Chapter 2
Non-Euclidean Dissimilarities:
Causes, Embedding and Informativeness

Robert P.W. Duin, Elzbieta Pekalska, and Marco Loog

Abstract In many pattern recognition applications, object structure is essential for
the discrimination purpose. In such cases, researchers often use recognition schemes
based on template matching which lead to the design of non-Euclidean dissimilarity
measures. A vector space derived from the embedding of the dissimilarities is de-
sirable in order to use general classifiers. An isometric embedding of the symmetric
non-Euclidean dissimilarities results in a pseudo-Euclidean space. More and better
tools are available for the Euclidean spaces but they are not fully consistent with the
given dissimilarities.

In this chapter, first a review is given of the various embedding procedures for the
pairwise dissimilarity data. Next the causes are analyzed for the existence of non-
Euclidean dissimilarity measures. Various ways are discussed in which the measures
are converted into Euclidean ones. The purpose is to investigate whether the original
non-Euclidean measures are informative or not. A positive conclusion is derived as
examples can be constructed and found in real data for which the non-Euclidean
characteristics of the data are essential for building good classifiers. (This chapter is
based on previous publications by the authors, (Duin and Pgkalska in Proc. SSPR &
SPR 2010 (LNCS), pp. 324-333,2010 and in CIARP (LNCS), pp. 1-24, 2011; Duin
in ICEIS, pp. 15-28, 2010 and in ICPR, pp. 1-4, 2008; Duin et al. in SSPR/SPR,
pp- 551-561, 2008; Pekalska and Duin in IEEE Trans. Syst. Man Cybern., Part C,
Appl. Rev. 38(6):729-744, 2008) and contains text, figures, equations, and experi-
mental results taken from these papers.)
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2.1 Introduction

Automatic recognition systems work with objects such as images, videos, time sig-
nals, spectra, and so on. They are built in the process of learning from a set of object
examples labeled with the desired pattern classes. Two main steps can be distin-
guished in this procedure:

Representation: Individual objects are characterized by a set of suitable mathemati-
cal descriptors such as vectors, strings of symbols or graphs. A good representation
is the one in which objects can easily be related to each other in order to facilitate
the next step.

Generalization/Discrimination: The representations of the object examples should
enable the mathematical modeling of object classes or class discriminants such that
a good class estimate can be found for new, unseen and, thereby, unlabeled objects
using the same representation.

The most popular representations, next to strings and graphs, encodes objects as
vectors in Euclidean vector spaces. Instead of single vectors, also sets of vectors may
be considered for representing individual objects, as studied, e.g., in [32, 33, 46, 48].
For some applications, representations defined by strings of symbols and attributed
graphs are preferred over vectors as they model the objects more accurately and
offer more possibilities to include domain expert knowledge [6].

On the other hand, representations in Euclidean vector spaces are well suited for
generalization. Many tools are available to build (learn) models and discriminant
functions from sets of object examples (also called training sets) that may be used
to classify new objects into the right class. Traditionally, the Euclidean vector space
is defined by a set of features. These should ideally characterize the patterns well
and be relevant for class differences at the same time. Such features have to be
defined by experts exploiting their knowledge of the application.

The use of features has one important drawback. Features often represent the ob-
jects just partially because they encode their limited characteristics. Consequently,
different objects may have the same representation, i.e., the same feature vector,
when they differ by properties that are not expressed in the chosen feature set.
This results in class overlap: in some areas of the feature space, objects of differ-
ent classes are represented by the same feature vectors. Consequently, they cannot
be distinguished any longer, which leads to an intrinsic classification error, usually
called the Bayes error.

An alternative to the feature representation is the dissimilarity representation de-
fined on direct pairwise object comparisons. If the entire objects are taken into ac-
count in the comparison, then only identical objects will have a dissimilarity zero (if
the dissimilarity measure has the property of ‘identity of indiscernibles’). For such a
representation class, overlap does not exist if the objects are unambiguously labeled,
which means that there are no real world objects in the application that belong to
multiple classes.

Some dissimilarity measures used in practice do not have the property that a
zero dissimilarity can only arise for identical objects. An example is the single-
linkage distance used in clustering: the dissimilarity between two clusters is defined
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as the distance between the two most neighboring vectors. This distance measure
corresponds to defining the smallest distance between the surfaces of two real world
objects as the distance between the objects. A zero value, however, does not imply
that the objects are identical; they are just touching.

Distance measures such as the above, and many others, cannot be perfectly em-
bedded in a Euclidean space. This means that there is no set of vectors in a vector
space of any dimensionality for which the Euclidean distances between the objects
are identical to the given ones. In particular, it holds for non-metric distances, which
are just an example from a large set of non-Euclidean distance measures. As we
want to include non-metric distances (such as the single-linkage distance) we will
use the more general term of dissimilarities instead of distances. They refer to pos-
sibly improper distance measures in the mathematical sense. We will still assume
that dissimilarities are non-negative and that they have a monotonic relation with
object differences: if two given objects are made more different, their dissimilarity
increases.

Non-Euclidean symmetric dissimilarity data can be perfectly embedded into
pseudo-Euclidean spaces. A proper embedding of non-Euclidean dissimilarities and
the training of classifiers in the resulting space are, however, not straightforward.
There are computational as well as fundamental problems to be solved. The question
thereby arises whether the use of non-Euclidean dissimilarity measures is strictly
necessary. Finding the causes of such measures, see Sect. 2.2, is a first step to an-
swer this question. This will be more extensively discussed in Sect. 2.6. We will
investigate whether such measures are really informative and whether it is possi-
ble to make Euclidean corrections or approximations by which no information is
lost.

Two main vectorial representations of the dissimilarity data, the dissimilarity
space and the pseudo-Euclidean embedded space, are presented in Sect. 2.3. Sec-
tion 2.4 discusses classifiers which can be trained in such spaces. Transformations
which make the dissimilarity data Euclidean are briefly presented in Sect. 2.5. Next,
numerous examples of artificial and real dissimilarity data are collected in Sect. 2.7.
Oftentimes, they illustrate that linear classifiers in the dissimilarity-derived vector
spaces are much more advantageous than the traditional 1-NN rule. Finally, we sum-
marize and discuss our findings in Sect. 2.8.

The issue of informativeness of the non-Euclidean measures is the main topic of
this chapter. We will present artificial and real world examples for which the use
of such measures is really informative. We will, however, also make clear that for
any given classifier defined in a non-Euclidean space an equivalent classifier in a
Euclidean space can be constructed. It is a challenge to do this such that the training
of good classifiers in this Euclidean space is feasible. In addition, we will argue that
the dissimilarity space as proposed by the authors [37, 55] is a Euclidean space that
preserves all non-Euclidean information and enables the design of well performing
classifiers.
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2.2 Causes of Non-Euclidean Dissimilarities

In this section, we shortly explain why non-Euclidean dissimilarities frequently
arise in the applications. This results from the analysis of a set of real world objects.
Let D be an N x N dissimilarity matrix describing a set of pairwise dissimilarities
between N objects. D is Euclidean if it can be perfectly embedded into a Euclidean
space. This means that there exists a Euclidean vector space with N vectors for
which all Euclidean distances are identical to the given ones.

There are N2 free parameters if we want to position N vectors in an N-dimen-
sional space. The dissimilarity matrix D has also N2 values. D should be symmetric
because the Euclidean distance is. Still, there might be no solution possible as the
relation between vector coordinates and Euclidean distances is nonlinear. More on
the embedding procedures is discussed in Sect. 2.3. At this moment, we need to
remember that the matrix D is Euclidean only if the corresponding vector space
exists.

First, it should be emphasized how common non-Euclidean measures are. An
extensive overview of such measures is given in [55], but we have often encountered
that this fact is not fully recognized. Most researchers wrongly assume that non-
Euclidean distances are equivalent to non-metric ones. There are, however, many
metric but non-Euclidean distances, such as the city-block or £;-norm.

