
Chapter 2
Signal and System Norms

Many control objectives can be stated in terms of the size of some particular signals.
Therefore, a quantitative treatment of the performance of control systems requires
the introduction of appropriate norms, which give measurements of the sizes of the
signals considered. Another concept closely related to the size of a signal is the size
of a LTI system. The latter concept is of great practical importance because it is
the basis of technical control H∞ and the study of robustness (see Chap. 6). These
different concepts are detailed hereafter.

2.1 Signal Norms

We consider real valued signals1 that are piecewise continuous functions of time
t ∈ [0,∞). In this section we introduce some different norms for these signals.

Definition 2.1 (Norm on a Vector Space) Let V be a vector space, a given non-
negative function φ : V → R+ is a norm on V if it satisfies

φ(v) ≥ 0, φ(v) = 0 ⇔ v = 0

φ(αv) = |α|φ(v)

φ(v + w) ≤ φ(v) + φ(w)

(2.1)

for all α ∈ R and v, w ∈ V.

A norm is defined on a vector space. To apply this concept to the case of signals,
it is necessary to define sets of signals that are vector spaces. This is the case of the
signal spaces described below.

1In the case of a stochastic signal, we will always assume that it is modeled as an ergodic stationary
stochastic process. For a comprehensive description of stochastic signals see the references given
in the section Notes and References.
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2.1.1 L1-Space and L1-Norm

The L1-space is defined as the set of absolute-value integrable signals, i.e., L1 =
{u(t) ∈ R : ∫ +∞

0 |u(t)|dt < ∞}. The L1-norm of a signal u ∈ L1, denoted ‖u‖1, is
given by

‖u‖1 =
∫ +∞

0

∣
∣u(t)

∣
∣dt (2.2)

this norm can be used, for instance, to measure a consumption. In the case of
multidimensional signals u(t) = (u1(t), . . . , unu(t))

T ∈ Lnu

1 with ui(t) ∈ L1 i =
1, . . . , nu, the norm is given by

‖u‖1 =
∫ +∞

0

nu∑

i=1

∣
∣ui(t)

∣
∣dt =

nu∑

i=1

∥
∥ui(t)

∥
∥

1 (2.3)

2.1.2 L2-Space and L2-Norm

The L2-space is defined as the set of square integrable signals, i.e., we have L2 =
{u(t) ∈ R : ∫ +∞

0 u(t)2 dt < ∞}. The L2-norm of a signal u ∈ L2, denoted ‖u‖2, is
given by

‖u‖2 =
(∫ +∞

0
u(t)2 dt

)1/2

(2.4)

the square of this norm represents the total energy contained in the signal. According
to Parseval’s theorem,2 the L2-norm of a signal u ∈ L2 can be calculated in the
frequency-domain as follows:

‖u‖2 =
(

1

2π

∫ +∞

−∞
∣
∣U(jω)

∣
∣2 dω

)1/2

(2.5)

where U(jω) is the Fourier transform of the signal u(t).

2Parseval’s theorem states that for a causal signal u ∈ L2, we have

∫ +∞

0
u(t)2 dt = 1

2π

∫ +∞

−∞
U∗(jω)U(jω)dω = 1

2π

∫ +∞

−∞
∣
∣U(jω)

∣
∣2 dω

where U(jω) represents the Fourier transform of u(t)

U(jω) = F
(
u(t)

)=
∫ +∞

−∞
u(t)e−jωt dt
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In the case of multidimensional signals u(t) = (u1(t), . . . , unu(t))
T ∈ Lnu

2 with
ui(t) ∈ L2 i = 1, . . . , nu, the norm is given by

‖u‖2 =
(∫ +∞

0
u(t)T u(t) dt

) 1
2 =

(∫ +∞

0

nu∑

i=1

ui(t)
2 dt

) 1
2

=
(

nu∑

i=1

‖ui‖2
2

) 1
2

(2.6)

2.1.3 L∞-Space and L∞-Norm

The L∞-space is defined as the set of signals bounded in amplitude, i.e., L∞ =
{u(t) ∈ R : supt≥0 |u(t)| < ∞}. The L∞-norm of a signal u ∈ L∞, denoted ‖u‖∞,
is given by

‖u‖∞ = sup
t≥0

∣
∣u(t)

∣
∣ (2.7)

this norm represents the maximum value that the signal can take. In the case of
multidimensional signals u(t) ∈ Lnu∞ (u(t) = (u1(t), . . . , unu(t))

T with ui(t) ∈ L∞),
the norm is given by

‖u‖∞ = max
1≤i≤nu

(
sup
t≥0

∣
∣ui(t)

∣
∣
)

= max
1≤i≤nu

‖ui‖∞ (2.8)

2.1.4 Extended Lp-Space

The Lp-space, p = 1,2,∞, only includes bounded signals. For instance, the L2-
space only includes signals with bounded energy. In order to also include in our
study unbounded signals as well, it is necessary to introduce extended versions of
the standard Lp-spaces. For this purpose, consider the projection function denoted
PT (.) defined as

PT

(
u(t)

)= uT (t) =
{

u(t), t ≤ T

0, t > T
(2.9)

where T is a given time interval over which the signal is considered. The extended
Lpe-space, p = 1,2,∞, is then defined as the space of piecewise continuous signals
u : R+ → Rm such that uT ∈ Lp .

