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A. Introduction

From astronomy to business, as well as in many other fields, certain mathematical

tools are of great advantage. They can simplify calculations, prevent errors, and

yield quick estimates. Arithmetic operations such as conversion of units and the

calculation of percentage errors, while difficult for some, are also important to

master for success in many fields.

In this experiment, these and other mathematical tools will be presented. You

will achieve facility in their use by their repeated use in subsequent experiments.

B. Scientific Notation

In many of the sciences, in particular physics and astronomy, we deal with very

small or very large numbers. For example, the largest galaxy in the Local Group

of galaxies, of which the Milky Way is a member, is Andromeda, or M31.

The distance in kilometers to M31 can be calculated by multiplying the number

of light years (ly) to M31, 2.25 million ly, by the number of kilometers in a light

year, 9.46 trillion km/ly,

distance to M31 ¼ 2; 250; 000 ly� 9; 460; 000; 000; 000 km=ly

¼ 21; 300; 000; 000; 000; 000; 000 km:

In astronomy, we often use the unit of length known as the parsec. One parsec,
abbreviated as pc, is approximately equal to 3.26 ly. One million parsecs is

abbreviated as Mpc. The values of the light year and parsec, as well as other

physical constants and astronomical measurements, are provided in Appendix I.

We do not want to be encumbered by such calculations. They are time consuming

and we are likely to make errors in carrying the large number of zeroes. In practice,

our calculators will run out of display window space. We run into similar problems

in calculations dealing with very small numbers.

We, accordingly, desire a shorthand symbolism to deal with such very large and

very small numbers. The symbolism which has been adopted by scientists is that of

scientific notation. In scientific notation, numbers are represented by three parts,

a numerical part with a value between 1 and 10, the number 10, and an exponent to

which 10 is raised. A number represented in scientific notation therefore always

takes the form

□ � 10
□
.

The exponent locates the decimal point. It tells you the number of places to move

the decimal point to convert the number expressed in scientific notation to ordinary

decimal form. If the number to be represented by scientific notation is greater

than 1, then the exponent is positive because positive exponents tell us to move
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the decimal point to the right. If the number to be represented in less than 1, then the

exponent is negative because negative exponents tell us to move the decimal point

to the left.

Thus,

108 ¼ 101 � 101 � 101 � 101 � 101 � 101 � 101 � 101 ¼ 100; 000; 000

and

10�8 ¼ 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1 � 10�1

¼ 0:1� 0:1� 0:1� 0:1� 0:1� 0:1� 0:1� 0:1 ¼ 0:00000001:

In the M31 example above, because 12 figures lie to the right of the decimal

point, the number of kilometers in a light year would be represented in scientific

notation as

1 light year = 9:46� 1012 km:

The mass of the hydrogen atom, 0.000000000000000000000000001673 kg,

is represented in scientific notation as

mH¼ 1:673� 10�27 kg:

This tells us that 27 figures would lie to the left of the decimal point if mH were

expressed as a decimal fraction. Accordingly, the exponent we write is �27.

Now that we have agreed to use this symbolism for expressing small and

large numbers, we can appreciate its usefulness. First, it is much neater and requires

less writing than if we write out the numbers in decimal form. Second, using

scientific notation facilitates arithmetic. When multiplying or dividing numbers

including exponents, we simply add the exponents. It is easy to multiply and

divide numbers between 1 and 10. Third, because it is easy to perform arithmetic

on numbers between 1 and 10, we can avoid errors. Again, it is easy to compare

numbers when expressed in scientific notation. Just look at the exponents. Fifth,

and one of the most important advantages of using scientific notation to

experimentalists, it allows you to clearly express the number of “significant figures”

in a result. Finally, use of scientific notation makes it easy to make “order-of-

magnitude” calculations.

As an example of the advantage of using scientific notation in performing

arithmetic, say we wish to find the result of 230,000,000� 190,000/67,000. Con-

verting to scientific notation, this becomes 2.3� 108� 1.9� 105/(6.7� 104).

We then combine all the numbers between 1 and 10, and we combine all the

exponents, giving (2.3� 1.9/6.7)� 108+5�4. Performing the arithmetic then easily

gives the result, 0.65� 109. Because the number preceding the power of 10 is not

between 1 and 10, this is not yet in scientific notation, and we have one more

operation to perform, yielding 6.5� 108.
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Adding and subtracting numbers expressed in scientific notation can only be

done if the exponent portions are equal. Say, for example, we wish to subtract

3.11� 105 from 8.23� 107. These must first be expressed with equal exponents.

8:23� 107 � 3:11� 105 ¼ 8:23� 107 � 0:0311� 107

¼ ð8:23� 0:03Þ � 107

¼ 8:20� 107:

Any confusion in such arithmetic could always be resolved by simply writing the

number out without scientific notation, although that defeats the purpose of this

convenient shorthand.

As we will see in the following, scientific notation is our friend.

C. Significant Figures

When you perform a measurement, the precision of your measurement depends on

your equipment. If you measure, for example, the length of a table with equipment

of different precision, you might get 2.0 m, 2.043 m, or 2.0433604 m. The table is

the same. What has changed is the number of digits in which you have confidence,

two, four, and eight, in these cases. Scientists refer to those digits as the number of

significant figures in the measurement. They are the number of digits needed to

express a number to display the precision of its measurement.

(Whenever you write a decimal fraction of value less than 1, always place a

preceding zero to locate clearly the location of the decimal point. Do not write .44;

write 0.44 instead.)

In a measurement, the uncertainty of the final digit can be considered to be +0.5

to �0.5. For example, a measurement of 2.043 m means the real length of the table

is between 2.0425 m and 2.0435 m.

When you are recording data, you should include a final estimated figure beyond

the precision of the measuring instrument, even it happens to be zero. If your ruler

can measure only to 1 mm, for example, estimate the value of the next, uncertain,

digit as well as you can.

