
Preface

How do we design efficient digital machines? Software programmers would say “by
writing better code”. Hardware designers would say “by building faster hardware”.
This book is on codesign – the practice of taking the best from software design
and the best from hardware design to solve design problems. Hardware/software
codesign can help a designer to make trade-offs between the flexibility and the
performance of a digital system. Using hardware/software codesign, designers are
able to combine two radically different ways of design: the sequential way of
decomposition in time, using software, with the parallel way of decomposition in
space, using hardware.

About the Picture

The picture on the next page is a drawing by a famous Belgian artist, Panamarenko.
It shows a human-powered flying machine called the Meganeudon II. He created
it in 1973. While, in my understanding, noone has built a working Meganeudon,
I believe this piece of art captures the essence of design. Design is not about
complexity, and it is not about low-level details. Design is about ideas, concepts,
and vision. Design is a fundamentally creative process.

But to realize a design, we need technology. We need to map ideas and drawings
into implementations. Computer engineers are in a privileged position. They have
the background to convert design ideas into practical realizations. They can turn
dreams into reality.

Intended Audience

This book assumes that you have a basic understanding of hardware, that you are
familiar with standard digital hardware components such as registers, logic gates,

vii



viii Preface

Panamarenko’s Meganeudon II ((c) Panamarenko)

and components such as multiplexers, and arithmetic operators. The book also
assumes that you know how to write a program in C. These topics are usually
covered in an introductory course on computer engineering, or in a combination
of courses on digital design and software engineering.

The book is suited for advanced undergraduate students and beginning graduate
students, as well as researchers from other (non-computer engineering) fields.
For example, I often work with cryptographers who have no formal training in
hardware design but still are interested in creating dedicated architectures for highly
specialized algorithms. This book is also for them.

Organization

The book puts equal emphasis on design methods, and modeling (design languages).
Design modeling helps a designer to think about a design problem, and to capture
a solution for the problem. Design methods are systematic transformations that
convert design models into implementations.

There are four parts in this book: Basic Concepts, the Design Space of Custom
Architectures, Hardware/Software Interfaces, and Applications.



Preface ix

Part I: Basic Concepts

Chapter 1 covers the fundamental properties of hardware and software, and
discusses the motivation for hardware/software codesign. Chapters 2 and 3 describe
data-flow modeling and implementation. Data-flow modeling is a system-level spec-
ification technique, and a very useful one. Data-flow models are implementation-
agnostic: they map into software as well as into hardware. They also support
high-level performance analysis and optimization. Chapter 2 in particular discusses
stability analysis, and optimizations such as pipelining and retiming. Chapter 3
shows how dataflow models can be realized in hardware and software. Chapter 4
introduces control-flow and data-flow analysis of C programs. By analyzing the
control dependencies and the data dependencies of a C program, a designer obtains
insight into possible hardware implementations of that C program.

Part II: The Design Space of Custom Architectures

The second part is a tour along the vast design space of flexible, customized
architectures. A review of four digital architectures shows how hardware gradually
evolves into software. The Finite State Machine with Datapath (FSMD) discussed
in Chap. 5 is the starting point. FSMD models are the equivalent of hardware mod-
eling at the register-transfer level (RTL). Chapter 6 introduces micro-programmed
architectures. These are still very much like RTL machines, but they have a flexible
controller, which allows them to be reprogrammed with software. Chapter 7 reviews
general-purpose embedded RISC cores. These processors are the heart of typical
contemporary hardware/software systems. Finally, Chap. 8 ties the general-purpose
embedded core back to the FSMD in the context of a System-on-Chip architecture
(SoC). The SoC sets the stage for the hardware/software codesign problems that are
addressed in the third part.

Part III: Hardware/Software Interfaces

The third part describes the link between hardware and software in the SoC architec-
ture, in four chapters. Chapter 9 introduces the key concepts of hardware/software
communication. It explains the concept of synchronization schemes and the dif-
ference between communication-constrained design and computation-constrained
design. Chapter 10 discusses on-chip bus structures and the techniques they use to
move information efficiently between hardware and software. Chapter 11 describes
micro-processor interfaces. These interfaces are the locations in a processor-based
design where custom-hardware modules can be attached. The chapter describes
a memory-mapped interface, the coprocessor interface, and a custom-instruction



x Preface

interface. Chapter 12 shows how hardware modules need to be encapsulated in order
to “fit” into a micro-processor interface. This requires the design of a programmer’s
model for the custom hardware module.

