
Chapter 2
Case Studies

2.1 Introduction

In this chapter, we introduce the case studies that will be used to illustrate the models
and R code described in the book.

The case studies come from different application domains; however, they share a
few features. For instance, in all of them the study and/or sampling design generates
the observations that are grouped according to the levels of one or more grouping
factors. More specifically, the levels of grouping factors, i.e., subjects, schools,
etc., are assumed to be randomly selected from a population being studied. This
means that observations within a particular group are likely to be correlated. The
correlation should be taken into account in the analysis. Also, in each case there is
one (or more) continuous measurement, which is treated as the dependent variable
in the models considered in this book.

In particular, we consider the following datasets:

• Age-Related Macular Degeneration (ARMD) Trial: A clinical trial comparing
several doses of interferon-a and placebo in patients with ARMD. Visual acuity
of patients participating in the trial was measured at baseline and at four post-
randomization timepoints. The resulting data are an example of longitudinal data
with observations grouped by subjects. We describe the related datasets in more
detail in Sect. 2.2.

• Progressive Resistance Training (PRT) Trial: A clinical trial comparing low- and
high-intensity training for improving the muscle power in elderly people. For
each participant, characteristics of two types of muscle fibers were measured
at two occasions, pre- and post-training. The resulting data are an example of
clustered data, with observations grouped by subjects. We present more detailed
information about the dataset in Sect. 2.3.

• Study of Instructional Improvement (SII): An educational study aimed at as-
sessing improvement in mathematics grades of first-grade pupils, as compared
to their kindergarten achievements. It included pupils from randomly selected

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__2,
© Springer Science+Business Media New York 2013

11

12 2 Case Studies

classes in randomly selected elementary schools. The dataset is an example
of hierarchical data, with observations (pupils’ scores) grouped within classes,
which are themselves grouped in schools. We refer to Sect. 2.4 for more details
about the data.

• Flemish Community Attainment-Targets (FCAT) Study: An educational study,
in which elementary school graduates were evaluated with respect to reading
comprehension in Dutch. Pupils from randomly selected schools were assessed
for a set of nine attainment targets. The dataset is an example of grouped data,
for which the grouping factors are crossed. We describe the dataset in more detail
in Sect. 2.5.

The data from the ARMD study will be used throughout the book to illustrate
various classes of LMs and corresponding R tools. The remaining case studies will
be used in Part IV only, to illustrate R functions for fitting LMMs.

For each of the aforementioned case studies there is one or more datasets
included into the package nlmeU, which accompanies this book. In the next sections
of this chapter, we use the R syntax to describe the contents of these datasets. Results
of exploratory analyses of the case studies are presented in Chap. 3. Note that, unlike
in the other parts of the book, we are not discussing the code in much detail, as
the data-processing functionalities are not the main focus of our book. The readers
interested in the functionalities are referred to the monograph by Dalgaard (2008).

The R language is not particularly suited for data entry. Typically, researchers use
raw data created using other software. Data are then stored in external files, e.g., in
the .csv format, read into R, and prepared for the analysis. To emulate this situation,
we assume, for the purpose of this chapter, that the data are stored in a .csv-format
file in the “C:\temp” directory.

2.2 Age-Related Macular Degeneration Trial

The ARMD data arise from a randomized multi-center clinical trial comparing an
experimental treatment (interferon-a) versus placebo for patients diagnosed with
ARMD. The full results of this trial have been reported by Pharmacological Therapy
for Macular Degeneration Study Group (1997). We focus on the comparison
between placebo and the highest dose (6 million units daily) of interferon-a.

Patients with macular degeneration progressively lose vision. In the trial, vi-
sual acuity of each of 240 patients was assessed at baseline and at four post-
randomization timepoints, i.e., at 4, 12, 24, and 52 weeks. Visual acuity was
evaluated based on patient’s ability to read lines of letters on standardized vision
charts. The charts display lines of five letters of decreasing size, which the patient
must read from top (largest letters) to bottom (smallest letters). Each line with at
least four letters correctly read is called one “line of vision.” In our analyses, we
will focus on the visual acuity defined as the total number of letters correctly read.

2.2 Age-Related Macular Degeneration Trial 13

Another possible approach would be to consider visual acuity measured by the
number of lines correctly read. Note that the two approaches are closely linked,
as each line of vision contains five letters.

It follows that, for each of 240 patients, we have longitudinal data in the form
of up to five visual acuity measurements collected at different, but common to all
patients, timepoints. These data will be useful to illustrate the use of LMMs for
continuous, longitudinal data. We will also use them to present other classes of LMs
considered in our book.

2.2.1 Raw Data

We assume that the raw ARMD data are stored in the “C:\temp” directory in a .csv-
format file named armd240.data.csv. In what follows, we also assume that our
goal is to verify the contents of the data and prepare them for analysis in R.

In Panel R2.1, the data are loaded into R using the read.csv() function and
are stored in the data frame object armd240.data. Note that this data frame is not
included in the nlmeU package.

The number of rows (records) and columns (variables) in the object
armd240.data is obtained using the function dim(). The data frame contains 240
observations and 9 variables. The names of the variables are displayed using the
names() function. All the variables are of class integer. By applying the function
str(), we get a summary description of variables in the armd240.data data. In
particular, for each variable, we get its class and a listing of the first few values.

The variable subject contains patients’ identifiers. Treatment identifiers are
contained in the variable treat. Variables visual0, visual4, visual12, vi-
sual24, and visual52 store visual acuity measurements obtained at baseline and
week 4, 12, 24, and 52, respectively. Variables lesion and line0 contain additional
information, which will not be used for analysis in our book.

Finally, at the bottom of Panel R2.1, we list the first three rows of the data frame
armd240.data with the help of the head() function. To avoid splitting lines of
the output and to make the latter more transparent, we shorten variables’ names
using the abbreviate() function. After printing the contents of the first three rows
and before proceeding further, we reinstate the original names. Note that we apply a
similar sequence of R commands in many other R panels across the book to simplify
the displayed output.

Based on the output, we note that the data frame contains one record for each
patient. The record includes all information obtained for the patient. In particular,
each record contains five variables with visual acuity measurements, which are,
essentially, of the same format. This type of data storage, with one record per
subject, is called the “wide” format. An alternative is the “long” format with
multiple records per subject. We will discuss the formats in the next section.

14 2 Case Studies

R2.1 ARMD Trial: Loading raw data from a .csv-format file into the armd240.data
object and checking their contents

> dataDir <- file.path("C:", "temp") # Data directory

> fp <- # File path

+ file.path(dataDir, "armd240.data.csv")

> armd240.data <- # Read data

+ read.csv(fp, header = TRUE)

> dim(armd240.data) # No. of rows and cols

[1] 240 9

> (nms <- names(armd240.data)) # Variables' names

[1] "subject" "treat" "lesion" "line0" "visual0"

[6] "visual4" "visual12" "visual24" "visual52"

> unique(sapply(armd240.data, class)) # Variables' classes

[1] "integer"

> str(armd240.data) # Data structure

'data.frame': 240 obs. of 9 variables:

$ subject : int 1 2 3 4 5 6 7 8 9 10 ...

