−2)/2 times.

A pair of m-sequences whose cross-correlation function takes only the three val-
ues −1, −1+2
(n+2)/2� and −1−2
(n+2)/2� is called a preferred pair. Theorem 2.7
allows the construction of preferred pairs for n not divisible by 4. For n ≡ 0 mod 4
preferred pairs do not exist (see [185]).

What makes this interesting for cryptographic purposes is the following. To
avoid attacks such as differential cryptanalysis [26] or linear cryptanalysis [179],
the S-box of a block cipher must be as far from a linear mapping as possible. The
appropriate measure of distance between two functions is provided by the Walsh
transform.

Definition 2.10 Let f : F2n → F2. The Walsh transform of f is

f W (a) =
∑

x∈F2n

(−1)f (x)+Tr(ax).

The image of f W is the Walsh spectrum of f .

A linear function will contain ±2n in its Walsh spectrum. A function provides
the strongest resistance against a linear cryptanalysis if its Walsh spectrum contains
only values of small absolute value. One can prove that the Walsh spectrum of f

must contain at least a value of magnitude 2�n/2� (see, for example, [48]).

Definition 2.11 For even n, a function f : F2n → F2 is bent if f W(x) ≤ 2n/2 for all
x ∈ F2n .

For odd n, we call a function almost bent if f W (x) ≤ 2(n+1)/2 for all x ∈ F2n .

From two m-sequences ai = Tr(ξ i) and bi = Tr(ξdi) we construct a Boolean
function f : Fn

2 → F
n
2 by defining f (ξ i) = ξdi and f (0) = 0. Applying this con-

struction to a preferred pair with odd n results in an almost bent function.

2.4 Linear Complexity

2.4.1 Definition and Basic Properties

We have seen in the previous section that m-sequences have very desirable statistical
proprieties. However, as linear functions, LFSR sequences are unusable as crypto-
graphic pseudo-random generators. First note that the first n output bits of an LFSR

2.4 Linear Complexity 31

form its initial state, thus a LFSR fails against a known plaintext attack. Even if the
feedback polynomial of the LFSR is unknown to the cryptanalyst, the system is still
insecure. The first n output bits give us the initial state and the next n output bits
give us n equations of the form

⎛

⎜⎜⎜⎜⎝

an−1 an−2 . . . a0

an an−1
. . .

...
. . .

a2n−2 a2n−3 · · · an−1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

cn−1
cn−2

...

c0

⎞

⎟⎟⎟⎠=

⎛

⎜⎜⎜⎝

an

an+1
...

a2n−1

⎞

⎟⎟⎟⎠ . (2.19)

The determination of the unknown feedback coefficients ci therefore only requires
the solution of a system of n linear equations. A matrix of the form given in
Eq. (2.19) is called a Toeplitz matrix. Toeplitz matrices appear in many different
contexts. A lot is known about the solution of Toeplitz systems (see, for exam-
ple, [142]).

In Sect. 2.4.2 we will learn a quadratic algorithm that computes not only the
solution of the system (2.19), but gives us a lot of extra information. So an LFSR is
not secure, even if its feedback polynomial is secret.

On the other hand, it is clear that every periodic sequence can be generated by a
linear feedback shift register—simply take an LFSR of the same size as the period. It
is therefore natural to use the length of the shortest LFSR that generates the sequence
as a measure of its cryptographic security.

Definition 2.12 The linear complexity L((ai)i=0,...,n−1) of a finite sequence
a0, . . . , an−1 is the length of the shortest linear feedback shift register that produces
that sequence.

The following theorem summarizes some very basic properties of linear com-
plexity which follows directly from the definition.

Theorem 2.8

(a) A sequence of length n has linear complexity at most n:

L
(
(ai)i=0,...,n−1

)≤ n.

(b) The linear complexity of the subsequence (ai)i=0,...,k−1 of (ai)i=0,...,n−1 satis-
fies

L
(
(ai)i=0,...,k−1

)≤ L
(
(ai)i=0,...,n−1

)
.

Proof

(a) The first n output bits of a shift register of length n is simply its initial state.
Thus every shift register of length n can produce any finite sequence of length
n as output.

32 2 Linear Feedback Shift Registers

Fig. 2.2 The sum of two
LFSRs

(b) Any shift register that produces the sequence (ai)i=0,...,n−1 also produces the
subsequence (ai)i=0,...,k−1.

�

It is noteworthy that the bound of Theorem 2.8 (a) is sharp, as the following
example shows.

Lemma 2.1 The sequence 0, . . . ,0,1 (n − 1 zeros) has linear complexity n.

Proof Assume that the sequence is generated by a shift register of length k < n.
Since the first k symbols are 0 the shift register must be initialized with 0. But any
LFSR initialized with 0 generates the constant sequence 0. �

Lemma 2.1 demonstrates that a high linear complexity is just a necessary but not
sufficient condition for a good pseudo-random sequence.

Next we study the sum of two LFSR sequences, which is generated by the device
shown in Fig. 2.2.

Theorem 2.9 For two sequences (ai) and (bi) we have

L(ai + bi) ≤ L(ai) +L(bi).

Proof Consider the generating functions

A(z) = gA(z)

f ∗
A(z)

and B(z) = gB(z)

f ∗
B(z)

of the two LFSR sequences. Then the sum (ai + bi) has the generating function
S(z) = A(z) + B(z).

Thus

S(z) = ga(z)f
∗
B(z) + gB(z)f ∗

A(z)

f ∗
A(z)f ∗

B(z)

which implies by Sect. 2.2.1 that (ai + bi) can be generated by an LFSR with feed-
back polynomial fA(z)fB(z), i.e.

L(ai + bi) ≤ L(ai) +L(bi).

2.4 Linear Complexity 33

(Note that lcm(fA(z), fB(z)) is the feedback polynomial of the minimal LFSR that
generates (ai + bi).) �

Theorem 2.9 shows that a linear combination of several linear feedback shift
registers does not result in a cryptographic improvement. In fact there is a much
more general theorem: Any circuit of n flip-flops which contains only XOR-gates
can be simulated by an LFSR of size at most n (see [46]).

Theorem 2.9 has a corollary, which will be crucial for the next section.

Corollary 2.2 If

L
(
(ai)i=0,...,n−2

)
< L
(
(ai)i=0,...,n−1

)

then

L
(
(ai)i=0,...,n−1

)≥ n −L
(
(ai)i=0,...,n−2

)
. (2.20)

Proof Let (bi) be the sequence 0, . . . ,0,1 (n − 1 zeros) and let a′
i = ai + bi .

Since L((ai)i=0,...,n−2) < L((ai)i=0,...,n−1), the minimal LFSR that produces the
sequence (ai)i=0,...,n−2 will produce an−1 + 1 as nth output, i.e.

L
(
(ai)i=0,...,n−2

)= L
((

a′
i

)
i=0,...,n−1

)
.

Applying Theorem 2.9 to the sequences (ai) and (a′
i) we obtain

L
(
(ai)i=0,...,n−1

)+L
((

a′
i

)
i=0,...,n−1

)≤ L
(
(bi)i=0,...,n−1

)= n,

where the last equality is due to Lemma 2.1. �

In the next section we will prove that we even have equality in (2.20).

2.4.2 The Berlekamp-Massey Algorithm

In 1968 E.R. Berlekamp [20] presented an efficient algorithm for decoding BCH-
codes (an important class of cyclic error-correcting codes). One year later, Massey
[178] noticed that the decoding problem is in its essential parts equivalent to the
determination of the shortest LFSR that generates a given sequence.