Almost all probabilistic distance measures are non-Euclidean by nature. This im-
plies that by dealing with object invariants, the dissimilarity matrix derived from the
overlap between the probability density functions corresponding to the given ob-
jects is non-Euclidean. Also the Mahalanobis class distance as well as the related
Fisher criterion is non-Euclidean. Consequently, many non-Euclidean distance mea-
sures are used in cluster analysis and in the analysis of spectra in chemometrics and
hyperspectral image analysis as spectra can be considered as one-dimensional dis-
tributions.

Secondly, what is often overlooked is the following fact. One may compare pairs
of real world objects by a (weighted) Euclidean distance, yet the complete set of N
objects giving rise to an N x N dissimilarity matrix D is non-Euclidean. In short,
this is caused by the fact that different parts or characteristics of objects are used
per pair to define the object differences. Even if the dissimilarity is defined by the
weighted sum of differences, as long as there is no single basis of reference for the
comparison of all pairs, the resulting dissimilarity matrix D will be non-Euclidean.
These types of measures often result from matching procedures which minimize
the cost or path of transformation between two objects. Fundamental aspects of this
important issue are extensively discussed in Sect. 2.2.2.3.

In shape recognition, various dissimilarity measures are based on the weighted
edit distance, on variants of the Hausdorff distance or on nonlinear morphing. Usual
parameters are optimized within an application w.r.t. the performance based on tem-
plate matching and other nearest neighbor classifiers [14]. Almost all have non-
Euclidean behavior and some are even non-metric [14].

In the design and optimization of the dissimilarity measures for template match-
ing, their Euclidean behavior is not an issue. With the popularity of support vector
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machines (SVMs), it has become important to design kernels (similarities) which
fulfill the Mercer conditions [12]. This is equivalent to a possibility of an isomet-
ric Euclidean embedding of such a kernel (or dissimilarities). Next sections discuss
reasons that give rise to violations of these conditions leading to non-Euclidean dis-
similarities or indefinite kernels.

2.2.1 Non-intrinsic Non-Euclidean Dissimilarities

Below we identify some non-intrinsic causes that give rise to non-Euclidean dis-
similarities. In such cases, it is not the dissimilarity measure itself, but the way it is
computed or applied that causes the non-Euclidean behavior.

2.2.1.1 Numeric Inaccuracies

Non-Euclidean dissimilarities arise due to the numeric inaccuracies caused by the
use of a finite word length. If the intrinsic dimensionality of the data is lower than
the sample size, the embedding procedure that relies on an eigendecomposition of a
certain matrix, see Sect. 2.3, may lead to numerous tiny negative eigenvalues. They
should be zero in fact, but become nonzero due to numerical problems. It is thereby
advisable to neglect dimensions (features) that correspond to very small positive and
negative eigenvalues.

2.2.1.2 Overestimation of Large Distances

Complicated measures are used when dissimilarities are derived from raw data
such as (objects in) images. They may define the distance between two objects as
the length of the path that transforms one object into the other. Examples are the
weighted edit distance [4] and deformable templates [31]. In the optimization pro-
cedure that minimizes the path length, the procedure may approximate the transfor-
mation costs from above. As a consequence, too large distances are found. Even if
the objects are compared by a (weighted) Euclidean distance measure, the resulting
set of dissimilarities in D will often become non-Euclidean or even non-metric.

2.2.1.3 Underestimation of Small Distances

The underestimation of small distances has the same result as the overestimation of
large distances. It may happen when the pairwise comparison of objects is based
on different properties for each pair, as it is the case, e.g., in studies on consumer
preference data. Another example is the comparison of partially occluded objects in
computer vision.
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Fig. 2.1 Vector space with
the invariant trajectories for
three objects O1, Oy and Os.
If the chosen dissimilarity
measure is defined as the
minimum distance between
these trajectories, triangle
inequality can easily be
violated, i.e., d(O1, O7) +
d(01, 03) <d(0y, 03)

X

2.2.2 Intrinsic Non-Euclidean Dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observations
were available, they would disappear. Now, we will focuss on dissimilarity measures
for which this will not happen. There are three possibilities.

2.2.2.1 Non-Euclidean Dissimilarities

As already indicated at the start of this section, arguments can be given from the
application side to use another metric than the Euclidean one. An example is the
[1-distance between energy spectra as it is related to energy differences. Although
the />-norm is very convenient for computational reasons and it is rotation invariant
in a Euclidean space, other distance measures may naturally arise from the demands
in applications, e.g., see [47].

2.2.2.2 Invariants

A fundamental reason behind non-Euclidean dissimilarities is related to the occur-
rence of invariants. Frequently, one is not interested in the dissimilarity between
given objects A and B, but in the dissimilarity between their equivalence classes,
i.e., sets of objects A(6) and B(#) in which 6 controls an invariant. One may define
the dissimilarity between the A and B as the minimum difference between the sets
defined by all their invariants (see Fig. 2.1 for an illustration of this idea):

d*(A, B) = einnglin(d(A(GA), B(6g))). 2.1)

This measure is non-metric: the triangle inequality may be violated as for different
pairs of objects different values of 6 are found minimizing (2.1).
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2.2.2.3 Sets of Vectors

Complicated objects such as multi-region images may be represented by sets of
vectors. Problems like this are investigated in the domain of Multi Instance Learning
(MIL) [13], or Bag-of-Words (BoW) classification [52]. Distance measures between
such sets have already been studied for a long time in cluster analysis. Many are non-
Euclidean or even non-metric, such as the single linkage distance. This measure is
defined as the distance between the two most neighboring points of the two clusters
being compared. It is non-metric. It even holds that if d(A, B) = 0, then it does not
follow that A = B.

For the single linkage dissimilarity measure it can be understood why the dis-
similarity space may be useful. Given a set of such dissimilarities between clouds
of vectors, it can be concluded that two clouds are similar if the two sets of dis-
similarities with all other clouds are about equal. If just their mutual dissimilarity is
(close to) zero, they may still be very different.

The problem with the single linkage dissimilarity measure between two sets of
vectors points to a more general problem in relating sets and even objects. In [33],
an attempt has been made to define a proper Mercer kernel between two sets of
vectors. Such sets are in that paper compared by the Hellinger distance derived from
the Bhattacharyya’s affinity between two pdfs p4(x) and pp(x) found for the two
vector sets A and B:

1/2
d(A,B)= [f (Vpa(x) —«/PB(X))Z} . (2.2)

The authors state that by expressing p(x) in any orthogonal basis of functions, the
resulting kernel K is automatically positive semidefinite (psd). This is only correct,
however, if all vector sets A, B, ... to which the kernel is applied have the same
basis. If different bases are derived in a pairwise comparison of sets, the kernel may
become indefinite. This occurs if the two pdfs are estimated in a subspace defined
by a PCA computed from the objects of the two classes A and B only.

This makes clear that indefinite relations may arise in any pairwise compari-
son of real world objects if every pair of objects if first represented in some joint
space in which the dissimilarity is computed. These joint spaces may be different
for different pairs! Consequently, the total set of dissimilarities will likely have a
non-Euclidean behavior, even if each comparison relies on the Euclidean distance,
asin (2.2).

The consequence of this observation is huge for pattern recognition applications.
It implies that a representation defined by pairwise dissimilarities between objects
can only be Euclidean if a common basis between all objects, including the future
test objects, is found for the derivation of such dissimilarities. This is naturally,
by definition, the case for feature vector representations, as the joint space for all
objects is already defined by the chosen set of features. For the dissimilarity repre-
sentation, however, which has the advantage of potentially using the entire objects,
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the consequence is that no common representation basis can be found before all ob-
jects are seen. This contradicts the idea of generalization and discrimination: being
able to classify unseen objects.

