
Chapter 2
Symmetry Is the sine qua non of Shape

Yunfeng Li, Tadamasa Sawada, Yun Shi, Robert M. Steinman,
and Zygmunt Pizlo

2.1 Introduction

“Shape” is one of those concepts that seem intuitively obvious, but prove to be sur-
prisingly difficult to define. In this paper, we propose a solution of this seemingly
insoluble definitional problem. Our definition of shape is based on a fundamen-
tally new first principle. By starting from scratch, we avoided what had been an
insurmountable problem inherent in the traditional way of thinking about shape.
In our definition, shape is characterized by a similarity of the object to itself not
to other objects as had always been done previously. This new characterization is
done by specifying how spatial features of the object are transformed, spatially or
temporally, to its other spatial features. Such transformations, which are called sym-
metries, are the object’s self-similarities. In order to anticipate objections of some
readers that our definition is too narrow because it excludes objects that are com-
pletely asymmetrical from the class of objects having shape, we can point out that
our definition explains what is surely the most fundamental perceptual phenomenon
of shape called, “shape constancy”.

By the way of reminder, shape constancy refers to the fact that the perceived
shape of a given 3D object is constant despite changes in the shape of the ob-
ject’s 2D retinal image. The retinal image changes when the 3D viewing orienta-
tion changes. Conventional wisdom holds that our perceptual systems always strive
for perceptual constancy and it also accepts empirical results showing that percep-
tual constancy in general, and shape constancy in particular, is never fully achieved.
Constancy always falls far short of perfection. But note that if shape is not defined
properly, a putative study of “shape constancy” is likely to produce failures of con-
stancy simply because shape was not actually being studied. It would be completely
unreasonable to expect that the observer’s visual system is able to achieve shape
constancy when what is meant by “shape” changes from study to study often in ad
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Fig. 2.1 (a) An irregular set of scattered points. (b) Is a scaled down version of (a). According
to most conventional definitions, (b) has the same shape as (a). It is not clear, however, what this
shape actually is, or whether either of these two dot patterns actually possesses the property we
mean when we say a visual stimulus has “shape”

hoc, arbitrary ways. A better way of dealing with this confusion is to determine how
shape should be defined so as to make it possible to show in the laboratory, what
commonsense tells us happens in everyday life where shape constancy is perfect.
This is what we did. We started by accepting that shape constancy is the sine qua
non of shape, without shape constancy there is no shape. By starting this way, we
were able to define shape operationally [16]. This worked well for planning shape
experiments and evaluating their results but it was less than ideal because one can-
not know whether an object has shape until shape constancy with the stimulus used
was verified by viewing it from more than one direction.

Using an operational, rather than analytical, definition presented us with two
problems, namely: (i) it can be argued that our definition was circular, and (ii) this,
like all, operational definitions did not provide any analytical tools that could be
used to formulate a mathematical or computational model of shape constancy. The
first problem can be partially circumvented by pointing out that our operational def-
inition, at the very least, allows identification of the class of objects that satisfy the
shape constancy criterion. Recall, that for centuries common wisdom believed that
shape constancy could never be achieved with any object. Our operational definition
made it possible for us to show convincingly that shape constancy could be achieved
with many objects. The second problem made it clear that an analytical definition
of shape was needed. This chapter explains how this was done by proposing that
there is as much shape in an object as there is symmetry (regularity) in it. Note that
the complete failure of shape constancy will never be observed once you accept our
new definition of shape. In fact, when our new definition is used, shape constancy
is almost always perfect, and when shape constancy does fall short of perfection,
we know why it does and we can explain the extent of the failure in every case.
Should you worry about excluding objects that have no regularities in them from a
definition of shape? The answer is “no” because our definition of shape applies to
all natural objects important to human beings, including, animal bodies and plants,
as well as to the tools we use.

Our new definition questions whether all objects and all patterns exhibit the
property called “shape”. Does the spatial arrangement of the points in Fig. 2.1a
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Fig. 2.2 The object in (b) is identical to the object in (a) except for its overall size. The object in
(c) was produced by computing a 3D reflection of (a). According to the conventional definition of
shape, all three objects have the same “shape” (after [22])

have shape? According to conventional definitions it does. If the pattern of points in
Fig. 2.1a has shape, is it the same visual quality as the shape of, say, a butterfly or
of an airplane? No matter which conventional definition of shape you prefer, your
commonsense will tell you that the answer to this question is a resounding “No”.
The quality of shape inherent in a butterfly or in an airplane is nothing like any
shape you can make out in the dotted pattern shown in Fig. 2.1. So, if we want to
include all patterns and all objects in a comprehensive discussion of shape, some
objects will surely have more shape than others, and there will even be amorphous
objects without any shape, whatsoever. Bent wires and crumpled papers will fall
on, or near, the amorphous end of this continuum. Prior definitions of shape will be
reviewed before our new definition of shape is explained.

2.2 Prior Definitions of Shape

Most contemporary shape theorists agree that the property we have in mind when
we refer to some visual arrangement as having shape refers to some aspect of this
arrangement that is “invariant under transformations”. Consider first, an example
of what is probably the most appropriate transformation that can be used when we
try to define shape. This transformation is produced by the rigid motion of an object
within a 3D space. Pulling a chair away from a table is a good example. The position
of the chair within the room has changed (this is what we mean by the “transfor-
mation”), but the chair, itself, did not. We call this kind of transformation a “rigid
motion” because all of the geometrical properties of the chair (what the conventional
definition calls the chair’s “shape”) stay the same. These properties are “invariant.”
The size of the chair stays the same, as well as all the distances and angles between
the individual parts that made it up. The legs are not broken or bent, and the indi-
vidual parts are not stretched by this kind of transformation. It follows that if there
are two identical chairs in the room, we would say that they have the same shape.