We present the algorithm, which is now known as Berlekamp-Massey algorithm,
in the form which computes the linear complexity of a binary sequence.

In cryptography we are interested only in binary sequences, in contrast to coding
theory where the algorithm is normally used over larger finite fields. To simplify the
notation we specialize Algorithm 2.1 to the binary case.

Theorem 2.10 In the notation of Algorithm 2.1, Li is the linear complexity of the
sequence x0, . . . , xi−1 and fi is the feedback polynomial of the minimal LFSR that
generates x0, . . . , xi−1.

34 2 Linear Feedback Shift Registers

Algorithm 2.1 The Berlekamp-Massey algorithm
1: {initialization}
2: f0 ← 1, L0 ← 0
3: f−1 ← 1, L−1 ← 0
4: {Compute linear complexity}
5: for i from 0 to n − 1 do
6: Li = degfi

7: di ←∑Li

j=0 coeff(fi,Li − j)xi−j

8: if di = 0 then
9: fi+1 ← fi

10: else

11: m ←
{

max{j | Lj < Lj+1} if {j | Lj < Lj+1} �= ∅
−1 if {j | Lj < Lj+1} = ∅

12: if m − Lm ≥ i − Li then
13: fi+1 ← fi + X(m−Lm)−(i−Li)fm

14: else
15: fi+1 ← X(i−Li)−(m−Lm)fi + fm

16: end if
17: end if
18: end for

Proof As a first step we will prove by induction on i that fi is a feedback poly-
nomial of an LFSR that produces x0, . . . , xi−1. In the second step we prove the
minimality.

We start the induction with i = 0. The empty sequence has, by definition, linear
complexity 0 and the “generating LFSR” has feedback polynomial 1.

Now suppose that fi is the feedback polynomial of an LFSR which generates
x0, . . . , xi−1. We prove that fi+1 is the feedback polynomial of an LFSR which
generates x0, . . . , xi . In line 7, Algorithm 2.1 tests if the sequence x0, . . . , xi is also
generated by the LFSR with feedback polynomial fi . If this is the case we can keep
the LFSR.

Now consider the case that the LFSR with feedback polynomial fi fails to gener-
ate x0, . . . , xi . In this case we need to modify the LFSR. To this we use in addition
to the LFSR with feedback polynomial fi(x) =∑Li

i=1 aix
i the latest time step m in

which the linear complexity of the sequence was increased. Let fm(x) =∑Lm

j=0 bjx
j

be the feedback polynomial for that time step. For the first steps in which no such
time step is present, we use the conventional values m = −1, f−1 = 1, L−1 = 0.
The reader can easily check that the following argument works with this definition.

With these two shift registers we construct the automaton described in Fig. 2.3.
In the lower part we see the feedback shift register with feedback polynomial fi .

It generates the sequence x0, . . . , xi, xi+1 + 1. So at time step i −Li it computes the
wrong feedback xi+1 + 1. We correct this error with the feedback register shown in
the upper part. We use the feedback polynomial fm to test the sequence x0, In
the first time steps this test will output 0. At time step m − Lm we will use at first

2.4 Linear Complexity 35

Fig. 2.3 Construction for the
Berlekamp-Massey algorithm

the value xm+1 and the test will output 1. We will feed back this 1 in such a way that
it cancels with the 1 in the wrong feedback xi+1 + 1 of the first LFSR. To achieve
this goal we have to delay the upper part by i − m.

We can combine the two registers into one LFSR by reflecting the upper part to
the lower part. Here we must distinguish between the cases m − Lm ≥ i − Li and
m − Lm ≤ i − Li . (For m − Lm = i − Li both cases give the same result.)

If Lm + (i − m) ≥ Li , then the upper part contains more flip-flops. In this case
the combination of both LFSRs looks like Fig. 2.4 (a).

If Lm + (i − m) ≥ Li , then the lower part contains more flip-flops. In this case
the combination of both LFSRs looks like Fig. 2.4 (b).

In both cases the reader can check that the diagrams in Fig. 2.4 are described
algebraically by the formulas given in lines 13 and 15 of the algorithm.

(a) The case Lm + (i − m) ≥ Li (drawing with Li = 4, Lm = 2, i − m = 3)

(b) The case Lm + (i − m) ≥ Li (drawing with Li = 5, Lm = 1, i − m = 3)

Fig. 2.4 Combination of the two LFSRs of Fig. 2.3

36 2 Linear Feedback Shift Registers

At this point we have proved that fi is a feedback polynomial of an LFSR that
generates x0, . . . , xi . Now we prove the minimality.

At time t = 0 we have the empty sequence and the empty shift register, which is
clearly minimal. Now look at the step i → i + 1. If degfi+1 = degfi then fi+1 is
clearly minimal (part (b) of Theorem 2.8).

The only interesting case is when degfi+1 > degfi . This happens if and only if
di �= 0 and m − Lm < i − Li .

In this case we may apply Corollary 2.2 to conclude

L(x0, . . . , xi) ≥ i + 1 − Li.

To prove degfi+1 = Li+1 = L(x0, . . . , xi) it suffices to show Li+1 = i + 1 − Li .
But

Li+1 = (i − Li) + (m − Lm) + degfi

= i − m + Lm

= (i + 1) − (m + 1 − Lm).

Since we have chosen m in such a way that degfm < degfm+1, we may use the
induction hypothesis on that step and conclude Lm+1 = m + 1 − Li . But again, by
choice of m, we have degfm+1 = degfm+2 = · · · = degfi . So we get

Li+1 = (i + 1) − (m + 1 − Lm)

= (i + 1) − Li. (2.21)

By Corollary 2.2 this proves Li+1 = L(x0, . . . , xi). �

As part of the proof we have improved the statement of Corollary 2.2.

Corollary 2.3 If

L
(
(ai)i=0,...,n−2

)
< L
(
(ai)i=0,...,n−1

)

then

L
(
(ai)i=0,...,n−1

)= n −L
(
(ai)i=0,...,n−2

)
.

Proof The only case in which L((ai)i=0,...,n−2) < L((ai)i=0,...,n−1) is treated in
line 15 of Algorithm 2.1. In the proof of Theorem 2.10 we have shown (Eq. (2.21))
that in this case Ln = n − Ln−1. �

In each loop of the Berlekamp-Massey algorithm we need O(Li) = O(i) time
steps, thus the computation of the linear complexity of a sequence of length n takes
just O(n2) time steps. In comparison, the solution of a system of n linear equations,
which we used in the beginning of this section, needs O(n3) time steps. In addition
it has the advantage that it computes the linear complexity of all prefixes of the
sequence. This is helpful if we want to study the linear complexity profile of the
sequence (see Sect. 2.5).

2.4 Linear Complexity 37

2.4.3 Asymptotic Fast Computation of Linear Complexity

The Berlekamp-Massey algorithm is already very fast, so it may come as a surprise
that we can compute the linear complexity even more rapidly.

One can lower the complexity of the computation of L(a0, . . . , an−1) from O(n2)

to O(n logn(log log(n))2) (see, for example, [142]). The following algorithm is my
own development and has the advantage that it has a small constant in the O-term
and it computes, in addition to the feedback polynomial fn, the whole sequence
L(a0, . . . , ai−1), i ≤ n.

The idea is a divide and conquer variant of the original Berlekamp-Massey algo-
rithm. The main part is the function Massey(i, i′) which allows us to go from time
step i directly to time step i′.

