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                    Synthesis is the fi rst step in the design process, where timing constraints are used. 

2.1     Synthesis Explained 

 Let us consider a 3-bit counter, which counts in the sequence  0 → 5 → 2 → 7 → 6 
→ 3 → 5 → 1 → 0 . If we have to realize the gate-level circuit for this counter, it 
would take a lot of time to draw the  Karnaugh map   and then realize the logic feed-
ing into the  D  pin of each of the 3 fl ops which form the counter. 

 However, it is much faster to write an HDL  code, which describes the above 
functionality. This HDL code can then be taken through a tool, which will create the 
corresponding netlist. 

 Synthesis  in the context of electronic design means realization of a gate-level 
netlist to achieve a specifi c functionality. Besides the specifi c functionality, the pro-
cess of synthesis might also meet certain other requirements, namely, power, fre-
quency of operation, etc. 

 Sometimes, there are specialized synthesis tools for specifi c kinds or portions of 
circuit, e.g.:

•    Clock tree synthesis – which creates the clock tree  
•   Data path synthesis – which creates a repetitive structure in the data path  
•   Logical synthesis – used for realizing all kinds of logical circuits    

 Usually, the word “synthesis” just by itself means logical synthesis only.  
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2.2     Role of Timing Constraints in Synthesis 

 The design process involves a lot of steps. These steps are of various kinds, e.g.:

•    Capturing intent  
•   Verifying that the design is in line with what we desire  
•   Estimating certain characteristics  
•   Actually realizing the design    

 The last series of steps are also called implementation  steps. Synthesis is the fi rst 
among the implementation steps. The following subsections give a few examples of 
the choices that a synthesis tool might need to make and the basis of the decision. 
These are all examples of additional information (beyond functionality) that the 
synthesis tool needs to be provided through constraints. 

2.2.1     Optimization 

 For a synthesis tool to realize a netlist, it needs several pieces of information. The 
fi rst information is the functionality that the realized netlist needs to perform. This 
information comes from the HDL  description. 

 For a device, obviously functionality is the most important consideration. 
However, designers have to be also very sensitive to:

•    Area: We want to fi t as much functionality into the same unit area as possible.  
•   Power: We want to conserve battery power and also reduce junction heating.  
•   Performance: We want to get highest possible speed from the device.    

 However, each of the above goals may impact the others and sometimes nega-
tively. For example, if we want to get best speed, we will need to have higher drive 
devices, which will mean higher power and greater area on silicon. So, instead of a 
designer trying to squeeze out the maximum performance, the designer might want 
to get just about enough performance that would achieve the purpose and, in the 
process, save on area and power. 

 A designer communicates his requirements around area, power, and performance 
to the synthesis tool through  constraints  . Once the synthesis tool is able to achieve 
a circuit that meets these goals, the tool need not make any further effort to realize 
a “better” circuit. Any further attempt to improve in any one dimension could 
worsen the other dimensions. 

 So constraints are used to tell the synthesis tool – among the many possible 
implementations possible to realize the same functionality, which should be chosen 
so that all the three requirements on area, power, and performance are met.  
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2.2.2     Input Reordering 

 Let us consider a function involving  AND ing of four inputs,  a ,  b ,  c , and  d . One of 
the simplest realizations of this circuit is as shown in Fig.  2.1 .

   However, now imagine that the input  d  arrives much later than other inputs. So 
the fi nal evaluation of the circuit has to wait till  d  arrives and passes through 2  AND  
gates. On the other hand, there can be an alternative realization of the same func-
tionality as shown in Fig.  2.2 .

   In this circuit, by the time  d  arrives, the other three signals have already been 
evaluated, and  d  has to travel through only one  AND  gate. 

 Though both circuits perform the same functionality and have similar area 
(3  AND  gates), a designer might prefer Fig.  2.1  or  2.2 , depending upon whether  d  
comes along with all other signals or whether  d  comes much later than all other 
signals. If instead of  d , it was some other signal which was coming much later, then 
 d  might be swapped with that late arriving signal. 

 Thus, depending upon the relative arrival time for various inputs feeding into the 
same combinational logic, the synthesis tool might need to decide which design 
should be chosen among the available choices – so that the last arriving signals have 
to cross the minimum number of logic. 

 Designers use constraints to convey to the synthesis tool about the arrival time of 
various input signals.  
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  Fig. 2.1    ANDing of 4 inputs       

a

d

b

z
c

  Fig. 2.2    Alternative 
realization of Fig.  2.1        
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2.2.3     Input Buffering 

  Drive   can be thought of as current-carrying capability. Thus, higher drive means 
output would switch faster and a higher amount of load can be connected. Let us 
say, a specifi c input has to drive a huge fanout cone. But, whether the specifi c input 
can drive such a huge cone or not depends upon the driving capability of the signal 
which is driving the input. If the signal driving the input cannot drive the load for 
the whole fanout cone, then the signal would need to be buffered before it can be fed 
into the huge cone. 

 Figure  2.3  shows an input which has to drive a fanout load of  9 . However, it does 
not have the drive strength for that kind of load. Hence, buffering is done on the 
input, before feeding into the load. With this buffering, the load that the input has to 
drive is only  3 .

   Designers need to tell the synthesis tool the driving capability of the external 
signal which is driving the input so that synthesis tool can decide whether or not to 
put additional buffers. And constraints are used to convey information about the 
drive strength of the external inputs.  