Because of ambiguities in the interpretation of the number “zero,” we express

numbers in scientific notation to clearly display their number of significant figures.

Zeroes to the left of non-zero digits are not significant. In 0.000386, only the 3, 8,

and 6 are significant. To express this clearly, we can rewrite this number as

3.86� 10�4. The number is easily seen to have three significant figures. No

ambiguity is present in this case.

Zeroes to the right of non-zero digits, however, present a problem. In the number

9340400, we do not know if the final zeroes are significant. They are needed to

place the decimal point, but they may also be significant. They are only significant

if they are the result of the measurement.
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If we rewrite the number as 9.34� 106, however, then we are stating that we

have three significant figures. If we rewrite it as 9.340� 106, then we are stating

that we have four, and if we rewrite it as 9.340400� 106 then we are stating that we

have seven significant figures. In this case, then, use of scientific notation unambig-

uously communicates the number of significant figures.

When we combine one or more measured quantities in a calculation, we also refer

to the number of significant figures in the calculated result. Specific common-sense

rules guide us in determining the number of significant figures in the result. In adding

and subtracting numbers, drop all the digits beyond the first uncertain figure. For

example, let us add 14.49, 7.99833, and 0.2631. Since only 14.49 is known to

hundredths, it makes no sense to add the digits beyond that place. Round the numbers

to the hundredths place, and then save time by dropping all digits beyond that

place before performing the calculation. Our result for the sum is 22.75. In general,

then, do not carry the result beyond the first digit containing an uncertain figure.

In multiplying and dividing, the result should have the same number of signifi-

cant figures as the term with the fewest. If we multiply 1.78� 14.339 and ignore

the significant figures, we will calculate 25.52342. Only the first three digits

are significant, however, so that the answer should be expressed as 25.5. To quote

more significant figures gives a false impression of the precision of the

measurements and your confidence in the final calculated result.

In such calculations, do not confuse the number of significant figures of

constants with those of measured quantities. The former have no bearing on the

number of significant figures in the calculated result. For example, the number p
is known to be 3.14159265. . .. The number of significant figures in a calculation

involving p is only determined by the precision in the measured quantities.

In the calculation of the circumference of a circle, C, from its radius, r, C¼ 2pr.
The presence of p does not mean that the calculated result has nine or more

significant figures. The presence of the 2 does not mean that the calculated result

has only one significant figure.

As a final comment, “precision” should be distinguished from “accuracy.”

Precision refers to the number of significant figures in a number. Accuracy refers

to the agreement between a number and the actual magnitude of the entity being

measured. Inaccurate results often result from the presence of systematic as

opposed to random errors.

The two should not be confused. For example, if we have a table which is known

to be 3.11 m long, then a measurement of 3 m would be an accurate measurement of

its length with low precision. A measurement of 3.1 m would be an accurate

measurement of its length with greater precision. A measurement of 4.015832 m,

on the other hand, would be an inaccurate measurement of its length quoted with

great precision.

A famous anecdote illustrates this difference. The people of an ancient Chinese

dynasty, who were forbidden to gaze upon the emperor, were asked to guess his

height. After thousands were polled, the height of the emperor, obtained by
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averaging all the responses, was announced to be (let’s say) 5.840273 ft. Of course,

despite the precision of this result it lacked accuracy, none of the people having ever

seen the emperor.

Unfortunately, one often finds figures which are quoted to high precision but

which have low accuracy. This is a favorite tactic in politics and advertising.

For example, “78.7% of doctors recommend Sugar Chewie Choco-Bombs to their

patients who chew gum” is more persuasive than “more than 3/4 of all doctors

recommend Sugar Chewie Choco-Bombs to their patients who chew gum.”

D. Order of Magnitude Calculations

An order of magnitude calculation is a calculation which leads to a result accurate

to one significant figure. It is performed using scientific notation, and the exponent

to which the 10 is raised is referred to as the “order of magnitude” of the result. As a

result, these calculations could also be considered “factor of 10” calculations. When

faced with a completely unfathomable problem, instead of making a wild guess or

relying on authority, faith, revelation, or bombast to impose an answer, this

technique can produce a meaningful estimate.

Making order of magnitude calculations is valuable not only in science but also

in many other disciplines, often being the only calculation that can be made. We can

transform a state of complete ignorance to a state of reasonable knowledge. An order

of magnitude calculation can settle disputes, aid in designing an experiment, help in

estimating costs, or allow evaluation of a suggested hypothesis.

In this technique, we replace the difficult problem of estimating the value of

some highly unknown quantity with the more manageable problem of estimating a

number of others, for each of which a reasonably accurate estimate can be deter-

mined by everyday experience, common sense, or quick reference. We multiply

these estimated factors together and more or less hope that the various errors will

balance each other, leading to a result for the original quantity in which we have

confidence to one significant figure.

For example, let us say we want to estimate the value of a quantity which we

can segment into five factors for each of which we have a reasonably accurate

estimate. We don’t really know the errors in the various factors, that implying

that we in fact know their true values. Then, if the first factor is incorrect by

being a factor of 2 too small, the second factor is incorrect by being a factor of

10 too large, the third is incorrect by being a factor of 4 too small, the fourth factor

is incorrect by being a factor of 2 too large, and the fifth is incorrect by being

a factor of 5 too small, when multiplied together the final result will be incorrect

by a factor of 2� 1/10� 4� 1/2� 5¼ 2, a remarkable achievement. The more

factors involved the better the chance that the errors will cancel and that the

estimated value will be close to the actual value. The technique will work if about
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as many of the individual estimates are incorrect by being too large as are

incorrect by being too large.