2.1.5 RMS-Value

Some signals are of special interest for system analysis and synthesis. This is the
case, for instance, of the sinusoidal signal u(t) = A sin(ωt +ϕ). However, this signal
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is not square integrable and is often called an infinite energy signal. A very common
measurement of the size of an infinite energy signal is the root-mean-square (RMS)
value. The RMS-value of a given signal u(t) is defined as

urms =
(

lim
T →∞

1

T

∫ T

0
u(t)2 dt

)1/2

(2.10)

The square of this quantity represents the average power of the signal. The RMS-
value of a given signal u(t) can be also computed in the frequency domain as fol-
lows:

urms =
(

1

2π

∫ +∞

−∞
Su(ω)dω

)1/2

(2.11)

where Su(ω) is the power spectral density3 (PSD), which represents the way in
which the average power of the signal u(t) is distributed over the frequency range.
In the case of multidimensional signals u(t) = (u1(t), . . . , unu(t))

T , the RMS-value
of the vector signal u(t) is given by

urms =
(

lim
T →∞

1

T

∫ T

0
u(t)T u(t) dt

)1/2

(2.12)

The RMS-value of a given signal vector u(t) can also be computed in the frequency
domain as follows:

urms =
(

Trace

(
1

2π

∫ +∞

−∞
Su(ω)dω

))1/2

(2.13)

where Su(ω) is the power spectral density matrix4 of the signal vector u(t).

2.2 LTI Systems

Broadly speaking, a system can be seen as a device that associates to a given input
signal u(t), an output signal y(t). In this book, for tractability reasons, we consider
the particular class of linear time invariant finite-dimensional systems or LTI-system

3The PSD of a signal u(t) is defined as Su(ω) = ∫ +∞
−∞ ru(τ )e−jωτ dτ , where ru(τ ) is the autocor-

relation function of the signal u(t): ru(τ ) = limT →∞ 1
T

∫ T

0 u(t)u(t + τ) dt . Note that the square of
the RMS-value of the signal u(t) is nothing but u2

rms = ru(0).
4The PSD matrix of the vector signal u(t) is defined as Su(ω) = ∫ +∞

−∞ Ru(τ)e−jωτ dτ , where

Ru(τ) is the correlation matrix of the signal vector u(t): Ru(τ) = limT →∞ 1
T

∫ T

0 u(t)u(t + τ)T dt .
Note that the square of the RMS-value of the signal vector u(t) is nothing but u2

rms = Trace(Ru(0)).
The matrix Ru(0) is often referred to as the covariance matrix of the signal vector u(t).
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for short. The so-called state-space representation of this kind of system is defined
as follows:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.14)

where u ∈ Rnu is the input vector, y ∈ Rny is the output vector, x ∈ Rnx is the state
vector, and A, B , C, D are constant matrices of appropriate dimension. It can be
established that the solution of the state equation in (2.14), for a given initial state
vector x(t0), is as follows:

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ) dτ (2.15)

Note that this solution is the superposition of two terms, the first term eA(t−t0)x(t0)

represents the state evolution of the autonomous system, i.e., for u = 0, whereas
the second term

∫ t

t0
eA(t−τ)Bu(τ) dτ represents the state evolution of the system for

zero initial condition. This last term is written as the convolution product of the
quantity eAtB , called the input-to-state impulse matrix,5 by the input u(t). From
(2.14) and (2.15) we can see that the response y(t) of the system to a given input
vector u(t) is then given by

y(t) = CeA(t−t0)x(t0) +
∫ t

t0

CeA(t−τ)Bu(τ) dτ + Du(t) (2.16)

An important question is to determine in which conditions the state remains bounded
(and therefore the output as well) when the system is driven by a bounded input
signal. This question is closely related to the ability of the autonomous system to
recover its equilibrium point6 starting from any initial state. This is the problem of
stability, which is briefly considered in the next section.

5Recall that the Dirac delta function (or Dirac impulse), denoted δ(t), is the neutral element of
the convolution product. Therefore, when the input is a Dirac impulse u(t) = 1kδ(t), where 1k is a
unit vector (e.g., 13 = (0,0,1,0, . . . ,0)), the state response is given by eAtB1k , this is why eAtB

is called input-to-state impulse matrix.
6Consider a nonlinear autonomous system described by ẋ(t) = f (x(t)). A point xe is said to be an
equilibrium point (or a stationary point) for this system if f (xe) = 0. In other words the equilibrium
points are those from which the system does not evolve anymore. In the case of a LTI system the
equilibrium points are the solutions of the equation Axe = 0. If A is of full rank, then xe = 0, we
have a single equilibrium point which is the origin of the state space. Otherwise, the solutions lie
in the null space of A.
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2.2.1 System Stability

A fundamental property of any system is its stability. Stability is the ability of an
autonomous system7 to recover its equilibrium point after being disturbed from it.
More formally, the system described by (2.14) is stable if for every initial condition
x(t0) the following limit:

lim
t→∞x(t) = 0 (2.17)

holds when u = 0. From (2.15) we can see that the state vector solution of the au-
tonomous system is given by x(t) = eA(t−t0)x(t0). Therefore, the limit (2.17) holds
if and only if the matrix A, also called state matrix, has all its eigenvalues in the
open left-half plane C−. The eigenvalues of the matrix A ∈ Rnx×nx are the nx roots
of the polynomial characteristic defined by

det(λI − A) = λnx + anx−1λ
nx−1 + · · · + a1s + a0 (2.18)