Note that this conventional definition of shape is often generalized, slightly, by
including a 3D reflection of the object and the change of its overall size. This results
in a “similarity transformation.” Look at Fig. 2.2. According to the conventional
definition of shape, all three objects seen in Fig. 2.2 have the same shape. All angles
remain the same in a similarity transformation, so an angle formed by two line
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segments is an invariant of this transformation. If all corresponding angles in two
objects are equal, one object can be produced by transforming the other by using
a similarity transformation. These two objects are said to have the same “shape”
because such a transformation is possible.

This is by far the most commonly used definition of shape. There are several vari-
ants of this definition that use more general groups of transformations, leading some
shape experts to suggest that shape refers to invariants of an affine transformation:

x′ = ax + by + cz + d

y′ = ex + fy + gz + h

z′ = kx + ly + mz + n

(2.1)

Affine transformation allows for uniform stretching of an object along an arbitrary
direction. As a result, angles, surface areas and volumes are no longer invariant.
What is invariant is the ratio of areas of two figures residing on parallel planes
or the ratio of the volumes of two objects. According to this definition, any two
rectangular boxes, say a shoebox and a pizza box have the same shape. This def-
inition obviously violates our commonsense. Most people would say that a pizza
box and a shoebox have very different shapes. Few, if any, people would look for
their pie in the shoebox, or try to put their foot in the pizza box. Despite the ob-
vious fact that the affine definition of shape is counterintuitive, this definition has
been used in shape perception research and applications for two reasons. The first
reason is geometrical. A camera image of a planar figure can be approximated by a
2D affine transformation of the figure [16]. It follows that affine invariants of planar
figures will be preserved (approximately) in any camera image. This could serve as
a tool for recognizing planar figures in camera (or retinal) images. The second rea-
son was suggested by the results of psychophysical experiments. When an observer
is asked to judge depth relations of points on 3D surfaces, the judgments are always
quite unreliable. This poor performance was taken to indicate that metric aspects
of depth are not reconstructed by the observer, which has led many, probably most,
researchers to conclude that metric aspects of depth are not represented in the visual
system. The smallest non-metric group is the affine group, so the observer’s failure
to judge metric properties led many shape experts to claim that shape is represented
by affine invariants in the human visual system. The first reason just described is
acceptable to us, but the second is not. We believe that the definition of shape, in-
cluding perceived shape, should be based on what the human visual system can do
very well, not on what the visual system cannot do. Very many, quite different, rea-
sons are probably responsible for failures in visual perception, and using the failure
of shape perception does not seem to be a good way to derive a useful definition.
Affine invariants obviously cannot form the basis of a useful definition of shape, at
least not shape as we humans perceive it. A transformation that shows that shoe and
pizza boxes have the same shape cannot apply to human shape perception.

The affine group is not the end of the line when it comes to trying to use more
and more abstract properties to define shape. Another definition of shape uses a
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Fig. 2.3 An image of a 3D projective transformation of a cube (from Pizlo [16])

projective group of transformations:

x′ = ax + by + cz + d

px + qy + rz + s

y′ = ex + fy + gz + h

px + qy + rz + s

z′ = kx + ly + mz + n

px + qy + rz + s

(2.2)

The motivations for using this group are essentially the same as those used with
the affine group. The advantage of using a projective group is that, unlike an affine
transformation, a projective transformation provides an accurate description of im-
age formation in a camera or in the human eye (but see [17, 18] for a detailed
discussion of the limitations of the projective group as the model of retinal image
formation). The disadvantage is that the projective group is larger than the affine
group. Comparing them, a 3D affine group is characterized by 12 parameters, 5 of
which affect the 3D shape as defined by a 3D rigid motion plus size scaling while
a 3D projective group is characterized by 15 independent parameters, 8 of which
affect the 3D shape as defined by a 3D rigid motion plus size scaling. Note that all
hexahedra with 8 vertices and 6 quadrilateral faces are valid 3D projective trans-
formations of a cube as long as the planarity of quadruples of points in the cube
is preserved. According to the projective definition of shape, the object in Fig. 2.3
should look like a cube. This, obviously, is not the case. The fact that a 3D pro-
jective transformation of a cube does not look like a cube is precisely the reason
why the Ames’s room demo is so striking. According to a projective definition of
shape, there is nothing special in Ames’s distorted room. Ames’s trapezoidal room
has, according to this definition, the same shape as a normal rectangular room. So,
despite the fact that the projective transformation is an essential tool for describing
the relation between the 3D space and the 2D retinal image, the projective group,
like the affine group, cannot provide the foundation needed for the study of human
shape perception.

Shape is sometimes defined by an even more general group of transformations,
namely, the topological group. The topological transformation is a continuous trans-
formation. When used in a 2D space, this transformation is often called “rubber
sheet geometry”, because the rubber can be stretched arbitrarily without tearing or
cutting. The main reason for using a topological group to define shape is that it al-
lows one to identify two different postures of an animal body as the same shape. But
the “price” paid for being able to handle non-rigid objects is very high: for exam-
ple, when a topological definition is used, a needle and a coffee cup have identical
shapes! Both are 3D surfaces with one hole. It is obviously the metric properties
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which allow one to use a cup to drink and a needle to sew. Obviously, the topologi-
cal transformation, like the affine and the projective transformations, is not without
its problems when human shape perception is under study.