We emphasize this conclusion as we judge it as very significant: Non-Euclidean
object relations naturally arise for real world object recognition as no Euclidean rep-
resentation can be defined before we have seen (or implicitly considered) all objects,
including the ones to be recognized in future. Transductive inference [49] is the so-
Iution: include the objects to be classified in the definition of the representation.

2.3 Vector Spaces for the Dissimilarity Representation

The complete dissimilarity representation is defined as a square matrix with the
dissimilarities between all pairs of objects. Traditionally, in the nearest neighbor
classification scenario, just the dissimilarities between the test objects and training
objects are used. For every test object, the nearest neighbors in the set of training
objects are first found and used by the nearest neighbor rule. This procedure does
not make use of the pairwise relations between the training objects.

The following two approaches construct a new vector space on the basis of the
relations within the training set. The resulting vector space is used for training clas-
sifiers.

In the first approach, the dissimilarity matrix is considered as a set of vectors,
one for every object. They represent the objects in a vector space constructed by the
dissimilarity vectors whose coordinates are dissimilarities to the training objects.
Usually, this vector space is treated as a Euclidean space and equipped with the
standard inner product definition.

In the second approach, an attempt is made to embed the dissimilarity matrix in
a Euclidean vector space such that the distances between the extracted vectors are
equal to the given dissimilarities. This can only be realized without error, of course,
if the original set of dissimilarities is Euclidean. If this is not the case, either an
approximate procedure has to be followed or the objects should be embedded into
a non-Euclidean vector space. This is a space in which the standard inner product
definition and the related distance measure are changed, leading to indefinite inner
products and later to indefinite kernels.

It appears that an exact embedding is possible for every symmetric N x N dis-
similarity matrix D with zero self-dissimilarity, i.e., a diagonal all of zeros. The
resulting space is the so-called pseudo-Euclidean space.

These two approaches are more formally defined below, using an already pub-
lished description [20].

2.3.1 Dissimilarity Space

Let 2" = {x1,...,x,} be a training set. Given a dissimilarity function and/or dis-
similarity data, we define a data-dependent mapping D(-, R) : 2~ — R¥ from 2 to
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the so-called dissimilarity space (DS) [19, 26, 43]. The k-element set R consists of
objects that are representative for the problem. This set is called the representation
set or prototype set and it may be a subset of 2. In the dissimilarity space, each
dimension D(-, p;) describes a dissimilarity to a prototype p; from R.

We initially choose R := % . As a result, every object is described by an
n-dimensional dissimilarity vector D(x, Z°) = [d(x, x1) - - -d(x, )17 . The result-
ing vector space is endowed with the traditional inner product and the Euclidean
metric.

Any dissimilarity measure p can be defined in the Dissimilarity Space. One of
them is the Euclidean distance:

n

172
pDS(x. ) = (Z[d(x, xi) —d(y, xl-)]"’) (2.3)

i=1

This is the distance computed on dissimilarity vectors defined by original dissimi-
larities. For metric dissimilarity measures p, it holds asymptotically that the nearest
neighbor objects are unchanged by pps. This is, however, not necessarily true for
finite data sets. In that case, the nearest neighbors in dissimilarity space might be
more appropriate for classifications as the distances are defined in the context of the
entire representation set.

The approaches discussed here are originally intended for dissimilarities directly
computed between objects and not resulting from feature representations. It is, how-
ever, still possible to study dissimilarity representations derived from features which
may yield interesting results [40]. In Fig. 2.2, an example is presented that compares
an optimized radial basis SVM with a Fisher linear discriminant computed in the
dissimilarity space derived from the Euclidean distances in a feature space. The ex-
ample shows a large variability of the nearest neighbor distances. As the radial basis
kernel used by SVM is constant it cannot be optimal for all regions of the feature
space.

The Fisher linear discriminant is computed in the complete dissimilarity space,
where the classes are linearly separable. Although the classifier is overtrained (the
dissimilarity space is 100-dimensional and the training set has also 100 objects) it
gives here the perfect result. It should be realized that this example is specifically
constructed to show the possibilities of the dissimilarity space.

2.3.2 Pseudo-Euclidean Space

Before explaining the relation between pseudo-Euclidean spaces and dissimilarity
representation, we start with definitions.

A Pseudo-Euclidean Space (PES) & = R(”9) = RP” @ RY is a vector space with
a non-degenerate indefinite inner product (-, -) o such that (-, -) ¢ is positive definite
on R? and negative definite on R? [24, 55]. The inner product in R?9) is defined
(wrt an orthonormal basis) as (X, y) e = x! gy, where 7,0 =[I5x,0;0—I,x,]
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Fig. 2.2 A spiral example with 100 objects per class. Left column shows the complete data sets,
while the right column presents the zoom of the spiral center. 50 objects per class, systematically
sampled, are used for training. The middle row shows the training set and SVM with an optimized
radial basis function; 17 out of 100 test objects are erroneously classified. The bottom row shows
the Fisher Linear Discriminant (without regularization) computed in the dissimilarity space derived
from the Euclidean distances. All test objects are correctly classified
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and [ is the identity matrix. As a result, dé,(x, y) =(x— y)T 54 pq(X —y). Obvi-
ously, a Euclidean space R” is a special case of a pseudo-Euclidean space R(P-9),
An infinite-dimensional extension of a PES is a Krein space. It is a vector space
 equipped with an indefinite inner product (-, -) » : # x £ — R such that
o admits an orthogonal decomposition as a direct sum, J# = ., & #_, where
(U4, (-, +)4) and (£, —(-, -)_) are separable Hilbert spaces with their correspond-
ing positive and negative definite inner products.

A positive definite kernel function can be interpreted as a generalized inner prod-
uct in some Hilbert space. This space becomes Euclidean when a kernel matrix is
considered. In analogy, an arbitrary symmetric kernel matrix can be interpreted as
a generalized inner product in a pseudo-Euclidean space. Such a PES is obviously
data dependent and can be retrieved via an embedding procedure. Similarly, an arbi-
trary symmetric dissimilarity matrix with zero self-dissimilarities can be interpreted
as a pseudo-Euclidean distance in a proper pseudo-Euclidean space.

Since in practice we deal with finite data, dissimilarity matrices or kernel matri-
ces can be seen as describing relations between vectors in the underlying pseudo-
Euclidean spaces. These pseudo-Euclidean spaces can be either determined via an
embedding procedure and directly used for generalization, or approached indirectly
by the operations on the given indefinite kernel. The section below explains how to
find the embedded PES.

2.3.2.1 Pseudo-Euclidean Embedded Space

A symmetric dissimilarity matrix D := D(Z", Z") can be embedded in a Pseudo-
Euclidean Space (PES) & by an isometric mapping [24, 55]. The embedding relies
on the indefinite Gram matrix G, derived as G := —%H D*2H, where D*? = (dizj)
and H =1 — ﬁllT is the centering matrix. H projects the data such that X
has a zero mean vector. The eigendecomposition of G leads to G = QAQT =
0|A| 3 [ Zpq:0]1A |% 0T, where A is a diagonal matrix of eigenvalues, first decreas-
ing p positive ones, then increasing ¢ negative ones, followed by zeros. Q is the ma-
trix of eigenvectors. Since G =X _#,,X T by definition of a Gram matrix, X € R”
is found as X = Q, |An|%, where Q,, consists of n eigenvectors ranked according
to their eigenvalues A,. Note that X has a zero mean and is uncorrelated, because
the estimated pseudo-Euclidean covariance matrix C = ﬁX Tx g = ﬁA, is
diagonal. The eigenvalues A; encode variances of the extracted features in R(7-%),

Let x,y € R". If this space is a PES R®49), p + g = n, the pseudo-Euclidean
distance is computed as:

P ptq 172
PPES(X,y) = <Z[xi -yl =) - yi]2>

i=1 i=p+1

n 1/2
= <25<z‘, p)lxi —y,~12> ,

i=1
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Fig.2.3 A two-dimensional data set (left) and the NEF as a function of p for various Minkowski- p
dissimilarity measures

where é(i, p) = sign(p —i +0.5). Since the complete pseudo-Euclidean embedding
is perfect, D(x, y) = ppgs(x, y) holds.