If the nx roots of the polynomial characteristic (2.18) are all in the open left-half
plane, then the matrix A is said to be Hurwitz. The set of n-by-n Hurwitz matrices
is defined as

H = {H ∈ Rn×n : λi(H) ∈ C−, i = 1, . . . , n
}

(2.19)

where λi(H) represents the ith eigenvalue of H . Therefore, the autonomous system
ẋ(t) = Ax(t) is stable if and only if A ∈ Rnx×nx is Hurwitz, i.e., A ∈ H. At this
point, it is important to note that the set of Hurwitz matrices is not convex.

• Non-convexity of the Set of Hurwitz Matrices. Given two Hurwitz matrices
A1, A2 ∈ H, the convex combination A(α) = αA1 + (1 − α)A2, α ∈ [0, 1] does
not necessarily belong to H for any α. To observe this, consider for instance the
matrices

A1 =
[
a 2b

0 b

]

, A2 =
[

a 0
2a b

]

with a, b < 0, the convex combination of A1 and A2 is given by

A(α) =
[

a 2αb

2(1 − α)a b

]

It can be easily seen that A1, A2 ∈ H whereas A( 1
2 ) /∈H.

7Recall that the autonomous system is defined by eA(t−t0)x(t0) which represents the state evolution
of the system for u = 0, see relation (2.15).
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Fig. 2.1 Example of a state
trajectory of a stable system.
From any initial state x(t0),
the state trajectory converges
to the equilibrium point of the
autonomous system i.e., the
origin of the state space

Lyapunov Method Another way to establish the stability of a given LTI au-
tonomous system

ẋ(t) = Ax(t) (2.20)

is the Lyapunov method. Consider a quantity related to the distance of the current
state vector x(t) to the origin of the state space8 e.g., its squared quadratic norm:
V (x(t)) = ‖x‖2

P = x(t)T Px(t), where P is a symmetric positive definite matrix.9

Under these conditions, it is clear that the limit (2.17) holds if and only if the dis-
tance of x(t) to the origin decreases as time increases (see Fig. 2.1). Therefore, we
can conclude that the system is stable if and only if there is a matrix P = P T 
 0
such that V (x(t)) = xT Px is a strictly decreasing function of time, i.e., V̇ (x(t)) < 0
for all x �= 0. The time derivative of V is given by

V̇
(
x(t)

)= ẋ(t)T Px(t) + x(t)T P ẋ(t)

= x(t)T AT Px(t) + x(t)T PAx(t)

= x(t)T
(
AT P + PA

)
x(t) (2.21)

The quadratic form x(t)T (AT P + PA)x(t) is negative definite for all x �= 0 if and
only if the symmetric matrix AT P +PA is negative definite, i.e., all its eigenvalues

8The origin represents the unique equilibrium point of a LTI autonomous system for which
det(A) �= 0. If det(A) = 0, the system is necessarily unstable in the sense of (2.17).
9A matrix P is symmetric if P = P T . The eigenvalues of a symmetric matrix are real. A sym-
metric matrix P is said to be positive definite if the associated quadratic form is always positive:
xT Px > 0 for all x ∈ Rnx . This last condition is satisfied if and only if all the eigenvalues of P are
positive. We denote by P 
 0 a positive definite matrix.
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are negative, which is denoted by

AT P + PA ≺ 0 (2.22)

This expression is called a Lyapunov inequality on P , which is also a linear matrix
inequality (LMI). This LMI can be solved by taking any matrix Q = QT 
 0 and
by solving the following linear equation, also called the Lyapunov equation:

AT P + PA = −Q (2.23)

of unknown P . Thus, if the autonomous system (2.20) is stable then the matrix P

solution of the Lyapunov equation is definite positive.
The system stability issue can then be summarized as follows.

• System Stability Condition. The LTI system (2.14) is said to be stable if and
only if the state matrix A has all its eigenvalues in the open left-half plane C−,
i.e., the eigenvalues of A have a negative real part. In this case, the state matrix
A is said to be a Hurwitz matrix.

Equivalently, the LTI system (2.14) is said to be stable if and only if there
exists a positive definite symmetric matrix P satisfying the Lyapunov inequality
AT P + PA ≺ 0.

Remark 2.1 The stability result given above is often referred to as the internal
stability. The notion of internal stability must be distinguished from the so-called
BIBO-stability. The LTI-system (2.14) is said to be BIBO-stable if a bounded input
produces a bounded output. From relation (2.16) it is clear that an internally stable
system is also BIBO-stable, the converse is false in general. This is because between
the input and output there can be unstable hidden modes, i.e., some unbounded state
variables which are not influenced by the inputs or have no influence to the outputs.
Therefore since these unstable modes are not input/output visible, the system can
be input/output stable but not internally stable. In this book, the notion of stability
always refers to internal stability.

