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2.1 Introduction

We continue our study of crystals by investigating the internal arrangements of crystalline materials.

Crystals are characterized by periodicities in three dimensions.1 An atomic grouping, or pattern motif

which, itself, may or may not be symmetrical, is repeated again and again by a symmetry mechanism,

namely the space group of the crystal. There are 230 space groups, and each crystal substance belongs
to one or other of them. In its simplest form, a space group may be derived from the repetition of a

pattern motif by the translations of a lattice, as discussed below. It can be developed further by

incorporating additional symmetry elements, as demonstrated through the following text and Problem

2.1. We now enlarge on these ideas, starting with an examination of lattices.

2.2 Lattices

Every crystal has a lattice as its geometrical basis. A lattice may be described as a regular, infinite

arrangement of points in space in which every point has exactly the same environment as any other

point. This description is applicable, equally, in one-, two-, or three-dimensional space.

Lattice geometry in three-dimensional space is described in relation to three noncoplanar basic

repeat (translation) vectors a, b, and c. Any lattice point may be chosen as an origin, whence a vector

r to any other lattice point is given by

r ¼ Uaþ VbþWc (2.1)

where U, V, andW are positive or negative integers or zero, and represent the coordinates of the given

lattice point. The direction (directed line) joining the origin to the points U, V, W; 2U, 2V, 2W; . . .;
nU, nV, nW defines the row [UVW]. A set of such rows, or directions, related by the symmetry

constitutes a form of directions hUVWi; compare with zone symbols, Sect. 1.2.5. The magnitude r can

be evaluated by (2.16) mutatis mutandis.2

1We shall not be concerned here with the aperiodic crystalline materials discussed in Sect. 1.4.3.
2 “The necessary changes having been made.”
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We consider first lattices in two dimensions; the three-dimensional lattices then become an

extension of the principles that evolve, rather like the symmetry operations discussed in the previous

chapter.

2.2.1 Two-Dimensional Lattices

A two-dimensional lattice is called a net; it may be imagined as being formed by aligning, in a regular

manner, one-dimensional rows of equally spaced points, Fig. 2.1a. The net (lattice) is the array of

points; the connecting lines are a convenience, drawn to aid our appreciation of the lattice geometry.

Since nets exhibit symmetry, they can be allocated to the two-dimensional systems, Sect. 1.4.1,

Table 1.1. The most general net is shown in Fig. 2.1b. A sufficient and representative portion of the

lattice is the unit cell, outlined by the vectors a and b; an infinite number of such unit cells stacked

side by side builds up the net.

The net under consideration exhibits twofold rotational symmetry about each lattice point; conse-

quently, it is placed in the oblique system. The chosen unit cell is primitive, symbol p, which implies that

one lattice point is associated with the area of the unit cell: each point is shared equally by four adjacent

unit cells. In the oblique unit cell, a 6C3 b, and g 6C 90 or 120�; angles of 90 or 120� in a lattice imply

symmetry higher than 2.

Consider next the stacking of unit cells in which a 6C b but g ¼ 90�, Fig. 2.2. The symmetry at

every point is 2mm, and this net belongs to the rectangular system. The net in Fig. 2.3 may be

described by a unit cell in which a0 ¼ b0 and g0 6C 90 or 120�. It may seem at first that such a net is

oblique, but careful inspection shows that each point has 2mm symmetry, and so this net, too, is

allocated to the rectangular system.

In order to display this fact clearly, a centered (symbol c) unit cell is chosen, shown in Fig. 2.3 by

the vectors a and b. This cell has two lattice points per unit-cell area. It is left as an exercise to the

reader to show that a centered, oblique unit cell does not represent a net with a fundamentally

different arrangement of points from that in Fig. 2.1b.

