
9J. Graba, An Introduction to Network Programming with Java: Java 7 Compatible,
DOI 10.1007/978-1-4471-5254-5_2, © Springer-Verlag London 2013

 Learning Objectives

 After reading this chapter, you should:

• know how to determine the host machine’s IP address via a Java program;
• know how to use TCP sockets in both client programs and server programs;
• know how to use UDP sockets in both client programs and server programs;
• appreciate the convenience of Java’s stream classes and the consistency of the

interface afforded by them;
• appreciate the ease with which GUIs can be added to network programs;
• know how to check whether ports on a specifi ed machine are running services.

 Having covered fundamental network protocols and techniques in a generic fashion
in Chap. 1 , it is now time to consider how those protocols may be used and the
techniques implemented in Java. Core package java.net contains a number of
very useful classes that allow programmers to carry out network programming very
easily. Package java x .net , introduced in J2SE 1.4, contains factory classes for creating
sockets in an implementation-independent fashion. Using classes from these packages
(primarily from the former), the network programmer can communicate with any
server on the Internet or implement his/her own Internet server.

2.1 The InetAddress Class

 One of the classes within package java.net is called InetAddress , which handles
Internet addresses both as host names and as IP addresses. Static method getByName
of this class uses DNS (Domain Name System) to return the Internet address of a
specifi ed host name as an InetAddress object. In order to display the IP address from
this object, we can simply use method println (which will cause the object’s toString
method to be executed). Since method getByName throws the checked exception

 Chapter 2
 Starting Network Programming in Java

http://dx.doi.org/10.1007/978-1-4471-5254-5

10

 UnknownHostException if the host name is not recognised, we must either throw this
exception or (preferably) handle it with a catch clause. The following example
illustrates this.

 Example

 import java.net.*;
 import java.util.*;

 public class IPFinder
 {
 public static void main(String[] args)
 {

 String host;
 Scanner input = new Scanner(System.in);
 InetAddress address;

 System.out.print("\n\nEnter host name: ");
 host = input.next();
 try
 {

 address = InetAddress.getByName(host);
 System.out.println("IP address: "
 + address.toString());
 }

 catch (UnknownHostException uhEx)
 {

 System.out.println("Could not fi nd " + host);
 }
 }
 }

 The output from a test run of this program is shown in Fig. 2.1 .

2 Starting Network Programming in Java

11

 It is sometimes useful for Java programs to be able to retrieve the IP address of
the current machine. The example below shows how to do this.

 Example

 import java.net.*;

 public class MyLocalIPAddress
 {

 public static void main(String[] args)
 {

 try
 {

 InetAddress address =
 InetAddress.getLocalHost();
 System.out.println(address);
 }
 catch (UnknownHostException uhEx)
 {
 System.out.println(
 "Could not fi nd local address!");
 }
 }
 }

 Output from this program when run on the author’s offi ce machine is shown in
Fig. 2.2 .

 Fig. 2.1 Using method getByName to retrieve IP address of a specifi ed host

2.1 The InetAddress Class

12

2.2 Using Sockets

 As described in Chap. 1 , different processes (programs) can communicate with each
other across networks by means of sockets. Java implements both TCP/IP sockets
and datagram sockets (UDP sockets). Very often, the two communicating pro-
cesses will have a client/server relationship. The steps required to create client/
server programs via each of these methods are very similar and are outlined in the
following two sub-sections.

2.2.1 TCP Sockets

 A communication link created via TCP/IP sockets is a connection-orientated link.
This means that the connection between server and client remains open throughout
the duration of the dialogue between the two and is only broken (under normal cir-
cumstances) when one end of the dialogue formally terminates the exchanges (via
an agreed protocol). Since there are two separate types of process involved (client
and server), we shall examine them separately, taking the server fi rst. Setting up a
server process requires fi ve steps…

 1. Create a ServerSocket object .
 The ServerSocket constructor requires a port number (1024–65535, for non- reserved
ones) as an argument. For example:

 ServerSocket serverSocket = new ServerSocket(1234);

 Fig. 2.2 Retrieving the current machine’s IP address

2 Starting Network Programming in Java

http://dx.doi.org/10.1007/978-1-4471-5254-5

13

 In this example, the server will await (‘listen for’) a connection from a client on
port 1234.

 2. Put the server into a waiting state.
 The server waits indefi nitely (‘blocks’) for a client to connect. It does this by calling
method accept of class ServerSocket , which returns a Socket object when a connec-
tion is made. For example:

 Socket link = serverSocket.accept();

 3. Set up input and output streams .
 Methods getInputStream and getOutputStream of class Socket are used to get ref-
erences to streams associated with the socket returned in step 2. These streams
will be used for communication with the client that has just made connection. For
a non-GUI application, we can wrap a Scanner object around the InputStream
object returned by method getInputStream , in order to obtain string-orientated
input (just as we would do with input from the standard input stream, System.in).
For example:

 Scanner input = new Scanner(link.getInputStream());

 Similarly, we can wrap a PrintWriter object around the OutputStream object
returned by method getOutputStream . Supplying the PrintWriter constructor with a
second argument of true will cause the output buffer to be fl ushed for every call
of println (which is usually desirable). For example:

 PrintWriter output =
 new PrintWriter(link.getOutputStream(),true);

 4. Send and receive data.
 Having set up our Scanner and PrintWriter objects, sending and receiving data is
very straightforward. We simply use method nextLine for receiving data and method
 println for sending data, just as we might do for console I/O. For example:

 output.println("Awaiting data…");
 String input = input.nextLine();

 5. Close the connection (after completion of the dialogue).
 This is achieved via method close of class Socket . For example:

 link.close();

 The following example program is used to illustrate the use of these steps.