$ treat : int 2 2 1 1 2 2 1 1 2 1 ...

$ lesion : int 3 1 4 2 1 3 1 3 2 1 ...

$ line0 : int 12 13 8 13 14 12 13 8 12 10 ...

$ visual0 : int 59 65 40 67 70 59 64 39 59 49 ...

$ visual4 : int 55 70 40 64 NA 53 68 37 58 51 ...

$ visual12: int 45 65 37 64 NA 52 74 43 49 71 ...

$ visual24: int NA 65 17 64 NA 53 72 37 54 71 ...

$ visual52: int NA 55 NA 68 NA 42 65 37 58 NA ...

> names(armd240.data) <- abbreviate(nms) # Variables' names shortened

> head(armd240.data, 3) # First 3 records

sbjc tret lesn lin0 vsl0 vsl4 vs12 vs24 vs52

1 1 2 3 12 59 55 45 NA NA

2 2 2 1 13 65 70 65 65 55

3 3 1 4 8 40 40 37 17 NA

> names(armd240.data) <- nms # Variables' names reinstated

2.2.2 Data for Analysis

In this section, we describe auxiliary data frames, namely, armd.wide, armd0, and
armd, which were derived from armd240.data for the purpose of analyses of the
ARMD data that will be presented later in the book. The data frames are included
in the package nlmeU. In what follows, we present the structure, contents, and for
illustration purposes, how the data were created.

2.2 Age-Related Macular Degeneration Trial 15

2.2.2.1 Data in the “Wide” Format: The Data Frame armd.wide

Panel R2.2 presents the structure and the contents of the armd.wide data frame.
Note that the data are loaded into R using the data() function, without the

need for attaching the package nlmeU. The data frame contains 10 variables.
In particular, it includes variables visual0, visual4, visual12, visual24,
visual52, lesion, and line0, which are exactly the same as those in the
armd240.data. In contrast to the armd240.data data frame, it contains three
factors: subject, treat.f, and miss.pat. The first two contain patient’s identifier
and treatment. They are constructed from the corresponding numeric variables
available in armd240.data. The factor miss.pat is a new variable and contains
a missing-pattern identifier, i.e., a character string that indicates which of the four
post-randomization measurements of visual acuity are missing for a particular
patient. The missing values are marked by X. Thus, for instance, for the patient
with the subject identifier equal to 1, the pattern is equal to --XX, because there
is no information about visual acuity at weeks 24 and 52. On the other hand, for the
patient with the subject identifier equal to 6, there are no missing visual acuity

R2.2 ARMD Trial: The structure and contents of data frame armd.wide stored in
the “wide” format

> data(armd.wide, package = "nlmeU") # armd.wide loaded

> str(armd.wide) # Structure of data

'data.frame': 240 obs. of 10 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

. . . [snip]
$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...

> head(armd.wide) # First few records

subject lesion line0 visual0 visual4 visual12 visual24

1 1 3 12 59 55 45 NA

. . . [snip]
6 6 3 12 59 53 52 53

visual52 treat.f miss.pat

1 NA Active --XX

. . . [snip]
6 42 Active ----

> (facs <- sapply(armd.wide, is.factor)) # Factors indicated

subject lesion line0 visual0 visual4 visual12 visual24

TRUE FALSE FALSE FALSE FALSE FALSE FALSE

visual52 treat.f miss.pat

FALSE TRUE TRUE

> names(facs[facs == TRUE]) # Factor names displayed

[1] "subject" "treat.f" "miss.pat"

16 2 Case Studies

measurements, and hence the value of the miss.pat factor is equal to ----. At the
bottom of Panel R2.2, we demonstrate how to extract the names of the factors from
a data frame.

Panel R2.3 presents the syntax used to create factors treat.f and miss.pat

in the armd.wide data frame. The former is constructed in Panel R2.3a from the
variable treat from the data frame armd240.data using the function factor().
The factor treat.f has two levels, Placebo and Active, which correspond to the
values of 1 and 2, respectively, of treat.

The factor miss.pat is constructed in Panel R2.3b with the help of the function
missPat() included in the nlmeU package. The function returns a character vector
of length equal to the number of rows of the matrix created by column-wise
concatenation of the vectors given as arguments to the function. The elements of the
resulting vector indicate the occurrence of missing values in the rows of the matrix.
In particular, the elements are character strings of the length equal to the number
of the columns (vectors). As shown in Panel R2.2, the strings contain characters
“-” and “X”, where the former indicates a nonmissing value in the corresponding
column of the matrix, while the latter indicates a missing value. Thus, application

R2.3 ARMD Trial: Construction of factors treat.f and miss.pat in the data frame
armd.wide. The data frame armd240.datawas created in Panel R2.1
(a) Factor treat.f

> attach(armd240.data) # Attach data

> treat.f <- # Factor created

+ factor(treat, labels = c("Placebo", "Active"))

> levels(treat.f) # (1) Placebo, (2) Active

[1] "Placebo" "Active"

> str(treat.f)

Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 1 2 1 ...

(b) Factor misspat

> miss.pat <- # Missing patterns

+ nlmeU:::missPat(visual4, visual12, visual24, visual52)

> length(miss.pat) # Vector length

[1] 240

> mode(miss.pat) # Vector mode

[1] "character"

> miss.pat # Vector contents

[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "----"

. . . [snip]
[233] "----" "----" "----" "----" "----" "----" "----" "----"

> detach(armd240.data) # Detach armd240.data

2.2 Age-Related Macular Degeneration Trial 17

of the function to variables visual4, visual12, visual24, and visual52 from
the data frame armd240.data results in a character vector of length 240 with
strings containing four characters as the elements. The elements of the resulting
miss.pat vector indicate that, for instance, for the first patient in the data frame
armd240.data visual acuity measurements at week 24 and 52 were missing, while
for the fifth patient, no visual acuity measurements were obtained at any post-
randomization visit.

Note that we used the nlmeU:::missPat() syntax, which allowed us to invoke
the missPat() function without attaching the nlmeU package.

2.2.2.2 Data in the “Long” Format: The Data Frame armd0

In addition to the armd.wide data stored in the “wide” format, we will need data
in the “longitudinal” (or “long”) format. In the latter format, for each patient, there
are multiple records containing visual acuity measurements for separate visits. An
example of data in “long” format is stored in the data frame armd0. It was obtained
from the armd.wide data using functions melt() and cast() from the package
reshape (Wickham, 2007).

Panel R2.4 presents the contents and structure of the data frame armd0. The
data frame includes eight variables and 1,107 records. The contents of variables
subject, treat.f, and miss.pat are the same as in armd.wide, while visual0
contains the value of the visual acuity measurement at baseline. Note that the values
of these four variables are repeated across the multiple records corresponding to a
particular patient. On the other hand, the records differ with respect to the values of
variables time.f, time, tp, and visual. The first three of those four variables are
different forms of an indicator of the visit time, while visual contains the value
of the visual acuity measurement at the particular visit. We note that having three
variables representing time visits is not mandatory, but we created them to simplify
the syntax used for analyses in later chapters.