We use the following notation: For any time step i, let fi be the minimal feedback
polynomial of the sequence a0, . . . , ai−1. The degree of fi is Li and by m(i) we
denote the largest m < i with Lm < Li . If such an m does not exist we use the
conventional values m(i) = −1 and f−1 = 1.

By A(z) =∑N
j=0 aj z

j we denote the generating function of the sequence Ai and

by A∗(z) = zNA(1/z) we denote the reciprocal polynomial.
To simplify the presentation of Algorithm 2.2 we take the values m(i), Li and so

on as known. We will see later how to compute these values quickly.
Lines 3 and 4 need some further explanation. As we can see in the final recursion

step (line 8), we access only the coefficient N − i + Li of Di . So there is no need
to compute the full polynomial Di = A∗fi . We will prove in Theorem 2.13 that
only the coefficients from zN−i′+Lm+2 to zmax{Li−i,Lm(i)−m(i)} (inclusive) are needed
when we call Massey(i, i′). Since for a sequence with typical complexity profile
m ≈ i and Li ≈ Lm, this means that we need only about i′ − i coefficients. For the
complexity of the algorithm it is crucial to implement this optimization.

Before we prove the correctness of the algorithm we look at its running time. Let
T (d) be the running time of Massey(i, i + d).

For d > 1 we have two recursive calls of the function Massey and the computa-
tions in lines 3, 4 and 6. This leads to the recursion

T (d) = 2T (d/2) + 4M(d/2, d/4) + 8M(d/4, d/4).

We neglect the time for the additions and memory access in this analysis. Asymp-
totically it does not matter anyway, and computer experiments show that even for
small d it has very little impact on the constants.

M(k, l) denotes the complexity of multiplying a polynomial of degree k by a
polynomial of degree l.

Even with “school multiplication” M(k, l) = kl we get T (n) = 2n2 which is not
too bad in comparison with the original Berlekamp-Massey algorithm, which needs
≈ n2/4 operations.

With multiplication based on the fast Fourier transform we get T (n) =
O(n log2 n log logn). However, the constant is not so good in this case.

38 2 Linear Feedback Shift Registers

Algorithm 2.2 Massey(i, i′)
Require: The check polynomials Di = A∗fi and Dm(i) = A∗fm(i), Li = degfi ,

Lm(i) = degfm(i)

Ensure: Polynomials g00, g01, g10 and g11 with fm(i′) = fm(i)g00 +fig01 and fi′ =
fm(i)g10 + fig11.

1: if i′ − i > 1 then
2: Call Massey(i, i+i′

2) to get polynomials g′
00, g′

01, g′
10 and g′

11
3: D

m(i+i′
2)

:= Dig
′
00 + Dm(i)g

′
01 {Compute just the coefficients needed later!}

4: Di+i′
2

:= Dig
′
10 + Dm(i)g

′
11 {Compute just the coefficients needed later!}

5: Call Massey(i+i′
2 , i′) to get polynomials g′′

00, g′′
01, g′′

10 and g′′
11

6: Compute gkj = g′
0j g

′′
k0 + g′

1j g
′′
k1 for j, k ∈ {0,1}

7: else
8: if coeff(Di,N − i + Li) = 1 then
9: g00 = g11 = 1, g01 = g10 = 0

10: else
11: if m(i) − Lm(i) > i − Li then
12: g00 = 1, g01 = 0, g10 = x(m(i)−Lm(i))−(i−Li), g11 = 1
13: else
14: g00 = 0, g01 = 1, g10 = 1, g11 = x(i−Li)−(m(i)−Lm(i)),
15: end if
16: end if
17: end if

With different multiplication algorithms such as, for example, Karatsuba (see
also Sect. 11.3), we can get T (n) = O(n1.59) with a very good constant. Fortu-
nately there are plenty of good libraries which implement fast polynomial arith-
metic, and the designers of the libraries have performed timings to choose the
best multiplication algorithm for each range of n. So we can just implement Al-
gorithm 2.2 and be sure that the libraries will guarantee an asymptotic running time
of O(n log2 n log logn) and select special algorithms with good constants for small
n. For the timings at the end of this section we choose NTL [244] as the underling
library for polynomial arithmetic.

We prove by induction that the polynomials g00, g01, g10 and g11 have the desired
property.

Theorem 2.11 Algorithm 2.2 computes polynomials g00, g01, g10 and g11 with
fm(i′) = fm(i)g00 + fig01 and fi′ = fm(i)g10 + fig11.

Proof We prove the theorem by induction on d = i′ − i.
For d = 1 lines 8–16 are just a reformulation of lines 8–17 of Algorithm 2.1. Note

that we flipped the sequence Ai and thus we have to investigate the bit at position
N − i + Li instead of the bit at position i.

2.4 Linear Complexity 39

Now we have to check the case d > 1. By induction the call of Massey(i, i+i′
2)

gives us polynomials g′
00, g′

01, g′
10 and g′

11 with f
m(i+i′

2)
= fm(i)g

′
00 + fig

′
01 and

f i+i′
2

= fm(i)g
′
10 + fig

′
11.

To prove that the call of Massey(i+i′
2 , i′) in line 5 gives the correct result, we

have to show that the values D
m(i+i′

2)
and Di+i′

2
computed in lines 3 and 4 satisfy

the requirements of the algorithm.
In line 3 we compute D

m(i+i′
2)

as

D
m(i+i′

2)
= Dig10 + Dm(i)g11

= A∗fig01 + A∗fm(i)g01 (required input form)

= A∗f
m(i+i′

2)
(induction)

and similarly Di+i′
2

= A∗f i+i′
2

. Thus we meet the requirement for Massey(i+i′
2 , i′)

and by induction we obtain polynomials g′′
00, g′′

01, g′′
10 and g′′

11 with fm(i′) =
f

m(i+i′
2)

g′′
00 + f i+i′

2
g′′

01 and fi′ = f
m(i+i′

2)
g′′

10 + f i+i′
2

g′′
11.

Thus

fm(i′) = f
m(i+i′

2)
g′′

00 + f i+i′
2

g′′
01

= (fm(i)g
′
00 + fig

′
01

)
g′′

00 + (fm(i)g
′
10 + fig

′
11

)
g′′

01.

This proves g00 = g′
00g

′′
00 + g′

10g
′′
01 and so on, i.e. the polynomials computed in line

6 satisfy the statement of the theorem. �

In order to do the test in line 11 of Algorithm 2.2 we need to know m(i), Li and
Lm(i). We assume that the algorithm receives these numbers as input and we must
prove that we can rapidly compute m(i′), Li′ and Lm(i′).

In Algorithm 2.2 we have at any time fi′ = fm(i)g10 + fig11. We must compute
Li′ = degfi . The problem is that we cannot compute fi′ for all i′, since it will take
O(n2) steps just to write the results. However, we don’t have to compute fi′ to
determine degfi′ , as the following theorem shows.

Theorem 2.12 Using the notation of Algorithm 2.2

degfi′ = degfi + degg11

and if m(i′) > m(i) then

degfm(i′) = degfi + degg01.

Proof It is enough to prove degfi′ = degfi + degg11
, since the second part follows

from the first simply by changing i to m(i).

40 2 Linear Feedback Shift Registers

We will prove deg(fm(i)g10) < deg(fig11), which implies the theorem. The proof
is by induction on d = i′ − i. This time we do not go directly from d to 2d , but
instead we will go from d to d + 1.