 Example

 In this simple example, the server will accept messages from the client and will
keep count of those messages, echoing back each (numbered) message. The main
protocol for this service is that client and server must alternate between sending and
receiving (with the client initiating the process with its opening message, of course).
The only details that remain to be determined are the means of indicating when the

2.2 Using Sockets

14

dialogue is to cease and what fi nal data (if any) should be sent by the server. For this
simple example, the string “***CLOSE***” will be sent by the client when it
wishes to close down the connection. When the server receives this message, it will
confi rm the number of preceding messages received and then close its connection to
this client. The client, of course, must wait for the fi nal message from the server
before closing the connection at its own end.

 Since an IOException may be generated by any of the socket operations, one or
more try blocks must be used. Rather than have one large try block (with no
variation in the error message produced and, consequently, no indication of precisely
what operation caused the problem), it is probably good practice to have the opening
of the port and the dialogue with the client in separate try blocks. It is also good
practice to place the closing of the socket in a fi nally clause, so that, whether an
exception occurs or not, the socket will be closed (unless, of course, the exception is
generated when actually closing the socket, but there is nothing we can do about that).
Since the fi nally clause will need to know about the Socket object, we shall have
to declare this object within a scope that covers both the try block handling the
dialogue and the fi nally block. Thus, step 2 shown above will be broken up into
separate declaration and assignment. In our example program, this will also mean
that the Socket object will have to be explicitly initialised to null (as it will not be
a global variable).

 Since a server offering a public service would keep running indefi nitely, the call to
method handleClient in our example has been placed inside an ‘infi nite’ loop, thus:

 do
 {
 handleClient();
 }while (true);

 In the code that follows (and in later examples), port 1234 has been chosen for
the service, but it could just as well have been any integer in the range 1024–65535.
Note that the lines of code corresponding to each of the above steps have been
clearly marked with emboldened comments.

 //Server that echoes back client's messages.
 //At end of dialogue, sends message indicating
 //number of messages received. Uses TCP.

 import java.io.*;
 import java.net.*;
 import java.util.*;

 public class TCPEchoServer
 {

 private static ServerSocket serverSocket;
 private static fi nal int PORT = 1234;

 public static void main(String[] args)

2 Starting Network Programming in Java

15

 {
 System.out.println("Opening port…\n");
 try
 {
 serverSocket = new ServerSocket(PORT); //Step 1.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }
 do
 {
 handleClient();
 }while (true);
 }

 private static void handleClient()
 {
 Socket link = null; //Step 2.
 try
 {

 link = serverSocket.accept(); //Step 2.
 Scanner input =
 new Scanner(link.getInputStream()); //Step 3.
 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true); //Step 3.
 int numMessages = 0;
 String message = input.nextLine(); //Step 4.
 while (!message.equals("***CLOSE***"))
 {

 System.out.println("Message received.");
 numMessages++;
 output.println("Message " + numMessages
 + ": " + message); //Step 4.
 message = input.nextLine();
 }
 output.println(numMessages
 + " messages received."); //Step 4.
 }

2.2 Using Sockets

16

 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

 fi nally
 {
 try
 {
 System.out.println(
 "\n* Closing connection… *");
 link.close(); //Step 5.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
 }

 Setting up the corresponding client involves four steps…

 1. Establish a connection to the server.
 We create a Socket object, supplying its constructor with the following two
arguments:

• the server’s IP address (of type InetAddress);
• the appropriate port number for the service.

 (The port number for server and client programs must be the same, of course!)

 For simplicity’s sake, we shall place client and server on the same host, which
will allow us to retrieve the IP address by calling static method getLocalHost of
class InetAddress . For example:

 Socket link =
 new Socket(InetAddress.getLocalHost(),1234);

 2. Set up input and output streams.
 These are set up in exactly the same way as the server streams were set up (by call-
ing methods getInputStream and getOutputStream of the Socket object that was cre-
ated in step 2).

 3. Send and receive data.
 The Scanner object at the client end will receive messages sent by the PrintWriter
object at the server end, while the PrintWriter object at the client end will send mes-
sages that are received by the Scanner object at the server end (using methods next-
Line and println respectively).

2 Starting Network Programming in Java

17

 4. Close the connection.
 This is exactly the same as for the server process (using method close of class
 Socket).

 The code below shows the client program for our example. In addition to an
input stream to accept messages from the server, our client program will need to set
up an input stream (as another Scanner object) to accept user messages from the
keyboard. As for the server, the lines of code corresponding to each of the above
steps have been clearly marked with emboldened comments.

 import java.io.*;
 import java.net.*;
 import java.util.*;

 public class TCPEchoClient
 {
 private static InetAddress host;
 private static fi nal int PORT = 1234;

 public static void main(String[] args)
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }
 accessServer();
 }
 private static void accessServer()
 {
 Socket link = null; //Step 1.
 try
 {
 link = new Socket(host,PORT); //Step 1.
 Scanner input =
 new Scanner(link.getInputStream());

 //Step 2.
 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true); //Step 2.
 //Set up stream for keyboard entry…
 Scanner userEntry = new Scanner(System.in);