There is a way to avoid the excessive generality inherent in the topological trans-
formation (just described) while preserving the ability to handle non-rigid and piece-
wise rigid objects, namely, the shape under consideration can be characterized by
geodesics along a surface. Recall that the shortest path between two points on a
surface is a geodesic curve of the surface. When an animal changes its posture,
all geodesic lines stay the same, or nearly the same. Similarly, when the stem of
a flower bends, the geodesics along its surface stay approximately the same. So,
geodesic lines are much more attractive than topological properties for describing
shapes. There are, however at least two serious shortcomings in using geodesic lines.
First, finding geodesic lines is computationally difficult, so using them beyond toy
examples is impractical. Second, defining a 3D shape by using lines, which are
1D properties, will not work because geodesic lines do not convey any information
about the volumetric aspects of the object. For example, all origami shapes (3D
shapes produced by folding paper) are identical in a “geodesic” definition of their
shape, and they all have the same shape as an unfolded, flat piece of paper.

Clearly, there are multiple problems with all of the conventional definitions in
use for describing shape: some are too restrictive and others too general. Recall
what we really want our definition to do. We want it to exclude random dot patterns
like the pattern shown in Fig. 2.1, but we want it to include non-rigid objects such as
walking animals and human beings. Furthermore, if we do not want to exclude any
objects, whatsoever, can we find a way to assign some degree of shape to all objects,
even to objects with very little or even no shape? It can be done but this requires us
to adopt an entirely new way of thinking about shape. The way we adopted goes
as follows: If shape is to capture permanent (invariant) properties of an object’s
geometry, properties that will allow us to recover the object, recognize it, remember
it and identify its function, shape must refer to the object’s intrinsic characteristics
in a way that does not require comparing one object with other objects. The way to
do this, perhaps the only way, is to define shape by object’s self-similarities.

2.3 Explanation of the New Definition and How We Worked It
out

Recall that all conventional definitions of shape have assumed that all objects have
shape. Intuitively, even commonsensically, something seems to be missing from this
very strong claim. Namely, there are patterns and objects that actually have no shape
at all, or at most, they have very little of this property. Asking someone about the
shape of the pattern of randomly generated points like the pattern shown in Fig. 2.1,
makes little sense. Commonsense tells us that there is little, if any, shape in Fig. 2.1.
We also “know” that shapeless common objects exist in everyday life. A crumpled
piece of paper, a bent paperclip, or a rock before it is shaped by a human hand do not



2 Symmetry Is the sine qua non of Shape 27

Fig. 2.4 Eight
differently-shaped
meaningless objects
characterized by translational
symmetry. The shape of the
cross section is constant for
each cone, but the size is not
necessarily constant. The axis
is orthogonal to the cross
sections and it is a planar
curve or a straight line (from
Pizlo [16])

have what we really mean when we refer to an object’s shape. All of these objects,
as well as random patterns like the pattern in Fig. 2.1, are, and should be, called
“amorphous” or “shapeless.” Why? They are amorphous simply because they are
completely “irregular.”

This observation makes it very clear that the term “shape” refers to the spatial
regularity (self-similarity) possessed by an object. We have all had lots of experi-
ence dealing with such regularities in our everyday life. The bodies of all animals are
mirror-symmetrical. By “mirror-symmetrical” we simply mean that one symmetri-
cal half is the mirror image (the reflection) of the other with respect to the animal’s
plane of symmetry. But there is more to symmetry than mirror symmetry and re-
flection. Limbs of animals, trunks of trees, and stems of flowers are characterized
by what we call “translational symmetry”. An object with translational symmetry is
produced by taking a planar shape and sweeping it through a 3D space using rigid
motion along an axis. During the sweeping process, the size of the cross section may
change. Figure 2.4 shows several examples of objects with translational symmetry.
They are called “Generalized Cones” (GC) [2, 4].

Take one of the 8 objects in Fig. 2.4, say the second from the left in the top row.
All cross sections of this object are similar to each other. The technical meaning of
similar here is that the members of any pair of cross sections in this object are related
to each other by a similarity transformation (rigid motion and size scaling). So, we
can use rigid motion, reflection and size-scaling of the “parts” within the object,
itself, to define the shape of the object as its “spatial self-similarity”(regularity)
instead of using rigid motion, reflection and size-scaling of the entire object in 3D
space to define the shape of this object by comparing it to another object. Put simply,
shape is an intrinsic characteristic of an object because it refers to its self-similarity,
rather than to the similarity of one object to another. A small-scale model of an
airplane has the same shape as a real airplane not merely because the model is
a scaled version of the plane, but because both the model and a real airplane are
characterized by the same symmetries.

Self-similarity of biological forms seems to be their inherent characteristic. It is
the result of the natural process called “growth” (D’Arcy Thompson [24]). Growth
explains why all flowers and plants are characterized by one or more types of sym-
metry. They have the shape they have because of how they grow. All animal bodies
are mirror symmetrical because of the way they move. A dog without a mirror sym-
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metrical body could not run straight along a straight path. All biological forms have
shape because all of them are symmetrical. Inanimate objects such as rocks and
crumpled papers, which have no trace of symmetry, are obviously shapeless. It is
also important to note that many inanimate objects actually do have shape. All ob-
jects that serve some useful function, such objects as furniture and tools, have one
or more types of symmetry, without which they would probably be dysfunctional.