2.2.2 Controllability, Observability

In Remark 2.1 we have introduced the notion of hidden modes. To illustrate this
notion, consider the LTI system (2.14) with

A =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ , B =
⎡

⎣
b11 b12
0 0

b31 b32

⎤

⎦

C =
[
c11 c12 0
c21 c22 0

]

, D = 0
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Relation (2.15) makes it possible to calculate the evolution of the state vector for a
given initial state x(0) = (x1(0), x2(0), x3(0)), and for a given input vector u(t) =
(u1(t), u2(t)), we have

x1(t) = eλ1t x1(0) + b11

∫ t

0
eλ1(t−τ)u1(τ ) dτ + b12

∫ t

0
eλ1(t−τ)u2(τ ) dτ

x2(t) = eλ2t x2(0)

x3(t) = eλ3t x3(0) + b31

∫ t

0
eλ3(t−τ)u1(τ ) dτ + b32

∫ t

0
eλ3(t−τ)u2(τ ) dτ

we can see that the input vector u(t) has no influence on the evolution of the state
variable x2. In this case we say that λ2 is an uncontrollable mode. The evolution of
the output vector is given by y(t) = Cx(t), we have

y1(t) = c11x1(t) + c12x2(t), y2(t) = c21x1(t) + c22x2(t)

we can see that the state variable x3 has no influence to the output vector y(t). In this
case we say that λ3 is a unobservable mode. Consider now the input/output relation
calculated for zero initial conditions; we have

y1(t) = c11

(

b11

∫ t

0
eλ1(t−τ)u1(τ ) dτ + b12

∫ t

0
eλ1(t−τ)u2(τ ) dτ

)

y2(t) = c21

(

b11

∫ t

0
eλ1(t−τ)u1(τ ) dτ + b12

∫ t

0
eλ1(t−τ)u2(τ ) dτ

)

we can see that the input/output relation, evaluated for zero initial conditions, only
involves modes that are both controllable and observable, in this example λ1. Note
also that in the case where λ1 ∈ C− and λ2, λ3 ∈ C+, the system is BIBO-stable but
internally unstable.

The example given above suggests the following definitions about the notions of
controllability and observability of an LTI system.

Definition 2.2 (Controllability) An LTI system is controllable if every mode of A

is connected to the input vector u.

Definition 2.3 (Observability) An LTI system is observable if every mode of A is
connected to the output vector y.

The following results can be used to test the controllability and the observabil-
ity of a given LTI system. The notions of stabilizability and detectability are also
specified.

• Controllability, Stabilizability. The LTI system (2.14) is controllable if and only
if the controllability matrix

C = [B AB A2B · · · Anx−1B
]

(2.24)
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is of full rank, i.e., rank(C) = nx . In this case, the pair (A, B) is said to be con-
trollable.

In the case where rank(C) = n < nx , the rank defect nx − n represents the
number of uncontrollable modes. The uncontrollable modes are the eigenvalues
λ of the state matrix A satisfying rank([λI − A B]) < nx . The LTI system (2.14)
is said to be stabilizable if and only if all uncontrollable modes are stable.

• Observability, Detectability. The LTI system (2.14) is observable if and only if
the observability matrix

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C

CA

CA2

...

CAnx−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.25)

is of full rank, i.e., rank(O) = nx . In this case, the pair (A, C) is said to be
observable.

In the case where rank(O) = n < nx , the rank defect nx − n represents the
number of unobservable modes. The unobservable modes are the eigenvalues λ

of the state matrix A satisfying rank
[

λI−A
C

]
< nx . The LTI system (2.14) is said

to be detectable if and only if all unobservable modes are stable.

Physical Meaning of the Controllability and Observability Controllability is
related to the ability of a system to attain a given state under the action of an ap-
propriate control signal. If a state is not controllable, then it not possible to move
this state to another one by acting on the control input. If the dynamics of a non-
controllable state is stable, then the state is said to be stabilizable.

Observability is linked to the possibility of evaluating the state of a system
through output measurements. If a state is not observable there is no way to de-
termine its evolution. If the dynamics of a non-observable state is stable, then the
state is said to be detectable.

2.2.3 Transfer Matrix

The state space representation is often referred as an internal representation be-
cause it involves the state variables which are internal variables of the system. The
input/output representation, also called external representation, is obtained by elim-
inating the Laplace transform10 of the state vector, between the state equation and
the output equation for zero initial conditions. Taking the Laplace transform of the

10The Laplace transform of a given signal u(t) is defined as U(s) = L(u(t)) = ∫∞
0 x(t)e−st dt .

From this definition, it is easy to show that the Laplace transform of the derivative of a signal is
given by L(u̇(t)) = sL(u(t)) − u(0).
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Fig. 2.2 Block diagram of a closed-loop system, G(s) is the transfer matrix of the system to be
controlled, and K(s) is the controller which must be designed to obtain a low tracking error and
a control signal compatible with the possibility of the plant despite the external influences r , d ,
and n

state equation in (2.14), we get X(s) = (sI − A)−1BU(s). By substituting X(s) in
the output equation, we obtain the input/output relation

Y(s) = G(s)U(s), G(s) = C(sI − A)−1B + D (2.26)

where G(s) is called the transfer matrix of the system. This transfer matrix repre-
sents the Laplace transform of the input to output impulse matrix. The elements of
the matrix G(s) are real rational transfer functions (i.e., ratios of polynomials in s

with real coefficients). A transfer matrix G(s) is proper if G(∞) = D, and strictly
proper if G(∞) = 0. We have seen that the input/output representation only involves
the eigenvalues that are both controllable and observable. These are called the poles
of the system. A proper transfer matrix G(s) is stable if the poles lie in the open
left-half plane C−. The set of proper and stable transfer matrices of size ny × nu

is denoted RH
ny×nu∞ . The set of strictly proper and stable transfer matrices of size

ny × nu is denoted RH
ny×nu

2 . It can be easily shown that these sets are convex. This
is in contrast to the non-convexity of the set of Hurwitz matrices (see Sect. 2.2.1).