For d = 1 the only critical part is line 12. In all other cases we have degfi >

degfm(i) and degg11 > degg10.
However, if we use line 12, then degfi+1 = degfi , since m(i) − Lm(i) > i − Li

and hence degfi+1 = degfi + degg11.
Now look at the step d to d + 1 as described in the algorithm. Let g′

00, g′
01, g′

10
and g′′

11 be the polynomials with fm(i+d) = fm(i)g
′
00 +fig

′
01 and fi+d = fm(i)g

′
10 +

fig
′
11. By induction, degfi+d = deg(fig

′
1) > fm(i)g

′
0. Now observe how fi+d+1 is

related to fi . If we use line 9 in Algorithm 2.1 then fi+d+1 = fi+d and there is
nothing left to prove.

If we use line 13 in Algorithm 2.1, then degfi+d+1 = degfi+d (since m−Lm >

i −Li) and hence g′
1 = 1 and degfi+d+1 = deg(fi+dg′′

1) = deg(fig
′
1g

′′
1) = degfi +

degg11.
If we are in the case of line 15 in Algorithm 2.1 then degg′′

1 > degg′′
0 = 0

and hence degfig
′′
1 > degfm(i)g

′′
0 and thus degfi+d+1 = deg(fi+dg′′

1) = degfi +
degg11.

This proves the theorem. �

Theorem 2.12 allows us to compute Li′ = degfi′ and Lm(i′) = degfm(i′) with
just four additions from Li and Lm(i). Since degfi ≤ i ≤ n the involved numbers
have at most log(n) bits, i.e. we need just O(logn) extra time steps per call of
Massey(i, i′).

The last thing we have to explain is how the algorithm computes the function
m(i). At the beginning m(0) = −1 is known. If i′ − i = d = 1 we obtain m(i + 1)

as follows: If we use line 9 or line 12 then m(i + 1) = m(i), and if we use line 14
then m(i + 1) = i.

If d > 1 then we obtain the value m(i+i′
2) needed for the call of Massey(i+i′

2 , i′)
resulting from the call of Massey(i, i+i′

2).
Similarly the algorithm can recursively compute Li = degfi and Lm(i) =

degfm(i), which is even faster than using Theorem 2.12.
Finally, we show that we can trim the Polynomials Di and Dm(i). We used these

to get the sub-quadratic bound for the running time.

Theorem 2.13 The function Massey(i, i′) needs only the coefficients between
zN−i′+Lm+2 and zmax{Li−i,Lm(i)−m(i)} (inclusive) from the polynomials Di and
Dm(i).

Proof In the final recursion steps the algorithm will have to access coeff(Dj ,N −
j + Lj) for each j in {i, . . . , i′ − 1}. So we have to determine which parts of the
polynomials Di and Dm(i) are needed to compute the relevant coefficients.

Let g
(j)

0 and g
(j)

1 be the polynomials with Dj = Dm(i)g
(j)

0 + Dig
(j)

1 .

2.4 Linear Complexity 41

By Theorem 2.12 we know that degfi + degg
(j)

1 = degfj
and degfm +

degg
(j)

0 < degfj
.

Thus max{degg
(j)

0 ,degg
(j)

1 } ≤ Lj −Lm − 1. Therefore we need only the coeffi-
cients from z(N−j+Lj)−(Lj −Lm−1) = zN−j+Lm+1 to zN−j+Lj of Di and Dm to com-
pute coeff(Dj ,N −j +Lj). (Note that in the algorithm we compute Dj not directly,
but in intermediate steps so as not to change the fact that coeff(Dj ,N − j + Lj) is
affected only by this part of the input.)

Since j < i′ we see that we need no coefficient below zN−i′+Lm+2.
To get an upper bound we have to bound Lj − j in terms of Li , Lm and i. By

induction on j we prove

max
{
Lj − j,Lj(m) − m(j)

}≤ max
{
Li − i,Lm(i) − m(i)

}
.

For j = i this is trivial. Now we prove

max
{
Lj+1 − (j + 1),Lm(j+1) − m(j + 1)

}≤ max
{
Lj − j,Lm(j) − m(j)

}
.

To this end, we study what happens in lines 9, 13 and 15 of Algorithm 2.1.
In the first two cases we have Lj+1 = Lj , m(j + 1) = m(j) and the inequality is

trivial. In the last case Lj+1 = Lj + (j − Lj) − (m(j) − Lm(j)) and m(j + 1) = j

thus

max
{
Lj+1 − (j + 1),Lm(j+1) − m(j + 1)

}= max
{
Lm(j) − m(j) − 1,Lj − j

}
.

This proves Lj − j < max{Li − i,Lm(i) − m(i)}, which gives the desired upper
bound N − j + Lj . �

We have seen that the algorithm keeps track of the values m(i), Li and Lm(i). So
the only thing we have to do to get the full sequence L1, . . . ,Ln is to output Li+i′

2
when the algorithm reaches line 5. This costs no extra time.

If we are interested in the feedback polynomials we have to do more work. We
need an array R of size n. Each time the algorithm reaches its end (line 17) we store
the values (i, g00, g01, g10, g11) at R[i′].

When the computation of the linear complexity is finished the array R is com-
pletely filled. Now we can compute the feedback polynomials by the following re-
cursive function (Algorithm 2.3).

Finally, we can also use the algorithm in an iterative way. If we have observed
N bits, we can call Massey(0,N) to compute the linear complexity of the sequence
a0, . . . , aN−1. We will remember m(N) (computed by the algorithm), fN = g10 +
g11 and fm(N) = g00 +g01. If we later observe N ′ extra bits of the sequence, we can
call Massey(N,N + N ′) to get the linear complexity of a0, . . . , aN+N ′−1.

In the extreme case we can always stop after one extra bit. In this case the al-
gorithm will of course need quadratic time, since it must compute all intermediate
feedback polynomials. Computer experiments show that the new algorithm beats

42 2 Linear Feedback Shift Registers

Algorithm 2.3 feedback(i′)
1: Get the values i, g00, g01, g10, g11 from R[i′].
2: if i = 1 then
3: fi′ = g10 + g11, fm(i′) = g00 + g01
4: else
5: Obtain fi and fm(i′) by calling feedback(i).
6: fi′ = fm(i)g10 + fig11, fm(i′) = fm(i)g00 + fig01
7: end if

Table 2.1 Tests for the
algorithms n

100 500 1000 5000 10000 100000

Algorithm 2.1 0.00002 0.00065 0.0036 0.098 0.39 36.11

Algorithm 2.2 0.001 0.00157 0.0042 0.049 0.094 0.94

the original Berlekamp-Massey algorithm if it receives at least 5000 bits at once.
The full speed is reached only if we receive the input in one step.

Table 2.1 shows that the asymptotic fast Berlekamp-Massey algorithm beats the
classical variant even for very small n.

2.4.4 Linear Complexity of Random Sequences

Since we want to use linear complexity as a measure of the randomness of a se-
quence, it is natural to ask what the expected linear complexity of a random se-
quence is.

Theorem 2.14 (Rueppel [228]) Let 1 ≤ L ≤ n. The number N(n,L) of bi-
nary sequences of length n having linear complexity exactly L is N(n,L) =
2min{2n−2L,2L−1}.

Proof We are going to find a recursion for N(n,L). For n = 1 we have N(1,0) = 1
(the sequence 0) and N(1,1) = 1 (the sequence 1).

Now consider a sequence a0, . . . , an−1 of length n and linear complexity L. Let
f (z) be a feedback polynomial of a minimal LFSR generating a0, . . . , an−1.

We have one way to extend the sequence a0, . . . , an−1 by an an without changing
the feedback polynomial f (z). (This already proves N(n + 1,L) ≥ N(n,L).)

