The Basic Definitions

2.1 The Basic Definition

Our concerns are (decision) problems with two or more inputs. Thus we will be
considering languages L € X™* x X*. We refer to such languages as parameterized
languages. If (x, k) is in a parameterized language L, we call k the parameter.!
Usually the parameter will be a positive integer, but it might be a graph or algebraic
structure. However, in the interest of readability and with no loss of generality, we
will usually identify the domain of the parameter as the natural numbers (in unary)
N and hence consider languages L € X* x N. For a fixed k, we call Ly = {{x,k) :
(x, k) € L} the kth slice of L.

As we have seen in the introduction, our main idea is to study languages that are
tractable “by the slice.” As the reader will recall, being tractable by the slice meant
that there is a constant ¢, independent of k, such that for all X, membership of Ly
can be determined in time O (]x|¢). There are various levels of non-uniformity and
of non-computability available for such a definition, but for almost all of this book,
the reader can take the following as the definition of fixed-parameter tractability.

Definition 2.1.1 (The basic definition) We say that a parameterized language
L is (strongly uniformly) fixed-parameter tractable (FTP) iff there exists an
algorithm @ and a constant ¢ and a computable function f such that, for all
x,k, @((x, k)) runs in time at most f (k)|x|¢ and

(x,kyeL iff @((x,k)=1.

IThere is another tradition here suggested by Flum and Grohe [312] that the parameter be a function
k: X x X — X* We believe that the original definition is explicit enough and certainly appropri-
ate in practical applications. We only mention this fact for the reader who looks at material in the
literature using this notation.

R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, 15
Texts in Computer Science, DOI 10.1007/978-1-4471-5559-1_2,
© Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5559-1_2

16 2 The Basic Definitions

The reader may be alerted by the presence of “computable function f” in Def-

inition 2.1.1. Isn’t this supposed to be a theory designed to address complexity in

2
practical computation? Definition 2.1.1 allows for functions like f (k) = 2% kmm,
or even worse! Of course, it could well be argued that for polynomial time simi-
larly horrible polynomial-time running times could happen, and hence this is also
an issue in the definition of P.

As it turns out, generally if we use the elementary toolkit described in the first
chapters, ¢ is usually small (1, 2 or maybe 3) and the constant f (k) is usually a
manageable functions of k, like 2k

For example, consider VERTEX COVER parameterized by k, defined as follows.

VERTEX COVER

Instance: A graph G = (V, E).

Parameter: A positive integer k.

Question: Does G have a vertex cover of size < k? (A vertex cover of a graph
G is a collection of vertices V’ of G such that for all edges viv; of G
eithervie V'orv, e V')

Then, as we soon see, VERTEX COVER, parameterized by k, can be solved in
time 2K |G|. This running time can be written in a more convenient form.

Definition 2.1.2 (The O* notation) If a parameterized algorithm has run-
ning time f(k)|x|¢, we will write that the algorithm has a running time of
O*(f(k)), i.e. ignoring the polynomial part and concentrating on the expo-
nential part.

In the case of VERTEX COVER as above, we would say we can solve it in time
0*(2%). Some authors (such as Flum and Grohe [312]) choose to write p-VERTEX
COVER to emphasize that we are dealing with the problem as a parameterized
one.

2.2 The Other Flavors of Parameterized Tractability

Now, even though at this stage it might be somewhat mysterious, we feel that it is
important to point out that there really are other flavors of parameterized tractability.
These other definitions involve the use of non-computability, first in terms of the
constant, and secondly as a non-uniformity in the algorithm itself. The use of non-
computability in complexity is not new, with classes like P/Poly being uncountable.
However, we will try to motivate these classes with examples. Before we give some
precise definitions, we invite the reader to consider the following examples to add
to the one we have seen so far, VERTEX COVER.

2.2 The Other Flavors of Parameterized Tractability

17

VERTEX COVER : Vertices cover edges.