Part IV: Applications

The final part describes three in-depth applications of hardware-software codesign.
Chapter 13 presents the design of a coprocessor for the Trivium stream cipher al-
gorithm. Chapter 14 presents a coprocessor for the Advanced Encryption Standard.
Chapter 15 presents a coprocessor to compute CORDIC rotations. Each of these
designs uses different processors and microprocessor interfaces. Chapter 13 uses
an 8051 microcontroller and an ARM, Chap. 14 uses an ARM and a Nios-II, and
Chap. 15 uses a Microblaze.

Many of the examples in this book can be downloaded. This supports the reader
in experiments beyond the text. The Appendix contains a guideline to the installation
of the GEZEL tools and the examples.

Each of the chapters includes a Problem Section and a Further Reading Section.
The Problem Section helps the reader to build a deeper understanding of the mate-
rial. Solutions for selected problems can be requested online through Springerextras
(http://extras.springer.com).

There are several subjects which are not mentioned or discussed in this book. As
an introductory discussion on a complex subject, I tried to find a balance between
detail and complexity. For example, I did not include a discussion of advanced
concepts in software concurrency, such as threads, and software architectures, such
as operating systems and drivers. I also did not discuss software interrupts, or
advanced system operation concepts such as Direct Memory Access.

I assume that the reader will go through all the chapters in sequence. A minimal
introduction to hardware-software codesign should include Chaps. 1, 4, 5, 7–12.

A Note on the Second Edition

This book is the second edition of A Practical Introduction to Hardware/Software
Codesign. The book was thoroughly revised over the first edition. Several chapters
were rewritten, and new material was added. I focused on improving the overall
structure, making it more logical and smooth. I also added more examples. Although
the book grew in size, I did not extend its scope .

Here are some of the specific changes:

• The chapter on dataflow was split in two: one chapter on dataflow analysis
and transformations and a second chapter on dataflow implementation. The

http://extras.springer.com


Preface xi

discussion on transformations offers the opportunity to introduce performance
analysis and optimization early on in the book.

• Chapter 6 includes a new example on microcontroller-based microprogramming,
using an 8051.

• Chapter 7, on RISC processors, was reorganized with additional emphasis on the
use of the GNU Compiler Toolchain, inspection of object code, and analysis of
assembly code.

• Chapter 8, on SoC, includes a new example using an AVR microcontroller.
Support for the AVR instruction-set simulator was recently added to GEZEL.

• Part III, on Hardware/Software Interfaces, was reorganized. Chapter 9 explains
the generic concepts in hardware/software interface design. In the first edition,
these were scattered across several chapters. By bringing them together in a
single chapter, I hope to give a more concise definition of the problem.

• Part III makes a thorough discussion of three components in a hardware/software
interface. The three components are on-chip buses (Chap. 10), Microprocessor
Interfaces (Chap. 11), and Hardware Interfaces (Chap. 12). “Hardware Interface”
was called “Control Shell” in the first edition. The new term seems more logical
considering the overall discussion of the Hardware/Software Interface.

• Chapter 10, On-chip Busses, now also includes a discussion on the Avalon on-
chip bus by Alterea. The material on AMBA was upgraded to the latest AMBA
specification (v4).

• Chapter 11, Microprocessor Interfaces, now includes a discussion of the NiosII
custom-instruction interface, as well as an example of it.

• Part IV, Applications, was extended with a new chapter on the design of an AES
coprocessor. The Applications now include three different chapters: Trivium,
AES, and CORDIC.

• A new Appendix discusses the installation and use of GEZEL tools. The
examples from Chapters 5, 6, 8, 11, 13–15 are now available in source code
distribution, and they can be compiled and run using the GEZEL tools. The
Appendix shows how.

• The extras section of Springer includes the solution for selected Problems.
• I did a thorough revision of grammar and correction of typos. I am grateful for

the errata pointed out on the first edition by Gilberta Fernandes Marchioro, Ingrid
Verbauwhede, Soyfan, and Li Xin.

Making it Practical

This book emphasizes ideas and design methods, in combination with hands-on,
practical experiments. The book therefore discusses detailed examples throughout
the chapters, and a separate part (Applications) discusses the overall design process.

The hardware descriptions are made in GEZEL, an open-source cycle-accurate
hardware modeling language. The GEZEL website, which distributes the tools,
examples, and other documentation, is at



xii Preface

http://rijndael.ece.vt.edu/gezel2

Refer to Appendix A for download and installation instructions.
There are several reasons why I chose not to use a mainstream HDL such as

VHDL, Verilog, or SystemC.