2.2 Using Sockets

18

 String message, response;
 do
 {
 System.out.print("Enter message: ");
 message = userEntry.nextLine();
 output.println(message); //Step 3.
 response = input.nextLine(); //Step 3.
 System.out.println("\nSERVER> "+response);
 }while (!message.equals("***CLOSE***"));
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

 fi nally
 {
 try
 {
 System.out.println(
 "\n* Closing connection… *");
 link.close(); //Step 4.
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
 }

 For the preceding client–server application to work, TCP/IP must be installed
and working. How are you to know whether this is the case for your machine? Well,
if there is a working Internet connection on your machine, then TCP/IP is running.
In order to start the application, fi rst open two command windows and then start the
server running in one window and the client in the other. (Make sure that the server
is running fi rst, in order to avoid having the client program crash!) The example
screenshots in Figs. 2.3 and 2.4 show the dialogues between the server and two
consecutive clients for this application. Note that, in order to stop the TCPEchoServer
program, Ctrl-C has to be entered from the keyboard.

2 Starting Network Programming in Java

19

 Fig. 2.3 Example output from the TCPEchoServer program

 Fig. 2.4 Example output from the TCPEchoClient program

2.2 Using Sockets

20

2.2.2 Datagram (UDP) Sockets

 Unlike TCP/IP sockets, datagram sockets are connectionless . That is to say, the con-
nection between client and server is not maintained throughout the duration of the
dialogue. Instead, each datagram packet is sent as an isolated transmission whenever
necessary. As noted in Chap. 1 , datagram (UDP) sockets provide a (usually) faster
means of transmitting data than TCP/IP sockets, but they are unreliable.

 Since the connection is not maintained between transmissions, the server
does not create an individual Socket object for each client, as it did in our TCP/
IP example. A further difference from TCP/IP sockets is that, instead of a
 ServerSocket object, the server creates a DatagramSocket object, as does each
client when it wants to send datagram(s) to the server. The fi nal and most sig-
nifi cant difference is that DatagramPacket objects are created and sent at both
ends, rather than simple strings.

 Following the style of coverage for TCP client/server applications, the detailed
steps required for client and server will be described separately, with the server
process being covered fi rst. This process involves the following nine steps, though
only the fi rst eight steps will be executed under normal circumstances…

 1. Create a DatagramSocket object.
 Just as for the creation of a ServerSocket object, this means supplying the object’s
constructor with the port number. For example:

 DatagramSocket datagramSocket =
 new DatagramSocket(1234);

 2. Create a buffer for incoming datagrams.
 This is achieved by creating an array of bytes. For example:

 byte[] buffer = new byte[256];

 3. Create a DatagramPacket object for the incoming datagrams.
 The constructor for this object requires two arguments:

• the previously-created byte array;
• the size of this array.

 For example:

 DatagramPacket inPacket =
 new DatagramPacket(buffer, buffer.length);

 4. Accept an incoming datagram.
 This is effected via the receive method of our DatagramSocket object, using our
 DatagramPacket object as the receptacle . For example:

 datagramSocket.receive(inPacket);

2 Starting Network Programming in Java

http://dx.doi.org/10.1007/978-1-4471-5254-5

21

 5. Accept the sender’s address and port from the packet.
 Methods getAddress and getPort of our DatagramPacket object are used for this.
For example:

 InetAddress clientAddress = inPacket.getAddress();
 int clientPort = inPacket.getPort();

 6. Retrieve the data from the buffer.
 For convenience of handling, the data will be retrieved as a string, using an over-
loaded form of the String constructor that takes three arguments:

• a byte array;
• the start position within the array (= 0 here);
• the number of bytes (= full size of buffer here).

 For example:

 String message = new String(inPacket.getData(),
 0,inPacket.getLength());

 7. Create the response datagram.
 Create a DatagramPacket object, using an overloaded form of the constructor that
takes four arguments:

• the byte array containing the response message;
• the size of the response;
• the client’s address;
• the client’s port number.

 The fi rst of these arguments is returned by the getBytes method of the String
class (acting on the desired String response). For example:

 DatagramPacket outPacket =
 new DatagramPacket(response.getBytes(),
 response.length(),clientAddress, clientPort);

 (Here, response is a String variable holding the return message.)

 8. Send the response datagram.
 This is achieved by calling method send of our DatagramSocket object, supplying
our outgoing DatagramPacket object as an argument. For example:

 datagramSocket.send(outPacket);

 Steps 4–8 may be executed indefi nitely (within a loop).
 Under normal circumstances, the server would probably not be closed down at

all. However, if an exception occurs, then the associated DatagramSocket should be
closed, as shown in step 9 below.

 9. Close the DatagramSocket.
 This is effected simply by calling method close of our DatagramSocket object. For
example:

 datagramSocket.close();

2.2 Using Sockets

22

 To illustrate the above procedure and to allow easy comparison with the equivalent
TCP/IP code, the example from Sect. 2.2.1 will be employed again. As before, the
lines of code corresponding to each of the above steps are indicated via emboldened
comments. Note that the numMessages part of the message that is returned by the
server is somewhat artifi cial, since, in a real-world application, many clients could be
making connection and the overall message numbers would not mean a great deal to
individual clients. However, the cumulative message-numbering will serve to empha-
sise that there are no separate sockets for individual clients.

 There are two other differences from the equivalent TCP/IP code that are worth
noting, both concerning the possible exceptions that may be generated:

• the IOException in main is replaced with a SocketException ;
• there is no checked exception generated by the close method in the fi nally

clause, so there is no try block.