Symmetry relations among parts of objects imply the presence of invariants of
3D symmetry transformations. These invariants can be represented as the eigenvec-
tors of the 3D transformation matrix. We will analyze their 2D perspective images to
derive the perspective invariants of their symmetries after we derive the formulas for
the eigenvectors characterizing their 3D symmetries. These invariants are needed for
the veridical recovery of 3D shapes. This approach leads naturally to the two essen-
tial aspects that are required to characterize shape perception, namely, (i) properties
of the retinal image that provide visual data about the invariants of symmetries, and
(ii) the kind of a priori knowledge that is needed to produce the 3D shape percept
which provides information about the symmetry transformations characterizing the
self-similarities of the particular object. The reader should appreciate the fact that
our new definition of shape is richer than any of the previous definitions because
our definition uses both invariants and the transformations, whereas all previous
definitions only used invariants.

2.4 Symmetry Groups for 3D Shapes, Their Invariants and
Invariants of the Perspective Projection

Our analytical definition of shape states that the shape of an object refers to all of its
spatially-global symmetries (its self-similarities) as measured by the group of rigid
motions, reflections and size-scaling of the “parts” within the object itself.

Groups of transformations are known to have invariants. Unlike all conventional
approaches to shape, we begin not with invariants of transformations from one ob-
ject to another, but with invariants of transformations of one part of an object to
another part of the same object. This makes sense because we defined 3D shape
as the presence of self-similarity. It is known that a similarity transformation is a
linear transformation and that it can be represented by a matrix. Furthermore, it
is known that eigenvectors are the only invariant vectors of a linear transforma-
tion. It follows that it is natural to look for invariants by analyzing the properties
of the eigenvectors characterizing the transformation matrices. Consider the three
basic symmetries: mirror, translational and rotational. We begin with a symmetrical
shape, whose repeated part is planar, and then extend the results to general symmet-
rical shapes. Some invariants are limited and exist only for the symmetries with a
planar configuration, and the others are general.

Assume that c is a point on a plane π , nX and nY are two perpendicular axes
in π . The normal of π is nZ (see Fig. 2.5). c, nX and nY define a 2D Cartesian
coordinate system, in which c is the origin and nX and nY are the two axes. Let a
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Fig. 2.5 Illustration of a 3D
translation of a point from
one plane to the other

3 × 3 matrix A represent this coordinate system

A = (nX nY c) (2.3)

Then any point in π can be expressed as

P = Ap (2.4)

where p = (pX,pY ,1)T in which pX and pY are the Cartesian coordinates of P in
π . Assume that π ′ is the resulting plane after some rigid transformation of π . The
normal of π ′ is n′

Z and the Cartesian coordinate system is expressed as

A′ = (
n′

X n′
Y c′) (2.5)

The resulting point P after the rigid transformation is obtained as:

P ′ = A′p (2.6)

Combining Eqs. (2.4) and (2.6), we obtain the transformation from the point P to
P ′

P ′ = A′A−1P (2.7)

which means that the transformation from P to P ′ is a 3D affine transformation.
Next, we use A and A′ to define the three types of symmetries, translational, mir-

ror and rotational, and identify the invariants for those symmetry transformations.

(a) If nX = n′
X , the transformation from π to π ′ is a translational symmetry (see

Fig. 2.6a). The translation axis (the red curve in Fig. 2.6a) is a planar curve and
nX coincides with the normal of the plane containing the axis. If the translation
axis is not a planar curve, the transformation is a mixture of a translational
symmetry and a rotational symmetry. It is easy to prove that nX is one of the
eigenvectors of the transformation matrix A′A−1. Since nX is constant and is
only determined by the plane in which the translation axis resides (see Fig. 2.6a),
nX is an invariant of the projective transformation from one cross section to
another.
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(b) If nX = n′
X and cc′ bisects the angle formed by nZ and n′

Z , the transformation
from π to π ′ is a mirror symmetry (see Fig. 2.6b). Compared with the trans-
lational symmetry, an additional constraint is added in the mirror symmetry. It
follows that a mirror symmetry with a planar configuration is a special case of
the translational symmetry. The fact that cc′ bisects the angle formed by nZ and
n′

Z is equivalent to the fact that a symmetry plane (the plane in red in Fig. 2.6b)
bisects the planes π to π ′. The normal of the symmetry plane is nY − n′

Y . Both
nX and nY − n′

Y are the eigenvectors of A′A−1.
(c) If c = c′, nZ = n′

Z and nX �=′
X , the transformation from π to π ′ is a rotational

symmetry (see Fig. 2.6c). It is easy to prove that c is an eigenvector of A′A−1.
Since c is the rotation center of a planar rotationally symmetrical object and
it is a fixed point, c is an invariant of a rotationally symmetric transformation.
The other two eigenvectors of A′A−1 are nX + inY and nX − inY . They are not
invariant because nX or nY could be an arbitrary direction (or vector) on the
plane π . However, their cross product nZ is. The geometrical application of the
cross product (nZ) will be discussed in the next part.

Up to this point, we characterized the invariants of the three types of symme-
tries in 3D space. This is a transformation from one part of an object to another.
We are also interested in the invariants of 2D perspective images of 3D symme-
try relations—the invariants of the transformation from the image of one part of
an object to an image of another part of the same object. This will be essential for
detecting 3D symmetries in perspective images and for recovering 3D symmetrical
shapes from perspective images.