Now consider the second possible extension a0, . . . , an−1, an. By Corollary 2.3
we have either

L(a0, . . . , an−1, an) = L(a0, . . . , an−1) = L

2.4 Linear Complexity 43

or

L(a0, . . . , an−1, an) = n + 1 − L > L.

If L ≥ n+1
2 , the second case is impossible, i.e. we have N(n + 1,L) ≥ 2N(n,L)

for L ≥ n+1
2 .

Now let L < n+1
2 and let m be the largest index with Lm = L(a0, . . . , am−1) < L.

Then by Corollary 2.3 we find

Lm = m −L(a0, . . . , am−2) > L(a0, . . . , am−2)

and hence Lm > m/2. Therefore n − L > n+1
2 > m/2 > m − Lm, which means by

Algorithm 2.1 that

L(a0, . . . , an−1, an) > L(a0, . . . , an−1) = L.

This proves the recursion

N(n + 1,L) =

⎧
⎪⎨

⎪⎩

2N(n,L) + N(n,n + 1 − L) if 2L > n + 1,

2N(n,L) if 2L = n + 1,

N(n,L) if 2L < n + 1.

With this recursion it is just a simple induction to prove

N(n,L) = 2min{2n−2L,2L−1}. �

With Theorem 2.14 we need only elementary calculations to obtain the expected
linear complexity of a finite binary sequence.

Theorem 2.15 (Rueppel [228]) The expected linear complexity of a binary se-
quence of length n is

n

2
+ 4 + (n& 1)

18
− 2−n

(
n

3
+ 2

9

)
.

Proof For even n we get

n∑

i=1

iN(n, l) =
n/2∑

i=1

i · 22i−1 +
n/2−1∑

i=0

(n − i)22i

=
[
n

2n

3
+ 2n+1

9
+ 2

9

]
+
[
n

2n

6
+ 2n+2

9
− n

3
− 4

9

]

= n2n−1 + 2n+1

9
− n

3
− 2

9

44 2 Linear Feedback Shift Registers

and similarly for odd n we get

n∑

i=1

iN(n, l) =
(n−1)/2∑

i=1

i · 22i−1 +
(n−1)/2∑

i=0

(n − i)22i

= n2n−1 + 5

18
2n − n

3
− 2

9
.

Multiplying by the probability 2−n for a sequence of length n we get the expected
value. �

It is also possible to determine the expected linear complexity of a periodic se-
quence of period n with random elements. However, since in cryptography a cipher
stream is broken if we are able to observe more than one period (see the Vigenère
cipher in Sect. 1.1), this kind of result is of less interest. We state the following
without proof.

Theorem 2.16 A random periodic sequence with period n has expected linear com-
plexity:

(a) n − 1 + 2−n if n is power of 2;
(b) (n − 1)(1 − 1

2o(2,n)) + 1
2 if n is an odd prime and o(2, n) is the order of 2 in F

×
n .

Proof

(a) See Proposition 4.6 in [228].
(b) See Theorem 3.2 in [186].

�

2.5 The Linear Complexity Profile of Pseudo-random Sequences

2.5.1 Basic Properties

We have introduced linear complexity as a measure of the cryptographic strength
of a pseudo-random sequence. However, a high linear complexity is only a neces-
sary but not sufficient condition for cryptographic strength. Take for example the
sequence

1010111100010011010111100

which is generated by an LFSR with feedback polynomial z4 +z+1. It is a weak key
stream and its linear complexity is 4. By changing just the last bit of the sequence
the linear complexity rises to 22 (see Corollary 2.3), but changing just one bit does
not make a keystream secure.

One way to improve linear complexity as a measure of the randomness of a se-
quence is to look at the linear complexity profile.

2.5 The Linear Complexity Profile of Pseudo-random Sequences 45

Fig. 2.5 The linear
complexity profile of
1010111100010011010111101

Fig. 2.6 A typical linear
complexity profile

Definition 2.13 The linear complexity profile of a binary sequence (an)n∈N is the
function LP :N+ → N with n �→ L(a0, . . . , an−1).

If we draw the linear complexity profile for the sequence

1010111100010011010111101

we see (Fig. 2.5) that the linear complexity jumps with the last bit to the high value
22. Prior to this we have the low value 4, which means that the sequence is a weak
key stream.

By Theorem 2.15 the expected linear complexity of a sequence of length n is
about n

2 , i.e. the linear complexity profile of a good pseudo-random sequence should
lie around the line n �→ n/2 as shown in Fig. 2.6.

In the remaining part of this section we will study sequences with a linear com-
plexity profile which is “as good as possible”.

Definition 2.14 A sequence (an)n∈N has a perfect linear complexity profile if

L(a0, . . . , an−1) =
⌊

n + 1

2

⌋
.

46 2 Linear Feedback Shift Registers

The linear complexity profile is good if
∣∣∣∣L(a0, . . . , an−1) − n

2

∣∣∣∣= O
(
log(n)
)
.

H. Niederreiter [198] classified all sequences with a good linear complexity pro-
file by means of continued fractions. We will follow his proof in the remaining part
of the section.

2.5.2 Continued Fractions

In this section we classify all sequences with a good linear complexity profile. To
that end we establish a connection between the continued fraction expansion of the
generation function and the complexity profile.

Consider the field F((z−1)) = {∑i≥n aiz
−i | n ∈ Z, ai ∈ F } of formal Laurent

series in z−1. For S =∑i≥n aiz
−i ∈ F((z−1)) we denote by [S] =∑0≥i≥n aiz

−i

the polynomial part of S.
A continued fraction is an expression of the form

b0 + a1

b1 + a2

b2 + a3

b3 + . . .

For continued fractions we use the compact notation of Pringsheim:

b0 + a1|
|b1

+ a2|
|b2

+ a3|
|b3

+ · · ·

For S ∈ F((z−1)) recursively define

Ai = [R−1
i−1

]
, Ri = R−1

i−1 − Ai for i ≥ 0 (2.22)

with R−1 = S0. This gives the continued fraction expansion

S = A0 + 1 |
|A1

+ 1 |
|A2

+ · · · (2.23)

of S.
The term

A0 + 1 |
|A1

+ · · · + 1 |
|Ak

= Pk

Qk

with Pk,Qk ∈ F [z] is called the kth convergent fraction of f .

2.5 The Linear Complexity Profile of Pseudo-random Sequences 47

Let us recall some basic properties of continued fractions (see, for exam-
ple, [211]).

The polynomials Pk,Qk satisfy the recursion

6P−1 = 1, P0 =A0, Pk = AkPk−1 + Pk−2, (2.24)

Q−1 =0, Q0 = 1, Qk =AkQk−1 + Qk−2. (2.25)

In addition we have the identities

Pk−1Qk − PkQk−1 = (−1)k, (2.26)

gcd(Pk,Qk) = 1, (2.27)

S = Pk + RkPk−1

Qk + RkQk−1
. (2.28)

The above identities hold for every continued fraction. The next identities use the
degree function and hold only for continued fractions defined over F((z−1)). Using
the recursion (2.25) we get degQi =∑i

j=1 degAi for j ≥ 1.

Lemma 2.2 For all j ∈N we have

deg(QjS − Pj) = −deg(Qj+1).

Proof We prove this by induction on j . For j = 0 this follows immediately from
Eq. (2.28) with

−degR0 = degR−1
0 = deg

[
R−1

0

]= degA1 = degQ1.

Now let j ≥ 1. By Eq. (2.28) we have

SQj − Pj = Bj (SQj−1 − Pj−1).