Before you begin, however, you should have a reasonable idea as to the kinds

of values you might expect. If you are estimating the number of people in California

who weigh more than 300 lb., you know that an answer of 5 or 100,000,000 will be

wrong. If you are estimating the number of $1 bills in circulation, you know that an

answer of 7 or 4� 1011 can’t be correct. Making this initial intelligent guess helps

ensure that your result makes sense.

Let us, for an illustration, try, to estimate the number of grains of sand on the

coastlines of the Earth. “Impossible!,” you say. Don’t be so sure. To do this we

need to know the number of grains of sand in a cubic volume, say a cubic

centimeter, and the total volume of coastline sand on Earth. Pick up a handful of

sand. One inch equals 2.54 cm, so a centimeter is about the size of a fingernail.

Let us say you can place 30 grains of sand along your fingernail. Then the number

of grains of sand in 1 cm3 is 30� 30� 30¼ 2.7� 104 grains/cm3. Because the rest

of our calculations will be done using kilometers, let us convert this result using

1 km3¼ 1015 cm3. That is, 2.7� 104 g/cm3¼ 2.7� 1019 grains/km3. We might

believe that this number is accurate to within a factor of 10.

Now, to find the volume of sand in the world, we can start with the circumfer-

ence of the Earth, about 40,000 km (25,000 miles). Although we might be able to

find this information in an encyclopedia, let’s say that the length of coastline is

about 20 times the circumference of the Earth, 20� 40,000 km¼ 8.0� 105 km.

For the width of sand along a typical coastline take 10 m, and for the depth take 1 m.

Although these are simply estimates from our own experience, we believe that they

are accurate to factors of 10. The typical width of a coastline covered with sand is

not, that is, closer to 100 m or 1 m than it is to 10 m, and the typical depth of sand

is not closer to 0.1 m (about 4 in.) or 10 m (about 33 ft) than it is to 1 m.

To obtain our order of magnitude estimate of the number of grains of sand on the

coastlines of the world, we then multiply these various factors.

# of grains of sand¼ð# of grains in 1km3Þ�ðvolume of sand in km3Þ
¼ ð2:7�1019grains=km3Þ� ½ð8:0�105 kmÞ�ð10�2 kmÞ�ð10�3 kmÞ�
¼ 2�1020 grains of sand:

Note that the final result is rounded to one significant figure. Because of the

hopeful balancing of the various errors in our estimates, we believe that this result

is accurate to within an order of magnitude. The true number of grains on the

coastlines of Earth, therefore, we believe to be roughly between 2� 1019 and

2� 1021. (An estimate of the number of stars in the universe, 300 billion stars per

galaxy times a billion galaxies or 3� 1020 stars, comes out to about this same

number, a useless if highly inconsequential fact.)

As is clear, performing order of magnitudes calculations is somewhat of an art.

No such thing as a correct answer exists.
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E. Conversion of Units

Conversion of units, although the source of much anguish, can be done easily using

a simple rule: We can multiply or divide any number by 1. To convert units, take the

conversion formula, divide one side by the other, and then multiply or divide the

number to be converted by this quotient.

For example, let us say we want to convert the diameter of the Earth in

kilometers, 12,756 km, to miles. We know,

1 mile = 1.61 kilometer:

Dividing one side of this equation by the other,

1 mile/1.61 km = 1:

To convert 12,756 km to miles we can multiply or divide by 1. The choice is

determined by our desire to cancel out the unwanted unit, in this case kilometer

(written in bold).

12,756 km � 1 ¼ 12; 756 km� (1 mile/1:61 kmÞ
¼ 7923 miles:

This recipe can be used in the conversion of any units.

As with order of magnitude calculations, you should have a reasonable idea of

the final result before you begin the conversion. That will be a guide as to whether

your result is sensible. In this way, you know that 400 miles cannot be the

equivalent of 3 km or 75,000 km. A decent guess might be between 100 and

1000 km.

F. Calculation of Errors

1. Percentage Errors

In experiments we often want to find the percentage error between a measurement

and a known value or a percentage difference between two quantities. If x is the

measured value of a quantity which is known to have a value of s, then the

percentage error is

percentage error ¼ x� s

s

��� ���� 100:
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If we are comparing quantity x1 to quantity x2, then the percentage difference

between them is

percentage difference ¼ x1 � x2
x2

����
����� 100:

In some situations, we can estimate the error in a measured quantity and wish to

then calculate the corresponding estimated percentage error in the measured quan-

tity. If Dx is the estimated error in a measured quantity xo, then,

estimated percentage error ¼ Dx
xo

����
����� 100:

The Greek capital letter delta, D, is used to denote differences in quantities.

In all these calculations, because percentages can only be positive, we calculate the

absolute values of the differences.

2. Propagation of Errors

Often we encounter a quantity which is the product of more than one variable, each

raised to a different power. If we know the uncertainties in the individual variables,

then we can calculate the uncertainty in the product. In general, if f(x,y)¼ a xn ym ,

then by taking the differentials and dividing the result by f(x,y) one finds

Df
f

¼ n
Dx
x

þ m
Dy
y
:

This is valid for any values of n and m, including non-integers.

G. Mean and Standard Deviation

You are most likely familiar with the techniques of calculating the mean and

standard deviation of a group of data. The mean is defined as the sum of the

individual values or measurements, xi, divided by the number of values. If we

have, for example, five measurements, x1, x2, x3, x4, and x5, then the mean is

xav ¼ x1 þ x2 þ x3 þ x4 þ x5
5

:
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This can be generalized, using the Greek letter sigma, S, to indicate a

summation,

xav ¼ 1

n

Xn
i¼1

xi;

where n is the number of individual values and the Greek letter S signifies the sum

of all the values. This is often simply called the “average.”