Assume that a pair of symmetric corresponding points P and P ′ in π and π ′ are
projected to an image through a camera and that the camera matrix is K . A camera
matrix is an upper triangular 3 × 3 matrix, consisting of a camera’s intrinsic param-
eters, such as its focal length and principal point. Then, the images of P and P ′
are

v = KAp (2.8)

v′ = KA′p (2.9)

Note that the image points v and v′ are expressed in homogeneous coordinates and
they are 3-element vectors (refer to [9], for the details of differences between Eu-
clidean coordinates and homogeneous coordinates). Combining Eqs. (2.8) and (2.9),
we obtain

v′ = KA′A−1K−1v (2.10)

Equation (2.10) implies that the relation between images of the planes π to π ′ is a
2D projective transformation. By analyzing the eigenvectors of KA′A−1K−1, we
look for the invariants for the above three types of symmetries in their 2D perspec-
tive images. It is known that an eigenvector has the following property: if m is an
eigenvector of A′A−1, then Km is an eigenvector of KA′A−1K−1. Therefore, it is
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easy to identify the invariants in the 2D image from the invariants of 3D symme-
try transformations. Next, we list the invariants in the 2D image and explain their
geometrical meaning.

(a) In the case of translational symmetry, since nX is an invariant vector of the
symmetry transformation in 3D, KnX is an invariant of the projective transfor-
mation from one perspective image of a cross section to a perspective image of
another cross section. Geometrically, KnX represents the vanishing point of the
lines that are parallel to nX . This means that for a 2D projective transformation
between the images of any two cross sections, the vanishing point is projected to
itself (the invariant point under projective transformation). Identifying the van-
ishing point KnX should help recover translationally symmetrical 3D shapes
from their images [23].

(b) In the case of mirror symmetry, nX and nY −n′
Y are the invariant eigenvectors of

A′A−1. So are KnX and K(nY − n′
Y ) for KA′A−1K−1. KnX and K(nY − n′

Y )

are the vanishing points for those lines that are parallel to nX and nY − n′
Y ,

respectively. In particular, K(nY − n′
Y ) is the vanishing point for those lines

that are perpendicular to the symmetry plane. Because K(nY − n′
Y ) is deter-

mined by the normal of the symmetry plane, it is independent of the orientation
of π or π ′. This means that K(nY − n′

Y ) can be used with mirror-symmetrical
objects whose symmetrical halves are not planar. For example, for the poly-
hedron in Fig. 2.6e, its lateral side is non-planar and it consists of three pla-
nar faces. From the image of each face and of its symmetrical counterpart, we
compute a 2D projective transformation matrix. For the three matrices repre-
senting the relations between images of the three pairs of symmetrical faces,
K(nY −n′

Y ) is their common eigenvector. In a perspective image, once the van-
ishing point K(nY − n′

Y ) is identified and the symmetry correspondences in
the image are established, the shape of a 3D mirror symmetrical object can
be uniquely determined [14]. Because KnX and K(nY − n′

Y ) are invariant,
their cross product K−T ((nY − n′

Y ) × nX), representing a line passing through
KnX and K(nY − n′

Y ), is also invariant under the projective transformation
KA′A−1K−1.1 This means that any point on this line projects onto this line
again. The points KnX and K(nY − n′

Y ) are two special points on this line be-
cause they project onto themselves.

(c) In the case of rotational symmetry, Kc is the invariant eigenvector of
KA′A−1K−1. It is the image of c (the image of the rotation center) and it is
an invariant point under the projective transformation between the images of a
repeated part of a rotationally symmetrical shape. The other two eigenvectors
of KA′A−1K−1, K(nX + inY ) and K(nX − inY ) are not invariant. But, their
cross product K−T nZ is and it represents an invariant line. nZ is the direction of
the rotation axis and it is fixed for a rotationally symmetrical shape. K−T nZ is

1The magnitude of a vector is unimportant in a homogeneous coordinate system. So, we can ignore
det(K), which is a constant, from the cross product det(K)K−T ((nY − n′

Y ) × nX) of KnX and
K(nY − n′

Y ).
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Fig. 2.6 Three types of symmetries and their symmetry transformations. (a) Translational sym-
metry. The red planar curve represents the translation axis. (b) Mirror symmetry. The red plane
represents the symmetry plane. (c) Rotational symmetry. c is the rotation center. (d) A translational
symmetrical 3D shape with a quadrilateral cross sections. (e) A mirror-symmetrical 3D shape that
consists of three pairs of mirror-symmetrical planes. (f) A rotationally symmetrical 3D shape that
consists of three planes

more general than the invariant Kc and it can be applied to the non-planar rota-
tional shape like the one in Fig. 2.6f. K−T nZ is an invariant line for the plane
A1A2A3A4A5 and it is also the invariant line for the planes B1B2B3B4B5 and
C1C2C3C4C5.

It is known that at least four points and their correspondences are needed to
compute the 2D projective transformation matrix. Therefore, four planar points “out
there” and their symmetrical counterparts are needed to identify the invariance in a
perspective image. The invariants for the three types of symmetries are listed in
Table 2.1. Those invariants representing lines are marked by ∗.

Table 2.1 shows the invariants of symmetry transformations under a perspective
projection. Because an orthographic projection is a special case of a perspective
projection, these equations can also be applied to the orthographic projection after
making two changes in the camera matrix K , and the matrices A and A′. First, in the
case of an orthographic projection, the principal point is undefined. So, we set the
elements in the camera matrix K that represent the principal points to zero. Second,
the last row in vectors A and A′ is replaced by (0,0,1), which means that the change
of Z values of vertices doesn’t change their image. As a result, KA′A−1K−1 has



2 Symmetry Is the sine qua non of Shape 33

Table 2.1 The invariants for the three types of symmetries

Type Planar configuration Non-planar
configuration

Translation KnX KnX

Mirror KnX,K(nY − n′
Y ), K−T ((nY − n′

Y ) × nX)∗ K(nY − n′
Y )

Rotation Kc, K−T n∗
Z K−T n∗

Z

the same format as A and A′, in which the last row vector is (0,0,1). It follows that
the symmetry transformation under an orthographic projection is a 2D affine trans-
formation, instead of a 2D projective transformation. For an affine transformation,
three points and their correspondences are enough to determine the transformation
matrix and then identify the invariants. It follows that in the case of an orthographic
projection, co-planarity of points or curves is not required.