 Now for the code…

 //Server that echoes back client's messages.
 //At end of dialogue, sends message indicating number of
 //messages received. Uses datagrams.

 import java.io.*;
 import java.net.*;

 public class UDPEchoServer
 {
 private static fi nal int PORT = 1234;
 private static DatagramSocket datagramSocket;
 private static DatagramPacket inPacket, outPacket;
 private static byte[] buffer;

 public static void main(String[] args)
 {
 System.out.println("Opening port…\n");
 try
 {
 datagramSocket =
 new DatagramSocket(PORT);

 //Step 1.
 }
 catch(SocketException sockEx)
 {
 System.out.println("Unable to open port!");
 System.exit(1);

 }
 handleClient();
 }

2 Starting Network Programming in Java

23

 private static void handleClient()
 {
 try
 {
 String messageIn,messageOut;
 int numMessages = 0;
 InetAddress clientAddress = null;
 int clientPort;

 do
 {
 buffer = new byte[256]; //Step 2.
 inPacket =
 new DatagramPacket(
 buffer, buffer.length);
 //Step 3.
 datagramSocket.receive(inPacket);

 //Step 4.
 clientAddress = inPacket.getAddress();
 //Step 5.
 clientPort = inPacket.getPort();

 //Step 5.
 messageIn =
 new String(inPacket.getData(),
 0,inPacket.getLength());

 //Step 6.
 System.out.println("Message received.");
 numMessages++;
 messageOut = "Message " + numMessages
 + ": " + messageIn;
 outPacket =
 new DatagramPacket(messageOut.getBytes(),
 messageOut.length(),clientAddress,
 clientPort); //Step 7.
 datagramSocket.send(outPacket); //Step 8.
 }while (true);
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

2.2 Using Sockets

24

 fi nally //If exception thrown, close
 connection.
 {
 System.out.println(
 "\n* Closing connection… *");
 datagramSocket.close(); //Step 9.
 }
 }
 }

 Setting up the corresponding client requires the eight steps listed below.

 1. Create a DatagramSocket object.
 This is similar to the creation of a DatagramSocket object in the server program, but
with the important difference that the constructor here requires no argument, since
a default port (at the client end) will be used. For example:

 DatagramSocket datagramSocket = new DatagramSocket();

 2. Create the outgoing datagram.
 This step is exactly as for step 7 of the server program. For example:

 DatagramPacket outPacket =
 new DatagramPacket(message.getBytes(),
 message.length(), host, PORT);

 3. Send the datagram message.
 Just as for the server, this is achieved by calling method send of the DatagramSocket
object, supplying our outgoing DatagramPacket object as an argument. For example:

 datagramSocket.send(outPacket);

 Steps 4–6 below are exactly the same as steps 2–4 of the server procedure.

 4. Create a buffer for incoming datagrams.
 For example:

 byte[] buffer = new byte[256];

 5. Create a DatagramPacket object for the incoming datagrams.
 For example:

 DatagramPacket inPacket =
 new DatagramPacket(buffer, buffer.length);

 6. Accept an incoming datagram.
 For example:

 datagramSocket.receive(inPacket);

2 Starting Network Programming in Java

25

 7. Retrieve the data from the buffer.
 This is the same as step 6 in the server program. For example:

 String response =
 new String(inPacket.getData(),0,
 inPacket.getLength());

 Steps 2–7 may then be repeated as many times as required.

 8. Close the DatagramSocket.
 This is the same as step 9 in the server program. For example:

 datagramSocket.close();

 As was the case in the server code, there is no checked exception generated by the
above close method in the fi nally clause of the client program, so there will be no
 try block. In addition, since there is no inter-message connection maintained
between client and server, there is no protocol required for closing down the dialogue.
This means that we do not wish to send the fi nal ‘***CLOSE***’ string (though we
shall continue to accept this from the user, since we need to know when to stop
sending messages at the client end). The line of code (singular, this time) corresponding
to each of the above steps will be indicated via an emboldened comment.

 Now for the code itself…

 import java.io.*;
 import java.net.*;
 import java.util.*;

 public class UDPEchoClient
 {
 private static InetAddress host;
 private static fi nal int PORT = 1234;
 private static DatagramSocket datagramSocket;
 private static DatagramPacket inPacket, outPacket;
 private static byte[] buffer;

 public static void main(String[] args)
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }

2.2 Using Sockets

26

 accessServer();
 }
 private static void accessServer()
 {
 try
 {
 //Step 1…
 datagramSocket = new DatagramSocket();

 //Set up stream for keyboard entry…
 Scanner userEntry = new Scanner(System.in);

 String message="", response="";
 do
 {
 System.out.print("Enter message: ");
 message = userEntry.nextLine();
 if (!message.equals("***CLOSE***"))
 {
 outPacket = new DatagramPacket(
 message.getBytes(),
 message.length(),
 host,PORT);
 //Step 2.
 //Step 3…
 datagramSocket.send(outPacket);
 buffer = new byte[256]; //Step 4.
 inPacket =
 new DatagramPacket(
 buffer, buffer.length); //Step 5.
 //Step 6…
 datagramSocket.receive(inPacket);
 response =
 new String(inPacket.getData(),
 0, inPacket.getLength());

 //Step 7.
 System.out.println(
 "\nSERVER> "+response);
 }
 }while (!message.equals("***CLOSE***"));
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }

2 Starting Network Programming in Java

27

 Fig. 2.6 Example output from the UDPEchoClient program (with two clients connecting
separately)

 fi nally
 {
 System.out.println(
 "\n* Closing connection… *");
 datagramSocket.close();

//Step 8.
 }
 }
 }

 For the preceding application to work, UDP must be installed and working on the
host machine. As for TCP/IP, if there is a working Internet connection on the
machine, then UDP is running. Once again, in order to start the application, fi rst
open two command windows and then start the server running in one window and
the client in the other. (Start the server before the client!) As before, the example
screenshots in Figs. 2.5 and 2.6 show the dialogues between the server and two
clients. Observe the differences in output between this example and the correspond-
ing TCP/IP example. (Note that the change at the client end is simply the rather
subtle one of cumulative message-numbering.)