The standard deviation is a measure of the distribution of those individual values

about the mean. Again using the shorthand summation symbol, it is defined as

s ¼
Pn
i¼1

ðxi � xavÞ2

n� 1

2
4

3
5
1=2

:

For example, let us say we have a set of measurements taken by different people

of the size of a meteorite that we found in the desert. Those measurements are 17.8,

17.2, 18.1, and 17.7 mm. The mean is found to be

xav ¼ ð17:8þ 17:2þ 18:1þ 17:7Þ=4 mm

¼ 17:7 mm;

The standard deviation is calculated to be

s ¼ ½ð17:8� 17:7Þ2 þ ð17:2� 17:7Þ2 þ ð18:1� 17:7Þ2 þ ð17:7� 17:7Þ2�=3
n o1=2

¼ ½0:01þ 0:25þ 0:16þ 0:0�=3f g1=2
¼ 0.37 mm:

Sometimes the variance is quoted. This is simply the square of the standard

deviation,

s2 ¼
Pn
i¼1

xi � xavð Þ2

n� 1
:

We may want to calculate the mean of quantities which have different

uncertainties. In that case, we want to give less weight to the less certain quantities

and more weight to the more certain quantities. This is achieved by calculating a

weighted mean. If the weight assigned to measurement xi is wi, then the weighted

mean of the n quantities is

xav ¼
Pn
i¼1

wixi

Pn
i¼1

wi

:
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The standard deviation of n quantities with weights wi whose mean is xav is

s ¼
Pn
i¼1

½wi xi � xavð Þ�2

Pn
i¼1

wi

2
664

3
775
1=2

:

H. Angular Measurement

The hopelessly non-decimal system of angular measure comes to us from Babylo-

nian tradition through centuries of use. A full circle is divided into 360 degrees of
arc, a degree is subdivided into 60 minutes of arc, and a minute of arc is further

subdivided into 60 seconds of arc. For degrees, minutes, and seconds we use the

symbols �, 0 , and 00. (The Babylonians used the sexagesimal system, the base of

their counting being 60 rather than our 10. They also knew that the perimeter

of a hexagon is exactly equal to six times the radius of the circumscribed circle.

The number 6� 60¼ 360 is thereby associated with a circle, and would be a fairly

obvious choice by which to divide the circle if you were a Babylonian.)

An angular size can be given either in these units or in decimal form. For example,

2�300 could be rewritten 2.50�, and 270 2500 could be rewritten 27.420 .
We sometimes need to convert between degrees, minutes of arc, and seconds

of arc and degrees and decimal fractions of a degree. For example, to express 27.14�

in degrees, minutes of arc, and seconds of arc we note that 0.14� is the same as

0.14� � 60 (minutes of arc/degree)¼ 8.40 . Then we note that 0.40 is the same

as 0.40 � 60 (seconds of arc/minute of arc)¼ 2400 .
To transform from degrees, minutes of arc, and seconds of arc to degrees and

decimal fractions of a degree, we perform an addition. For example,

64
�
15

0
18

00 ¼ 64
� þ 15

60
0
per deg ree

þ 18

ð60 � 60Þ00 per deg ree

¼ 64
� þ 15

60

� ��

þ 18

3600

� ��

¼ 64
� þ 0:25

�þ0:005
�

¼ 64:255
�
:

Because the system of degrees, minutes, and seconds is essentially arbitrary,

it should be no surprise that it cannot be employed in the trigonometric cal-

culations developed independently by the Greeks. They discovered that the ratio

of the circumference, C, of any circle to its diameter, D, is the number
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p¼ 3.14159. . . 1 That is,C¼ pD. We frequently rewrite this in terms of the radius R
of the circle, C¼ 2p R.

To determine the kind of angular measure that must be employed in trigono-

metric calculations, examine a circle. In particular, what is the portion, s1, of the
circumference of a circle subtended by an angle of 1�? By a simple proportion,

1�

360�
¼ s1

2pR
;

or

s1 ¼ 2pR
360

:

In fact, this result is entirely general for any angle, y , in degrees, subtending any
portion of circumference, s,

y
360

¼ s

2pR
;

or

s ¼ 2pR
360

y: (1)

For y¼ 360�, s¼C¼ 2pR, as it must.

Now, note that we can rewrite (1) as

s ¼ y
ð360=2pÞR:

This tells us that if we express y in units, not of degrees, but in units of some

funny number 360/(2p), then we can write the portion of circumference simply,

without regard to any arbitrary Babylonian construct,

s ¼ Ry; (2)

where now y is in units of 360
2p .

1 The century-old anecdotal story that Johann Strauss, Jr., (1825–1899) composed the famous Blue

Danube Waltz while eating “pies” and therefore decided to denote that work as his “opus 314”

apparently was a hoax perpetrated by classical music-loving geometry theorists with an addiction

to apples. On the other hand, perhaps some music-loving astronomer made the whole thing up.
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Because of the importance of this number and its intimate association with the

radius of the circle, it is given a name, radian. One radian is a unit of angular

measurement equal to 360
�

2p ¼ 57.3�. Angles given in radians are said to be expressed
in circular measure. The lack of any constants in (2) tells us that this is the natural

unit for angular measure and, accordingly, the natural unit for trigonometry.

Note that the strange value for the unit of radian is not its fault. Nature made the

trigonometry of circles so that C¼ 2pR. The arbitrary (except to the Babylonians)

division of a circle into 360 parts determines the value of 57.3�.
Equation 2 is related to an important approximation that we will encounter

frequently, the small angle approximation. In (2), s is a portion of an arc length.

If R � s, that is, for objects at comparatively great distances, the curvature of the

circular arc can be neglected and s can be considered a linear length. In general, given
an object of measured angular size and known distance, as shown in Fig. 1, we

calculate the size of the object from tan y/2¼ s/(2R). If R � s, however, we can use

the small angle approximation for tangent to find s¼R y, which is (2). This condition
is, of course, frequently the case in astronomical observations. To apply (2), the

angular size of the object must be measured in radians.