By induction degSQj−1 − Pj−1 = degQj and since degBj = −degAj+1 and
degQj+1 = degAj+1 + degQj we get

deg(SQj − Pj) = −degQj+1. �

The connection of linear complexity and the Berlekamp-Massey algorithm with
continued fractions and the Euclidean algorithm has been observed several times.
The formulation of the following theorem is from [197].

Theorem 2.17 Let (an)n∈N be a sequence over the field F and let S(z) =∑−∞
j=0 aj z

−j−1. Let Pk

Qk
be the kth convergent fraction of the continued fraction

expansion of S.
Then for every n ∈ N

+ the linear complexity Ln = L(a0, . . . , an−1) is given by
Ln = 0 for n < degQ0 and Ln = degQj where j ∈N is determined by

degQj−1 + degQj ≤ n < degQj + degQj+1.

48 2 Linear Feedback Shift Registers

Proof By Lemma 2.2 we have

deg

(
S − Pj

Qj

)
= −degQj − degQj+1.

This means that the first degQj + degQj+1 elements of the sequence with the

rational generating function
Pj

Qj
coincide with (an)n=0,...,degQj +degQj+1−1.

But the rational generating function
Pj

Qj
belongs to an LFSR with feedback poly-

nomial Q∗
j , which proves that

Ln ≤ degQj for n < degQj + degQj+1. (2.29)

This already establishes one part of the theorem. Now we prove the equality.
That Ln = 0 if n < degQ0 is just a reformulation of the fact that degQ0 denotes the
number of leading zeros in the sequence (an)n∈N.

By induction we know now that Ln = degQj for degQj−1 + degQj ≤ n <

degQj + degQj+1.
If k is the smallest integer with Lk > degQj then by Corollary 2.3 we have

Lk = k − degQj . The only possible value of k for which Lk satisfies Eq. (2.29)
is k = degQj + degQj+1. Thus k = degQj + degQj+1 and Lk = degQj+1.
By Eq. (2.29) we get Ln = degQj+1 for degQj + degQj+1 ≤ n < degQj+1 +
degQj+2, which finishes the induction. �

2.5.3 Classification of Sequences with a Perfect Linear Complexity
Profile

By Theorem 2.17 it is easy to characterize sequences with a good linear complexity
profile in terms of continued fractions (see [197, 198]). As a representative of all
results of this kind, we present Theorem 2.18 which treats the case of a perfect
linear complexity profile.

Theorem 2.18 (see [197]) A sequence (an)n∈N has a perfect linear complexity pro-
file if and only if the generating function S(z) =∑−∞

j=0 aj z
−j−1 is irrational and

has a continued fraction expansion

S = 1 |
|A1

+ 1 |
|A2

+ 1 |
|A3

+ · · ·

with degAi = 1 for all i ≥ 1.

Proof A perfect linear complexity profile requires that the linear complexity grows
at most by 1 at each step. By Theorem 2.17 this means that the sequence degQi

contains all positive integers, i.e. degAi = 1 for all continued fraction denomina-
tors Ai .

2.5 The Linear Complexity Profile of Pseudo-random Sequences 49

On the other hand, degAi = 1 for all i implies degQi = i and by Theorem 2.17
we get Li =
 i+1

2 �. �

By Theorem 2.18 we can deduce a nice characterization of sequences with a
perfect linear complexity profile.

Theorem 2.19 (see [274]) The binary sequence (ai)i∈N has a perfect linear com-
plexity profile if and only if it satisfies a0 = 1 and a2i = a2i−1 + ai for all i ≥ 1.

Proof Define the operation D : F2((z
−1)) → F2((z

−1)) by

D : T �→ z−1T 2 + (1 + z−1)T + z−1.

A short calculation reveals the following identities:

D(T + U + V) = D(T) + D(U) + D(V) for T ,U,V ∈ F2
((

z−1)),

D
(
T −1)= D(T)T −2 for T ∈ F2

((
z−1)),

D(z) + D(c) = c + 1 for c ∈ F2.

Now assume that the sequence (ai)i∈N has a perfect linear complexity profile and
let

S(z) =
∞∑

j=0

aj z
−j−1 = 1 |

|A1
+ 1 |

|A2
+ 1 |

|A3
+ · · ·

be the corresponding generating function with its continued fraction expansion.
By Theorem 2.18 we have Ai = z + ai with ai ∈ F2. By Eq. (2.22) we have

R−1
i = Ri−1 − Aj and hence

D(Ri−1)R
−2
i−1 = D

(
R−1

i−1

)= D(Ri + z + ai) = D(Ri) + 1 + ai.

By definition, S = R−1, and by induction on i we have

D(S) =
i−1∑

j=0

(aj + 1)

j−1∏

k=−1

R2
k +

i−1∏

k=−1

R2
kD(Ri).

We can turn F2((z
−1)) into a metric space by defining d(Q,R) = 2−deg(Q−R). Since

degRi < 0 for all i we get

lim
i→∞

i−1∏

k=−1

R2
kD(Ri) = 0

and hence

D(S) =
∞∑

j=0

(aj + 1)

j−1∏

k=−1

R2
k .

50 2 Linear Feedback Shift Registers

Since all summands lie in F2((z
−2)), we get D(S) = U2 for some U ∈ F2((z

−1))

or equivalently

S2 + (z + 1)S + 1 = zU2. (2.30)

Comparing the coefficients of z0 we get a0 = 1, and comparing the coefficients
of z2i (i ∈ N

+) we get ai + a2i−1 + a2i = 0.
For the opposite direction note that the recursion a0 = 1 and ai +a2i−1 +a2i = 0

imply that Eq. (2.30) is satisfied for some suitable U ∈ F2((z
−1)).

Assume that the linear complexity profile of the sequence is not perfect.
Then we find an index j with degAj > 1 and by Lemma 2.2 we have

deg(SQj − Pj) = −degQj+1 < −degQj − 1.

It follows that

deg
(
P 2

j + (x + 1)PjQj + Q2
j + xU2)

= deg
(
Q2S2 − P 2

j + (x + 1)Qj (SQj − Pj)
)

≤ max
{
deg
(
Q2S2 − P 2

j

)
deg
(
(x + 1)Qj (SQj − Pj)

)}

< 0. (2.31)

In particular the constant term Pj (0)2 + Pj (0)Qj (0) + Q2
0 is 0, but this implies

Pj (0) = Qj(0) = 0 and hence gcd(Pj ,Qj) �= 1, contradicting Eq. (2.27).
This proves that the sequence that satisfies the recurrence given in Theorem 2.19

has a perfect linear complexity profile. �

We remark that even a sequence with a perfect linear complexity profile can be
highly regular. For example, consider the sequence (ai)i∈N with a0 = 1, a2j = 1 for
j ∈ N and aj = 0 for j ∈ N\{1,2k | k ∈ N} given by Dai in [71]. This sequence is
obviously a very weak key stream, but as one can check by Theorem 2.19, it has an
optimal linear complexity profile.

2.6 Implementation of LFSRs

This book is about the mathematics of stream ciphers, but in cryptography math-
ematics is not everything. We have mentioned in the introduction that LFSRs are
popular because they can be implemented very efficiently. This section should jus-
tify this claim.

2.6 Implementation of LFSRs 51

Fig. 2.7 The Fibonacci
implementation of an LFSR

Fig. 2.8 The Galois
implementation of an LFSR

2.6.1 Hardware Realization of LFSRs

For implementing LFSRs in hardware there are two basic strategies. Either we con-
vert Fig. 2.1 directly into the hardware, which then looks like Fig. 2.7. If the feed-
back polynomial is fixed we can save the AND-gates (multiplication).