Other distance measures may also be defined between vectors in a PES, depend-
ing on how this space is interpreted. Two obvious choices are:

» 1/2
ppEst (. y) =Y _[xi —yil*] (2.4)

i=1

which neglects the dimensions corresponding to the negative contributions (derived
from negative eigenvalues in the embedding), and

n 1/2
papsx.y) = Y [xi —yil*) 2.5)

i=1

which treats the vector space R" as Euclidean RP*9. This means that the negative
subspace of PES is interpreted as a Euclidean subspace (i.e., the negative signs of
eigenvalues are neglected in the embedding procedure).

To inspect the amount of non-Euclidean influence in the derived PES, we define
Negative EigenFraction (NEF) as:

p+q p+q
NEF= Y |31/ ) Il €[0.1]. (2.6)
j=p+1 i=1

Figure 2.3 shows how NEF varies as a function of p of the Minkowski-p dissimi-
larity measure (k-dimensional spaces) for a two-dimensional example:

k 1/p

pviin, (6 9) = | D i —yil” | 2.7)

i=1
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Fig. 2.4 The Non-Euclidean Non-Euclidean Coefficient for various Minkowski-p measures
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Minkowski- p dissimilarity 035l —rIoa ]
measures as a function of the — p=05
dimensionality of a set of 100 0.31 p=10 |
points generated by a -~ p=20
standard Gaussian e I

distribution

Dimensionality

This dissimilarity measure is Euclidean for p =2 and metric for p > 1. The mea-
sure is non-Euclidean for all p # 2. The value of NEF may vary considerably with
a changing dimensionality. This phenomenon is illustrated in Fig. 2.4 for 100 points
generated by a standard Gaussian distribution for various values of p. The one-
dimensional dissimilarities obviously fit perfectly to a Euclidean space. For a high
dimensionality, the sets of dissimilarities become again better embeddable in a Eu-
clidean space.

2.3.3 Discussion on Dissimilarity-Based Vector Spaces

Now we want to make some remarks on the two procedures for deriving vector
spaces from dissimilarity matrices, as discussed in previous section.

The dissimilarity space interprets the dissimilarity vectors, defined by the dissim-
ilarities from objects to particular prototypes from the representation set, as features.
The true characteristics behind the used dissimilarity measure is not used when a
general classifier is applied in a dissimilarity space. Special classifiers are needed
to make use of that information. The good side of this ‘disadvantage’ is that the
dissimilarity space can be used for any dissimilarity representation, including ones
that are negative, asymmetric or weird, otherwise.

The embedding procedure is more restrictive. The dissimilarities are assumed
to be symmetric and become zero for identical objects. A pseudo-Euclidean space
is needed for a perfect embedding in case of non-Euclidean data sets. A pseudo-
Euclidean space is however “broader” than the original distance measure in the
sense that it allows negative square distances. Moreover, the requirements of a
proper metric or well-defined distances obeying the triangle inequality are not of
use as they do not guarantee a Euclidean embedding.

A severe drawback of both procedures is that they initially generate vector spaces
that have as many objects as dimensions. Specific classifiers or dimension reduction
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procedures are thereby needed. For the dissimilarity representation, this is more
feasible than for the feature representation: features can vary greatly in their dis-
criminative power, range, costs, or characteristics. Some features may be very good,
others might be useless, or only useful in relation with particular other features.

This is not true for dissimilarities. The initial representation is based on objects
which have similar characteristics. It is not beneficial to use two objects that are
much alike as it leads to highly correlated dissimilarity vectors. Systematic, or even
random procedures that reduce the initial representation set (in fact, prototype se-
lection) can be very effective [38] for this reason.

A relevant topic in the comparison of both procedures is the representation of
new objects in a given space derived from dissimilarities between an earlier set of
objects (“projection”). For the dissimilarity space, this is simple. It is defined by the
dissimilarities with the representation set used to define the space. A “projection”
into a pseudo-Euclidean space is not straight forward. The space itself is found by
the eigenvalue decomposition. Traditionally, new objects are projected into such a
space by determining the point with the shortest distance. For pseudo-Euclidean
spaces, however, this is not appropriate as distances can be negative. The projection
point can thereby be chosen such that it has an arbitrarily large negative distance.
The consequence is that in case new objects are considered the space has to rebuild
from the combined set of old and new objects. This is directly related to the final
observation made in Sect. 2.2.2.3 about the need to use transductive inference for
non-Euclidean data.

2.4 Classifiers

We will discuss here a few well-known classifiers and their behavior in various
spaces. This is a summary of our experiences based on numerous studies and appli-
cations. See [18, 21, 55] and their references.

In order to make a choice between the embedded pseudo-Euclidean space and the
dissimilarity space for classifier training one should take into account the essential
differences between these spaces. Pseudo-Euclidean embedding aims to preserve
the given distances, while the dissimilarity space is not concerned about it. In ad-
dition, there is a nonlinear transformation between these spaces: the dissimilarity
space can be defined by computing the distances to the prototypes in the embedded
space. As a consequence, a linear classifier in the embedded space is a nonlinear
classifier in the dissimilarity space. The reverse holds as well, but it should be kept
in mind that the dissimilarity space is more general. As it is also defined for arbi-
trary, even asymmetric, dissimilarities, classifiers will relate to possible objects that
do not exist in the embedded space.

It is outside the scope of this chapter, but the following observation might be
helpful for some readers. If the dissimilarities are not constructed by a procedure
on a structural representation of objects, but are derived as Euclidean distances in
a feature space, then the pseudo-Euclidean embedding effectively reconstructs the
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original Euclidean feature space (except for orthonormal transformations). So in
that case a linear classifier in the dissimilarity space is a nonlinear classifier in the
embedded space, which is the same nonlinear classifier in the feature space. Such a
classifier, computed in a dissimilarity space, can perform very well [17, 21].

2.4.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) classifier in an embedded (pseudo-)Euclidean space
is based on the distances computed in this space. By definition, these are the origi-
nal dissimilarities (provided that the test examples are embedded together with the
training objects). So without the process of embedding, this classifier can directly
be applied to a given dissimilarity matrix but is simultaneously also a classifier for
the embedded space. This is the classifier traditionally used by many researchers in
the area of structural pattern recognition. The study of the dissimilarity representa-
tion arose because this classifier did not make use of the dissimilarities between the
objects in the training set. Classification is entirely based on the dissimilarities of a
test object to the objects in the training (or representation) set only.

The k-NN rule computed in the dissimilarity space relies on a Euclidean distance
between the dissimilarity vectors, hence the nearest neighbors are determined by
using all dissimilarities of a given object to the representation objects. As explained
in Sect. 2.3.1, it is already mentioned that the distances between similar objects
are small in the two spaces for large training sets and the metric distance. So, it
is expected that learning curves are asymptotically identical. However, for small
training sets the k-NN classifier in the dissimilarity space performs usually better
than the direct k-NN rule as it uses more information.

2.4.2 Parzen Density Classifiers

The class densities computed by the Parzen kernel density procedure are based on
pairwise distance computations between objects. The applicability of this classifier
as well as its performance is thereby related to those of the k-NN rule. The major
difference is that this classifier is smoother, depending on the choice of the smooth-
ing parameter (kernel) and that its optimization involves the entire training set.