Example: {c, f, b, e, h}. GRAPH LINKING NUMBER :
K has linking number 1.

a 1
b 2
c 3
K3,3
GRAPH GENUS

K, has genus 1 by
putting all lines except
<b,2> on a sphere

and <b,2 > on ahandle.

Fig. 2.1 Examples of FPT problems

Example 2.2.1 GRAPH GENUS

Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Does G have genus k? (That is, can G be embedded with no edges

crossing on a surface with k£ handles?)

Example 2.2.2 GRAPH LINKING NUMBER

Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Can G be embedded into 3-space such that the maximum size of a

collection of topologically linked disjoint cycles is bounded by k?

In Fig. 2.1 we give some examples to illustrate the problems above. The fact that
K¢ has linking number 1 is due to Sachs [597] and Conway and Gordon [162]. If
we consider the classical versions of the problems above where k is not fixed, then
they are all NP-hard. Each of the above problems exhibits some form of parame-

18 2 The Basic Definitions

terized tractability. As we mentioned above, in the next section, we will look at a
simple technique called the method of bounded search trees that can solve VERTEX
COVER using a single algorithm & running in time 2¥|G| for each k. Fellows and

Langston [297, 299] introduced a method which allowed them to use the deep re-

sults of Robertson and Seymour [588, 589] to construct a single algorithm @ which

accepts (G, k) as input instances of GRAPH GENUS such that @ determines if G

has genus k in time O(|G|?). This running time was improved by Mohar [533]

to O(]G|). Finally, Fellows and Langston [297, 299] used the Robertson—Seymour

methods to prove that for each k there is an algorithm ¥, which runs in time O (|G|?)
and which determines if the graph G has linking number k. (We will look at the

proofs of these results and the techniques used in Chap. 17.)

Notice the differences between the three varieties of fixed-parameter tractability.

They are all O(|G|¢) for some c slicewise but:

e In the case of VERTEX COVER, we have a single known algorithm which works
for all k, and, moreover, we can compute the constant and hence the exact running
time for each k. This is the behavior we gave in Definition 2.1.1 and called it there
strongly uniform fixed-parameter tractability.

e In Example 2.2.1, for GRAPH GENUS, we still have a single algorithm @ for
all &, but this time we have no way of computing the constant in the running
time. We merely know that for each k, the running time of @ on input (G, k) is
O(|G?). This behavior is called uniform fixed-parameter tractability.

e In Example 2.2.2, for GRAPH LINKING NUMBER, all we know is the exponent
of the running time for the algorithms. For each k, we have a different (and
unknown) algorithm running in O(| G ?) with unknown constants. This behavior
is called non-uniform fixed-parameter tractability.

Considerations such as the examples above naturally lead us to the definitions
below.

Definition 2.2.1 (Uniform and non-uniform FPT) Let A be a parameterized
problem.

(1) We say that A is uniformly fixed-parameter tractable if there is an algo-
rithm @, a constant ¢, and an arbitrary function f : N+ N such that: the
running time of @ ((x, k)) is at most f (k)|x|°,

(i) We say that A is non-uniformly fixed-parameter tractable if there is a
constant ¢, a function f : N+ N, and a collection of procedures {®y :
k € N} such that for each k € N, and the running time of @i ({x, k)) is
f(k)|x|¢ and (x, k) € A iff D ((x, k)) = 1.

In [242, 247], Downey and Fellows give proofs constructing languages showing
that the definitions above generate three distinct classes of computable parameter-
ized languages. The diagonalization arguments used construct artificial languages
to provably separate the classes. At present, we are not aware of any natural prob-
lem that is provably (say) in the class of problems that are uniformly but not strong

2.3 Exercises 19

uniformly fixed-parameter tractable. We remark, however, that there are examples
of natural problems such as GRAPH LINKING NUMBER which can at present only
be classified as non-uniformly tractable. Nevertheless, in practice, it seems that the
most important types of parameterized tractability are the two varieties of uniform
tractability.