2.2 Using Sockets

28

2.3 Network Programming with GUIs

 Now that the basics of socket programming in Java have been covered, we can add
some sophistication to our programs by providing them with graphical user inter-
faces (GUIs), which users have come to expect most software nowadays to provide.
In order to concentrate upon the interface to each program, rather than upon the
details of that program’s processing, the examples used will simply provide access
to some of the standard services, available via ‘well known’ ports. Some of these
standard services were listed in Fig. 1.1 .

 Example

 The following program uses the Daytime protocol to obtain the date and time from
port 13 of user-specifi ed host(s). It provides a text fi eld for input of the host name
by the user and a text area for output of the host’s response. There are also two but-
tons, one that the user presses after entry of the host name and the other that closes
down the program. The text area is ‘wrapped’ in a JScrollPane , to cater for long
lines of output, while the buttons are laid out on a separate panel. The application
frame itself will handle the processing of button presses, and so implements the
 ActionListener interface. The window-closing code (encapsulated in an anonymous
 WindowAdapter object) ensures that any socket that has been opened is closed
before exit from the program.

 import java.awt.*;
 import java.awt.event.*;

 Fig. 2.5 Example output from the UDPEchoServer program

2 Starting Network Programming in Java

http://dx.doi.org/10.1007/978-1-4471-5254-5_1

29

 import javax.swing.*;
 import java.net.*;
 import java.io.*;
 import java.util.*;

 public class GetRemoteTime extends JFrame
 implements ActionListener
 {
 private JTextField hostInput;
 private JTextArea display;
 private JButton timeButton;
 private JButton exitButton;
 private JPanel buttonPanel;
 private static Socket socket = null;

 public static void main(String[] args)
 {
 GetRemoteTime frame = new GetRemoteTime();
 frame.setSize(400,300);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent event)
 {
 //Check whether a socket is open…
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(

 "\nUnable to close
link!\n");

 System.exit(1);
 }
 }
 System.exit(0);
 }
 }
);
 }

2.3 Network Programming with GUIs

30

 public GetRemoteTime()
 {
 hostInput = new JTextField(20);
 add(hostInput, BorderLayout.NORTH);

 display = new JTextArea(10,15);

 //Following two lines ensure that word-wrapping
 //occurs within the JTextArea…
 display.setWrapStyleWord(true);
 display.setLineWrap(true);

 add(new JScrollPane(display),
 BorderLayout.CENTER);

 buttonPanel = new JPanel();

 timeButton = new JButton("Get date and time ");
 timeButton.addActionListener(this);
 buttonPanel.add(timeButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(this);
 buttonPanel.add(exitButton);

 add(buttonPanel,BorderLayout.SOUTH);
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == exitButton)
 System.exit(0);

 String theTime;

 //Accept host name from the user…
 String host = hostInput.getText();
 fi nal int DAYTIME_PORT = 13;

 try
 {
 //Create a Socket object to connect to the
 //specifi ed host on the relevant port…
 socket = new Socket(host, DAYTIME_PORT);

 //Create an input stream for the above Socket
 //and add string-reading functionality…
 Scanner input =
 new Scanner(socket.getInputStream());

 //Accept the host’s response via the

2 Starting Network Programming in Java

31

 //above stream…
 theTime = input.nextLine();

 //Add the host’s response to the text in
 //the JTextArea…
 display.append("The date/time at " + host
 + " is " + theTime + "\n");
 hostInput.setText("");
 }
 catch (UnknownHostException uhEx)
 {
 display.append("No such host!\n");
 hostInput.setText("");
 }
 catch (IOException ioEx)
 {
 display.append(ioEx.toString() + "\n");
 }

 fi nally
 {
 try
 {
 if (socket!=null)
 socket.close(); //Close link to host.
 }
 catch(IOException ioEx)
 {

 System.out.println(
 "Unable to disconnect!");
 System.exit(1);
 }
 }
 }
 }

 If we run this program and enter ivy.shu.ac.uk as our host name in the client’s
GUI, the result will look something like that shown in Fig. 2.7 .

 Unfortunately, it is rather diffi cult nowadays to fi nd a host that is running the
 Daytime protocol. Even if one does fi nd such a host, it may be that the user’s own
fi rewall blocks the output from the remote server. If this is the case, then the user
will be unaware of this until the connection times out—which may take some time!
The user is advised to terminate the program (with Ctrl-C) if the waiting time
appears to be excessive. One possible way round this problem is to write one’s own
‘daytime server’…

2.3 Network Programming with GUIs

32

 To illustrate just how easy it is to provide a server that implements the Daytime
protocol, example code for such a server is shown below. The program makes use
of class Date from package java.util to create a Date object that will automatically
hold the current day, date and time on the server’s host machine. To output the date
held in the Date object, we can simply use println on the object and its toString
method will be executed implicitly (though we could specify toString explicitly, if
we wished).