The numerical variable time provides the actual week, at which a particular
visual acuity measurement was taken. The variable time.f is a corresponding
ordered factor, with levels Baseline, 4wks, 12wks, 24wks, and 52wks. Finally, tp
is a numerical variable, which indicates the position of the particular measurement
visit in the sequence of the five possible measurements. Thus, for instance, tp=0 for
the baseline measurement and tp=4 for the fourth post-randomization measurement
at week 52.

Interestingly enough, visual acuity measures taken at baseline are stored both in
visual0 and in selected rows of the visual variables. This structure will prove
useful when creating the armd data frame containing rows with post-randomization
visual acuity measures, while keeping baseline values.

The “long” format is preferable for storing longitudinal data over the “wide”
format. We note that storing of the visual acuity measurements in the data frame
armd.wide requires the use of six variables, i.e., subject and the five variables
containing the values of the measurements. On the other hand, storing the same

18 2 Case Studies

R2.4 ARMD Trial: The structure and contents of the data frame armd0 stored in the
“long” format

> data(armd0, package = "nlmeU") # From nlmeU package

> dim(armd0) # No. of rows and cols

[1] 1107 8

> head(armd0) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

1 1 Active 59 --XX Baseline 0 59 0

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

4 2 Active 65 ---- Baseline 0 65 0

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

> names(armd0) # Variables' names

[1] "subject" "treat.f" "visual0" "miss.pat" "time.f"

[6] "time" "visual" "tp"

> str(armd0) # Data structure

'data.frame': 1107 obs. of 8 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 1 1 2 2 2 ...

$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 2 2 2 2 2 ...

$ visual0 : int 59 59 59 65 65 65 65 65 40 40 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 4 4 1 1 1 1 1 ...

$ time.f : Ord.factor w/ 5 levels "Baseline"<"4wks"<..: 1 2 3 1 ...

$ time : num 0 4 12 0 4 12 24 52 0 4 ...

$ visual : int 59 55 45 65 70 65 65 55 40 40 ...

$ tp : num 0 1 2 0 1 2 3 4 0 1 ...

information in the data frame armd0 requires only three variables, i.e., subject,
time, and visual. Of course, this is achieved at the cost of including more rows in
the armd0 data frame, i.e., 1,107, as compared to 240 records in armd.wide.

We also note that variables, with values invariant within subjects, such as
treat.f, visual0, are referred to as time-fixed. In contrast, time, tp, and visual

are called time-varying. This distinction will have important implications for the
specification of the models and interpretation of the results.

2.2.2.3 Subsetting Data in the “Long” Format: The Data Frame armd

Data frame armd was also stored in a “long” format and was created from the
armd0 data frame by omitting records corresponding to the baseline visual acuity
measurements.

Panel R2.5 presents the syntax used to create the data frame armd. In particular,
the function subset() is used to remove the baseline measurements, by selecting

2.2 Age-Related Macular Degeneration Trial 19

R2.5 ARMD Trial: Creation of the data frame armd from armd0

> auxDt <- subset(armd0, time > 0) # Post-baseline measures

> dim(auxDt) # No. of rows & cols

[1] 867 8

> levels(auxDt$time.f) # Levels of treat.f

[1] "Baseline" "4wks" "12wks" "24wks" "52wks"

> armd <- droplevels(auxDt) # Drop unused levels

> levels(armd$time.f) # Baseline level dropped

[1] "4wks" "12wks" "24wks" "52wks"

> armd <- # Data modified

+ within(armd,

+ {

+ contrasts(time.f) <- # Contrasts assigned

+ contr.poly(4, scores = c(4, 12, 24, 52))

+ })

> head(armd) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

7 2 Active 65 ---- 24wks 24 65 3

8 2 Active 65 ---- 52wks 52 55 4

only the records, for which time>0, from the object armd0. By removing the base-
line measurements, we reduce the number of records from 1,107 (see Panel R2.4)
to 867.

While subsetting the data, care needs to be taken regarding the levels of the
time.f and, potentially, other factors. In the data frame armd0, the factor had
five levels. In Panel R2.5, we extract the factor time.f from the auxiliary data
frame auxDt. Note that, in the data frame, the level Baseline is not used in any
of the rows. For many functions in R it would not be a problem, but sometimes
the presence of an unused level in the definition of a factor may lead to unexpected
results. Therefore, it is prudent to drop the unused level from the definition of the
time.f factor, by applying the function droplevels(). It is worth noting that,
using the droplevels() function, the number of levels of the factors subject and
miss.pat is also affected (not shown).

After modifying the aforementioned factors, we store the resulting data in the
data frame armd. We also assign orthogonal polynomial contrasts to the factor
time.f using syntax of the form “contrasts(factor)<-contr.function”. We will
revisit the issue of assigning contrasts to a factor in Panel R5.9 (Sect. 5.3.2).

The display of the first six records of armd in Panel R2.5 confirms that the data do
not include the records corresponding to the baseline measurements of visual acuity.

20 2 Case Studies

Of course, the information about the values of the measurements is still available in
the variable visual0.

Both data frames armd0 and armd, introduced in this section, are stored in “long”
format. The armd0 will be primarily used for exploratory data analyses (Sect. 3.2).
On the other hand, armd will be the primary data frame used for the analyses
throughout the entire book.

2.3 Progressive Resistance Training Study

The PRT data originate from a randomized trial aimed for devising evidence-based
methods for improving and measuring the mobility and muscle power of elderly
men and women in the 70+ age category (Claflin et al., 2011). The working
hypothesis was that a 12-week program of PRT would increase: (a) the power output
of the overall musculature associated with movements of the ankles, knees, and
hips; (b) the cross-sectional area and the force and power of permeabilized single
fibers obtained from the vastus lateralis muscle; and (c) the ability of young and
elderly men and women to safely arrest standardized falls. The training consisted
of repeated leg extensions by shortening contractions of the leg extensor muscles
against a resistance that was increased as the subject trained using a specially
designed apparatus.

In the trial, healthy young (21–30 years) and older (65–80 years) male and female
subjects were randomized between a “high” and “low” intensity of a 12-week PRT
intervention. Randomization was stratified by age group (young or old) and sex. In
total, the dataset used in our book includes 63 subjects.

For each subject, multiple measurements characterizing two types of muscle
fibers were obtained before and after the 12-week PRT. The resulting data are thus an
example of clustered data. In particular, the measurements for a given characteristic
of muscle fibers for each subject correspond to a 2× 2 factorial design, with fiber
type (1, 2) and occasion (pre-training, post-training) as the two design factors, which
has important implications for the data analysis (Chap. 17).

2.3.1 Raw Data

We assume that subjects’ characteristics and experimental measurements
are contained in external files named prt.subjects.data.csv and
prt.fiber.data.csv, respectively.