I. Scale Factors

Scale factors are one of those concepts that are familiar to everyone, but when placed

before students can cause consternation. We are all familiar with the scale of a map.

The distance from Chicago to Springfield, Illinois, is about 180 miles. On a road map,

with a scale of 20 miles to 1 in., the distance on the map is about 9 in.

In astronomy, we often have to determine the scale of spectra or photographs of

star fields or galaxies. As a road map spans a range of miles, so a spectrum spans a

range of wavelengths and a photograph spans a range of seconds or minutes of arc.

To determine the scale of a road map, we could lay a ruler along the path from

one location to a second whose distance from the first is known. We could then read

off the number of inches between the two locations, divide by the known distance,

and then calculate that the scale of the map is so many miles per inch,

fmap ¼ DD
DL

;

Fig. 1 The size of an object

can be determined if its

distance and angular size

are known
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where DD is the distance between the locations in miles and DL is the number of

inches between them on the map. Henceforth, when we want to find the number

of miles between two locations, we measure the number of inches and multiply by

this scale factor.

With a spectrum or photograph, the procedure is exactly the same. To determine

the scale factor of a spectrum, we lay a ruler between two spectral lines each of

whose wavelengths is known, measure the number of millimeters between them,

and then find the scale factor by calculating

fspectrum ¼ Dl
DL

;

where Dl is the wavelength interval between the spectral lines in angstroms, the

unit of wavelength (1 Å¼ 10�8 cm), and DL is the distance between them in

millimeters. Henceforth, when we want to find the number of angstroms between

two spectral lines in this spectrum, we measure their separation in millimeters and

multiply by this scale factor.

To determine the scale factor of a photograph, we lay a ruler between two stars

or parts of a galaxy, the angular distance between which is known in seconds or

minutes of arc, measure the number of millimeters between them, and then find the

scale factor by calculating

fphoto ¼ Dy
DL

;

where Dy is the number of seconds or minutes or arc between the two stars or parts

of the galaxy, and DL is the distance between them in millimeters. Henceforth,

when we want to find the angular distance between two locations in this photo-

graph, we measure their separation in millimeters and multiply by this scale factor.

In determining a scale factor, use two points that are as widely separated as

possible. In this way, the errors in reading the ruler will be small compared with the

length being measured.

J. Julian Dates

Astronomers frequently need to determine the time interval between celestial

events, the time interval between the dates of their observations of celestial events,

or to coordinate observations of the same phenomenon, be it solar flares or

supernova explosions, for various examples. Using a calendar poses numerous

problems, such as different number of days in different months and leap years.

In calendars such as ours, division into time periods of different lengths, such as

months and years, causes unnecessary complications. More than that, different

cultures use different calendars and historical events in different calendars can be
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difficult to correlate chronologically. A simpler manner of keeping track of time,

in terms of the number of days in a sequence, was therefore needed. It is simply

more convenient to reckon time in one single unit, be it days or seconds, rather than

days, months and years.

The method of choice among astronomers is the Julian date. It is defined as the

number of days reckoned from 12:00 noon universal time on January 1, 4713

B.C.E. Universal time, or UT. Universal time is the time at the Prime Meridian,
the meridian or line of longitude where the longitude is defined to be 0�. Because
the meridian was chosen to pass through the Royal Observatory at Greenwich,

England, universal time was formerly referred to asGreenwich mean time, or GMT.

The date of January 1, 4713, was chosen as the zero date to commemorate the date

that aliens brought the first recipe for pistachio ice cream to the Earth.

In Julian days, the time during the day is expressed as decimal fractions of a day.

Midnight on January 1, 2000, for example, has a Julian date of 2451544.5. The

Julian date is frequently quoted without the first two digits. J.D. 2500000.0 will

occur on August 31, 2132 at noon UT.

Use of the Julian date greatly simplifies reckoning of time, being a simple

sequence of numbers increasing by unity from day to day. Some labor is required

to calculate the number of days that have passed between, for example, December

4, 2010, and June 18, 2013. Knowing that the respective Julian dates are 55534 and

56461 makes the task one of simple subtraction.

Figure 2 shows actual observations of the quasar 3C273B. This, as other galaxies

with active galactic nuclei, or AGN’s, are notable for many reasons, including the

brightnesses with time. From this graph, we can easily see that the brightness at

22 GHz frequency varies about 25% over a period of less than about 375 days. If the

Fig. 2 The flux density (brightness in radio wavelengths) of thesource 3C273B as a function of

Julian date. Using Julian dates facilitates the determination of time intervals. Observations at the

Hat Creek Radio Observatory (HCRO) by the author
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data were plotted instead against calendar date, determining the length of time of

this variation would be unnecessarily time-consuming.

For the purposes of the experiments in this book, we won’t bother with

converting local time to strict Julian dates, referred to the Prime Meridian. Instead,

we’ll simply use the Julian date as that at noontime at your particular location, with

its own time zone. This, if the change of date is altered to occur at midnight rather

than at noon, is sometimes referred to as the chronological Julian date.

K. The Method of Least Squares

In astronomy and physics we often find the need to find the best-fit curve to a set of

data. In general, if y is a function of independent variables x1, x2, x3, . . . xn,

y ¼ ao þ a1x1 þ a2x2 þ a3x3 þ :::þ anxn; (3)

then we wish to determine the value of the various coefficients ao, a1, a2, a3 . . . an.
The preferred method of doing this is the least squares method, based on the

criterion that the square of the deviations of the observed values of y to the curve

determined by the parameters ai is a minimum. This, in fact, is derived from the

maximum likelihood method of statistical analysis.

If (3) is multiplied in turn by 1 and the various values xi , and each of the n+ 1
resulting equation is summed over all the observations, we obtain a set of n+ 1
equations in n+ 1 unknowns. These can then be solved for the values of ai by any of
the well-known methods for solving simultaneous equations.