2.3 System Norms

Given an LTI-system an important issue is to characterize, in some sense, the am-
plification (or attenuation) introduced by the system for a given input signal. To em-
phasize the importance of this issue, consider the control problem shown in Fig. 2.2
where K(s) is the controller to be designed and G(s) is the transfer matrix of the
system to be controlled.

The objective is to determine the controller K(s) to obtain a low tracking error
and a control signal compatible with the possibility of the plant (i.e. the control
signal must be admissible by the system) despite the external influences r , d , and n.
One way to evaluate the performance of the closed-loop system is to measure the
gain provided by the system T , between the inputs (r , d and n) and the outputs e
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and u:

[
e

u

]

= T (s)

⎡

⎣
r

d

n

⎤

⎦

Good performance is then obtained if the transfer matrix T (s) is small or, more
specifically, if the gain of T (s) is small. The word “gain” must be understood here
as a measurement of the size of the matrix T (s).

The gain of a system quantifies the amplification provided by the system between
the inputs and the outputs. This notion of gain needs to be defined more accurately,
this is the subject of the next section on H2 and H∞ norms of a system.

2.3.1 Definition of the H2-Norm and H∞-Norm of a System

Let G(s) be the transfer function of a stable single input single output (SISO) LTI-
system of input u(t) and output y(t). We know that G(s) is the Laplace transform
of the impulse response g(t) of the system, we define the H2-norm of G(s) as the
L2-norm of its impulse response:

‖G‖2 =
(∫ ∞

0
g(t)2 dt

)1/2

= ‖g‖2 (2.27)

Note that the previous norm is defined for a particular signal which is here the
Dirac impulse δ(t). According to Parseval’s theorem the H2 norm is defined in the
frequency domain as follows:

‖G‖2 =
(

1

2π

∫ +∞

−∞
∣
∣G(jω)

∣
∣2 dω

)1/2

(2.28)

Remark 2.2 It is interesting to give an interpretation of the H2-norm of a system. To
this end, recall that if Su(ω) is the power spectral density (DSP) of the signal applied
to the input of a stable system of transfer function G(s), the DSP of the signal output
Sy(ω) is given by Sy(ω) = |G(jω)|2Su(ω). Now, assume that the input u(t) is a
white noise signal, i.e. Su(ω) = 1 for all ω, in this case, the DSP of the signal output
is nothing but the square of the frequency gain of the system: Sy(ω) = |G(jω)|2.
Using (2.11) the RMS-value of the signal output is given by

yrms =
(

1

2π

∫ +∞

−∞
Sy(ω)dω

)1/2

=
(

1

2π

∫ +∞

−∞
∣
∣G(jω)

∣
∣2 dω

)1/2

(2.29)

which coincides with the definition of the H2-norm of the system (see relation
(2.28)). In other words, the H2-norm of a system represents the RMS-value of the
system response to a white noise input.



2.3 System Norms 37

We can define the gain provided by the system for a given particular input as
the ratio of the L2-norm of the output signal to the L2-norm of the input signal
‖G‖gain = ‖Gu‖2/‖u‖2, with ‖u‖2 �= 0. For obvious reason, this gain is often re-
ferred to as the L2-gain of the system. Instead of evaluating the L2-gain for a par-
ticular input, one can also determine the greatest possible L2-gain over the set of
square integrable signals, this is the definition of the H∞-norm of a system

‖G‖∞ = sup
u∈L2‖u‖2 �=0

‖Gu‖2

‖u‖2
(2.30)

This quantity represents the largest possible L2-gain provided by the system. For a
MIMO system with nu inputs and ny outputs, the H∞-norm is defined as

‖G‖∞ = sup
u∈Lnu

2‖u‖2 �=0

‖Gu‖2

‖u‖2
with y ∈ L

ny

2 (2.31)

2.3.2 Singular Values of a Transfer Matrix

The usual notion of the frequency gain of a SISO system can be extended to the
MIMO case by considering the singular values of the transfer matrix G(s) of the
system. Let y(t) be the system response to a causal input u(t). In the frequency
domain, this response is written

Y(jω) = G(jω)U(jω) (2.32)

where Y(jω) = (Y (s))s=jω , U(jω) = (U(s))s=jω , Y(s) = L(y(t)), U(s) =
L(u(t)), and the notation L(.) stands for the Laplace transform of the signal passed
in argument. In the SISO case, the gain of the system at frequency ω is given by
|G(jω)|. This notion of frequency gain can be extended to the MIMO case by using
the singular values, denoted σi , of the matrix G(jω) = (G(s))s=jω . The singu-
lar values of the matrix G(jω) are defined as the square roots of eigenvalues of
G(jω)G(−jω)T

σi

(
G(jω)

)=
√

λi

(
G(jω)G(−jω)T

)=
√

λi

(
G(−jω)T G(jω)

)
(2.33)

with i = 1, . . . ,min(nu,ny). The matrix G(−jω)T represents the conjugate trans-
pose of G(jω), and is usually denoted G(jω)∗ i.e., G(jω)∗ = G(−jω)T . The
matrices G(jω)G(jω)∗ and G(jω)∗G(jω) are Hermitian11 positive semi-definite,
their eigenvalues are therefore non-negative.