In Panel R2.6, we present the syntax for loading and inspecting the two
datasets. As can be seen from the output presented in Panel R2.6a, the file
prt.subjects.data.csv contains information about 63 subjects, with one record
per subject. It includes one character variable and five numeric variables, three of
which are integer-valued. The variable id contains subjects’ identifiers, gender

2.3 Progressive Resistance Training Study 21

R2.6 PRT Trial: Loading raw data from .csv files into objects prt.subjects.data
and prt.fiber.data. The object dataDir was created in Panel R2.1
(a) Loading and inspecting data from the prt.subjects.data.csv file

> fp <- file.path(dataDir, "prt.subjects.data.csv")

> prt.subjects.data <- read.csv(fp, header = TRUE, as.is = TRUE)

> dim(prt.subjects.data)

[1] 63 6

> names(prt.subjects.data)

[1] "id" "gender" "ageGrp" "trainGrp" "height"

[6] "weight"

> str(prt.subjects.data)

'data.frame': 63 obs. of 6 variables:

$ id : int 5 10 15 20 25 35 45 50 60 70 ...

$ gender : chr "F" "F" "F" "F" ...

$ ageGrp : int 0 0 1 1 1 0 0 1 0 0 ...

$ trainGrp: int 0 1 1 1 1 0 0 0 0 1 ...

$ height : num 1.56 1.71 1.67 1.55 1.69 1.69 1.72 1.61 1.71 ...

$ weight : num 61.9 66 70.9 62 79.1 74.5 89 68.9 62.9 68.1 ...

> head(prt.subjects.data, 4)

id gender ageGrp trainGrp height weight

1 5 F 0 0 1.56 61.9

2 10 F 0 1 1.71 66.0

3 15 F 1 1 1.67 70.9

4 20 F 1 1 1.55 62.0

(b) Loading and inspecting data from the prt.fiber.data.csv file

> fp <- file.path(dataDir, "prt.fiber.data.csv")

> prt.fiber.data <- read.csv(fp, header = TRUE)

> str(prt.fiber.data)

'data.frame': 2471 obs. of 5 variables:

$ id : int 5 5 5 5 5 5 5 5 5 5 ...

$ fiber.type : int 1 1 2 1 2 1 1 1 2 1 ...

$ train.pre.pos: int 0 0 0 0 0 0 0 0 0 0 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 ...

$ spec.fo : num 83.5 132.8 161.1 158.8 117.9 ...

> head(prt.fiber.data, 4)

id fiber.type train.pre.pos iso.fo spec.fo

1 5 1 0 0.265 83.5

2 5 1 0 0.518 132.8

3 5 2 0 0.491 161.1

4 5 1 0 0.718 158.8

22 2 Case Studies

identifies sex, ageGrp indicates the age group, and trainGrp identifies the study
group. Finally, height and weight contain the information of subjects’ height and
weight at baseline.

Note that the as.is argument used in the read.csv() function is set to TRUE.
Consequently, it prevents the creation of a factor from a character variable. This
applies to the gender variable, which is coded using the “F” and “M” characters.

The output in Panel R2.6b presents the contents of the file
prt.fiber.data.csv. The file contains 2,471 records corresponding to individual
muscle fibers. It includes five numeric variables, three of which are integer-valued.
The variable id contains subjects’ identifiers, fiber.type identifies the type of
fiber, while train.pre.pos indicates whether the measurement was taken pre- or
post-training. Finally, iso.fo and spec.fo contain the measured values of two
characteristics of muscle fibers. These two variables will be treated as outcomes of
interest in the analyses presented in Part IV of the book.

2.3.2 Data for Analysis

In Panels R2.7 and R2.8, we present the syntax used to create the prt dataset that
will be used for analysis.

First, in Panel R2.7, we prepare data for merging. Specifically, in Panel R2.7a,
we create the data frame prt.subjects, corresponding to prt.subjects.data,
with several variables added and modified. Toward this end, we use the
function within(), which applies all the modifications to the data frame
prt.subjects.data. In particular, we replace the variable id by a corresponding
factor. We also define the numeric variable bmi, which contains subject’s body mass
index (BMI), expressed in units of kg/m2. Moreover, we create the factors sex.f,
age.f, and prt.f, which correspond to the variables gender, ageGrp, and train-
Grp, respectively. Finally, we remove the variables weight, height, trainGrp,
ageGrp, and gender, and store the result as the data frame prt.subjects. The
contents of the data frame is summarized using the str() function.

In Panel R2.7b, we create the data frame prt.fiber. It corresponds to
prt.fiber.data, but instead of the variables fiber.type and train.pre.pos,
it includes the factors fiber.f and occ.f. Also, a subject’s identifier id is stored
as a factor.

In Panel R2.8, we construct the data frame prt by merging the data frames
prt.subjects and prt.fiber created in Panel R2.7. As a result, we obtain data
stored in the “long” format with 2,471 records and nine variables. The contents of
the first six rows of the data frame prt are displayed with the help of the head()

function.

2.3 Progressive Resistance Training Study 23

R2.7 PRT Trial: Construction of the data frame prt. Creating data frames
prt.subjects and prt.fiber containing subjects’ and fiber measurements. Data
frames prt.subjects.data and prt.fiber.datawere created in Panel R2.6
(a) Subjects’ characteristics

> prt.subjects <-

+ within(prt.subjects.data,

+ {

+ id <- factor(id)

+ bmi <- weight/(height^2)

+ sex.f <- factor(gender, labels = c("Female", "Male"))

+ age.f <- factor(ageGrp, labels = c("Young", "Old"))

+ prt.f <-

+ factor(trainGrp, levels = c("1", "0"),

+ labels = c("High", "Low"))

+ gender <- ageGrp <- trainGrp <- height <- weight <- NULL

+ })

> str(prt.subjects)

'data.frame': 63 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 2 3 4 5 6 7 8 9 ...

$ prt.f: Factor w/ 2 levels "High","Low": 2 1 1 1 1 2 2 2 2 1 ...

$ age.f: Factor w/ 2 levels "Young","Old": 1 1 2 2 2 1 1 2 1 1 ...

$ sex.f: Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 2 1 2 2 ...

$ bmi : num 25.4 22.6 25.4 25.8 27.7 ...

(b) Fiber measurements

> prt.fiber <-

+ within(prt.fiber.data,

+ {

+ id <- factor(id)

+ fiber.f <-

+ factor(fiber.type, labels = c("Type 1", "Type 2"))

+ occ.f <-

+ factor(train.pre.pos, labels = c("Pre", "Pos"))

+ fiber.type <- train.pre.pos <- NULL

+ })

> str(prt.fiber)

'data.frame': 2471 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 1 1 1 1 1 1 1 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 0.792 ...

$ spec.fo: num 83.5 132.8 161.1 158.8 117.9 ...

$ occ.f : Factor w/ 2 levels "Pre","Pos": 1 1 1 1 1 1 1 1 1 1 ...

$ fiber.f: Factor w/ 2 levels "Type 1","Type 2": 1 1 2 1 2 1 1 1 ...