This way to implement an LFSR is called the Fibonacci implementation or some-
times the simple shift register generator (SSRG).

The alternative implementation (see Fig. 2.8) is called the Galois implementation
(alternative names: multiple-return shift register generator (MRSRG) or modular
shift register generator (MSRG)).

The advantage of the Galois implementation is that every signal must pass
through at most one XOR-gate. By contrast, with a dense feedback polynomial the
feedback signal in the Fibonacci implementation must pass through approximately
n/2 XOR-gates.

As indicated in the figure, one has to reverse the feedback coefficients in the
Galois implementation. The internal states of the Fibonacci implementation and the
Galois implementation are connected by Theorem 2.20.

Theorem 2.20 The Galois implementation generates the same sequence as the Fi-
bonacci implementation if it is initialized with F ′

i =∑i
j=0 Fi−j cn−j , (0 ≤ i ≤ n)

where F0, . . . ,Fn−1 is the initial state of the Fibonacci implementation of the LFSR.

Proof We have F ′
0 = F0, so the next output bit is the same in both implementations.

We must prove that the next state F̂n−1, . . . , F̂0 of the Fibonacci implementation
and the next state F̂ ′

n−1, . . . , F̂
′
0 of the Galois implementation again satisfy F̂ ′

i =
∑i

j=0 F̂i−j cn−j , (0 ≤ i ≤ n).

52 2 Linear Feedback Shift Registers

For i ≤ n − 2 we get

F̂ ′
i = F ′

i+1 + cn−1−iF
′
0

=
i+1∑

j=0

Fi+1−j cn−j + cn−1−iF
′
0

=
i∑

j=0

Fi+1−j cn−j

=
i∑

j=0

F̂i−j cn−j .

For i = n − 1 we have

F̂ ′
n−1 = F ′

0 = F0

=
n−1∑

i=0

ciFi +
n−1∑

i=1

ciFi

= F̂n−1 +
n−1∑

i=1

ciF̂i−1.

So both implementations give the same result. �

2.6.2 Software Realization of LFSRs

Now we look at software implementation of LFSRs. All modern processors have
instructions that help to achieve fast implementations. The main problem with soft-
ware implementations is that we lose the advantage of low power consumption that
we have with specialized hardware. Also, block ciphers with implementations based
on table look-up become a good alternative.

2.6.2.1 Bit-Oriented Implementation

We first describe a bit-oriented implementation. The advantage is that we have a
direct simulation of the LFSR in the software. For optimal performance it would be
better to use a byte-oriented implementation.

We use an array of words w0, . . . ,wn̂ which represent the internal state of
the shift register. We can easily implement the shift operation on this bit field
by calling the shift and rotation instructions of our processor (see Algorithm 2.4

2.6 Implementation of LFSRs 53

Fig. 2.9 Right shift over several words

and Fig. 2.9). Unfortunately, even a language like C does not provide direct ac-
cess to the rotation operations. So we have to use hand-written assembler code.
A portable C-implementation of the shift operation is a bit slower. Good code can be
found in [255], which contains many tips about implementing cryptographic func-
tions.

Algorithm 2.4 Right shift over several words
1: RSH wn̂−1 {Right shift by 1}
2: for k ← n̂ − 1 to n̂ − 1 do
3: RCROL wk {Right roll by 1, use the carry flag}
4: end for

If the feedback polynomial has only a few non-zero coefficients we can compute
the feedback value by f = x[f1] + · · · + x[fk]. However, if the feedback polyno-
mial has many non-zero coefficients, this method is too slow. A better technique is
to store the feedback polynomial in the bit field f . We compute x&f and count
the number of non-zero bits in x&f modulo 2. The operation of counting the num-
bers of set bits in a bit field is known as sideway addition or population count (see
Sect. 12.1.2). If our computer supports this operation we should use it, otherwise
we should use Algorithm 2.5 which directly computes the number of non-zero bits
in x&f modulo 2 (see also Sect. 5.2 in [276]).

Algorithm 2.5 Sideway addition mod 2 (32 bit version)
Ensure: y = x0 + · · · + x31 mod 2

1: y ← x ⊕ (x � 1)

2: y ← y ⊕ (y � 2)

3: y ← a(y &a) mod 232 {with a = (11111111)16}
4: y ← (y � 28)& 1

Theorem 2.21 Given the input x = (x0, . . . , xn−1)2, Algorithm 2.5 computes x0 +
x1 + · · · + xn mod 2.

Proof After the first line we have y0 + y2 + · · · + y62 = x0 + · · · + x63 and after the
second line we have

y0 + y4 + · · · + y60 = x0 + · · · + x63.

54 2 Linear Feedback Shift Registers

Since y &a has at most 8 non-zero bits, we can be sure that the multiplication
does not overflow, i.e.

a(y &a) =
(

7∑

i=0

y4j ,

6∑

i=0

y4j , . . . , y0 + y4, y0

)

4

.

In the final step we extract the bit
∑7

i=0 y4j mod 2. �

If we work with 64-bit words, we must add an extra shift y ← y ⊕ (y � 4) after
line two and use the mask a = (11111111)256 instead of a = (11111111)16.

Some processors (such as the IA32 family) have a slow multiplication routine
(≈ 10 clock cycles, while the shift and XOR takes only 1 clock cycle). In this case
Algorithm 2.6, which avoids multiplication, may be faster.

Algorithm 2.6 Sideway addition mod 2 (without multiplication)
Require: x = (xn−1 . . . x0) is n-bit word
Ensure: y = SADD(x) mod 2

1: y ← x

2: for k ← 0 to
(log2(n − 1)� do
3: y ← y ⊕ (y � 2k)

4: end for
5: y ← y & 1 {y ← y mod 2}

2.6.2.2 Word-Oriented Implementation

The bitwise generation of an LFSR sequence is attractive for simulating hardware
realizations. However, on most computers it will be faster to generate the sequence
word-wise. Let s be the word size of our computer, i.e. s = 8 on a small embedded
processor (such as Intel’s MCS-51 series) or s = 32 or s = 64 on a Desktop machine.
We assume that s is a power of 2 and that s = 2d .

For simplicity we assume that the length n of the feedback shift register is divis-
ible by the word size s. Let n = sn̂.

Let cj,k be the coefficients of the generator matrix associated with the LFSR (see
Eq. (2.17)). Define

fi

(
a0 + · · · + 27a7

)=
7⊕

k=0

(
s−1∑

j=0

2j akc8i+k,n+j

)
. (2.32)

2.6 Implementation of LFSRs 55

Let x = (xn−1, . . . , x0)2 be the internal state of the LFSR. Then the next word
x′ = (xn+s , . . . , xn)2 is

x′ =
(

n−1⊕

i=0

xici,n+s , . . . ,

n−1⊕

i=0

xici,n

)

2

=
n−1⊕

i=0

s−1∑

j=0

2j xici,j . (2.33)

(This is just the definition of the generator matrix.)
Now write x = (x̂n̂−1, . . . , x̂) and regroup the sum in Eq. (2.33), yielding:

x′ =
n̂−1⊕

i=0

fi(x̂i). (2.34)

Equation (2.34) gives us a table look-up method to compute the word of the LFSR
sequence. We just have to pre-compute the functions fi and evaluate Eq. (2.33).
Algorithm 2.7 shows this in pseudo-code.