11A complex matrix is said to be Hermitian if it is equal to its conjugate transpose.
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Fig. 2.3 Singular values and H∞-norm of a transfer matrix. The frequency gain of the MIMO
system lies between the smallest and the largest singular values. The maximum over ω of the
largest singular value represents the H∞-norm of the LTI system

We denote σ̄ (G(jω)) the largest singular value of G and σ(G(jω)) the smallest

σ̄
(
G(jω)

)= σ1
(
G(jω)

)≥ σ2
(
G(jω)

)≥ · · · ≥ σ
(
G(jω)

)≥ 0 ∀ω (2.34)

we then have12

σ
(
G(jω)

)≤ ∥∥G(jω)U(jω)
∥
∥

2/
∥
∥U(jω)

∥
∥

2 ≤ σ̄
(
G(jω)

)
(2.35)

This means that the frequency gain of the system lies between the smallest and the
largest singular values. Therefore, the singular values can be used to extend to the
MIMO case the usual notion of gain. The singular values are positive functions of
ω and can be represented in the frequency domain as shown Fig. 2.3.

In the case of a SISO system, G(s) is scalar, it is then easy to see that we have
only one singular value which is equal to the modulus of G(jω)

σ
(
G(jω)

)= ∣∣G(jω)
∣
∣ (2.36)

It is worth noting that any complex matrix M ∈ Cny×nu has a singular value
decomposition, see the Notes and References.

12Indeed, it can be shown that for a complex matrix A ∈ Cp×m and a complex vector x ∈ Cm, we
have

σ̄ (A) = max
x∈Cm

‖x‖2 �=0

‖Ax‖2

‖x‖2
and σ(A) = min

x∈Cm

‖x‖2 �=0

‖Ax‖2

‖x‖2

To observe this, consider the first-order optimality condition of λ = ‖Ax‖2
2/‖x‖2

2 =
(x∗A∗Ax)/(x∗x). We have

∂λ

∂x
= (A∗A − λI

)
x = 0

thus, λ represents the eigenvalues of the matrix A∗A. Therefore, since λ = ‖Ax‖2
2/‖x‖2

2, the
maximum of ‖Ax‖2/‖x‖2 is given by the square root of the largest eigenvalue of A∗A i.e.,
σ̄ (A) =

√
λ̄(A∗A), and the minimum of ‖Ax‖2/‖x‖2 is given by the square root of the small-

est eigenvalue of A∗A i.e., σ(A) = √λ(A∗A). Note that the input vector for which the gain is
maximal (respectively, minimal) is given by the eigenvector associated to the largest (respectively,
smallest) eigenvalue of A∗A.
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2.3.3 Singular Values and H2, H∞-Norms

Let G(s) be a stable and strictly proper transfer matrix13 of dimension p × m. The
set of stable and strictly proper transfer matrices is denoted RH

ny×nu

2 . For any trans-

fer matrix G(s) ∈ RH
ny×nu

2 , we define the H2-norm as14

∥
∥G(s)

∥
∥

2 =
(

1

2π

∫ +∞

−∞
Trace

(
G(jω)G∗(jω)

)
dω

)1/2

(2.37)

this norm can be also expressed using the singular values:15

∥
∥G(s)

∥
∥

2 =
(

1

2π

∫ +∞

−∞

min(m,p)∑

i=1

σ 2
i

(
G(jω)

)
dω

)1/2

(2.38)

The square of the H2-norm represents the area under the curve of the sum of squared
singular values.

Now, consider a stable and proper transfer matrix G(s). The set of stable and
proper transfer matrices is noted RH

ny×nu∞ . For any transfer matrix G(s) ∈ RH
ny×nu∞

the H∞-norm is defined as
∥
∥G(s)

∥
∥∞ = sup

ω
σ̄
(
G(jω)

)
(2.39)

This norm represents the largest possible frequency gain, which corresponds to the
maximum of the largest singular value of G(jω) (see relation (2.35) and Fig. 2.3).
In the case of a SISO system, ‖G(s)‖∞ is the maximum of |G(jω)|

‖G‖∞ = max
ω

∣
∣G(jω)

∣
∣ (2.40)

2.3.4 Computing Norms from the State Space Equation

The calculation of the H2 and H∞-norms by a direct application of the definitions
(2.38) and (2.39) can only be done in the simplest cases. We will see that they can
be evaluated more easily from the state space representation of the system.