Fig. 2.1 Formation of a net. (a) Row (a one-dimensional lattice) of equally spaced points. (b) Regular stack of rows

forming a net

3 The symbol 6C should be read as “not constrained by symmetry to equal.”
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2.2.2 Choice of Unit Cell

From the foregoing discussion, it will be evident that there is an infinity ofways inwhich a unit cellmight

be chosen for a given lattice (and structure). However, we shall follow a universal crystallographic

convention in choosing a unit cell: the unit cell is the smallest repeat unit for which its delineating vectors
are parallel to, or coincide with, important symmetry directions in the lattice. Returning to Fig. 2.3, the

centered cell is preferred because a and b coincide with the symmetry (m) lines in the net. The primitive

unit cell (a0, b0) is, of course, a possible unit cell, but it does not, in isolation, reveal the lattice symmetry

clearly. The symmetry is still there; it is invariant under choice of unit cell. The following equations show

the necessary equivalence of a0 and b0:

a0 2 ¼ a2=4þ b2=4 (2.2)

b0 2 ¼ a2=4þ b2=4 (2.3)

the value of g0 depends only on the ratio a/b.
Two other nets exist, governed by the unit-cell relationships a ¼ b, g ¼ 90� and a ¼ b, g ¼ 120�;

their study constitutes the Problem 1.2 at the end of this chapter. The five two-dimensional lattices are

summarized in Table 2.1. A lattice has the highest point-group symmetry of its system at each lattice

point: compare Table 2.1 with Table 1.1 and Table 2.3 with Table 1.5.

Fig. 2.3 Rectangular net with p and c unit cells drawn in; the c unit cell is the standard choice for this net

Fig. 2.2 Rectangular net with a p unit cell drawn in
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2.2.3 Three-Dimensional Lattices

The three-dimensional lattices, or Bravais lattices, may be imagined as being developed by the regular

stacking of nets. There are 14 unique ways in which this can be done, and the corresponding Bravais

lattices are distributed, unequally, among the seven crystal systems, as shown in Fig. 2.4. Each lattice is

represented by a unit cell, outlined by three vectors a, b, and c. In accordance with convention, these

vectors are chosen so that they both form a parallelepipedon of smallest volume in the lattice and are

parallel to, or coincide with, important symmetry directions in the lattice; thus, not all conventional unit

cells are primitive. In three dimensions, we encounter unit cells centered on a pair of opposite faces,

body-centered, or centered on all faces. Table 2.2 lists the unit-cell types and their notation.

Fractional Coordinates

A fractional coordinate x is given by X/a, where X is that coordinate in absolute measure (Å or nm)

and a is the unit-cell repeat distance in the same direction and in the same units. Thus, a position x at
1.45 Å along a unit cell of edge of length 12.34 Å corresponds to a fractional coordinate of 0.1175.

Triclinic Lattice

If oblique nets are stacked in a general and regular manner, a triclinic lattice is obtained, Fig. 2.5.

The unit cell is characterized by �1 symmetry at each lattice point, with the conditions a 6C b 6C c and

a 6Cb 6C g 6C 90 or 120�. This unit cell is primitive (symbol P), which means that one lattice point is

associated with the unit-cell volume; each point is shared equally by eight adjacent unit cells in

three dimensions; refer to Fig. 2.6 for this sharing principle. There is no symmetry direction to

constrain the choice of the unit-cell vectors, and a parallelepipedon of smallest volume can always

be chosen conventionally.

Monoclinic Lattices

The monoclinic system is characterized by one diad (rotation or inversion), with the y axis (and b)

chosen along or parallel to it. The conventional unit cell is specified by the conditions a 6C b 6C c,

a ¼ g ¼ 90�, and b 6C 90 or 120�. Figure 2.6 illustrates a stereoscopic pair of drawings of a monoclinic

lattice, showing eight P unit cells; according to convention, the b angle is chosen to be oblique.

Reference to Fig. 2.4 shows that there are two conventional monoclinic lattices, symbolized by the

unit-cell types P and C.
A monoclinic unit cell centered on the A faces is equivalent to that described as C; the choice of the

b axis4 is governedby symmetry:a and cmaybe interchanged, but thedirectionofbmust thenbe reversed

in order to preserve right-handed axes.