Algorithm 2.7 LFSR byte-oriented implementation (table look-ups)
1: output w0
2: w ← f0(w0)

3: for k ← 1 to n̂ − 1 do
4: w ← w ⊕ fi

5: wi−1 ← wi

6: end for
7: wn̂−1 ← w

Algorithm 2.7 uses huge look-up tables. This may be a problem in embedded
devices. In this case we can use the following algorithm that is based on the idea that
we can use byte operations to compute several sideway additions simultaneously
and which needs no look-up table.

The core of our program is Algorithm 2.8, which takes 2k words w0, . . . ,w2k−1
of 2k bits each and computes the word y = (y2k−1 · · ·y0) with yi = SADD(wi)

mod 2. (SADD denotes the sideway addition.)

Theorem 2.22 The result y = PSADD(d,0) of Algorithm 2.8 satisfies yi =
SADD(wi) mod 2.

Proof We prove by induction on d ′ that y(d ′,k) = PSADD(d ′, k) satisfies

2d−d′
⊕

j=0

y
(d ′,k)

i+j2d′ = SADD(wk+i) mod 2 (2.35)

56 2 Linear Feedback Shift Registers

Algorithm 2.8 Parallel sideway addition mod 2
Ensure: PSADD(d,0) returns the word

(SADD(w2s−1) mod 2, . . . ,SADD(w0) mod 2)2
1: if d ′ = 0 then
2: return wi

3: else
4: y ← PSADD(d ′ − 1, k)

5: y ← (y � 2d ′−1 ⊕ y)

6: y′ ← PSADD(d ′ − 1, k + 2d−1)

7: y′ ← (y′ � 2d ′−1 ⊕ y′)
8: return (y &μd ′−1) | (y′ &μd ′−1)

9: end if

for i ∈ {0, . . . ,2d ′ − 1}.
For d ′ = 0 we have simply y(0,k) = wk and Eq. (2.35) is trivial.
If d ′ > 0 we call PSADD(d ′ − 1, k) in line 4 and the return value satisfies

Eq. (2.35). The shift and XOR operation in step 4 give us a word y = y(d ′−1,k)

which satisfies

2d−d′+1⊕

j=0

y
(d ′−1,k)

i+j2d′−1 = SADD(wk+i) mod 2

for i ∈ {0, . . . ,2d ′−1 − 1}. The shift and XOR operation in line 5 computes the sums

y
(d ′−1,k)

i+(2j)2d′−1 ⊕ y
(d ′−1,k)

i+(2j+1)2d′−1 . Thus after line 5 the word y satisfies

2d−d′
⊕

j=0

y
i+j2d′ = SADD(wk+i) mod 2

for i ∈ {0, . . . ,2d ′−1 − 1}.
Similarly we process the word y′ in the lines 6 and 7 and we have

2d−d′
⊕

j=0

y′
i+2d′−1+j2d′ = SADD(w(k+2d−1)+i) mod 2

for i ∈ {0, . . . ,2d ′−1 − 1}. (That is, we use a left shift in line 7 instead of a right
shift, resulting in the +2d−1 term in the index of y′.)

Finally we use in line 8 the mask μd−1 (see Sect. 12.1.1) to select the right bits
from words w and w′. �

A problem is how to find the right input words wi for Algorithm 2.8. One possi-
bility is to pre-compute feedback polynomials f0, . . . , fs−1 in Algorithm 2.7. This

2.6 Implementation of LFSRs 57

Algorithm 2.9 LFSR update with parallel sideway addition mod 2
Require: x is the internal state of the LFSR
Ensure: y is the next s bits in the LFSR sequence

1: for i ← 0 to n − 1 do
2: wi ← byte-wise XOR of (x � i)&f

3: end for
4: Compute y with yi = SADD(wi) mod 2
5: s ← 0, z ← y

6: for i ← 1 to n − 1 do
7: s ← s ⊕ f [n − i + 1] = 1
8: y ← y ⊕ (z � i)

9: end for

Table 2.2 Speed of different
LFSR implementations (128
bit LFSR)

Bitwise generation 74.7 Mbits/sec

bytewise generation (table look-up) 666 Mbits/sec

bytewise generation (PSADD) 84.4 Mbits/sec

Table 2.3 Speed of an LFSR
with feedback polynomial
z127 + z + 1

Generic bitwise generation 74.7 Mbits/sec

trinomial bitwise generation 132 Mbits/sec

Algorithm 2.10 15300 Mbits/sec

needs ns bits in a look-up table, but with a few extra operations we can avoid storing
the extra polynomials f1, . . . , fs−1.

We can use Algorithm 2.8 to compute the next 2k bits in the LFSR sequence as
follows. The internal state of our LFSR is stored in the bit field x.

The idea of Algorithm 2.9 is that SADD((X � i)&f) mod 2 is almost xn+i .
The only thing that is missing is xnfn−i+1 ⊕ · · · ⊕ xn+i−1fn−1. The loop in lines
6–9 computes this correction term.

All of the above implementations were designed for arbitrary feedback polyno-
mials f (z) = zn −∑n

j=0 cj z
j . However, if we choose a feedback polynomial with

few coefficients, with the additional property that f (z) − zn has a low degree, we
can obtain a very fast implementation. This is especially true if we use a trinomial
f (z) = zn + zk + 1 as a feedback polynomial.

Algorithm 2.10 describes how we can compute the next n − k bits of the LFSR
sequence. The internal state of the LFSR is denoted by x.

Such a special algorithm is of course much faster than the generic algorithms.
However, feedback polynomials of low weight do not only help to speed up the
implementation of an LFSR, there are also special attacks against stream ciphers
based on these LFSRs (see Sect. 4.3). One should keep this in mind when designing
an LFSR-based stream cipher. Most often, the extra speed up of an LFSR with a
sparse feedback polynomial is not worth the risk of a special attack.

58 2 Linear Feedback Shift Registers

Algorithm 2.10 Generating an LFSR sequence with the feedback polynomial zn +
zk + 1

1: y ← ((x � k) ⊕ x)&(2k − 1)

2: output y

3: x ← (x � k)|(y � k)

We close this section with some timings for the implementation of our algo-
rithms. All programs run on a single core of a 32-bit Intel Centrino Duo with
1.66 Gz.

http://www.springer.com/978-1-4471-5078-7

	Chapter 2: Linear Feedback Shift Registers
	2.1 Basic Deﬁnitions
	2.2 Algebraic Description of LFSR Sequences
	2.2.1 Generating Functions
	2.2.2 Feedback Polynomials Without Multiple Roots
	2.2.3 Feedback Polynomials with Multiple Roots
	2.2.4 LFSR Sequences as Cyclic Linear Codes

	2.3 Properties of m-Sequences
	2.3.1 Golomb's Axioms
	2.3.2 Sequences with Two Level Auto-Correlation
	2.3.3 Cross-Correlation of m-Sequences

	2.4 Linear Complexity
	2.4.1 Deﬁnition and Basic Properties
	2.4.2 The Berlekamp-Massey Algorithm
	2.4.3 Asymptotic Fast Computation of Linear Complexity
	2.4.4 Linear Complexity of Random Sequences

	2.5 The Linear Complexity Proﬁle of Pseudo-random Sequences
	2.5.1 Basic Properties
	2.5.2 Continued Fractions
	2.5.3 Classiﬁcation of Sequences with a Perfect Linear Complexity Proﬁle

	2.6 Implementation of LFSRs
	2.6.1 Hardware Realization of LFSRs
	2.6.2 Software Realization of LFSRs
	2.6.2.1 Bit-Oriented Implementation
	2.6.2.2 Word-Oriented Implementation

