
9S. Gangadharan and S. Churiwala, Constraining Designs for Synthesis
and Timing Analysis: A Practical Guide to Synopsys Design Constraints (SDC),
DOI 10.1007/978-1-4614-3269-2_2, © Springer Science+Business Media New York 2013

 Synthesis is the fi rst step in the design process, where timing constraints are used.

2.1 Synthesis Explained

 Let us consider a 3-bit counter, which counts in the sequence 0 → 5 → 2 → 7 → 6
→ 3 → 5 → 1 → 0 . If we have to realize the gate-level circuit for this counter, it
would take a lot of time to draw the Karnaugh map and then realize the logic feed-
ing into the D pin of each of the 3 fl ops which form the counter.

 However, it is much faster to write an HDL code, which describes the above
functionality. This HDL code can then be taken through a tool, which will create the
corresponding netlist.

 Synthesis in the context of electronic design means realization of a gate-level
netlist to achieve a specifi c functionality. Besides the specifi c functionality, the pro-
cess of synthesis might also meet certain other requirements, namely, power, fre-
quency of operation, etc.

 Sometimes, there are specialized synthesis tools for specifi c kinds or portions of
circuit, e.g.:

• Clock tree synthesis – which creates the clock tree
• Data path synthesis – which creates a repetitive structure in the data path
• Logical synthesis – used for realizing all kinds of logical circuits

 Usually, the word “synthesis” just by itself means logical synthesis only.

 Chapter 2
 Synthesis Basics

10

2.2 Role of Timing Constraints in Synthesis

 The design process involves a lot of steps. These steps are of various kinds, e.g.:

• Capturing intent
• Verifying that the design is in line with what we desire
• Estimating certain characteristics
• Actually realizing the design

 The last series of steps are also called implementation steps. Synthesis is the fi rst
among the implementation steps. The following subsections give a few examples of
the choices that a synthesis tool might need to make and the basis of the decision.
These are all examples of additional information (beyond functionality) that the
synthesis tool needs to be provided through constraints.

2.2.1 Optimization

 For a synthesis tool to realize a netlist, it needs several pieces of information. The
fi rst information is the functionality that the realized netlist needs to perform. This
information comes from the HDL description.

 For a device, obviously functionality is the most important consideration.
However, designers have to be also very sensitive to:

• Area: We want to fi t as much functionality into the same unit area as possible.
• Power: We want to conserve battery power and also reduce junction heating.
• Performance: We want to get highest possible speed from the device.

 However, each of the above goals may impact the others and sometimes nega-
tively. For example, if we want to get best speed, we will need to have higher drive
devices, which will mean higher power and greater area on silicon. So, instead of a
designer trying to squeeze out the maximum performance, the designer might want
to get just about enough performance that would achieve the purpose and, in the
process, save on area and power.

 A designer communicates his requirements around area, power, and performance
to the synthesis tool through constraints . Once the synthesis tool is able to achieve
a circuit that meets these goals, the tool need not make any further effort to realize
a “better” circuit. Any further attempt to improve in any one dimension could
worsen the other dimensions.

 So constraints are used to tell the synthesis tool – among the many possible
implementations possible to realize the same functionality, which should be chosen
so that all the three requirements on area, power, and performance are met.

2 Synthesis Basics

11

2.2.2 Input Reordering

 Let us consider a function involving AND ing of four inputs, a , b , c , and d . One of
the simplest realizations of this circuit is as shown in Fig. 2.1 .

 However, now imagine that the input d arrives much later than other inputs. So
the fi nal evaluation of the circuit has to wait till d arrives and passes through 2 AND
gates. On the other hand, there can be an alternative realization of the same func-
tionality as shown in Fig. 2.2 .

 In this circuit, by the time d arrives, the other three signals have already been
evaluated, and d has to travel through only one AND gate.

 Though both circuits perform the same functionality and have similar area
(3 AND gates), a designer might prefer Fig. 2.1 or 2.2 , depending upon whether d
comes along with all other signals or whether d comes much later than all other
signals. If instead of d , it was some other signal which was coming much later, then
 d might be swapped with that late arriving signal.

 Thus, depending upon the relative arrival time for various inputs feeding into the
same combinational logic, the synthesis tool might need to decide which design
should be chosen among the available choices – so that the last arriving signals have
to cross the minimum number of logic.

 Designers use constraints to convey to the synthesis tool about the arrival time of
various input signals.

a

d

b

z

c

 Fig. 2.1 ANDing of 4 inputs

a

d

b

z
c

 Fig. 2.2 Alternative
realization of Fig. 2.1

2.2 Role of Timing Constraints in Synthesis

12

2.2.3 Input Buffering

 Drive can be thought of as current-carrying capability. Thus, higher drive means
output would switch faster and a higher amount of load can be connected. Let us
say, a specifi c input has to drive a huge fanout cone. But, whether the specifi c input
can drive such a huge cone or not depends upon the driving capability of the signal
which is driving the input. If the signal driving the input cannot drive the load for
the whole fanout cone, then the signal would need to be buffered before it can be fed
into the huge cone.

 Figure 2.3 shows an input which has to drive a fanout load of 9 . However, it does
not have the drive strength for that kind of load. Hence, buffering is done on the
input, before feeding into the load. With this buffering, the load that the input has to
drive is only 3 .

 Designers need to tell the synthesis tool the driving capability of the external
signal which is driving the input so that synthesis tool can decide whether or not to
put additional buffers. And constraints are used to convey information about the
drive strength of the external inputs.