For the case of a linear equation of one independent variable,

y ¼ aþ bx;

the set of two equations in two unknowns is

Xn
i¼1

yi ¼ n aþ b
Xn
i¼1

xi (4)

Xn
i¼1

xiyi ¼ a
Xn
i¼1

xi þ b
Xn
i¼1

xi
2: (5)

In actual practice, the variables xi may be powers of independent variables,

trigonometric functions of independent variables, or other functions of the inde-

pendent variables. The least squares fit of Fig. 5 of Experiment #2, “A Review of

Graphing Techniques,” is one example of data fit by this method.
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L. Galaxies Collide!: The Impact of the Milky Way

and Andromeda Galaxies

To provide an example of how astronomers use mathematical physics to learn

about the universe, and to provide a real-world application of scientific notation,

significant figures, and the conversion of units, we will calculate the velocity at

which M31 will collide with the Milky Way galaxy. This calculation will be based

on the law of conservation of energy and some simplifying assumptions, and will

enable us to determine if an “air bag” will actually become deployed! Currently,

M31 is about 780,000 pc away and moving toward us with a relative velocity of

about 120 km/s.

As it “falls” toward us, M31 gives up some of its gravitational potential energy,
which is transformed into kinetic energy. We learn in physics that gravitational

potential energy is the energy a mass has by virtue of its presence in a gravitational

field and that kinetic energy is the energy a mass has by virtue of its motion.

The law of conservation of energy tells us that the energy of an isolated system

remains constant in time. Simplifying the problem by accounting only for gravita-

tional potential energy and kinetic energy, we therefore equate the energy of the

M31-Milky Way “system” at the present time with that at the time that the collision

occurs,

KEnow þ PEnow ¼ KEimpact þ PEimpact; (6)

using the conventional notation KE for kinetic energy and PE for gravitational

potential energy. The well-known formulas for kinetic energy of an object and the

gravitational potential energy between two objects are

KE ¼ 1

2
mv2;

where m is the mass of the object moving at a velocity v,
and

PE ¼ �Gm1m2

r
;
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where G is the constant of gravitation, G¼ 6.67� 10�11 Nt-m2/ kg2, m1 and m2 are

masses of the two objects which are pulling at each other, and r is the distance

between them. (This traditional but at first sight strange formula puts the arbitrary

zero reference point at infinity. Because only changes in energy are relevant, the

reference point can be placed anywhere. Objects whose separation is less than

infinite have smaller, therefore negative, values of gravitational potential energy.)

This equation results directly from Newton’s Universal Law of Gravitation describ-

ing the gravitational force between two objects of masses m1 and m2 which are

separated by a distance r,

F ¼ Gm1m2

r2
:

Identify m1 and m2 as the masses of M31 and the Milky Way, respectively.

Then (6) becomes

1

2
m1v

2
now � G

m1m2

rnow
¼ 1

2
m1v

2
impact � G

m1m2

rimpact
: (7)

We see that the mass of M31, m1, cancels out, and we can solve for the velocity

of impact,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
v2now þ Gm2

1

rimpact
� 1

rnow

� �s
: (8)

For the value of the distance at which impact occurs, rimpact, use the radius of the
Milky Way galaxy, about 15 kiloparsecs.

This irrelevance of the mass of M31 in (7) and (8) is no surprise. Indeed, it is

explained by none other than Sir Isaac Newton and Albert Einstein. Starting

when Newton in 1666 was aroused from whatever were his daydreams by the

falling British apple in that family garden in Woolsthorpe, Lincolnshire, physicists

eventually realized that all objects under a given force of gravity fall with the

same acceleration, independent of their mass. The equality of the inertial mass,
which describes the acceleration of any object under the action of any force via

Newton’s Second Law, F¼ma, with the gravitational mass, which describes the

strength, specifically, of the force of gravity acting on an object, was thereby

established. Einstein stated this in 1907 as one version of his equivalence principle.
As a result, on the moon, in a vacuum, and in any other environment lacking the

frictional drag resulting from an atmosphere, a feather, block of lead, or member of

Congress dropped from the same height at the same time will land at the same time.

One of the Apollo 15 astronauts, if any proof was needed, demonstrated this using a

falcon feather and a geological hammer.

It can be shown that the mass in the expression for kinetic energy is the same as

the inertial mass. It follows, therefore, that the masses m1 in the equation appearing
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either in the expressions for KE or those for PE are equal and will cancel out, as we

found out.

We cannot perform this calculation without first converting some units. We note

that the units of G are in meters and kilograms and the units of velocity are in km/s,

both consistent in the meter-kilogram-second system of units. Unfortunately, here

the mass is expressed in solar masses, the distances are expressed in parsecs and

kiloparsecs, and vnow is expressed in km/s.

We take a value for the MilkyWay mass of 580 billion solar masses. Then, using

the conversion factors

1 pc ¼ 3:086� 1016 m;

1 solar mass ¼ 1:99� 1030 kg;

1 km ¼ 1000 m;

and

1 kiloparsec ¼ 1000 parsecs;

we can convert the Milky Way mass, m2, to kilograms, rnow and rimpact to meters,

and vnow to meters per second. For purposes of calculation, note that the unit of

Newtons in the meter-kilogram-second (MKS) system of units, abbreviated Nt,

has the following equivalent: 1 Nt¼ 1 kg-m/sec2 . This unit appears in the value of

the gravitational constant, G. The equivalence follows from its definition via

Newton’s Second Law, F¼ma. Accordingly, the units of G can also be given

as m3/kg-sec2.

Then, with all the factors expressed in the meter-kilogram-second system

of units, we will be able to solve the above equation for vimpact in meters per

second.