24 2 Case Studies

R2.8 PRT Trial: Construction of the data frame prt by merging prt.subjects

with prt.fiber containing subjects’ and fiber data. Data prt.subjects and
prt.fiber were created in Panel R2.7

> prt <- merge(prt.subjects, prt.fiber, sort = FALSE)

> dim(prt)

[1] 2471 9

> names(prt)

[1] "id" "prt.f" "age.f" "sex.f" "bmi" "iso.fo"

[7] "spec.fo" "occ.f" "fiber.f"

> head(prt)

id prt.f age.f sex.f bmi iso.fo spec.fo occ.f fiber.f

1 5 Low Young Female 25.436 0.265 83.5 Pre Type 1

2 5 Low Young Female 25.436 0.518 132.8 Pre Type 1

3 5 Low Young Female 25.436 0.491 161.1 Pre Type 2

4 5 Low Young Female 25.436 0.718 158.8 Pre Type 1

5 5 Low Young Female 25.436 0.160 117.9 Pre Type 2

6 5 Low Young Female 25.436 0.410 87.8 Pre Type 1

2.4 The Study of Instructional Improvement Project

The SII was carried out to assess the math achievement scores of first- and
third-grade pupils in randomly selected classrooms from a national US sample of
elementary schools (Hill et al., 2005). The dataset includes results for 1,190 first-
grade pupils sampled from 312 classrooms in 107 schools.

The SII data exhibit a hierarchical structure. That is, pupils are grouped in
classes, which, in turn, are grouped within schools. This structure implies that, e.g.,
scores for pupils from the same class are likely correlated. The correlation should
be taken into account in the analysis.

2.4.1 Raw Data

As a starting point, we use the data frame classroom, which can be found in the
WWGbook package.

In Panel R2.9, we investigate the structure and contents of the data frame. As it
can be seen from the results of application of the dim() function, the data frame
contains 1,190 records and 12 variables.

The names of the variables are listed with the help of the names() function. The
contents of the variables, described on p. 118 of the book by West et al. (2007), are
as follows:

2.4 The Study of Instructional Improvement Project 25

R2.9 SII Project: The structure and contents of the data frame classroom from the
WWGbook package

> data(classroom, package = "WWGbook")

> dim(classroom) # Number of rows & variables

[1] 1190 12

> names(classroom) # Variable names

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "yearstea" "mathknow" "housepov" "mathprep" "classid"

[11] "schoolid" "childid"

> classroom # Raw data

sex minority mathkind mathgain ses yearstea mathknow

1 1 1 448 32 0.46 1 NA

2 0 1 460 109 -0.27 1 NA

3 1 1 511 56 -0.03 1 NA

. . . [snip]
1189 0 0 473 44 -0.03 25 0.50

1190 1 0 453 69 -0.37 25 0.50

housepov mathprep classid schoolid childid

1 0.082 2.00 160 1 1

2 0.082 2.00 160 1 2

3 0.082 2.00 160 1 3

. . . [snip]
1189 0.177 2.00 239 107 1189

1190 0.177 2.00 239 107 1190

> str(classroom)

'data.frame': 1190 obs. of 12 variables:

$ sex : int 1 0 1 0 0 1 0 0 1 0 ...

$ minority: int 1 1 1 1 1 1 1 1 1 1 ...

$ mathkind: int 448 460 511 449 425 450 452 443 422 480 ...

$ mathgain: int 32 109 56 83 53 65 51 66 88 -7 ...

$ ses : num 0.46 -0.27 -0.03 -0.38 -0.03 0.76 -0.03 0.2 0.64 ...

$ yearstea: num 1 1 1 2 2 2 2 2 2 2 ...

$ mathknow: num NA NA NA -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 ...

$ housepov: num 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 ...

$ mathprep: num 2 2 2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 ...

$ classid : int 160 160 160 217 217 217 217 217 217 217 ...

$ schoolid: int 1 1 1 1 1 1 1 1 1 1 ...

$ childid : int 1 2 3 4 5 6 7 8 9 10 ...

• School-level variables:

– schoolid: school’s ID number
– housepov: % of households in the neighborhood of the school below the

poverty level

26 2 Case Studies

• Classroom-level variables:

– classid: classroom’s ID number
– yearstea: years of teacher’s experience in teaching in the first grade
– mathprep: the number of preparatory courses on the first-grade math contents

and methods followed by the teacher
– mathknow: teacher’s knowledge of the first-grade math contents (higher

values indicate a higher knowledge of the contents)

• Pupil-level variables:

– childid: pupil’s ID number
– mathgain: pupil’s gain in the math achievement score from the spring of

kindergarten to the spring of first grade
– mathkind: pupil’s math score in the spring of the kindergarten year
– sex: an indicator variable for sex
– minority: an indicator variable for the minority status
– ses: pupil’s socioeconomic status

The outcome of interest is contained in the variable mathgain.
The abbreviated display of the contents of the classroom data frame shows that

the data are stored with one record for each pupil. The output of the str() function
indicates that the variables, contained in the data frame, are all either numeric or
integer-valued. Note, however, that we do not have information about, e.g., the
number of distinct levels of the integer-valued variables.

2.4.2 Data for Analysis

In the analyses presented later in the book, we will be using the data frame SIIdata,
which is included in the nlmeU package. It was constructed from the data frame
classroom using the syntax shown in Panel R2.10.

Essentially, the data frame SIIdata contains all the variables from
classroom. However, variables sex, minority, schoolid, classid, and chil-

did are replaced by corresponding factors. Note that, in Panel R2.10, we illustrate
various forms of the syntax for the function factor(), which can be used to create
a factor. In this way, we can explain the process of construction of a factor in more
detail.

For the variable sex, we explicitly use both the levels and labels arguments
of the function factor(). In this way, we fully control the mapping of the values
of the original variable to the factor levels and to their labels. In the syntax shown in
Panel R2.10, the value 0 of the variable sex from the classroom data is considered
the first level and is assigned the label M. On the other hand, the value 1 is considered
the second level and is labeled F.

2.4 The Study of Instructional Improvement Project 27

R2.10 SII Project: Creation of the data frame SIIdata from the classroom data

> SIIdata <-

+ within(classroom,

+ {

+ sex <- # 0 -> 1(M), 1 -> 2(F)

+ factor(sex, levels = c(0, 1), labels = c("M", "F"))

+ minority <- # 0 -> 1(No), 1 -> 2(Yes)

+ factor(minority, labels = c("Mnrt:No", "Mnrt:Yes"))

+ schoolid <- factor(schoolid)

+ classid <- factor(classid)

+ childid <- factor(childid)

+ })

> str(SIIdata)

'data.frame': 1190 obs. of 12 variables:

$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 2 1 1 2 1 ...

$ minority: Factor w/ 2 levels "Mnrt:No","Mnrt:Yes": 2 2 2 2 2 2 ...

. . . [snip]
$ classid : Factor w/ 312 levels "1","2","3","4",..: 160 160 160 ...

$ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 1 1 1 1 1 ...