2.5 Inferring 3D Shape from a 3D Object

With a real object, its shape (its symmetries) must be inferred (abstracted). The
symmetries are not given. The best (perhaps the only) way to do this is by using
a Bayesian formalism and a closely-related concept called “Minimum Description
Length” [11]. This method will be analogous to the “generative” model formulated
by Feldman & Singh [8] and used for their 2D medial axis transform (identifica-
tion of a “shape skeleton”). The main differences are that our model applies to 3D
shapes and it handles several 3D symmetries. We start by formulating the problem
as a Bayesian inference [10]. Our task is to estimate the 3D symmetries (we call
this the “shape” of the object) that best describe a given 3D “object”. This means
that we try to maximize the posterior probability, p(shape|object). Take a general-
ized cone like the one on the top-left of Fig. 2.4. This 3D object has two possible
descriptions, one based on translational symmetry and the other based on mirror
symmetry (this object has both symmetries). Translational symmetry seems to cap-
ture its 3D structure better, so the maximum of the posterior will probably be higher
when translational symmetry serves as the shape description than when the descrip-
tion is based on its mirror symmetry. The planar cross section (pentagon) of this
Generalized Cone (GC) is a simple 2D figure whose contour information is fairly
low [7]. The same is true with the axis of this GC, which is a straight-line segment.
It follows that the prior, p(shape), for translational symmetry will be high in this
case. This object does not have any random perturbations, which means that the
likelihood, p(object|shape), will be equal to 1.0. As a result, the maximum of the
posterior will also be high:

p(shape|object) = c · p(object|shape) · p(shape) (2.11)

Note that what we call “an object”, Feldman & Singh [8] call a “shape”, but this
difference is only terminological. By taking the negative logarithm of both sides
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of (2.11), we can express our problem in terms of the description length, DL:

DL(shape|object) = DL(object|shape) + DL(shape) + c′ (2.12)

Now we can look for the shortest description length, DL(shape|object), instead of
looking for a maximum of the posterior probability. The “shape” solution is the
same.

If we consider the maximum of the posterior, p(shape|object), for mirror sym-
metry, we will get a smaller value (a more complex description) because mirror
symmetry will lead to lower “compression” of the shape of this object. Mirror sym-
metry will not “know” about the simplicity of its cross section. The only redundancy
represented by mirror symmetry is the fact that one half is the same as the other half.
Note that this is less obvious than it sounds because the actual prior, p(shape), in
this case, depends on how we describe one half of this mirror-symmetrical object.
One could do this by using a large number of points on the surface, or by using
straight lines, the object’s contours, interpolated by planar surface patches. Mirror
symmetry might become a better description of an object like the one on the top-left
in Fig. 2.4, when the mirror-symmetrical cross-section becomes less regular. This
can be done by introducing random perturbation of the object’s contours, while
keeping these perturbations mirror-symmetrical. Such perturbations will be counted
as random noise in the likelihood, p(object|shape), when translational symmetry,
but not when mirror symmetry is used. This will lower the value of the posterior.
It should be obvious that the formalisms (2.11) and (2.12) allow both the object’s
regularities (symmetries) and random perturbations to be handled naturally. In other
words, all objects, no matter how irregular, can be described in this way. Less regu-
lar objects will have more complex descriptions and the maximum of the posterior,
p(shape|object), ranging between 0 and 1, can be used as a measure of the object’s
“shapeness”.

In this approach, similarities among different shapes can be evaluated by simply
comparing the objects’ symmetries. In Sect. 2.2, we discussed how metric symme-
tries can be generalized to affine and projective groups. Recall that all symmetries
are defined by the underlying groups of transformations, where “group” has a spe-
cific meaning. Group refers to a set of transformations that satisfies the group’s
axioms, like closure and associativity. It follows that the change from one “shape”
to another (where “shape” means a description of an object’s symmetries, using a
particular symmetry group) will be represented by a transformation of its character-
istics (cross section, axis) by using one of the groups, namely, Euclidean, similarity,
affine, projective or topological. At this point it is not clear whether this approach
will naturally lead to a one-dimensional dissimilarity metric representing the cur-
rently conventional way of thinking about similarity in cognitive psychology (e.g.,
[1]), or whether it will turn out to be a parameterized (geometrical) measure making
explicit use of the concepts of transformation groups. After all, when we compare a
pizza box to a shoebox, we may be more comfortable saying that “they have differ-
ent aspect ratios” than that their “dissimilarity is about 7.4”.
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2.6 Computational and Psychophysical Implications of the New
Definition

Now that we have explained both geometrical and algebraic characteristics of shape
based on symmetry, we will discuss several interesting implications of our new def-
inition. Two of these implications were anticipated in our recent papers (Sects. 2.6.1
and 2.6.4), and two are new (Sects. 2.6.2 and 2.6.3).