Table 2.1 The five two-dimensional lattices

System

Unit-cell

symbol(s)

Symmetry at

lattice points

Unit-cell edges

and angles

Oblique p 2 a 6C b; g 6C 90�, 120�

Rectangular p, c 2mm a 6C b; g ¼ 90�

Square p 4mm a ¼ b ; g ¼ 90�

Hexagonal p 6mm a ¼ b ; g ¼ 120�

4We often speak of the b axis (meaning the y axis) because our attention is usually confined to the unit cell.
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Fig. 2.4 Unit cells of the 14 Bravais lattices; interaxial angles are 90� unless indicated otherwise by a numerical value

or symbol. (1) Triclinic P. (2) Monoclinic P. (3) Monoclinic C. (4) Orthorhombic P. (5) Orthorhombic C. (6)
Orthorhombic I. (7) Orthorhombic F. (8) Tetragonal P. (9) Tetragonal I. (10) Cubic P. (11) Cubic I. (12) Cubic F.
(13) Hexagonal P. (14) Trigonal R. Note that (13) shows three P hexagonal unit cells. A hexagon of lattice points

without the central points in the basal planes shown does not lead to a lattice. Why?
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The centering of the B faces is illustrated in Fig. 2.7. In this situation a new unit cell, a0, b0, c0, can
be defined by the following equations:

a0 ¼ a (2.4)

b0 ¼ b (2.5)

c0 ¼ a=2þ c=2 (2.6)

Table 2.2 Notation for conventional crystallographic unit cells

Centering site(s) Symbol

Miller indices of

centred faces in the

unit cell

Fractional coordinates

of centered sites

in the unit cell

None P – –

bc faces A (100) 0; 1
2
; 1
2

ca faces B (010) 1
2
; 0; 1

2

ab faces C (001) 1
2
; 1
2
; 0

Body center I – 1
2
; 1
2
; 1
2

All faces F (100), (010),

(001)
0; 1

2
; 1
2

1
2
; 0; 1

2
1
2
; 1
2
; 0

8><>:

Fig. 2.5 Oblique nets stacked regularly at a vector spacing c to form a triclinic lattice
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If b is not very obtuse, an equivalent transformation c0 ¼ � a/2 + c/2 can ensure that b0 is obtuse
(by convention). Since c0 lies in the ac plane, a0 ¼ g0 ¼ 90�, but b0 6C 90 or 120�. The new monoclinic

cell is primitive; symbolically we may write B � P. Similarly, it may be shown that I � F � C �
(A), Figs. 2.8 and 2.9.

If the C unit cell, Fig. 2.10, is reduced to primitive as shown, it no longer displays in isolation the

characteristic monoclinic symmetry clearly (see Table 2.3); neither a0 nor g0 is 90�. We may conclude

that there are two distinct monoclinic lattices, described by the unit-cell types P and C.

Fig. 2.6 Stereoview showing eight adjacent P unit cells in a monoclinic lattice. The sharing of lattice points among the

unit cells can be seen readily by focusing attention on the central lattice point in the drawings. A similar sharing occurs

with P unit cells of lattices in all systems

Fig. 2.7 Monoclinic lattice showing that B � P; b is the angle between c and a, and b0 the angle between c0 and a0
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It may be necessary to calculate the new dimensions of a transformed unit cell. Consider the

transformation B ! P, (2.4)–(2.6). Clearly, a0 ¼ a and b0 ¼ b. Taking the scalar product5 of (2.6)

with itself, we obtain

Fig. 2.8 Monoclinic lattice showing that I � C

Fig. 2.9 Monoclinic lattice showing that F � C

5 The scalar (dot) product of two vectors p and q is denoted by p�q, and is equal to pq coscpq, wherecpq represents the

angle between the (positive) directions of p and q.
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c0 � c ¼ ða=2þ c=2Þ � ða=2þ c=2Þ (2.7)

Hence

c02 ¼ a2=4þ c2=4þ acðcos bÞ=2 (2.8)

The new angle b0 is given by

cos b0 ¼ a0 � c0=a0c0 (2.9)

In order to make b0 obtuse, it may be necessary to begin with �a/2 in (2.6).