The reader may well ask why we bothered to introduce these apparently exotic
classes. One of the reasons concerns lower bounds for algorithms. That is, later in
Chaps. 29 and 30, we will prove results about lower bounds on the power of certain
kinds of parameterized algorithms. These lower bounds require some complexity
assumptions® which need the more general notions of FPT to be used. Additionally,
the uniform and non-uniform versions come to center stage in the chapter where
we look at applications of the Robertson—Seymour methodology, Chap. 17. For the
present the readers should file the notions above in the backs of their minds.

Therefore until Chaps. 17 and 30, the reader can assume that unless otherwise
specified, fixed-parameter tractability will mean strongly uniform fixed-parameter
tractability.

We remark that most natural FPT problems which have been studied so far seem
to exhibit a general migration toward strongly uniform tractability; that is, once
a problem has been identified as FPT, then with more precise combinatorics, we
eventually show the problem to be strongly uniformly FPT.

One reason for this general process of improvement is that often the initial clas-
sification of the problem as FPT came from the application of some general result
pertaining to a class of problems containing the one at hand. Later, more unifor-
mity, together with better constants and algorithms, can be obtained after studying
the particular combinatorics of the problem considered alone. It is an open question
whether there are natural examples of languages which are FPT but provably not
strongly uniformly FPT.

Parameterized complexity is orthogonal to classical complexity; that is, the pa-
rameterized complexity of a problem can bear no relationship to the classical com-
plexity of the problem. For instance, let L be any computable language. Perhaps L
is not even elementary recursive and the time complexity for L might dwarf Ack-
ermann’s function. But consider the parameterized language L' = {{x, x) : x € L}.
Classically, L’ has the same complexity as L, but as a parameterized problem, L’ is
in FPT, with a constant time algorithm. Later, we will see examples where the pa-
rameterized versions are hard but classical versions are easy.

2.3 Exercises
Exercise 2.3.1 List 20 aspects of a graph you might regard as a parameter.

Exercise 2.3.2 Recall that GRAPH 3 COLORING is NP-complete. Use this to prove
that GRAPH k COLORING (i.e. (G, k) € L iff G is k-colorable) is FPT iff P = NP.

2Like W[1] # FPT, as we will later define.

20 2 The Basic Definitions

Exercise 2.3.3 The notion of parameterization is not restricted to P. Give a defini-
tion of a language L € X* x N being in parameterized LOGSPACE.

Exercise 2.3.4 (Cai, Chen, Downey, and Fellows [122])

1. We say that a parameterized language L is (uniformly) eventually in DTIME (n
iff there is an algorithm @ such that, for each k, there exists m = m (k) € N such
that, for all x with |x| > n, (x,k) € L iff ®({(x,k)) =1 and & runs in time
|x|¢ on input (x, k). Prove that L is in uniform FPT iff there is a d such that
L is uniformly eventually in DTIME(n¢). Moreover, show that we can replace
“uniform” by “strongly uniform” if the function k — m (k) is computable.

2. (This is called the “advice view”.) L € FPT (non-uniform) iff there is a
polynomial-time oracle Turing machine @ and a function f : N — X such that
for all x and k

y

(x,kyeL iff /P ((x,k)=1.

3. Furthermore, L € FPT (strongly uniform) iff there is a polynomial-time oracle
Turing machine @ and a computable function f : N — X™* such that for all x
and k

(x,kyeL iff /P ((x,k)=1.
Exercise 2.3.5 (Challenging) Prove that the following problems are in FPT.

(i) VERTEX COVER.
(ii)) PLANAR INDEPENDENT SET.