Thus,

m2 ¼ 5:80� 1011solar masses

¼ 5:80� 1011solar masses� 1:99� 1030kg

1 solar mass

¼ 1:15� 1042kg;

rnow ¼ 780; 000 pc

¼ 7:80� 105pc� 3:086� 1016m

1 pc

¼ 2:41� 1022 m;
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rimpact ¼ 15; 000 pc

¼ 1:50� 104pc� 3:086� 1016m

1 pc

¼ 4:63� 1020 m;

and

vnow ¼ 120
km

s

¼ 1:20� 102
km

s
� 103m

1 km

¼ 1:20� 105
m

s
:

We see the parameters have three significant figures. The results of the conver-

sion of units, therefore, also have three significant figures.

The calculation of (8) is then easily performed using scientific notation,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1:20�105

m

s

� �2

þ6:67�10�11 m3

kg� s2
�1:15�1042kg

s
:

� 1

4:63�1020m
� 1

2:41�1022m

� � :

Note that both terms under the radical sign have the dimensions of m2/s2. In

the second term, we can cancel out the units of kilograms and one of the three units

of meters and perform the arithmetic,

vimpact ¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:720� 1010

m2

s 2
þ 7:67� 1031

m2

s 2
� 2:12� 10�21

r

¼ 1:414

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:0� 1010

m2

s 2

r

¼ 5:83� 105
m

s
:

Converting the result to km/s yields vimpact¼ 583 km/s.

Whether or not a shock wave will be created when the two galaxies collide

depends on the velocity of impact compared to the velocity with which pressure

waves move in the interstellar space of the Milky Way. If the collision velocity is

greater than the speed of the pressure waves, then the pressure waves cannot move

the interstellar material out of the way fast enough to avoid a build-up. That leads to

a shock wave. Sound waves are, in fact, pressure waves, so that another way of

expressing this condition is whether the velocity of impact is greater than the speed
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of sound in interstellar space. The related interaction between an aircraft and the

atmosphere is described as supersonic, faster than sound.

The velocity of pressure waves in a given medium depends on the temperature of

the medium and the gas under consideration. For hydrogen, the major constituent

of interstellar gas, at a temperature of 10 K the speed of sound is about 150 km/s.

This compares to the speed of sound in air of about 340 m/s, or about 0.34 km/s.

(This explains the time delay between seeing a lightning bolt and hearing the

thunder, the lightning bolt traveling at the speed of light, which is much larger

than the speed of sound in air. By counting the seconds before you hear the thunder,

you can thereby determine an approximate distance to a lightning bolt.)

The impact velocity of 583 km/s is significantly greater than the velocity of

pressure waves, the “speed of sound,” in interstellar space. A significant shock

wave will be created. That shock wave, resulting in a build-up of interstellar gas and

dust, leads to a flurry of star formation. That build-up of matter and the large

amount of radiation emanating from the large number of newly-born stars create

Brewster Rockit’s “air bag”!

Note that if the mass of the Milky Way is in fact smaller than 580 billion solar

masses, the impact velocity will be smaller, whereas if the mass of the MilkyWay is

larger than 580 billion solar masses, the impact velocity will be larger. This has a

direct effect on the amount of time it will take for the two objects to collide. (That

research in 2009 showed the mass of the Milky Way galaxy to be indeed greater

than this figure, leading to a decreased time scale for its collision with M31, was

provided to the cartoonist of “Brewster Rockit: Space Guy!” by the author. We also

advised the cartoonist that the Milky Way is now known to be a barred spiral.

Referring back to the cartoon strip, we see that he is obviously a good student!)
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M. Mathematical Concepts Experiment Exercises

STUDENT’S NAME ________________________________________________

These various mathematical tools will be of great value to you in any quantitative

field, in business, the social sciences, the arts, as well as in the physical sciences.

The following will help you master them. Show all your calculations.

Circle those numbers which are given in proper scientific notation.

1. .11� 104

2. 0.11� 104

3. 1.1� 103

4. 11.0� 102

5. 8.9� 1017

6. 8.9� 10�17

7. 8.90416� 1017

8. 8.90416� 10�17

9. 0.6� 101

10. 6.0� 101

Express the following in scientific notation. Assume that all have four significant

figures.

11. 1,989,000,000,000,000,000,000,000,000,000 kg

12. 299,800,000 m/s

13. 0.00000000006668 Nt-m2/kg2

14. $30,000,000,000
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STUDENT’S NAME ________________________________________________

Circle the larger of the following pairs of numbers.

15. a) 9.9� 102 b) 1.01� 107

16. a) 6.6� 106 b) 6.6� 108

17. a) 1.44897� 10�7 b) 8.4� 10�3

18. a) 5� 104 b) 5� 10�4

Perform the following calculations, showing your intermediate steps without using

a calculator. Express the results in scientific notation.

19. (8.2� 1068)� (2.00� 107) ¼

20. (3.0� 10�16) � (6.0� 104) ¼

21. (2.2� 1052)� (5.0� 10�14) � (2.0� 1021) ¼

In the following two exercises, each figure is given to two significant figures.

Express the result with the correct number of significant figures, showing your

intermediate steps.

22. 4.2� 104� 5.2� 102 ¼

23. 7.7� 1012 + 2.3� 1011 ¼
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STUDENT’S NAME ________________________________________________

Express the results of the following calculations with the correct number of

significant figures.

24. 14.448 + 1.89 + 66.0302 ¼

25. 4.4 + 14.332 + 109 ¼

26. 14.339 + 3.14� 22.1 ¼

27. 1.119� 4.39 ¼

28. 194 � 22.02 ¼

29. (72.29 + 1.8) � 3.039 ¼
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STUDENT’S NAME ________________________________________________

30. Calculate to the correct number of significant figures from the following

formula the volume of a sphere whose radius r is measured to be 3.08 cm.