13A transfer matrix is called proper (respectively, strictly proper) if for each of the component
transfer function matrix, the degree of the numerator is less than or equal (respectively, strictly less
than) the degree of the denominator.
14From (2.13), the RMS-value of the system response is given by yrms =
( 1

2π

∫ +∞
−∞ Trace(Sy(ω)) dω)1/2. Using (2.29) we deduce that yrms = ( 1

2π

∫ +∞
−∞ Trace(G(jω) ×

G(jω)∗) dω)1/2, which is by definition the H2-norm of the system.
15It can be shown that for a complex matrix M ∈ Cny×nu , we have Trace(MM∗) =
∑min(ny ,nu)

i=1 σ 2
i (M).
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Computing the H2-Norm Let G(s) be a stable and strictly proper transfer matrix
(G(s) ∈ RH

ny×nu

2 ). The state space representation of such a system is given by
(2.14) with D = 0 (strictly proper system). In view of (2.26), the input-to-output
impulse matrix of the system for zero initial conditions is given by

G(t) = [gij (t)
]= L−1(C(sI − A)−1B

)= CeAtB (2.41)

where gij (t) represents the impulse response from the input uj (t) to the output
yi(t).

According to Parseval’s theorem, the square of the H2-norm, defined by (2.37),
can be also written as

∥
∥G(s)

∥
∥2

2 = Trace

(∫ +∞

0
G(t)T G(t) dt

)

(2.42)

therefore, substituting G(t) by its expression

∥
∥G(s)

∥
∥2

2 = Trace

(∫ +∞

0

(
CeAtB

)T (
CeAtB

)
dt

)

= Trace

(

BT

∫ +∞

0
eAT tCT CeAt dt B

)

giving

∥
∥G(s)

∥
∥2

2 = Trace
(
BT GoB

)
, with Go =

∫ +∞

0
eAT tCT CeAt dt (2.43)

where Go represents the observability Gramian.16 The matrix Go is a solution of
the Lyapunov equation

AT Go + GoA + CT C = 0 (2.44)

Similarly, we have

∥
∥G(s)

∥
∥2

2 = Trace
(
CGcC

T
)
, with Gc =

∫ ∞

0
eAtBBT eAT t dt (2.45)

where Gc represents the controllability Gramian.17 The matrix Gc is a solution of
the Lyapunov equation

AGc + GcA
T + BBT = 0 (2.46)

16The observability Gramian is related to the total output energy of the autonomous system when
it evolves from a given initial state x0, we have xT

0 Gox0 = ∫∞
0 y(t)T y(t) dt .

17The controllability Gramian makes it possible to determine the set of the state-space points that
can be reached with an input of unit-energy; Consider the system ẋ(t) = Ax(t)+Bu(t), x(0) = 0.
A point xd can be reached at time T with a unit-energy signal (i.e.

∫ T

0 uT (t)u(t) dt ≤ 1) if and
only if xT

d G−1
c xd ≤ 1.
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Thus, the H2-norm of a system is obtained via the solution of a Lyapunov equation.

Computing the H∞-Norm Let G(s) be a stable and proper transfer matrix
(G(s) ∈ RH

ny×nu∞ ). The state space representation of such a system is given by
(2.14). If we can find V (x(t)) = xT (t)P x(t) with P = P T 
 0 and a positive real
number γ , such that

V̇
(
x(t)

)+ yT (t)y(t) − γ 2uT (t)u(t) < 0 (2.47)

then the H∞-norm of the transfer matrix G(s) is bounded by γ , i.e., ‖G(s)‖∞ < γ .
Indeed, integrating (2.47) from 0 to T with x(0) = 0, we have

V
(
x(T )

)+
∫ T

0
yT (t)y(t) dt − γ 2

∫ T

0
uT (t)u(t) dt < 0

since V (x(t)) is positive, this implies that

∫ T

0
yT (t)y(t) dt

/∫ T

0
uT (t)u(t) dt < γ 2

this relation holds for all T and u ∈ Lnu

2 , consequently

sup
u∈Lm

2‖u‖2 �=0

‖y‖2
2

‖u‖2
2

< γ 2 (2.48)

The left hand side of (2.48) represents the square of the greatest L2-gain of the sys-
tem which is the H∞-norm of the system, hence: ‖G(s)‖∞ < γ . Since V̇ (x(t)) =
ẋT P x + xT P ẋ, with ẋ = Ax + Bu, the relation (2.47) can also be written as

xT
(
AT P + PA + CT C

)
x + xT

(
PB + CT D

)
u + · · ·

+ uT
(
BT P + DT C

)
x + uT

(
DT D − γ 2I

)
u < 0

or equivalently

[
xT uT

]
[
AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ 2I

][
x

u

]

< 0

Therefore, the H∞-norm of G(s) is such that ‖G(s)‖ < γ , where γ is a positive
number, if one can find P = P T 
 0 satisfying the linear matrix inequality (LMI)

[
AT P + PA + CT C PB + CT D

BT P + DT C DT D − γ 2I

]

≺ 0 (2.49)

We can then assess the H∞-norm of the transfer matrix G(s) by finding the smallest
possible value of γ > 0 satisfying the LMI (2.49). In other words, the H∞-norm of
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the transfer matrix G(s) is a solution of the following convex optimization problem:

minimize ν

subject to P = P T 
 0
[
AT P + PA + CT C PB + CT D

BT P + DT C DT D − νI

]

≺ 0

(2.50)

where ν = γ 2.