 import java.net.*;
 import java.io.*;
 import java.util.Date;
 public class DaytimeServer
 {
 public static void main(String[] args)
 {
 ServerSocket server;
 fi nal int DAYTIME_PORT = 13;
 Socket socket;

 try
 {
 server = new ServerSocket(DAYTIME_PORT);

 do

 Fig. 2.7 Example output from the GetRemoteTime program

2 Starting Network Programming in Java

33

 {
 socket = server.accept();
 PrintWriter output =
 new PrintWriter(
 socket.getOutputStream(),true);
 Date date = new Date();
 output.println(date);
 //Method toString executed in line above.

 socket.close();
 }while (true);
 }
 catch (IOException ioEx)
 {
 System.out.println(ioEx);
 }
 }
 }

 The server simply sends the date and time as a string and then closes the connec-
tion. If we run the client and server in separate command windows and enter local-
host as our host name in the client’s GUI, the result should look similar to that
shown in Fig. 2.7 . Unfortunately, there is still a potential problem on some systems:
since a low-numbered port (i.e., below 1024) is being used, the user may not have
suffi cient system rights to make use of the port. The solution in such circumstances
is simple: change the port number (in both server and client) to a value above 1024.
(E.g., change the value of DAYTIME_PORT from 13 to 1300.)

 Now for an example that checks a range of ports on a specifi ed host and reports
on those ports that are providing a service. This works by the program trying to cre-
ate a socket on each port number in turn. If a socket is created successfully, then
there is an open port; otherwise, an IOException is thrown (and ignored by the
program, which simply provides an empty catch clause). The program creates a
text fi eld for acceptance of the required URL(s) and sets this to an initial default
value. It also provides a text area for the program’s output and buttons for checking
the ports and for exiting the program.

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.net.*;
 import java.io.*;

 public class PortScanner extends JFrame
 implements ActionListener

2.3 Network Programming with GUIs

34

 {
 private JLabel prompt;
 private JTextField hostInput;
 private JTextArea report;
 private JButton seekButton, exitButton;
 private JPanel hostPanel, buttonPanel;
 private static Socket socket = null;

 public static void main(String[] args)
 {
 PortScanner frame = new PortScanner();

 frame.setSize(400,300);
 frame.setVisible(true);
 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(
 WindowEvent event)
 {
 //Check whether a socket is open…
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "\nUnable to close link!\n");
 System.exit(1);
 }
 }
 System.exit(0);
 }
 }
);
 }
 public PortScanner()
 {
 hostPanel = new JPanel();

 prompt = new JLabel("Host name: ");
 hostInput = new JTextField("ivy.shu.ac.uk", 25);
 hostPanel.add(prompt);

2 Starting Network Programming in Java

35

 hostPanel.add(hostInput);
 add(hostPanel,BorderLayout.NORTH);

 report = new JTextArea(10,25);
 add(report,BorderLayout.CENTER);

 buttonPanel = new JPanel();

 seekButton = new JButton("Seek server ports ");
 seekButton.addActionListener(this);
 buttonPanel.add(seekButton);

 exitButton = new JButton("Exit");
 exitButton.addActionListener(this);
 buttonPanel.add(exitButton);

 add(buttonPanel,BorderLayout.SOUTH);
 }
 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == exitButton)
 System.exit(0);
 //Must have been the 'seek' button that was
 //pressed, so clear the output area of any
 //previous output…
 report.setText("");

 //Retrieve the URL from the input text fi eld…
 String host = hostInput.getText();

 try
 {
 //Convert the URL string into an INetAddress
 //object…
 InetAddress theAddress =
 InetAddress.getByName(host);
 report.append("IP address: "
 + theAddress + "\n");

 for (int i = 0; i < 25; i++)
 {

 try
 {
 //Attempt to establish a socket on
 //port i…
 socket = new Socket(host, i);
 //If no IOException thrown, there must
 //be a service running on the port…

2.3 Network Programming with GUIs

36

 report.append(
 "There is a server on port "
 + i + ".\n");
 socket.close();
 }
 catch (IOException ioEx)
 {}// No server on this port
 }
 }
 catch (UnknownHostException uhEx)
 {
 report.setText("Unknown host!");
 }
 }
 }

 When the above program was run for the default server (which is on the
author’s local network), the output from the GUI was as shown in Fig. 2.8 .
Unfortunately, remote users’ fi rewalls may block output from most of the ports
for this default server (or any other remote server), causing the program to wait
for each of these port accesses to time out. This is likely to take a very long time
indeed! The reader is strongly advised to use a local server for the testing of this
program (and to get clearance from your system administrator for port scanning,
to be on the safe side). Even when running the program with a suitable local
server, be patient when waiting for output, since this may take a minute or so,
depending upon your system.

 Fig. 2.8 Example output
from the PortScanner
program

2 Starting Network Programming in Java

37

 Exercises

 2.1 If you haven’t already done so, compile programs TCPEchoServer and
 TCPEchoClient from Sect. 2.2.1 and then run them as described at the end of
that section.

 2.2 This exercise converts the above fi les into a simple email server and email client
respectively. The server conversion has been done for you and is contained in
fi le EmailServer.java , a printed version of which appears on the following
pages for ease of reference. Some of the code for the client has also been
 provided for you and is held in fi le EmailClient.java , a printed version of which
is also provided.

 You are to complete the coding for the client and then run the server program
in one command window and the client program consecutively in each of two
further command windows. For the fi rst client, log in with one of the names
specifi ed below (i.e., ‘Dave’ or ‘Karen’) and send a few emails (fewer than 10)
to the other user. Then quit and run the client program again, this time logging
in as the other user and selecting reading of his/her emails. The full details of
this simplifi ed client–server application are given below.