2.6.1 Veridical Perception of 3D Shapes

Recovering a 3D shape from one or more 2D retinal images is an ill-posed inverse
problem [15, 20]. This is the case with all difficult inverse problems, so producing a
unique and correct interpretation requires the application of constraints to the family
of possible solutions. When a 3D symmetry constraint is applied to a single 2D per-
spective image of a 3D shape, the 3D interpretation is unique and always very close
to veridical! The shape recovered is said to be “veridical” because it is the same as
the object’s shape “out there”. During the last 6 years we provided empirical, both
simulation and psychophysical evidence, showing how symmetry leads to veridi-
cal 3D shape recovery. This includes the recovery of 3D mirror-symmetrical shapes
from: (i) a single image [12], and (ii) a pair of images [13], as well as (iii) the recov-
ery of nearly symmetrical shapes [21] and (iv) 3D shapes characterized by transla-
tional symmetry [23]. The claim that 3D shapes can be, and actually are, perceived
veridically is completely new [19] and until very recently, the “veridical perception
of shape” was considered by most shape researchers to be “science fiction”, some-
thing that does not exist, never has existed, and never will exist. This conventional
“wisdom” was based on hundreds of years of reporting failures to achieve shape
constancy in the laboratory. Everyone believed that human shape perception could
never be perfect or even nearly so. We now know that all of these reported failures
came about because everybody was studying the perception of depth, not the percep-
tion of shape [16]. Once shape is defined properly, by it symmetries, this confusion
is removed and a “miracle” ensues. Shape perception is perfect when the viewing
conditions and psychophysical measurements are done correctly. How this can be
done was explained in our papers (referenced just above) in which we described
computational models that use the mathematical properties of symmetry to recover
3D shape and presented extensive psychophysical data on 3D shape recovery and
on shape constancy.

2.6.2 Shapes of Non-rigid Objects

When shape is defined by self-similarity, rather than by the similarity of one ob-
ject to another, it becomes much easier to talk about the shapes of “non-rigid” and
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Fig. 2.7 Three snapshots
from a range of articulations
of non-rigid objects:
Top—the axis of a GC is
changing, but the shape of the
cross-section is the same (this
looks like a gymnast on
uneven bars at the Olympic
Games). Middle—the shape
of the cross-section is
changing, but the axis is not
(this looks like a flying bird).
Bottom—the local size of the
cross-section is changing, but
the shape of the cross-section
and the axis of the GC is
constant (this looks like a
snake that swallowed a large
belly-bulging prey)

“piece-wise rigid” objects. If an object is non-rigid, like the stem of a flower, bend-
ing the stem does not remove its translational symmetry. All of the flower’s cross-
sections are still circular. Bending only changes the curvature of the axis of the
flower’s stem. If an object is piece-wise rigid, like the body of a dog, changes in the
articulations of its legs distorts the mirror symmetry of the dog’s body, but it does
not eliminate the symmetry altogether. After all, the dog still has two legs on the
right side of his body and two legs on the left side. This obviously applies as well
to your body as to your dog’s. Our new analytical definition of shape removes the
fundamental difficulty inherent in all other conventional definitions of shape. None
of them can deal with the non-rigidity of objects, objects that are both common and
often very important throughout our natural environment.

Consider some examples (Fig. 2.7). Three snapshots of non-rigid, unfamiliar ob-
jects are shown. It is easy to see that the three objects in a given row have something
in common. They share symmetries. The objects on top have the same shape of their
cross-sections, the objects in the middle have the same axis, and the objects at the
bottom have the same axis as well as the same shape of their cross-sections. If an
observer is able to see the similarities of the symmetries of an object despite the non-
rigidity of this object, he may be able to conclude that the shape of the object being
viewed is constant despite its non-rigidity. This is what we mean by perceiving the
shape of a non-rigid object.

2.6.3 Symmetry as an Objective, but Informative, Prior

“Objective priors” have a special status in Bayesian methods used to solve inverse
problems, probably simply because “objective” sounds more reliable and more sci-
entific than “subjective”. But there is another pair of terms for these two types of
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priors, namely, “uninformative” and “informative”. Uninformative priors are objec-
tive in the sense that these priors are derived from some basic statistical and mathe-
matical principles, rather than from some special domain such as knowledge about
lung cancer or about earthquakes. Such domain specific knowledge is less interest-
ing because it results in a Bayesian inference method that is specific to a particular
domain. Also, it is often difficult to quantify this kind of subjective prior. If the prior
is unreliable, the posterior will also be unreliable. The good news in the conven-
tional approach, is that there is an objective way to learn the subjective prior. One
begins with an objective, uninformative prior and starts collecting evidence. The
posterior computed after the first piece of evidence is acquired is used as a prior
for the second piece of evidence. Bayesian inference, including updating priors is
optimal in the sense that it extracts all relevant information contained in the data.
By the time that the learning has been completed, we have a very good, informative
prior that is based on hard data without any “subjective” guessing.

With shape recovery, however, we are presented with a unique situation in which
an objective prior is actually informative. It seems likely that this unique situation
only applies to a symmetry prior. No other prior has this unique characteristic. All
other priors in all other inverse problems, can be either objective or informative.
This fact, alone, is responsible both for the special and unique status of shape in
visual perception and for the fact that shapes are perceived veridically (see [16], for
the uniqueness of shape in visual perception). Once we realize that all important ob-
jects are symmetrical, the informative prior of 3D symmetry becomes an objective
prior because it refers to mathematical invariants, specifically to invariants of trans-
formation groups. There is no need, whatsoever, to learn group invariants from ex-
amples. We can derive them analytically, and once the invariants are derived, we can
prove their invariance and examine the necessary and sufficient conditions for them
to operate. Symmetries are also informative because they represent the fundamental
(permanent, invariant, and intrinsic) characteristics of the 3D objects “out there”.
So, once we know that all objects are symmetrical, it makes no sense, whatsoever,
to start with any uninformative priors because symmetry, alone, is sufficiently infor-
mative, and once symmetry is used as a prior, it also makes no sense, whatsoever,
to update it. How could you improve (update) a definition of a mirror symmetry?
It simply cannot be done. Note that the symmetry prior can be applied to infinitely
many shapes in a finite amount of time, and this includes unfamiliar shapes and even
the shapes of non-existent objects.