2.4.3 Normal Density Bayes Classifiers

Bayes classifiers assume that classes can be described by probability density func-
tions. The expected classification error is minimized by using class priors and the
Bayes’ rule. In case of normal density functions, either a linear classifier (Linear
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Discriminant Analysis, LDA) arises on the basis of equal class covariances, or a
quadratic classifier is obtained for the general case (Quadratic Discriminant Anal-
ysis, QDA). These two classifiers are the best possible in case of (nearly) normal
class distributions and a sufficiently large training set. As mean vectors and covari-
ance matrices can be computed in a pseudo-Euclidean space, see [24, 55], these
classifiers can be re-defined there as well if we forget the starting point of normal
distributions. The reason is that normal distributions are not well defined in pseudo-
Euclidean spaces; it is not clear what a normal distribution is unless we refer to
associated Euclidean spaces.

In a dissimilarity space, the assumption of normal distributions often works very
well. This is due to the fact that in many cases dissimilarity measures are based on,
or related to sums of numerical differences. Under certain conditions, large sums
of random variables tend to be normally distributed. It is not perfectly true for dis-
tances as we often get Weibull [8] or x2 distributions, but the approximations are
sufficient for a good performance of LDA and QDA. The effect is emphasized if the
classification procedure involves the computation of linear subspaces, e.g., by PCA.
Thanks to projections the aspect of normality is emphasized even more.

2.4.4 Fisher’s Linear Discriminant

In a Euclidean space, the Fisher linear discriminant (FLD) is defined as the lin-
ear classifier that maximizes the Fisher criterion, i.e., the ratio of the between-class
variance to the within-class variance. For a two-class problem, the solution is equiv-
alent to LDA (up to an added constant), even though no assumption is made about
normal distributions. Since variance and covariance matrices are well defined in
pseudo-Euclidean spaces, the Fisher criterion can be used to derive the FLD classi-
fier there. Interestingly, FLD in a pseudo-Euclidean space coincides with FLD in the
associated Euclidean space. FLD is a linear classifier in a pseudo-Euclidean space,
but can be rewritten to FLD in the associated space; see also [29, 42].

In a dissimilarity space, which is Euclidean by definition, FLD coincides with
LDA for a two-class problem. The performances of these classifiers may differ for
multi-class problems as the implementations of FLD and LDA will usually vary
then. Nevertheless, FLD performs very well. Due to the nonlinearity of the dissimi-
larity measure, FLD in a dissimilarity space corresponds to a nonlinear classifier in
the embedded pseudo-Euclidean space.

2.4.5 Logistic Classifier

The logistic classifier is based on a model of the class posterior probabilities as a
function of the distance to the classifier [1]. The distance between a vector and a
linear hyperplane in a pseudo-Euclidean space, however, is an unsuitable concept
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for classification as it can have any value in (—o00, 00) for vectors on the same side
of this hyperplane. We are not aware of a definition and an implementation of the
logistic classifier for pseudo-Euclidean spaces. Alternatively, the logistic classifier
can be constructed in the associated Euclidean space.

In a dissimilarity space, the logistic classifier performs well, although in practice
normal density based classifiers work often better. It relaxes the demands for nor-
mality as made by LDA. It is also more robust in case of high-dimensional spaces.

2.4.6 Support Vector Machine (SVM)

The linear kernel in a pseudo-Euclidean space is indefinite (non-Mercer). The
quadratic optimization procedure used to optimize a linear SVM may thereby
fail [28]. An SVM can, however, be constructed if the contribution of the positive
subspace of the Euclidean space is much stronger than that of the negative sub-
space. Mathematically, it means that the measure is only slightly deviating from
the Euclidean behavior and the solution of the SVM optimization is found in the
positive definite neighborhood. Various researchers have reported good results in
applying this classifier, e.g., see [5]. Although the solution is not guaranteed and the
algorithm (in this case LIBSVM, [10]) does not stop at the global optimum, a good
classifier can be constructed.

In case of a dissimilarity space, the (linear) SVM is particularly useful for com-
puting classifiers in the complete space in which the representations set equals the
training set, R := 2, see Sect. 2.3.1. The given training set 2~ defines therefore a
separable problem. The SVM classifier is well defined. It does not overtrain or only
overtrains just slightly. The advantage of this procedure is that it does not demand a
reduction of the representation set. By a suitable normalization of the dissimilarity
matrix (such that the average dissimilarity is one), we found stable and good results
in many applications by setting the trade-off parameter C in the SVM procedure
[11] to C = 100. Hereby, additional cross-validation loops are avoided to optimize
this parameter. As a result, in an application one can choose to focus on optimizing
the dissimilarity measure.

2.5 Transformations

We will summarize the problem of building vector spaces from non-Euclidean dis-
similarities as discussed so far:

e Non-Euclidean dissimilarities naturally arise in comparing real world objects for
recognition purposes (see Sect. 2.2.2 and in particular Sect. 2.2.2.3).

e The pseudo-Euclidean space (see Sect. 2.3.2) offers a proper isometric embedding
for non-Euclidean data while the dissimilarity space (see Sect. 2.3.1) postulates an
Euclidean space in which just under some conditions, asymptotically, the nearest
neighbor relations may be consistent with the given ones.
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e The definition of classifiers in the pseudo-Euclidean space is not straightforward,
and many of the standard tools developed for statistical pattern recognition and
machine learning are not valid or need to be redesigned. The dissimilarity space,
however, is a standard vector representation that can be used as the traditional
feature space (see Sect. 2.4).

e The representation of new objects for classification purposes is for the pseudo-
Euclidean space not well defined and for the dissimilarity space straightforward
(see Sect. 2.3.3). The only proper existing solution for the pseudo-Euclidean
space is to include these objects in construction of the space, at the cost of re-
training the classifiers. This type of transductive learning [49] is fundamentally
related to non-Euclidean object dissimilarities (see Sect. 2.2.2.3). For the dissim-
ilarity spaces, transduction can be easily realized (at the cost of retraining the
classifiers) or skipped (at the cost of accuracy).

Given the above, the dissimilarity space is preferred in most applications. It is
easy to define and to handle. There is a one-to-one relation with the constituting
dissimilarity matrix between the given objects. Any change in this matrix is reflected
in a change of the representation. Moreover, this change is continuous. It can thereby
be stated that there is no loss of information. The pseudo-Euclidean embedding, on
the other hand, is of fundamental interest as it directly reflects the non-Euclidean
aspects of the data. It is thereby a perfect place to study the question whether the
non-Euclideaness contributes to the recognition performance or disturbs it.

One way to do this is to investigate transformations of the pseudo-Euclidean
space that shrink or remove the non-Euclideaness. We discuss shortly a number of
possibilities. See [20, 22] for more information.

2.5.1 The Dissimilarity Space (DS)

The original pseudo-Euclidean space, based on all eigenvectors, offers an isomet-
ric embedding of the given dissimilarities. So if we compute the distances in this
space between all objects, the original dissimilarity matrix is obtained and thereby
the dissimilarity space. If the pseudo-Euclidean space is first transformed, e.g., by
rescaling or by deleting some axes (eigenvectors of the original embedding), then in
a similar way a dissimilarity space can be obtained. This Euclidean space reflects all
information of such a transformed pseudo-Euclidean space. As the transformation
is continuous, then for any classifier in the pseudo-Euclidean space there exists a
classifier in the dissimilarity space that yields the same classification. The transfor-
mation, however, is nonlinear. So a linear classifier in the pseudo-Euclidean space is
nonlinear in the dissimilarity space and the other way around. Consequently, clas-
sifiers trained in these spaces before and after transformation yield different perfor-
mances.
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2.5.2 The Positive Part of the Pseudo Euclidean Space (PES+)

The most obvious correction for a pseudo-Euclidean space R(?:9) is to neglect the
negative definite subspace. This results in a p-dimensional Euclidean space R?” with
many-to-one mappings. Consequently, it is possible that the class overlap for the
training set increases. It may, however, be worthwhile if the negative eigenvalues in
the embedding procedure are mainly the result of noise and are not informative for
the class separation. In that case, this correction may improve the classification.