• The server recognises only two users, called ‘Dave’ and ‘Karen’.
• Each of the above users has a message box on the server that can accept a

maximum of 10 messages.
• Each user may either send a one-line message to the other or read his/her own

messages.
• A count is kept of the number of messages in each mailbox. As another message

is received, the appropriate count is incremented (if the maximum has not been
reached). When messages are read, the appropriate count is reduced to zero.

• When sending a message, the client sends three things: the user’s name, the
word ‘send’ and the message itself.

• When requesting reading of mail, the client sends two things: the user’s name
and the word ‘read’.

• As each message is received by the server, it is added to the appropriate mail-
box (if there is room). If the mailbox is full, the message is ignored.

• When a read request is received, the server fi rst sends an integer indicating the
number of messages (possibly 0) that will be sent and then transmits the mes-
sages themselves (after which it reduces the appropriate message count to 0).

• Each user is to be allowed to ‘send’ and/or ‘read’ as many times as he/she
wishes, until he/she decides to quit.

• When the user selects the ‘quit’ option, the client sends two things: the user’s
name and then the word ‘quit’.

 2.3 If you haven’t already done so, compile and run the server program
 DayTimeServer and its associated client, GetRemoteTime , from Sect. 2.3 .

2.3 Network Programming with GUIs

38

 2.4 Program Echo is similar to program TCPEchoClient from Sect. 2.2.1 , but has a
GUI front-end similar to that of program GetRemoteTime from Sect. 2.3 . It
provides an implementation of the echo protocol (on port 7). This implementa-
tion sends one-line messages to a server and uses the following components:

• a text fi eld for input of messages (in addition to the text fi eld for input of host
name);

• a text area for the (cumulative) echoed responses from the server;
• a button to close the connection to the host.

 Some of the code for this program has been provided for you in fi le Echo.java , a
printed copy of which appears at the end of this chapter. Examine this code and
make the necessary additions in the places indicated by the commented lines. When
you have completed the program, run it and supply the name of any convenient
server when prompted for a server name. If you don’t have access to a convenient
server use localhost , having changed the port number of TCPEchoServer
(Sect. 2.2.1) to 7 and then started that program running.

 //For use with exercise 2.2.

 import java.io.*;
 import java.net.*;
 import java.util.*;

 public class EmailServer
 {
 private static ServerSocket serverSocket;
 private static fi nal int PORT = 1234;
 private static fi nal String client1 = "Dave";
 private static fi nal String client2 = "Karen";
 private static fi nal int MAX_MESSAGES = 10;
 private static String[] mailbox1 =
 new String[MAX_MESSAGES];
 private static String[] mailbox2 =
 new String[MAX_MESSAGES];
 private static int messagesInBox1 = 0;
 private static int messagesInBox2 = 0;
 public static void main(String[] args)
 {
 System.out.println("Opening connection…\n");
 try
 {
 serverSocket = new ServerSocket(PORT);
 }
 catch(IOException ioEx)

2 Starting Network Programming in Java

39

 {
 System.out.println(
 "Unable to attach to port!");
 System.exit(1);
 }
 do
 {
 try
 {
 runService();
 }
 catch (InvalidClientException icException)
 {
 System.out.println("Error: " + icException);
 }
 catch (InvalidRequestException irException)
 {
 System.out.println("Error: " + irException);
 }
 }while (true);
 }

 private static void runService()
 throws InvalidClientException,
 InvalidRequestException
 {
 try
 {
 Socket link = serverSocket.accept();

 Scanner input =
 new Scanner(link.getInputStream());
 PrintWriter output =
 new PrintWriter(
 link.getOutputStream(),true);

 String name = input.nextLine();
 String sendRead = input.nextLine();
 if (!name.equals(client1) &&
 !name.equals(client2))
 throw new InvalidClientException();
 if (!sendRead.equals("send") &&
 !sendRead.equals("read"))
 throw new InvalidRequestException();
 System.out.println("\n" + name + " "
 + sendRead + "ing mail…");
 if (name.equals(client1))

2.3 Network Programming with GUIs

40

 {
 if (sendRead.equals("send"))
 {
 doSend(mailbox2,messagesInBox2,input);
 if (messagesInBox2<MAX_MESSAGES)
 messagesInBox2++;
 }
 else
 {
 doRead(mailbox1,messagesInBox1,output);
 messagesInBox1 = 0;
 }
 }
 else //From client2.
 {
 if (sendRead.equals("send"))
 {
 doSend(mailbox1,messagesInBox1,input);
 if (messagesInBox1<MAX_MESSAGES)
 messagesInBox1++;
 }
 else
 {
 doRead(mailbox2,messagesInBox2,output);
 messagesInBox2 = 0;
 }
 }
 link.close();
 }
 catch(IOException ioEx)
 {
 ioEx.printStackTrace();
 }
 }

 private static void doSend(String[] mailbox,
 int messagesInBox, Scanner input)
 {
 /*
 Client has requested 'sending', so server must
 read message from this client and then place
 message into message box for other client (if
 there is room).
 */