V ¼ 4

3
pr3; where p ¼ 3:14159265:

31. The velocity of recession v of the most distant objects in the universe, quasars,

can be calculated from their Doppler shift by the formula z ¼ Dl
l ¼ v

c , where Dl
is the Doppler shift of light of wavelength l observed from the quasar, and the

speed of light c¼ 3.00� 105 km/s. (This formula is derived as Eq. (6) of

Experiment #9, “Determination of the Rotation Rate of Planets and Asteroids

by Radar: Part I: Observations of Mercury,”.) If a given quasar has a Doppler

shift of Dl¼ 583 Å for light of wavelength 3646 Å, calculate its velocity of

recession. Give your answer to the correct number of significant figures.

(1 Å¼ 10�8 cm)

32. “Chicago Slim” Golden (who famously stated “da only famous card-counters

are da ex-card-counters”) spends 3 weeks in Las Vegas playing blackjack. He’s

on the tables between 10 and 14 h each and every day, plays about 30 hands

each hour, and wagers between $2 and $10 on every hand, most frequently

toward the low end. Estimate the total amount of money he has wagered

(“action”) during his “vacation.” Note your assumptions. (Do not calculate

high and low amounts. Estimate one best value.)
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STUDENT’S NAME ________________________________________________

33. Some believe that the oceans of the Earth were created by a long-lasting

continuous worldwide deluge. Estimate the number of years required to fill

the ocean basins of the Earth to their current depth. Note your assumptions.

34. Estimate the cost to the U.S. taxpayer when 100 United States Senators

campaign for re-election. Include taxpayer-supported services provided to

Senators that they might utilize in their re-election campaigns. Clearly note

all your assumptions and units. Compare this to the $5 million annual cost of

the Search for Extraterrestrial Intelligence (SETI) program, cancelled by the

same group. (Extra credit: Compare the likelihood of finding extraterrestrial

intelligence to the likelihood of finding intelligence in the United States

Senate).
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STUDENT’S NAME ________________________________________________

35. Estimate the time that Santa has available to travel to and work in each

individual home in the world that celebrates the yuletide holiday. Note your

assumptions.

Convert the following numbers into the unit requested.

36. 50 kg into grams (1 kg¼ 1000 g)

37. 1.45� 1023 m into parsecs (1 pc¼ 3.086� 1016 m)

38. 1500 m into miles (1 mi¼ 1.61 km; 1 km¼ 1000 m)

39. 108 spiral galaxies into solar masses (one spiral galaxy contains about 3� 1011

solar-type stars)

40. A table whose length is known to be 8.40 m is measured to have a length of

8.35 m. Calculate the percentage error in the measurement.
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STUDENT’S NAME ________________________________________________

41. Barnard’s star, a nearby star that is thought to possess a planetary system, has

an apparent visual magnitude of 9.54m. A student astronomer measures its

apparent magnitude at 9.36m. What is the percentage error in the measurement?

42. These are the average heights of a group of extraterrestrial visitors. Find their

mean and standard deviation. 17.8 m, 19.2 m, 16.3 m, 17.2 m, 16.9 m

43. Convert 27.14� into degrees, minutes, and seconds of arc.

44. Convert 41�500 into degrees and decimal fraction of a degree.
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STUDENT’S NAME ________________________________________________

45. Convert 7�100 5600 into degrees and decimal fraction of a degree.

46. A galaxy is known to be at a distance of 150 Mpc (1 Mpc¼ 106 pc). It subtends

an angle of 2500 of arc. Calculate its diameter in parsecs. Compare this to the

diameter of the Milky Way galaxy, about 30,000 pc, or 30 kpc.

47. Using a ruler calibrated in millimeters and the wavelengths in angstroms

provided, determine the scale factor of the following portion of the solar

spectrum in angstroms per millimeter (Å /mm).
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STUDENT’S NAME ________________________________________________

48. The galaxy pictured in the drawing, similar to NGC 4303, an SBc galaxy in the

Virgo cluster of galaxies, has an angular size of 110 of arc, about 1/3 the angular
diameter of the moon. (NGC is the abbreviation for “New General Catalog.”)

Determine the scale factor of the drawing in minutes of arc per millimeter (min

of arc/mm).

NGC 4303

3 mm

49. In the sketch of a star field below, we are told that the scale factor is 47 seconds

of arc per millimeter. Determine the angular distance between the stars labelled

A and B. (Most photographs in astronomy, particularly for research purposes,

are presented in the negative image, more easily analyzed than the positive

image to which we are accustomed.)
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STUDENT’S NAME ________________________________________________

50. The calculation to determine the velocity of impact of M31 and the Milky Way

galaxy assumed that the mass of the Milky Way was 580 billion solar masses.

Research in 2009 indicated that that Milky Way mass was larger, 710 billion

solar masses, about equal to that of M31.

a) Using (8), calculate the velocity of impact that would result if the Milky

Way has a mass of 710 billion solar masses. Show all your calculations here,

displaying all the units.

b) In supersonic flight, the termMach number (Ernst Mach, 1838–1916) refers

to the ratio of the velocity of supersonic flight to the speed of sound in the

medium. Calculate the Mach number describing the velocity of impact of

M31 with a Milky Way of mass equal to 710 billion solar masses.

51. The Julian date corresponding to December 4, 2011, is 55899.

a. How many days will have elapsed from December 4, 2011, until June 7,

2013? Show your calculations here.

b. The Julian date corresponding to June 7, 2013, is 56450. Perform the same

calculation using Julian dates.

Removing these DATASHEETS from the bookmay damage the binding. Youmight

consider entering the data and performing your calculations in the book, and then

photocopying the DATA SHEETS for submission to your instructor for grading.

M. Mathematical Concepts Experiment Exercises 33



http://www.springer.com/978-1-4614-3310-1