2.5.3 The Negative Part of the Pseudo Euclidean Space (PES—)

In case the positive definite subspace of the pseudo-Euclidean space R(”9) is ne-
glected, a g-dimensional Euclidean space R? is obtained. It is expected for real
world applications that this space will show a bad class separation. As in this space,
however, all information is collected that makes the dissimilarities non-Euclidean,
any separation will indicate that such useful information exists.

2.5.4 The Associated Euclidean Space (AES)

Since R(”9) is a vector space, we can equip it with the traditional inner product,
which leads to the so-called associated Euclidean space R”*4. It means that the
vector coordinates are identical to those of PES, but now we use the norm and
distance measure that are Euclidean. This is consistent with the natural topology
of a vector space. This solution is identical to the one obtained by classical scaling
based on the magnitudes of eigenvalues [25, 55].

2.5.5 Dissimilarity Enlargement by a Constant (DEC)

Instead of modifying the embedding procedure, the dissimilarity matrix may be
adapted such that it is embeddable into a Euclidean space. A simple way to avoid
the negative eigenvalues is to increase all off-diagonal elements of the dissimilar-
ity matrix such that dg(xi, xj) = d*(x;, xj) + 2c, Vi ;. The value of c is chosen
such that ¢ > —Apin, where Anpin is the smallest negative eigenvalue in the pseudo-
Euclidean embedding of D. As a result, all eigenvalues are increased by ¢ [55].

In our experiments, we set ¢ = —Anin. Since the eigenvalues reflect the variances
of the embedded data, the dimensions of the resulting Euclidean space are unevenly
scaled by «/A; + c¢. Note that the dimension with the largest negative contribution
in PES has now a zero variance. In this way, dimensions related to noisy negative
eigenvalues are more pronounced [55].



32 R.P.W. Duin et al.

2.6 Are Non-Euclidean Dissimilarity Measures Informative?

The question about informativeness of non-Euclidean dissimilarity measures is dif-
ferent than the question whether non-Euclidean measures are better than Euclidean
ones. The later question cannot be answered, in general. After studying a set of in-
dividual problems compared for a large set of dissimilarity measures, it might be
found that for some problems the best measure is non-Euclidean. Such a result,
however, is always temporary. A new Euclidean measure that outperforms the ear-
lier ones may be invented later.

The question of informativeness, on the other hand, may be answered in an ab-
solute sense. Even if a particular measure is not the best one, its non-Euclidean con-
tribution can be judged as informative if the performance deteriorates by removing
it. Should this result also be found by a classifier constructed in the non-Euclidean
space? If a Euclidean correction can be found for an initially non-Euclidean rep-
resentation that enables the construction of a good classifier, is the non-Euclidean
dissimilarity measure then informative? We answer this question positively as any
transformation can be included in the classifier and thereby effectively a classifier
for the non-Euclidean representation has been found.

We will therefore state that the non-Euclidean character of a dissimilarity mea-
sure is non-informative if the classification result improves by removing its non-
Euclidean contribution. The answer may be classifier dependent.

The traditional way of removing the non-Euclidean contribution is by neglecting
the negative eigenvectors that define dimensions of the pseudo-Euclidean embed-
ding. This is the PES+ defined in Sect. 2.5. The PES— can be used as a check to see
whether there is any class separability in the negative part of the embedded space.
The below experiments are entirely based on the dissimilarity spaces of the various
spaces; see Sect. 2.5.

We analyze a set of public domain dissimilarity matrices used in various ap-
plications, as well as a few artificially generated ones. See Table 2.1 for some
properties: size (number of objects), (number of) classes, non-metric (fraction of
triangle violations, if zero the dataset is metric), NEF (negative eigenfraction, see
Sect. 2.3.2.1) and Rand Err (classification error by random assignment). Every dis-
similarity matrix is made symmetric by averaging with its transpose and normalized
by the average off-diagonal dissimilarity. We compute the linear SVM in the dis-
similarity spaces based on the original pseudo-Euclidean space (PES), the positive
space (PES+) and the negative space (PES—). Error estimates are based on the
leave-one-out crossvalidation. These experiments are done in a transductive way:
test objects are included in the derivation of the embedded space as well as the
dissimilarity representations.

The four Chickenpieces datasets are the averages of 11 dissimilarity matrices
derived from a weighted edit distance between blobs [4]. FlowCyto is the average
of four specific histogram dissimilarities including an automatic calibration correc-
tion. WoodyPlants is a subset of the shape dissimilarities between leaves of woody
plants [30]. We used classes with more than 50 objects. Catcortex is based on the
connection strength between 65 cortical areas of a cat [26]. Protein measures pro-
tein sequence differences using an evolutionary distance measure [27]. Balls3D is
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Table 2.1 Classification errors of the linear SVM for several representations using the leave-one-
out crossvalidation

Size Classes Non- NEF Rand PES— PES+— PES——

metric Err DS DS DS
Chickenpieces45 446 5 0 0.156  0.791 0.022 0.132 0.175
Chickenpieces60 446 5 0 0.162 0.791 0.020 0.067 0.173
Chickenpieces90 446 5 0 0.152 0.791 0.022 0.052 0.148
Chickenpieces120 446 5 0 0.130 0.791 0.034 0.108 0.148
WoodyPlants50 791 14 Se—4 0229 0928 0.075 0.076 0.442
CatCortex 65 4 2¢-3  0.208 0.738 0.046 0.077 0.662
Protein 213 4 0 0.001 0.718 0.005 0.000 0.634
Balls3D 200 2 3e-4  0.001 0.500 0.470 0.495 0.000
GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228
GaussM02 500 2 Se—4 0393 0.500 0.204 0.174 0.252
Coil York 288 4 8e-8  0.258 0.750 0.267 0.313 0.618
CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597
CoilDelftDiff 288 4 8e-8  0.128 0.750 0.347 0.358 0.691
NewsGroups 600 4 4e-5 0202 0.733 0.198 0.213 0.435
BrainMRI 124 2 S5e-5  0.112 0499 0.226 0.218 0.556
Pedestrians 689 3 4e-8  0.111 0.348 0.010 0.015 0.030

an artificial dataset based on the surface distances of randomly positioned balls of
two classes having a slightly different radius. GaussM1 and GaussMO02 are based
on two 20-dimensional normally distributed sets of objects for which dissimilarities
are computed using the £,-norm (Minkowski) distances with p =1 (metric, non-
Euclidean) and p = 0.2 (non-metric). The three Coil datasets are based on the same
sets of SIFT points in the COIL images compared by different graph distances.
BrainMRI is the average of 182 dissimilarity measures obtained from MRI brain
images. Pedestrians is a set of dissimilarities between detected objects (possibly
pedestrians) in street images of the classes ‘pedestrian’, ‘car’ and ‘other’. They are
based on cloud distances between sets of feature points derived from single images.

The table shows examples of non-Euclidean datasets for which the non-
Euclideaness is informative, as well datasets for which it is non-informative. In
all cases where the error of the PES— is significantly better than the error of random
assignment, the negative space is informative. It contributes clearly to the classifica-
tion performance based on the entire space for the Chickenpieces datasets as in these
cases the error for just the positive space, PES+ is clearly worse than for the entire
space, PES. BrainMRI is an example of a dataset for which the non-Euclideaness is
non-informative as the negative part of the space does not contribute. The artificial
dataset Balls3D has been successfully constructed such that all information is in
the negative part of the space: classes can be entirely separated by PES— and the
positive part, PES+, can be better removed.
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Fig. 2.5 (Left) Some examples of the Chickenpieces dataset. (Right) The error curves as a function
of the segment length L

2.7 Examples

In this section, we will discuss a few examples that are typical for the use of dissim-
ilarities in structural pattern recognition problems. They have been published by us
before [18] and are repeated here as they may serve well as an illustration.