24 Historical Notes

Ever since the discovery of the fact that many natural problems are seemingly in-
tractable, authors have looked for feasible partial solutions. We refer the reader to
Garey and Johnson [337], particularly Chap. 4. In that chapter, Garey and Johnson
look at what they call “Analyzing Subproblems”. The reason for Garey and John-
son’s interest in subproblems is encapsulated in the following quote:

“If a general problem is NP-complete, we know that an exponential time algorithm will be
needed (unless P = NP), but there are a variety of ways which the time complexity of an
algorithm can be “exponential,” some of which might be preferable to others.” (Garey and
Johnson [337, p. 106].)

In retrospect, it is obvious that many authors have devised algorithms which
demonstrate the fact that the parameterized problem is FPT. For instance, as we will
see in Chap. 9, all pseudo-polynomial-time algorithms actually demonstrate the fact
that the relevant problem is FPT. To our knowledge, the first author to explicitly
note the fact that as k varied, problems such as DOMINATING SET seemed to take
time 2 (nf®) with f (k) — oo was Ken Regan in some comments in [577]. There
was also a reference by Moshe Vardi [655], who suggested that classical complexity
was the wrong notion for databases, since the queries were very small compared to

2.5 Summary 21

the database. In particular, Vardi pointed out that the input for database-query evalu-
ation consists of two components, query and database. For first-order queries, query
evaluation is PSPACE-complete, and for fixpoint query it is EXPTIME-complete,
but, if you fix the query, the complexity goes down to LOGSPACE and PTIME cor-
respondingly. In particular, the size of the database was not the right complexity
for database-query complexity and the size of parameter counted. Also in the 1980s
were the papers Vardi and Wolper [656] and Lichtenstein and A. Pnueli [491] who
pointed out that the input for LTL model checking consists of two components, for-
mula and transition system. LTL model checking is PSPACE-complete, but if you fix
the formula, the complexity goes down to LOGSPACE.

So people in the database community were very aware that fixing a parameter
makes an intractable problem tractable. In retrospect the key if that they did miss
the big difference between query evaluation and model checking. In query evalu-
ation the dependence on the formula is exponential, while in model checking it is
multiplicative. Indeed, as was shown later, model checking is FPT and query evalu-
ation is likely not FPT.

The first paper to address the “asymptotic” fixed-parameter complexity of pa-
rameterized problems (i.e. the behavior as k — o0), was Abrahamson, Ellis, Fel-
lows and Mata [6]. Roughly speaking, those authors looked at the comparison be-
tween languages that were non-uniformly FPT and those that were ‘“P-complete”
or “dual P-complete” by the slice. There are a number of severe limitations and
other more technical problems with the Abrahamson et al. approach. Those authors
certainly could not address comparisons of the parameterized complexities of, say,
VERTEX COVER and DOMINATING SET, nor parameterized versions of problems
outside of NP. The basic definitions of this chapter were given in Downey and Fel-
lows [241, 243, 244].

We will give more detailed historical remarks concerning the issue of fixed-
parameter tractability versus intractability in Part II, where they will be more in
context. We will also give historical comments concerning the various techniques
examined in this book in the relevant chapters and sections.

Finally, recent histories of the early years of parameterized complexity, and
the preceding work on Fellows and Langston can be found in Downey [237] and
Langston [479]. Other related materials about the early years of parameterized
complexity can be found in the festscrift volume Bodlaender, Downey, Fomin and
Marx [85].

2.5 Summary

This chapter introduced the main definition of FPT, and introduces two less uniform
variations which are important in some later chapters; particularly those describing
methods based on graph minor techniques (Chap. 19) and for lower bound argu-
ments (Chap. 30).

2 Springer
http://www.springer.com/978-1-4471-5558-4

Fundamentals of Parameterized Complexity
Downey, R.; Fellows, M.R.

2013, X0, 763 p. 83 illus., Hardcover

ISEMN: @78-1-4471-5558-4

	Chapter 2: The Basic Deﬁnitions
	2.1 The Basic Deﬁnition
	2.2 The Other Flavors of Parameterized Tractability
	2.3 Exercises
	2.4 Historical Notes
	2.5 Summary