2.2.4     Output Buffering 

 Similar to input buffering, a design might need to have additional drive capability 
at the output side, if the output port is expected to drive a huge load externally. 
So designers need to convey to the synthesis tool – the external load that a port 

I1

  Fig. 2.3    Input being buffered        
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might have to drive. Synthesis tool will then choose appropriate cells or buffers with 
the right drive strengths that can drive the load. And constraints are used to convey 
information about the external load that needs to be driven by the output port.   

2.3     Commonly Faced Issues During Synthesis 

 Synthesis step can have different class of issues. In fact, one could write a whole 
book around issues faced during synthesis. This section gives a glimpse of some 
issues around synthesis related to constraints. These same topics are discussed in 
much more details in subsequent chapters of the book. 

2.3.1     Design Partitioning 

 Though synthesis techniques have provided a major leap in terms of designer’s 
productivity, the biggest bottleneck of a synthesis tool is the size of a design that it 
can synthesize. The design sizes today are humongous, compared to the sizes of 
design that synthesis tool can synthesize. 

 Thus, a full design has to be broken into smaller units, called blocks . During 
synthesis stage, the blocks are created based on logical view of the design, namely, 
related functionality being put into one block. This kind of partitioning is called 
 logical partition  . A synthesis tool would synthesize one block as a unit. Thus, a 
synthesis tool can view only a block at any given time, and it does not see how the 
block interacts with the rest of the design. Figure  2.4  shows how a design is com-
posed of logical blocks.

   The outermost rectangular boundary denotes the complete design. Usually, the 
design would have requirements listed for the whole design. Because the synthesis 
tool cannot synthesize the whole design, so the design is partitioned  into smaller 
blocks ( B1  through  B6 ), represented by inner smaller rectangles. 

 At any time, synthesis tool views a block . But, the requirements are known for 
the complete design. So the top-level constraints for the complete design have to be 

B1 B2 B3

B4 B5 B6

  Fig. 2.4    A design partitioned 
into blocks       
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broken into constraints for individual blocks. These constraints for individual 
blocks have to be created – based on interaction of the block with all other blocks. 
For example, for the block  B1 , the constraints have to be specifi ed to defi ne its inter-
action with primary inputs for the design as well as its interaction with other blocks 
 B2  and  B4 . 

 So what was supposed to be just the constraints at the top level now gets trans-
lated into many more constraints defi ned at each interface. And as the number of 
constraints grows, there are higher chances of errors. In the fi gure, the partitions are 
shown as regular rectangular blocks. In reality, all the blocks interact with many 
blocks, and that increases the complexity of the total set of constraints. 

 Let us consider the interaction between blocks  B1  and  B2 . Based on this interac-
tion, there would be some constraints for blocks  B1  and corresponding constraints 
for block  B2 . Many times, the people or the team working on these different blocks 
are different. There have been many instances where the constraints written for 
interfacing blocks are not consistent. For example,  B1 ’s designer might assume that 
he will get 50 % of the total path time for his block and the remaining 50 % would 
be for rest of the path. Similarly,  B2 ’s designers might also assume 50 % of the path 
time available for his block. So between the two blocks, they might consume the 
entire path time, leaving nothing for the top-level routing for connecting the two 
blocks.  

2.3.2     Updating Constraints 

 It seems slightly strange that such inconsistency might happen among blocks of the 
same design. However, such inconsistencies usually creep in gradually as various 
blocks keep getting impacted due to some other block not meeting their initial 
requirements. 

 Let us assume block  B1  failed to meet some of its timing, which causes an impact 
on  B2 . Block  B2 ’s designer might now have to update his constraints, and its impact 
might be on the  B2/B3  and  B2/B5  interface. However, at this stage, either  B3  or  B5  
constraints might get out of sync with the updated constraints of  B2 , and in many 
cases, these changed constraints might disturb delicate balance of area, perfor-
mance, and power. Thus, the block-level constraints may have to be updated depend-
ing on how the block is integrated in the subsystem or chip.  

2.3.3     Multi-clock Designs 

 Most designs today have multiple processing cores, running on different clock fre-
quencies. There could be different peripherals for these cores. In the process of 
integrating these cores which are being developed simultaneously by design groups, 
an inadvertent mistake of constraining a high-frequency core with a low-frequency 
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constraint may be missed during initial implementation. These may be eventually 
caught during full-chip STA, post integration. That could be pretty late as the block 
constraints would now have to be redone to the original specifi cation adding an 
unnecessary iteration to the chip integration.   

2.4     Conclusion 

 This chapter gave a glimpse of the need for constraints and nature of some of the 
problems related to synthesis. Synthesis has been used just as an example of an 
implementation tool. All implementation tools are driven by constraints. Most of the 
discussions mentioned in this chapter would apply to all implementation tools, not 
just synthesis. So incorrect constraints impact the ability of these tools to implement 
a circuit which will meet its performance, area, and power goals. 

 As design complexities are growing, the constraints themselves are also becoming 
complex – in order to be able to correctly represent the complex requirements as well 
as relationships. The nuances of the design process involving partitioning, integra-
tion, and multiple cores operating at different frequencies all add to further problems 
around creating constraints. 

 Several implementation tools also allow constraints to provide physical informa-
tion, such as physical shape of a block, or specifi c location of ports, etc. These 
physical constraints are not covered in this book.    

2.4  Conclusion
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