$ childid : Factor w/ 1190 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

It is worth noting that, in the printout of the structure of SIIdata, the variable
sex is defined as a factor with two levels: M (first) and F (second). In the listing of
the first values of the variable, obtained using the str() function, we only see the
numerical representation (the ranks) of the levels, i.e., 1 or 2. Thus, the information
about the coding, 0 and 1, of the original variable sex from the classroom data
frame is lost. Of course, if needed, we could recover it based on the specified value
of the levels argument.

For the variable minority, we only use the labels argument of the function
factor(). Thus, by default, the levels argument is obtained by taking the unique
values of the variable, i.e., 0 and 1; representing them as characters “0” and “1”,
respectively; and then sorting them according to an increasing order of the numeric
values of the variable. Thus, the assumed (ordered) levels are “0” (first) and “1”
(second). Subsequently, the labels argument assigns the label "Mnrt:No" to the
first level (“0”) and "Mnrt:Yes" to the second level (“1”). In the printout of the
structure of SIIdata, the listing of the first values of minority includes only the
value 2, i.e., the second level. Hence, we could conclude that, in the classroom

data frame, the numeric value of minority for the first observations was equal to
1, which is in agreement with the printout shown in Panel R2.9.

When converting variables schoolid, childid, and classid into factors, we
use neither the levels nor labels argument. Thus, by default, the levels of the
constructed factors are defined by taking the unique numeric values of each of the
variables, representing the values as character strings, and sorting the strings in an

28 2 Case Studies

R2.11 SII Project: Saving the SIIdata data in an external file

> rdaDir <- file.path("C:", "temp") # Dir path

> fp <- file.path(rdaDir, "SIIdata.Rdata") # External file path

> save(SIIdata, file = fp) # Save data

> file.exists(fp)

[1] TRUE

> (load(fp)) # Load data

[1] "SIIdata"

increasing order according to the numeric values. On the other hand, the labels
are defined, by default, as equal to the (character) levels of the factor. Hence, for
instance, for the variable schoolid, the ordered (character) levels are “1”, “2”, . . .,
“107”, with the same sequence used to create the corresponding set of labels (see
Panel R2.10).

For illustration purposes, in Panel R2.11, we present a syntax that allows saving
data in an external file for later use and then loading them back from that file. It is
recommended to perform these steps at the end of an R session. In our book, we do
not have to do it, because the data are already saved in the nlmeU package.

2.4.3 Data Hierarchy

In practice, we often want to verify whether identifying variables, contained in
a dataset, were properly coded, so that they correctly reflect the intended data
hierarchy. In this section, we present the R tools that can be used for this purpose.
As an example, we use the data stored in the data frame SIIdata. In this way, we
provide additional information about the structure of the data frame.

Toward this end, we create, in Panel R2.12, an auxiliary data frame dtId,
which contains the school, class, and pupil identifiers from SIIdata. We then
apply the function duplicated() to the auxiliary data frame. The function looks
for duplicated rows in the data frame and returns a logical vector that indicates
which rows are duplicates. By applying the function any() to the resulting logical
vector, we check if any of the elements of the vector contains the logical value of
TRUE. It turns out that there are no such elements, i.e., that there are no duplicated
combinations of the three identifiers in the SIIdata data frame. This indicates that
individual pupils in the data are uniquely identified by these variables, as intended.

Next, we apply the function gsummary() from the package nlme. The function
provides a summary of variables, contained in a data frame, by groups of rows. In
particular, the function can be used to determine whether there are variables that
are invariant within the groups. Note that the groups are defined by the factors
specified on the right-hand side of the formula specified in the argument form (more
information on the use of formulae in R will be provided in Chap. 5).

2.4 The Study of Instructional Improvement Project 29

R2.12 SII Project: Investigation of the data hierarchy in the data frame SIIdata

> data(SIIdata, package = "nlmeU") # Load data

> dtId <- subset(SIIdata, select = c(schoolid, classid, childid))

> names(dtId) # id names

[1] "schoolid" "classid" "childid"

> any(duplicated(dtId)) # Any duplicate ids?

[1] FALSE

> require(nlme)

> names(gsummary(dtId, form = ~childid, inv = TRUE))

[1] "schoolid" "classid" "childid"

> names(gsummary(dtId, form = ~classid, inv = TRUE))

[1] "schoolid" "classid"

> names(gsummary(dtId, form = ~schoolid, inv = TRUE))

[1] "schoolid"

We first apply the function gsummary() to the data frame dtId, with groups
defined by childid. We also use the argument inv = TRUE. This means that
only those variables, which are invariant within each group, are to be summarized.
By applying the function names() to the data frame returned by the function
gsummary(), we learn that, within the rows sharing the same value of childid,
the values of variables schoolid and classid are also constant. In other words,
variable childid is inner to both classid and schoolid. In particular, this
implies that no pupil is present in more than one class or school. Hence, we can say
that pupils are nested within both schools and classes. If some pupils were enrolled
in, e.g., more than one class, then we could say that pupils were crossed with classes.
In such case, the values of the classid identifier would not be constant within the
groups defined by the levels of the childid variable.

Application of the function gsummary() to the data frame dtId with groups
defined by classid allows us to conclude that, within the rows sharing the same
value of classid, the values of schoolid are also constant. This confirms that, in
the data, classes are coded as nested within schools. Equivalently, we can say that
the variable classid is inner to schoolid.

Finally, there are no invariant identifiers within the groups of rows defined by the
same value of schoolid, apart from schoolid itself.

In a similar fashion, in Panel R2.13, we use the function gsummary() to
investigate, which covariates are defined at the school, class, or pupil level. In
Panel R2.13a, we apply the function to the data frame SIIdata, with groups defined
by schoolid. The displayed result of the function names() implies that the values
of the variable housepov are constant (invariant) within the groups of rows with the
same value of schoolid. Hence, housepov is the only school-level covariate, in
accordance with the information given in Sect. 2.4.1.

In Panel R2.13b, we apply the function gsummary() with groups defined by
classid. We store the names of invariant variables in the character vector nms2a.

30 2 Case Studies

R2.13 SII Project: Identification of school-, class-, and pupil-level variables in the
data frame SIIdata
(a) School-level variables

> (nms1 <-

+ names(gsummary(SIIdata,

+ form = ~schoolid, # schoolid-specific

+ inv = TRUE)))

[1] "housepov" "schoolid"

(b) Class-level variables

> nms2a <-

+ names(gsummary(SIIdata,

+ form = ~classid, # classid- and schoolid-specific

+ inv = TRUE))

> idx1 <- match(nms1, nms2a)

> (nms2 <- nms2a[-idx1]) # classid-specific

[1] "yearstea" "mathknow" "mathprep" "classid"

(c) Pupil-level variables

> nms3a <-

+ names(gsummary(SIIdata,

+ form = ~childid, # All

+ inv = TRUE))

> idx12 <- match(c(nms1, nms2), nms3a)

> nms3a[-idx12] # childid-specific

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "childid"

We identify the names of variables, which are constant both at the school and class
level, by matching the elements of vectors nms1 and nms2a. After removing the
matching elements from the vector nms2a, we store the result in the vector nms2.
The latter vector contains the names of variables, which are invariant at the class
level, namely, yearstea, mathknow, and mathprep.