2.7.1 Shapes

A simple and clear example of a structural pattern recognition problem is the recog-
nition of blobs: 2D binary structures. An example is given in Fig. 2.5. It is an object
out of the five-class Chickenpieces dataset consisting of 445 images [2]. One of
the best structural recognition procedure uses a string representation of the contour
described by a set of segments of the same length [4]. The string elements are the
consecutive angles of these segments. The weighted edit distances between all pairs
of contours are used to compute the pairwise dissimilarities. This measure is non-
Euclidean.

A (y, L) family of problems is considered depending on the specific choice for
the cost of one editing operation y as well as for the segment’s length L used in the
contour description. As a result, the classification performance depends on the pa-
rameters used, as shown in Fig 2.5, right. 10-fold cross-validation errors are shown
there for the 1-NN rule directly applied on the dissimilarities as well as the results
for the linear SVM computed by LIBSVM (see [10]) in the dissimilarity space. In
addition, the results are presented for the average of the 11 dissimilarity matrices.
We can observe that the linear classifier in the dissimilarity space (SVM-1) improves
the traditional 1-NN results and that combining of the dissimilarities improves the
results further on.
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2.7.2 Histograms and Spectra

Histograms and spectra offer very simple examples of data representations that are
judged by human experts on their shape. In addition, also the sampling of the bins
or wavelengths may serve as a useful vector representation for an automatic analy-
sis. This is thanks to the fact that the domain is bounded and that spectra are often
aligned. Below we give an example in which the dissimilarity representation out-
performs the straightforward vector representation based on sampling because the
first can correct for a wrong calibration (resulting in an imperfect alignment) in a
pairwise fashion. Another reason to prefer dissimilarities for histograms and spectra
over sampled vectorial data is that a dissimilarity measure encodes shape informa-
tion. See the papers by Porro [44, 45] for more details.

We will consider now a dataset of 612 FL3-A DNA flowcytometer histograms
from breast cancer tissues in a resolution of 256 bins. The initial data were ac-
quired by M. Nap and N. van Rodijnen of the Atrium Medical Center in Heerlen,
The Netherlands, during 2000-2004, using the four tubes 3—6 of a DACO Galaxy
flow cytometer. Histograms are labeled into three classes: aneuploid (335 patients),
diploid (131) and tetraploid (146). We averaged the histograms of the four tubes
thereby covering the DNA contents of about 80000 cells per patient. We removed
the first and the last bin of every histogram as here outliers are collected, thereby
obtaining 254 bins per histogram. Examples of histograms are shown in Fig. 2.6.
The following representations are used:

Histograms. Objects (patients) are represented by the normalized values of the his-
tograms (summed to one) described by a 254-dimensional vector. This represen-
tation is similar to the pixel representation used for images as it is based on just a
sampling of the measurements.

Euclidean distances. These dissimilarities are computed as the Euclidean distances
in the vector space mentioned above. Every object is represented by a vector of
distances to the objects in the training set.

Calibrated distances. As the histograms may suffer from an incorrect calibration in
the horizontal direction (DNA content), for every pairwise dissimilarity we com-
pute the multiplicative correction factor for the bin positions that minimizes their
dissimilarity. Here we used the £;-distance. This representation makes use of the
shape structure of the histograms and removes an invariant (the wrong original
calibration).

A linear SVM with a fixed trade-off parameter C is used in learning. The learning
curves for the three representations are shown in the bottom right of Fig. 2.6. They
illustrate how for this classifier the dissimilarity representation leads to better re-
sults than the vector representation based on the histogram sampling. The use of the
background knowledge in the definition of the dissimilarity measure improves the
results further on.
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Fig. 2.6 Examples of some flowcytometer histograms: aneuploid, diploid and tetraploid. Bottom
right shows the learning curves

2.7.3 Images

The recognition of objects on the basis of the entire image can only be done if these
images are aligned. Otherwise, earlier pre-procession or segmentation is necessary.
This problem is thereby a 2-dimensional extension of the histogram and spectra
recognition task.

We will show an example of digit recognition by using a part of the classic NIST
database of handwritten numbers [50] on the basis of random subsets of 500 digits
for the ten classes 0-9. The images were resampled to 32 x 32 pixels in such a way
that the digits fit either horizontally or vertically. Figure 2.7 shows a few examples:
black is ‘1’ and white is ‘0’. The dataset is repeatedly split into training and test
sets and hold-out classification is applied. In every split, the ten classes are evenly
represented.

The following representations are used:

Features. We used 10 moments: the seven rotations invariant moments and the mo-
ments [00], [01], [10], measuring the total number of black pixels and the centers
of gravity in the horizontal and vertical directions.
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Fig. 2.7 (Left) Examples of the images used for the digit recognition experiment. (Right) The
learning curves

Pixels. Every digit is represented by a vector of the intensity values in 32 % 32 =
1024 dimensional vector space.

Dissimilarities to the training object. Every object is represented by the Euclidean
distances to all objects in the training set.

Dissimilarities to blurred digits in the training set. As the pixels in the digit images
are spatially connected, blurring may emphasize this. In this way, the distances be-
tween slightly rotated, shifted or locally transformed but otherwise identical digits
become small.

The results are shown in Fig. 2.7 on the right. They show that the pixel representa-
tion is superior for large training sets. This is to be expected as this representation
stores asymptotically the universe of possible digits. For small training sets, a suit-
able set of features may perform better. The moments we use here are very gen-
eral features. Better ones can be found for digit description. As explained before,
a feature-based description reduces the (information on the) object: it may be insen-
sitive for some object modifications. For sufficiently large representation sets, the
dissimilarity representation may see all object differences and may thereby perform
better.

2.7.4 Sequences

The recognition of sequences of observations is in particular difficult if the se-
quences of a given class vary in length, but capture the same ‘story’ (information)
from the beginning to the end. Some may run faster, or even run faster over just a
part of the story and slow down elsewhere. A possible solution is to rely on Dynamic
Time Warping (DTW) that relates the sequences in a nonlinear way, yet obeys the
order of the events. Once two sequences are optimally aligned, the distance between
them may be computed.

An example in which the above has been applied successfully is the recognition
of 3-dimensional gestures from the sign language [35] based on an statistically op-
timized DTW procedure [3]. We took a part of a dataset of this study: the 20 classes
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Fig. 2.8 PCA and learning curves for the 20-class Delft Gesture Dataset

(signs) that were most frequently available. Each of these classes has 75 examples.
The entire dataset thereby consists of a 1500 x 1500 matrix of DTW-based dissim-
ilarities. The leave-one-out 1-NN error for this dataset is 0.041, which is based on
the computation of 1499 DTW dissimilarities per test object. In Fig. 2.8, left, a scat-
terplot is shown of the first two PCA components showing that some classes can
already be distinguished with these two features (linear combinations of dissimilar-
ities).

We studied dissimilarity representations consisting of just one randomly drawn
example per class. The resulting dissimilarity space has thereby 20 dimensions.
New objects have to be compared with just these 20 objects. This space is now
filled with randomly selected training sets, containing between 2 and 50 objects per
class. Remaining objects are used for testing. Two classifiers are studied, the linear
SVM (using the LIBSVM package [10]) with a fixed trade-off parameter C = 100
(we used normalized dissimilarity matrices with the average dissimilarities set to
100) and LDA. The experiment was repeated 25 times and the results averaged
out.