2.2.4 Output Buffering

 Similar to input buffering, a design might need to have additional drive capability
at the output side, if the output port is expected to drive a huge load externally.
So designers need to convey to the synthesis tool – the external load that a port

I1

 Fig. 2.3 Input being buffered

2 Synthesis Basics

13

might have to drive. Synthesis tool will then choose appropriate cells or buffers with
the right drive strengths that can drive the load. And constraints are used to convey
information about the external load that needs to be driven by the output port.

2.3 Commonly Faced Issues During Synthesis

 Synthesis step can have different class of issues. In fact, one could write a whole
book around issues faced during synthesis. This section gives a glimpse of some
issues around synthesis related to constraints. These same topics are discussed in
much more details in subsequent chapters of the book.

2.3.1 Design Partitioning

 Though synthesis techniques have provided a major leap in terms of designer’s
productivity, the biggest bottleneck of a synthesis tool is the size of a design that it
can synthesize. The design sizes today are humongous, compared to the sizes of
design that synthesis tool can synthesize.

 Thus, a full design has to be broken into smaller units, called blocks . During
synthesis stage, the blocks are created based on logical view of the design, namely,
related functionality being put into one block. This kind of partitioning is called
 logical partition . A synthesis tool would synthesize one block as a unit. Thus, a
synthesis tool can view only a block at any given time, and it does not see how the
block interacts with the rest of the design. Figure 2.4 shows how a design is com-
posed of logical blocks.

 The outermost rectangular boundary denotes the complete design. Usually, the
design would have requirements listed for the whole design. Because the synthesis
tool cannot synthesize the whole design, so the design is partitioned into smaller
blocks (B1 through B6), represented by inner smaller rectangles.

 At any time, synthesis tool views a block . But, the requirements are known for
the complete design. So the top-level constraints for the complete design have to be

B1 B2 B3

B4 B5 B6

 Fig. 2.4 A design partitioned
into blocks

2.3 Commonly Faced Issues During Synthesis

14

broken into constraints for individual blocks. These constraints for individual
blocks have to be created – based on interaction of the block with all other blocks.
For example, for the block B1 , the constraints have to be specifi ed to defi ne its inter-
action with primary inputs for the design as well as its interaction with other blocks
 B2 and B4 .

 So what was supposed to be just the constraints at the top level now gets trans-
lated into many more constraints defi ned at each interface. And as the number of
constraints grows, there are higher chances of errors. In the fi gure, the partitions are
shown as regular rectangular blocks. In reality, all the blocks interact with many
blocks, and that increases the complexity of the total set of constraints.

 Let us consider the interaction between blocks B1 and B2 . Based on this interac-
tion, there would be some constraints for blocks B1 and corresponding constraints
for block B2 . Many times, the people or the team working on these different blocks
are different. There have been many instances where the constraints written for
interfacing blocks are not consistent. For example, B1 ’s designer might assume that
he will get 50 % of the total path time for his block and the remaining 50 % would
be for rest of the path. Similarly, B2 ’s designers might also assume 50 % of the path
time available for his block. So between the two blocks, they might consume the
entire path time, leaving nothing for the top-level routing for connecting the two
blocks.

2.3.2 Updating Constraints

 It seems slightly strange that such inconsistency might happen among blocks of the
same design. However, such inconsistencies usually creep in gradually as various
blocks keep getting impacted due to some other block not meeting their initial
requirements.

 Let us assume block B1 failed to meet some of its timing, which causes an impact
on B2 . Block B2 ’s designer might now have to update his constraints, and its impact
might be on the B2/B3 and B2/B5 interface. However, at this stage, either B3 or B5
constraints might get out of sync with the updated constraints of B2 , and in many
cases, these changed constraints might disturb delicate balance of area, perfor-
mance, and power. Thus, the block-level constraints may have to be updated depend-
ing on how the block is integrated in the subsystem or chip.

2.3.3 Multi-clock Designs

 Most designs today have multiple processing cores, running on different clock fre-
quencies. There could be different peripherals for these cores. In the process of
integrating these cores which are being developed simultaneously by design groups,
an inadvertent mistake of constraining a high-frequency core with a low-frequency

2 Synthesis Basics

15

constraint may be missed during initial implementation. These may be eventually
caught during full-chip STA, post integration. That could be pretty late as the block
constraints would now have to be redone to the original specifi cation adding an
unnecessary iteration to the chip integration.

2.4 Conclusion

 This chapter gave a glimpse of the need for constraints and nature of some of the
problems related to synthesis. Synthesis has been used just as an example of an
implementation tool. All implementation tools are driven by constraints. Most of the
discussions mentioned in this chapter would apply to all implementation tools, not
just synthesis. So incorrect constraints impact the ability of these tools to implement
a circuit which will meet its performance, area, and power goals.

 As design complexities are growing, the constraints themselves are also becoming
complex – in order to be able to correctly represent the complex requirements as well
as relationships. The nuances of the design process involving partitioning, integra-
tion, and multiple cores operating at different frequencies all add to further problems
around creating constraints.

 Several implementation tools also allow constraints to provide physical informa-
tion, such as physical shape of a block, or specifi c location of ports, etc. These
physical constraints are not covered in this book.

2.4 Conclusion

http://www.springer.com/978-1-4614-3268-5

	Chapter 2: Synthesis Basics
	2.1 Synthesis Explained
	2.2 Role of Timing Constraints in Synthesis
	2.2.1 Optimization
	2.2.2 Input Reordering
	2.2.3 Input Buffering
	2.2.4 Output Buffering

	2.3 Commonly Faced Issues During Synthesis
	2.3.1 Design Partitioning
	2.3.2 Updating Constraints
	2.3.3 Multi-clock Designs

	2.4 Conclusion