Finally, in Panel R2.13c, we look for pupil-level variables. The syntax is similar
to the one used in R2.13b. As a result, we identify variables sex, minority,
mathkind, mathgain, and ses, again consistent with variables listed in Sect. 2.4.1.

Considerations, presented in Panel R2.13, aimed at identifying grouping factor(s)
for which a given covariate is invariant. The resulting conclusions have important
implications for computations of the number of denominator degrees of freedom
for the conditional F-tests applied to fixed effects in LMMs (see Sect. 14.7 and
Panel R18.5 in Sect. 18.2.2).

2.5 The Flemish Community Attainment-Targets Study 31

2.4.3.1 Explicit and Implicit Nesting

The SIIdata data frame is an example of data having nested structure. This
structure, with classes being nested within schools, can be represented in the data in
two different ways, depending on how the two relevant factors, namely, schoolid
and classid, are coded.

First, we consider the case when the levels of classid are explicitly coded
as nested within the levels of the schoolid grouping factor. This way of coding
is referred to as explicit nesting and is consistent with that used in SIIdata, as
shown in Panel R2.12. More specifically, the nesting was accomplished by using
different levels of the classid factor for different levels of the schoolid factor.
Consequently, the intended nested structure of data is explicitly reflected by the
levels of the factors. This is the preferred and natural approach.

The nested structure could also be represented by using crossed grouping factors.
Taking the SIIdata data as an example, we might consider the case when, by
mistake or for any other reason, two different classrooms from two different schools
would have the same code. In such a situation, and without any additional informa-
tion about the study design, the factors would be incorrectly interpreted as (partially)
crossed. To specify the intended nested structure, we would need to cross schoolid
and classid factors using, e.g., the command factor(schoolid:classid).
The so-obtained grouping factor, together with schoolid, would specify the
desired nested structure. Such an approach to data coding is referred to as implicit
nesting.

Although the first way of representing the nested structure is simpler and more
natural, it requires caution when coding the levels of grouping factors. The second
approach is more inclusive, in the sense that it can be used both for crossed and
nested factors.

We raise the issue of the different representations of nested data because it has
important implications for a specification of an LMM. We will revisit this issue in
Chap. 15.

2.5 The Flemish Community Attainment-Targets Study

The FCAT data results from an educational study, in which elementary-school
graduates were evaluated with respect to reading comprehension in Dutch. The
evaluation was based on a set of attainment targets, which were issued by the
Flemish Community in Belgium. These attainment targets can be characterized
by the text type and by the level of processing. We use data which consist of the
responses of a group of 539 pupils from 15 schools who answered 57 items assumed
to measure nine attainment targets. In Table 2.1, the nine attainment targets are
described by the type of text and by the level of processing. In addition, we indicate
the number of items that were used to measure each one of the targets.

32 2 Case Studies

Table 2.1 FCAT Study: FCAT Study: Attainment targets for reading
comprehension in Dutch. Based on Janssen et al. (2000). Reproduced with
permission from the copyright owner

Target Text type
Level of
processing

No. of
items

1 Instructions Retrieving 4
2 Articles in magazine Retrieving 6
3 Study material Structuring 8
4 Tasks in textbook Structuring 5
5 Comics Structuring 9
6 Stories, novels Structuring 6
7 Poems Structuring 8
8 Newspapers for children, textbooks,

encyclopedias
Evaluating 6

9 Advertising material Evaluating 5

These data were analyzed previously by, e.g., Janssen et al. (2000) and Tibaldi
et al. (2007). In our analyses we will use two types of outcomes. First, we will
consider total target scores, i.e., the sum of all positive answers for a target. Second,
we will consider average target scores, i.e., the sum of all positive answers for a
category divided by the number of items within the target. In both cases, we will
treat the outcome as a continuous variable.

2.5.1 Raw Data

We assume that the raw data for the FCAT study are stored in an external file named
crossreg.data.csv.

In Panel R2.14, we present the syntax for loading and inspecting the data. As seen
from the output presented in the panel, the file crossreg.data.csv contains 4,851
records and three variables. The variable id contains pupils’ identifiers, target
identifies the attainment targets (see Table 2.1), and scorec provides the total target
score for a particular pupil. Note that the data are stored using the “long” format,
with multiple records per pupil.

In Panel R2.15, we investigate the contents of the crossreg.datadata frame in
more detail. In particular, by applying the function unique() to each of the three
variables contained in the data frame, we conclude that there are 539 unique values
for id, nine unique values for target, and 10 unique values for scorec. Thus,
the data frame includes scores for nine targets for each of 539 pupils. Note that
9× 539 =4,851, i.e., the total number of records (rows). Because the maximum
number of items for a target is nine (see Table 2.1), the variable scorec contains
integer values between 0 and 9.

2.5 The Flemish Community Attainment-Targets Study 33

R2.14 FCAT Study: Loading raw data from the .csv file into the object cross-
reg.data. The object dataDir was created in Panel R2.1

> fp <- file.path(dataDir, "crossreg.data.csv")

> crossreg.data <- read.csv(fp, header = TRUE)

> dim(crossreg.data) # No. of rows and columns

[1] 4851 3

> names(crossreg.data) # Variable names

[1] "target" "id" "scorec"

> head(crossreg.data) # First six records

target id scorec

1 1 1 4

2 2 1 6

3 3 1 4

4 4 1 1

5 5 1 7

6 6 1 6

> str(crossreg.data) # Data structure

'data.frame': 4851 obs. of 3 variables:

$ target: int 1 2 3 4 5 6 7 8 9 1 ...

$ id : int 1 1 1 1 1 1 1 1 1 2 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

R2.15 FCAT Study: Inspection of the contents of the raw data. The data frame
cressreg.datawas created in Panel R2.14

> unique(crossreg.data$target) # Unique values for target

[1] 1 2 3 4 5 6 7 8 9

> (unique(crossreg.data$id)) # Unique values for id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . [snip]
[526] 526 527 528 529 530 531 532 533 534 535 536 537 538 539

> unique(crossreg.data$scorec) # Unique values for scorec

[1] 4 6 1 7 5 3 2 8 0 9

> summary(crossreg.data$scorec) # Summary statistics for scorec

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 3.0 4.0 3.9 5.0 9.0

34 2 Case Studies

2.5.2 Data for Analysis

In the analyses presented later in the book, we will be using the data frame fcat,
which is constructed based on the data frame crossreg.data. In Panel R2.16, we
present the syntax used to create the fcat data and to investigate data grouping
structure. First, in Panel R2.16a, we replace the variables id and target by
corresponding factors. For the factor target, the labels given in parentheses
indicate the number of items for a particular target.