The learning curves in Fig. 2.8, right, show the constant value of the 1-NN clas-
sifier performance using the dissimilarities to the single training examples per class
only, and the increasing performances of the two classifiers for a growing number of
training objects. Their average errors for 50 training objects per class is 0.07. Recall
that this is still based on the computation of just 20 DTW dissimilarities per ob-
ject as we work in the related 20-dimensional dissimilarity space. Our experiments
show that LDA reaches an error of 0.035 for a representation set of three objects
per class, i.e., 60 objects in total. Again, the training set size is 50 examples per
class, i.e., 1000 examples in total. For testing new objects, one needs to compute
a weighted sum (linear combination) of 60 dissimilarity values giving the error of
0.035 instead of computing and ordering 1500 dissimilarities to all training objects
for the 1-NN classifier leading to an error of 0.041.
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2.7.5 Graphs

Graphs! are the main representation for describing structure in observed objects.
In order to classify new objects, the pairwise differences between graphs have to
be computed by using a graph matching technique. The resulting dissimilarities are
usually related to the cost of matching and may be used to define a dissimilarity
representation. We present here classification results obtained with a simple set of
graphs describing four objects in the Coil database [36] described by 72 images for
every object. The graphs are the Delaunay triangulations derived from corner points
found in these images; see [51]. They are unattributed. Hence, the graphs describe
the structure only. We used three dissimilarity measures:

CoilDelftSame Dissimilarities are found in a 5D space of eigenvectors derived from
the two graphs by the JoEig approach; see [34].

CoilDelftDiff Graphs are compared in the eigenspace with a dimensionality deter-
mined by the smallest graph in every pairwise comparison by the JoEig approach;
see [34].

CoilYork Dissimilarities are found by graph matching, using the algorithm of Gold
and Ranguranjan; see [23].

All dissimilarity matrices are normalized such that the average dissimilarity is 1. In
addition to the three dissimilarity datasets, we used also their averaged dissimilarity
matrix.

In a 10-fold cross-validation experiment, with R := T', we use four classifiers: the
1-NN rule on the given dissimilarities and the 1-NN rule in the dissimilarity space
(listed as 1-NND in Table 2.2), LDA on a PCA-derived subspace covering 99 %
of the variance and the linear SVM with a fixed trade-off parameter C = 1. All
experiments are repeated 25 times. Table 2.2 reports the mean classification errors
and the standard deviations of these means in between brackets. Some interesting
observations are:

e The CoilYork dissimilarity measure is apparently much better than the two
CoilDelft measures.

e The classifiers in the dissimilarity space however are not useful for the Coil York
measure, but they are for the CoilDelft measures. Apparently, these two ways of
computing dissimilarities are essentially different.

e Averaging all three measures significantly improves the classifier performance in
the resulting dissimilarity space, even outperforming the original best Coil York
result. It is striking that this does not hold for the 1-NN rule applied to the original
dissimilarities.

IResults presented in this section are based on a joint research with Prof. Richard Wilson, Univer-
sity of York, UK, and Dr. Wan-Jui Lee, Delft University of Technology, The Netherlands.



40 R.P.W. Duin et al.

Table 2.2 10-fold cross-validation errors averaged over 25 repetitions

Dataset 1-NN 1-NND PCA-LDA SVM-1

CoilDelftDiff 0.477 (0.002) 0.441 (0.003) 0.403 (0.003) 0.395 (0.003)
CoilDelftSame 0.646 (0.002) 0.406 (0.003) 0.423 (0.003) 0.387 (0.003)
Coil York 0.252 (0.003) 0.368 (0.004) 0.310 (0.004) 0.326 (0.003)
Averaged 0.373 (0.002) 0.217 (0.003) 0.264 (0.003) 0.238 (0.002)

2.8 Discussion

The dissimilarity representation discussed in this chapter is in particular useful for
applications in structural pattern recognition as it is a way the represent objects in
their entirety. This may result in non-Euclidean or even non-metric dissimilarities.
We have presented ways how to handle them, analyzed possible causes of the non-
Euclideaness, and answered the question whether such dissimilarity measures can
be informative. Finally, we presented a set of examples on real world data.

We will repeat and emphasize some significant observations and additionally
touch a few topics that could not be treated.

In our analysis on the causes of non-Euclidean dissimilarities, we made the obser-
vation that may be caused naturally in the process of comparing real world objects
(Sect. 2.2), in particular when vector spaces are defined on just a subset of the ob-
jects of interest. This implies that objects to be classified may have to be included
in the analysis together with the training set (Sect. 2.2.2.3), so called transductive
inference or transductive learning [49].

The non-Euclideaness is a problem when it is attempted to build vector spaces
from given dissimilarity data. This bridges the fields of structural and statistical
pattern recognition [5, 16, 18, 21]. Before this problem was faced, researchers just
used dissimilarities for template matching or approximated the non-Euclidean dis-
similarities by Euclidean ones. In this chapter, examples are given that show that
the non-Euclidean part of the data (reflected in the so-called negative part of the
pseudo-Euclidean space used for an isometrical embedding the dissimilarities; see
Sect. 2.3.2.1) can be informative for the classification, see Sect. 2.6.

In Sect. 2.7, a number of real world examples has been given that show that the
dissimilarity approach can contribute significantly to the solution of pattern recogni-
tion problems. The use of the dissimilarity space is thereby advantageous. It avoids
the computational complexity of embedding dissimilarities in a pseudo-Euclidean
space as well as the Euclidean correction of this space or the problems of con-
structing classifiers. We judge the study of pseudo-Euclidean embedding especially
of interest for studying the informativeness of the non-Euclidean characteristics.
The dissimilarity space preserves all non-Euclidean information but is itself Eu-
clidean (see Sect. 2.5). There are many interesting issues related to the dissimilarity
approach discussed in this chapter. A number of them are discussed elsewhere or
hardly investigated so far. A first, obvious question is that relating all objects to all
other objects results into a computational explosion. Moreover, it may seem that
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there is not really a need to determine the dissimilarities to vary similar objects,
which will become the case for growing training sets. Prototype selection is thereby
of interest to reduce to size of the representation set. See [9] for some results and
earlier references. Directly related to this is the question whether dissimilarities are
useful for very large training sets. How to find the optimal set of prototypes for such
cases? Is it possible to guarantee some asymptotically optimal result?

At this point, it is relevant to realize the following. If objects show a zero distance
if and only if they are identical and if they are labeled unambiguously then classes
do not overlap and a zero-error classifier is possible. What is the best way to reach
this? Most classifiers assume class overlap. The study of classifiers that make use of
the fact that classes do not overlap didn’t make much progress after the definition of
the original perceptron rule. The assumption of non-overlapping classes may also
have a significant impact on the collection of training data and the definition of
classifier performance. If classes do not overlap there is no need use a statistical
approach based on density distributions. The definition of class domains may be
sufficient. Training sets should in that case be representative for the domains and not
for the distributions. This implies that it will be allowed to ask application experts
for typical examples instead of selecting an i.i.d. dataset representative for the data
distribution.

For most practical applications there will be many ways to define dissimilar-
ity measures that are zero if and only if the objects are identical. Combining such
measures usually improves the results. In particular, a straightforward averaging as
applied in Sect. 2.7 is very interesting as is does not introduce additional parameters
but just combines different types of information resulting in dissimilarity matrices
of the same size and spaces of the same dimensionality in which data is better sep-
arable.

A new and significant application domain, next to structural pattern recognition,
is the design of classification procedures for sets points in a feature space represent-
ing different parts of objects to be recognized, see Sect. 2.2.2.3. It is a generalization
of the Multi-Instance Learning (MIL) problem and the bag-of-words classifiers. The
proper design of dissimilarity measures between two sets of feature vectors repre-
senting two objects, adapted to the characteristics of the problem at hand is a fasci-
nating issue [13, 33, 48, 52].

Once the basic tools for dissimilarity based classification are established, the next
question will be to define the basic set of dissimilarity measures for various data
types like for the above mentioned sets of feature vectors. For every more general
domain of objects like images, spectra, time signals, a set of basic dissimilarity
measures should be available to define an initial solution for most problems. Like
for the areas of feature extraction and classifiers, the optimal approach should be
tuned to the application, but the availability of a set of tools and examples may
contribute to good solution of the pattern recognition problem at hand.
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