2.4 Notes and References

A comprehensive presentation of the signal theory both in the deterministic and
stochastic case can be found in the book by Kwakernaak and Sivan [82]. The theory
of linear systems is covered in the books by Chen [34], Rugh [115]. A very nice
presentation of the norms of signals and systems can be found in the book by Boyd
and Barratt [20].

2.4.1 LMI Formulation for the Computation of the H2-Norm

Let G(s) be a strictly proper transfer matrix (G(s) ∈ RH
ny×nu

2 ). The state space
representation of the underlying system is given by (2.14) with D = 0. We have
seen in Sect. 2.3.4 that the H2-norm is given by ‖G(s)‖ = Trace(CGcC

T ) =
Trace(BT GoB), where Gc (respectively, Go) is a solution of the Lyapunov equa-
tion AGc +GcA

T +BBT = 0 (respectively, AT Go +GoA+CT C = 0). Let P be a
symmetric and positive definite matrix (P = P T 
 0) satisfying the following LMI:

AP + PAT + BBT ≺ 0 (2.51)

then we have P 
 Gc. Indeed, since Gc is a solution of AGc + GcA
T + BBT = 0,

we have AP + PAT + BBT ≺ AGc + GcA
T + BBT , hence A(P − Gc) + (P −

Gc)A
T ≺ 0. The matrix A being Hurwitz (stable system), we have P 
 Gc. Un-

der these conditions, P is such that Trace(CPCT ) > Trace(CGcC
T ) = ‖G(s)‖2

2.
Therefore, if P satisfy Trace(CPCT ) < γ 2 where γ is a given positive number,
then ‖G(s)‖2

2 < γ 2.
To conclude, let γ be a given positive number, and P a symmetric and pos-

itive definite matrix solution of the LMI AP + PAT + BBT ≺ 0. If we have
Trace(CPCT ) < γ 2, then the H2-norm of the LTI system satisfy ‖G(s)‖2 < γ .
Equivalently, if we have Trace(BT PB) < γ 2, where P is a solution of AP +PAT +
CT C ≺ 0, then ‖G(s)‖2 < γ .

The smallest possible value of the upper bound of the H2-norm of the trans-
fer matrix G(s) can then be calculated by finding the matrix P = P T 
 0
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that minimizes Trace(CPCT ) (respectively, Trace(BT PB)) under the constraints
P = P T 
 0 and AP + PAT + BBT ≺ 0 (respectively, AP + PAT + CT C ≺ 0),
i.e.,

min. Trace(CPCT )

s.t. P = P T 
 0
AP + PAT + BBT ≺ 0

⇔
min. Trace(BT PB)

s.t. P = P T 
 0
AP + PAT + CT C ≺ 0

(2.52)

2.4.2 Computing the H2 and H∞-Norms of a Given LTI System

The following example uses the formulation (2.52) and (2.50) for the calculation of
the H2 and H∞-norms of a given LTI system.

Example 2.1 Consider the LTI system defined by

A =

⎡

⎢
⎢
⎣

−1 0 0 1
0 −1 4 −3
1 −3 −1 −3
0 4 2 −1

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0 1
0 0

−1 0
0 0

⎤

⎥
⎥
⎦ ,

C =

⎡

⎢
⎢
⎣

−1 0
0 1
1 0
0 1

⎤

⎥
⎥
⎦ , D = 0

The following MatLab program, written with the commands of the cvx solver [62],
make it possible to determine the H2 by solving the optimization problem (2.52).

MatLab-cvx Code 1—Calculation of the H2-Norm

function G2=H2norm(A,B,C)
n=length(A);
cvx_begin sdp quiet

variable P(n,n) symmetric;
minimize trace(C*P*C’);
subject to

P>=0;
A*P+P*A’+B*B’<0;

cvx_end
G2=sqrt(trace(C*P*C’));

With this program we get ‖G(s)‖2 = 1.1751.
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Example 2.2 Consider the system of Example 2.1 with D = [ 0 1
0 0

]
. The following

MatLab program, written with the commands of the cvx solver [62], gives the small-
est upper bound of the H∞-norm, which is a solution of the optimization problem
(2.50).

MatLab-cvx code 2—Calculation of the H∞-Norm

function Ginf=Hinfnorm(A,B,C,D)
dim=size(B);
n=dim(1);
m=dim(2);
cvx_begin sdp quiet

variable P(n,n) symmetric;
variable g;
minimize g;
subject to

P>=0;
[A’*P+P*A+C’*C P*B+C’*D;
(P*B+C’*D)’ D’*D-g*eye(m)]<=0;

cvx_end
Ginf=sqrt(g);

With this program we get ‖G(s)‖∞ < 1.379.

2.4.3 Singular Value Decomposition

Any complex matrix M ∈ Cny×nu admits a singular value decomposition defined as
follows:

M = V ΣW ∗ with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Σ = diag{σ1, . . . , σnu} =
[

σ1 0
. . .

0 σnu

]

if ny = nu

Σ = [ diag{σ1,...,σny } 0(nu−ny )×ny

]
if ny < nu

Σ = [ diag{σ1,...,σnu }
0(ny−nu)×nu)

]
if ny > nu

(2.53)

where V and W are unitary matrices, i.e., V V ∗ = V ∗V = Iny and WW ∗ = W ∗W =
Inu .
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