In Panel R2.16b, we cross-tabulate the factors id and target and store the
resulting table in the object tab1. Given the large number of levels of the factor id,
it is difficult to verify the values of the counts for all cells of the table. By applying
the function all() to the result of the evaluation of expression tab1>0, we check
that all counts of the table are nonzero. On the other hand, with the help of the
range() function, we verify that all the counts are equal to 1. This indicates that,
in the data frame fcat, the levels of the factor target are crossed with the levels
of the factor id. Moreover, the data are balanced, in the sense that there is the same
number of observations, namely, one observation for each combination of the levels
of the two factors. Because all counts in the table are greater than zero, we can say
that the factors are fully crossed.

2.6 Chapter Summary

In this chapter, we introduced four case studies, which will be used for illustration
of LMs described in our book.

We started the presentation of each case study by describing study design and
considering that raw data are stored in a .csv file. We chose this approach in an
attempt to emulate a common situation of using external data files when analyzing
data using R. In the next step, we prepared the data for analysis by creating the
necessary variables and, in particular, factors. Including factors as part of data is a
feature fairly unique to R. It affects how a given variable is treated by graphical
and modeling functions. This approach is recommended, but not obligatory. In
particular, creating factors can be deferred to a later time, when, e.g., model formula
is specified. We will revisit this issue in Chap. 5.

The data frames, corresponding to the four case studies, are included in the
package nlmeU. As with other packages, the list of datasets available in the package
can be obtained by using the data(package = "nlmeU") command. For the
reader’s convenience, the datasets are summarized in Table 2.2. The table includes
the information about the R-session panels, which present the syntax used to create
the data frames, grouping factors, and number of rows and variables.

The four case studies introduced in this chapter are conducted by employing
different study designs. All of them lead to grouped data defined by one or more
nested or crossed grouping factors. The preferable way of storing this type of data

2.6 Chapter Summary 35

R2.16 FCAT Study: Construction and inspection of the contents of the data frame
fcat. The data frame crossreg.datawas created in Panel R2.14
(a) Construction of the data frame fcat

> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # See Table 2.1

> (lbls <- paste("T", 1:9, "(", nItms, ")", sep = ""))

[1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"

[8] "T8(6)" "T9(5)"

> fcat <-

+ within(crossreg.data,

+ {

+ id <- factor(id)

+ target <- factor(target, labels = lbls)

+ })

> str(fcat)

'data.frame': 4851 obs. of 3 variables:

$ target: Factor w/ 9 levels "T1(4)","T2(6)",..: 1 2 3 4 5 6 7 8 ...

$ id : Factor w/ 539 levels "1","2","3","4",..: 1 1 1 1 1 1 1 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

(b) Investigation of the data grouping structure

> (tab1 <- xtabs(~ id + target, data = fcat)) # id by target table

target

id T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

. . . [snip]
539 1 1 1 1 1 1 1 1 1

> all(tab1 > 0) # All counts > 0?

[1] TRUE

> range(tab1) # Range of counts

[1] 1 1

is to use the “long” format with multiple records per subject. Although this term is
borrowed from the literature pertaining to longitudinal data, it is also used in the
context of other grouped data. Below, we describe the key features of the data in
each study.

In the ARMD trial, the armd.wide data frame stores data in the “wide” format.
Data frames armd and armd0 store data in the “long” format and reflect the
hierarchical data structure defined by a single grouping factor, namely, subject.
For this reason, and following the naming convention used in the nlme package, we
will refer to the data structure in our book as data with a single level of grouping.
Note that, more traditionally, these data are referred to as two-level data (West et al.,
2007).

36 2 Case Studies

Table 2.2 Data frames available in the nlmeU package

Study Data frame R-panel Grouping factors Rows × vars

ARMD Trial armd.wide R2.2 None 240×10
armd0 R2.4 subject 1,107 ×8
armd R2.5 subject 867×8

PRT Trial prt.subjects R2.7a None 63×5
prt.fiber R2.7b id 2,471 ×5
prt R2.8 id 2,471 ×9

SII Project SIIdata R2.10 classid nested ... 1,190 ×12
... in schoolid

FCAT Study fcat R2.16 id crossed ... 4,851 ×3
... with target

The hierarchical structure of data contained in the data frame SIIdata is defined
by two (nested) grouping factors, namely, schoolid and classid. Thus, in our
book, this data structure will be referred to as data with two levels of grouping.

This naming convention works well for hierarchical data, i.e., for data with nested
grouping factors. It is more problematic for structures with crossed factors. This is
the case for the FCAT study, in which the data structure is defined by two crossed
grouping factors, thus without a particular hierarchy.

As a result of data grouping, variables can be roughly divided into group-
and measurement-specific categories. In the context of longitudinal data they are
referred to as time-fixed and time-varying variables. The classification of the
variables has important implications for the model specification.

To our knowledge, the groupedData class, defined in the nlme package, appears
to be the only attempt to directly associate a hierarchical structure of the data
with objects of the data.frame class. We do not describe this class in more detail,
however, because it has some limitations. Also, its initial importance has diminished
substantially over time. In fact, the data hierarchy is most often reflected indirectly
by specifying the structure of the model fitted to the data. We will revisit this issue
in Parts III and IV of our book.

When introducing the SII case study, we noted that the nested data structure
can be specified by using two different approaches, namely, explicit and implicit
nesting, depending on the coding of the levels of grouping factors. The choice of the
approach is left to the researcher’s discretion. The issue has important implications
for the specification of LMMs, though, and it will be discussed in Chap. 15.

The different data structures of the cases studies presented in this chapter will
allow us to present various aspects of LMMs in Part IV of the book. Additionally,
the ARMD dataset will be used in the other parts to illustrate other classes of LMs
and related R tools.

The main focus of this chapter was on the presentation of the data frames related
to the case studies. In the presentation, we also introduced selected concepts related

2.6 Chapter Summary 37

to grouped data and R functions, which are useful for data transformation and
inspection of the contents of datasets. By necessity, our introduction was very
brief and fragmentary; a more in-depth discussion of those and other functions is
beyond the scope of our book. The interested readers are referred to, e.g., the book
by Dalgaard (2008) for a more thorough explanation of the subject.

http://www.springer.com/978-1-4614-3899-1

	2 Case Studies
	2.1 Introduction
	2.2 Age-Related Macular Degeneration Trial
	2.2.1 Raw Data
	2.2.2 Data for Analysis
	2.2.2.1 Data in the ``Wide'' Format: The Data Frame armd.wide
	2.2.2.2 Data in the ``Long'' Format: The Data Frame armd0
	2.2.2.3 Subsetting Data in the ``Long'' Format: The Data Frame armd

	2.3 Progressive Resistance Training Study
	2.3.1 Raw Data
	2.3.2 Data for Analysis

	2.4 The Study of Instructional Improvement Project
	2.4.1 Raw Data
	2.4.2 Data for Analysis
	2.4.3 Data Hierarchy
	2.4.3.1 Explicit and Implicit Nesting

	2.5 The Flemish Community Attainment-Targets Study
	2.5.1 Raw Data
	2.5.2 Data for Analysis

	2.6 Chapter Summary