• A first reason is reduced modeling overhead. Although models are crucial
for embedded system construction, detailed modeling issues often distract the
readers’ attention from the key issues. For example, modeling the clock signal
in hardware requires a lot of additional effort and it is not essential when doing
single-clock synchronous design (which covers the majority of digital hardware
design today).

• A second reason is that GEZEL comes with support for cosimulation built in.
GEZEL models can be cosimulated with different processor simulation models,
including ARM, 8051, and AVR, among others. GEZEL includes a library-block
modeling mechanism that enables one to define new cosimulation interfaces with
other simulation engines.

• A third reason is conciseness. This is a practical book with many design
examples. Listings are unavoidable, but they need to be short. Chapter 5 further
illustrates the point of conciseness with a single design example each in GEZEL,
VHDL, Verilog, and SystemC side-by-side.

• A fourth reason is the path to implementation. GEZEL models can be translated
(automatically) to VHDL. These models can be synthesized using standard HDL
logic synthesis tools.

I use the material in this book in a class on hardware/software codesign. The
class hosts senior-level undergraduate students, as well as first-year graduate-level
students. For the seniors, this class ties many different elements of computer en-
gineering together: computer architectures, software engineering, hardware design,
debugging, and testing. For the graduate students, it is a refresher and a starting
point of their graduate researcher careers in computer engineering.

In the class on codesign, the GEZEL experiments connect to an FPGA back-
end (based on Xilinx/EDK or Altera/Quartus) and an FPGA prototyping kit. These
experiments are implemented as homework. Modeling assignments in GEZEL
alternate with integration assignments on FPGA. Through the use of the GEZEL
backend support, students can even avoid writing VHDL code. At the end of the
course, there is a “contest”. The students receive a reference implementation in C
that runs on their FPGA prototyping kit. They need to accelerate this reference as
much as possible using codesign techniques.

Acknowledgments

I would like to express my sincere thanks to the many people that have contributed
to this effort.



Preface xiii

My family is the one constant in my life that makes the true difference. I am more
than grateful for their patience, encouragement, and enthusiasm. I remain inspired
by their values and their sincerity.

The ideas in this book were shaped by interacting with many outstanding
engineers. Ingrid Verbauwhede, my Ph.D. advisor and professor at Katholieke
Universiteit Leuven, has supported GEZEL, for research and education, from its
very start. She was also among the first adopters of the book as a textbook. Jan
Madsen, professor at Denmark Technical University, and Frank Vahid, professor
at University of California, Irvine, have been exemplary educators to me for many
years. Every discussion with them has been an inspiration to me.

After the first edition of this book, I exchanged ideas with many other people
on teaching codesign. I would like to thank Jim Plusquellic (University of New
Mexico), Edward Lee (University of California at Berkeley), Anand Raghunathan
(Purdue University), and Axel Jantsch (Royal Institute of Technology Sweden). I
thank Springer’s Chuck Glaser for encouraging me to write the second edition of
the book and for his many useful and insightful suggestions. I thank Grant Martin
(Tensilica) for writing a review on this book.

Throughout the years of GEZEL development, there have been many users of
the tool. These people have had the patience to carry on, and bring their codesign
projects to a good end despite the many bugs they encountered. Here are just a few
of them, in alphabetical order and based on my publication list at http://rijndael.
ece.vt.edu/gezel2/publications.html: Aske Brekling, Herwin Chan, Doris Ching,
Zhimin Chen, Junfeng Fan, Xu Guo, Srikrishna Iyer, Miroslav Knezevic, Boris
Koepf, Bocheng Lai, Yusuke Matsuoka, Kazuo Sakiyama, Eric Simpson, Oreste
Villa, Shenling Yang, Jingyao Zhang. I’m sure there are others, and I apologize if I
missed anyone.

Finally, I wish to thank the students at Virginia Tech that took the codesign class
(ECE 4530). Each year, I find myself learning so much from them. They continue
to impress me with their results, their questions, their ideas. They’re all engineers,
but, I can tell, some of them are really artists.

I hope you enjoy this book and I truly wish this material helps you to go out and
do some real design. I apologize for any mistakes left in the book – and of course I
appreciate your feedback.

Blacksburg, VA, USA Patrick R. Schaumont

http://rijndael.ece.vt.edu/gezel2/publications.html
http://rijndael.ece.vt.edu/gezel2/publications.html


http://www.springer.com/978-1-4614-3736-9


	A Practical Introduction to Hardware/SoftwareCodesign
	Preface