2.6.4 Shape Constancy: View-Invariant vs. View-Dependent Shape
Perception

Note that shape constancy is typically tested with novel (unfamiliar) objects in order
to avoid allowing familiarity to influence the shape perceived. All studies of shape
constancy prior to ours focused efforts on determining the availability of invariant
properties in the 2D image (see [16], for a review). If invariants cannot be extracted
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reliably from the 2D retinal image, shape constancy fails or, at least, degrades when
the size of the change of the viewing direction increases. This result encouraged
investigators to accept what is known as the “view-point dependence of shape per-
ception”. Before we explain what is missing in this view-point dependent view of
shape perception, we will remind the reader about a basic aspect of conventional
shape constancy methodology. In a typical experiment of this kind, the subject is
shown the same object twice, with the second viewing direction different from the
first by an “angle α”. The angle α refers to the rotation of the object in depth, that
is, a rotation around an axis that is orthogonal to the line of sight. Only then will the
shape of the 2D retinal image change, and a change in the shape of the retinal image
is the necessary condition for studying shape constancy. When the object is rotated
around the line of sight, not orthogonal to it, the 2D retinal shape does not change;
only its 2D orientation changes, so such an experiment cannot have any bearing on
the shape constancy phenomenon.

Appropriate methodology for performing experiments to test shape constancy
introduces a complication that has never been discussed explicitly in the past. For
large values of α, shape constancy may be difficult to achieve because some parts
of an opaque object that were visible in the first presentation, are not visible after
the object is rotated, and new parts may become visible in the second presenta-
tion. So, shape constancy, in such cases, may not be perfect for a trivial reason: the
relevant information was simply not available to the observer. But if the object is
symmetrical, or if it is composed of symmetrical parts, as it was in Biederman &
Gerhardstein’s [3] experiment, it may be possible to recover the entire 3D shape,
including the back, invisible parts. In such cases, shape constancy might be perfect
because the entire 3D shape could be recovered correctly in both presentations. This
problem has not been studied in the past because there was no computational theory
that could predict when an entire shape, back as well as front, can be recovered. We
now know that the symmetry of an object is the key concept involved in recovering
the invisible backs of 3D objects. These objects must have a sufficient degree of re-
dundancy (regularity and self-similarity) to permit an observer to correctly “guess”
(recover) the shape of the hidden part. We already have a computational model that
can usually recover the entire 3D shape of a mirror-symmetrical object [12]. It can
also recover a translationally symmetrical object [23]. However, the entire shape
may not be recovered, even if the object is symmetrical, if the object does not have
a sufficient degree of regularity. This is precisely what happens with irregular ob-
jects like symmetrical polyhedra, whose faces are not planar [5] or with symmetrical
irregular “potatoes” and “bell peppers” [6]. It follows that shape constancy is actu-
ally much more concerned with invariants in the 3D representation, after the 3D
shape is recovered, than with the presence of invariants in the 2D retinal image. For
those symmetrical objects, whose entire shape can be recovered, shape constancy
will not be affected by the degree of rotation in depth. Put simply, performance will
be view-invariant. For objects, like irregular polyhedra, or potatoes and bell pep-
pers, whose back parts cannot be recovered, performance will be view-dependent.
This analysis should clarify, once and for all, the apparent controversy between the
proponents of both theories. The key to understanding what is going on resides in
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the recovery of 3D shapes rather than in the presence of cues or invariants in the 2D
retinal image.

2.7 Conclusion

In the past, the only thing that everyone agreed about when trying to define shape
was that shape refers to the spatially-global geometrical characteristics of an ob-
ject or a figure. Once one appreciates that all important objects in our natural
environment are symmetrical, it follows that any meaningful definition of shape
must be based on the concept of symmetry. Imagine how difficult it would be to
describe spatially-global geometrical characteristics of a symmetrical object ade-
quately without mentioning its symmetry? It is probably impossible to do this! But
using symmetry to describe an object cannot be the whole story because a definition
of shape should go beyond a mere description of the object’s geometry. The con-
cept called “shape” is used in many ways. We use it to identify objects, we use it to
compare similar objects, we use it to remember and to recognize objects, we use it
to infer an object’s functions, and we use it to identify the permanence of objects in
the presence of non-rigidities. We conclude by claiming that all of these things can
be done only when shape is defined by the object’s symmetries, as we explained in
detail above. Furthermore, all of these things can be done very well, and they can
be done in a very principled way because “symmetry groups”, with their concepts
of transformations and invariants, provide the foundation of large parts of mathe-
matics. By excluding only the very few objects in our natural environment that are
completely devoid of symmetries, you can use our new definition of shape to accom-
plish a great deal more than had been possible before we explained the significance
and utility of symmetry in the visual perception of shape. You will have to use ex-
perience and learning with irregular rocks and crumpled papers to discriminate their
shapes, but with all other shapes, you can depend entirely on symmetry.
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