2 Starting Network Programming in Java

41

 String message = input.nextLine();
 if (messagesInBox == MAX_MESSAGES)
 System.out.println("\nMessage box full!");
 else
 mailbox[messagesInBox] = message;
 }

 private static void doRead(String[] mailbox,
 int messagesInBox, PrintWriter output)
 {
 /*
 Client has requested 'reading', so server must
 read messages from other client's message box and
 then send those messages to the fi rst client.
 */
 System.out.println("\nSending " + messagesInBox
 + " message(s).\n");
 output.println(messagesInBox);
 for (int i=0; i<messagesInBox; i++)
 output.println(mailbox[i]);
 }
 }

 class InvalidClientException extends Exception
 {
 public InvalidClientException()
 {
 super("Invalid client name!");
 }
 public InvalidClientException(String message)
 {
 super(message);
 }
 }
 class InvalidRequestException extends Exception
 {
 public InvalidRequestException()
 {
 super("Invalid request!");
 }
 public InvalidRequestException(String message)
 {
 super(message);
 }
 }

2.3 Network Programming with GUIs

42

 //For use with exercise 2.2.

 import java.io.*;
 import java.net.*;
 import java.util.*;

 public class EmailClient
 {
 private static InetAddress host;
 private static fi nal int PORT = 1234;
 private static String name;
 private static Scanner networkInput, userEntry;
 private static PrintWriter networkOutput;

 public static void main(String[] args)
 throws IOException
 {
 try
 {
 host = InetAddress.getLocalHost();
 }
 catch(UnknownHostException uhEx)
 {
 System.out.println("Host ID not found!");
 System.exit(1);
 }

 userEntry = new Scanner(System.in);
 do
 {
 System.out.print(
 "\nEnter name ('Dave' or 'Karen'): ");
 name = userEntry.nextLine();
 }while (!name.equals("Dave")
 && !name.equals("Karen"));
 talkToServer();
 }
 private static void talkToServer() throws IOException
 {
 String option, message, response;

 do
 {
 /**
 CREATE A SOCKET, SET UP INPUT AND OUTPUT STREAMS,
 ACCEPT THE USER'S REQUEST, CALL UP THE APPROPRIATE
 METHOD (doSend OR doRead), CLOSE THE LINK AND THEN

2 Starting Network Programming in Java

43

 ASK IF USER WANTS TO DO ANOTHER READ/SEND.
 **/
 }while (!option.equals("n"));

 }

 private static void doSend()
 {
 System.out.println("\nEnter 1-line message: ");
 String message = userEntry.nextLine();
 networkOutput.println(name);
 networkOutput.println("send");
 networkOutput.println(message);
 }

 private static void doRead() throws IOException
 {

 /*********************************
 BODY OF THIS METHOD REQUIRED
 *********************************/
 }
 }

 //For use with exercise 2.4.

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.net.*;
 import java.io.*;
 import java.util.*;

 public class Echo extends JFrame
 implements ActionListener
 {
 private JTextField hostInput,lineToSend;
 private JLabel hostPrompt,messagePrompt;
 private JTextArea received;
 private JButton closeConnection;
 private JPanel hostPanel,entryPanel;
 private fi nal int ECHO = 7;
 private static Socket socket = null;
 private Scanner input;
 private PrintWriter output;

 public static void main(String[] args)

2.3 Network Programming with GUIs

44

 {
 Echo frame = new Echo();
 frame.setSize(600,400);
 frame.setVisible(true);

 frame.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch (IOException ioEx)
 {
 System.out.println(
 "\n* Unable to close link! *\n");
 System.exit(1);
 }
 System.exit(0);
 }
 }
 }
);
 }

 public Echo()
 {
 hostPanel = new JPanel();

 hostPrompt = new JLabel("Enter host name:");
 hostInput = new JTextField(20);
 hostInput.addActionListener(this);
 hostPanel.add(hostPrompt);
 hostPanel.add(hostInput);
 add(hostPanel, BorderLayout.NORTH);
 entryPanel = new JPanel();

 messagePrompt = new JLabel("Enter text:");
 lineToSend = new JTextField(15);

 //Change fi eld to editable when
 // host name entered…
 lineToSend.setEditable(false);

2 Starting Network Programming in Java

45

 lineToSend.addActionListener(this);

 /**
 * ADD COMPONENTS TO PANEL AND APPLICATION FRAME *
 **/

 /**
 * NOW SET UP TEXT AREA AND THE CLOSE BUTTON *
 **/
 }

 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == closeConnection)
 {
 if (socket != null)
 {
 try
 {
 socket.close();
 }
 catch(IOException ioEx)
 {
 System.out.println(
 "\n* Unable to close link!*\n");
 System.exit(1);
 }
 lineToSend.setEditable(false);
 hostInput.grabFocus();
 }
 return;
 }

 if (event.getSource() == lineToSend)
 {
 /******************/
 * SUPPLY CODE HERE *
 *******************/

 }

 //Must have been entry into host fi eld…
 String host = hostInput.getText();
 try
 {

 /*******************
 * SUPPLY CODE HERE *

2.3 Network Programming with GUIs

46

 *******************/

 }
 catch (UnknownHostException uhEx)
 {
 received.append("\n*** No such host! ***\n");
 hostInput.setText("");
 }
 catch (IOException ioEx)
 {
 received.append("\n*** " + ioEx.toString()
 + " ***\n");
 }
 }
 }

2 Starting Network Programming in Java

http://www.springer.com/978-1-4471-5254-5

	Chapter 2: Starting Network Programming in Java
	2.1 The InetAddress Class
	2.2 Using Sockets
	2.2.1 TCP Sockets
	2.2.2 Datagram (UDP) Sockets

	2.3 Network Programming with GUIs