Using (2.6) again and expanding, we obtain

cos b0 ¼ ½�a=2þ cðcos bÞ=2�=c0 ¼ ð�aþ c cos bÞ ð2c0Þ= (2.10)

Fig. 2.10 Monoclinic lattice showing that C ≢ P

Table 2.3 The 14 Bravais lattices and their notation

System Unit cell(s)

Symmetry at

lattice points Axial relationships

Triclinic Pa
1 a 6C b 6C c; a 6C b 6C g 6C 90�; 120�

Monoclinic P, C 2/m a 6C b 6C c; a ¼ g ¼ 90�; b 6C 90�; 120�

Orthorhombic P, C, I, F mmm a 6C b 6C c; a ¼ b ¼ g ¼ 90�

Tetragonal P, I 4

m
mm

a ¼ b 6C c; a ¼ b ¼ g ¼ 90�

Cubic P, I, F m3m a ¼ b ¼ c; a ¼ b ¼ g ¼ 90�

Hexagonal P 6

m
mm

a ¼ b 6C c; a ¼ b ¼ 90�; g ¼ 120�

Trigonalb R or P 3m a ¼ b ¼ c; a ¼ b ¼ g 6C 90�; <120�

aCapital letters are used for unit cells in three-dimensional lattices
bOn hexagonal axes, column 4 would be the same as for the hexagonal system, but the symmetry at each lattice point

remains �3m. This table may be compared with Table 1.3
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where c0 is given by (2.8). This type of calculation can be carried out in any crystal system, giving due

consideration to any nontrivial relationships between a, b, and c and between a, b, and g (see, for

example, Problem 2.3).

Orthorhombic Lattices

The monoclinic system was treated in some detail. It will not be necessary here to give such an

extensive discussion for either the orthorhombic system or the remaining crystal systems. Remember

always to think of the unit cell as a representative portion of its lattice and not as a finite body.

The orthorhombic system is characterized by three mutually perpendicular diad axes (rotation and/or

inversion); the unit-cell vectors are chosen to be parallel to, or to coincide with, these axes.

The orthorhombic unit cell is specified by the relationships a 6C b 6C c and a ¼ b ¼ g ¼ 90�. It will
not be difficult for the reader to verify that the descriptorsP,C, I, andF are necessary and sufficient in this

system. One way in which this exercise may be carried out is as follows. After centering the P unit cell,

four questions must be considered, in the following order:

1. Does the centered unit cell represent a lattice?

2. If so, is its symmetry, in isolation, different from that of the P unit cell?

3. If the symmetry is unchanged, is the lattice different in type (arrangement of points) from the

lattice or lattices already determined for the given system?

4. Has the unit cell been chosen correctly?

Notice that we answered these questions implicitly in discussing the monoclinic lattices.

The descriptors A, B, and C do not all remain equivalent for orthorhombic space groups in the class

mm2; it is necessary to distinguish C from A (or B). The reader may like to consider now, or later, why

this distinction is necessary.

Tetragonal Lattices

The tetragonal system is characterized by one tetrad (rotation or inversion) along z (c); the unit-cell

conditions are a ¼ b 6C c and a ¼ b ¼ g ¼ 90�. There are two tetragonal lattices, specified by the

unit-cell symbols P and I, Fig. 2.4; C and F tetragonal unit cells may be transformed to P and I,

respectively, see also Problem 2.4.

Cubic Lattices

The symmetry of the cubic system is characterized by four triad axes at angles of cos�1ð1=3Þ to one

another, or cos �1ð1= ffiffiffi
3

p Þ to x, y, and z; they are the body diagonals h111i of a cube; the unit-cell

conditions are a ¼ b ¼ c; a ¼ b ¼ g ¼ 90�. The four threefold axes, in this orientation, introduce

twofold axes along h100i; fourfold axes exist in three of the five cubic classes. There are three cubic

Bravais lattices, Fig. 2.4, with conventional unit cells P, I, and F.

Hexagonal Lattice

The basic feature of a hexagonal lattice is that it should be able to accommodate a 6- or 6-fold symmetry

axis. This requirement is achieved by a lattice based on a P unit cell, with a ¼ b 6C c, a ¼ b ¼ 90�, and
g ¼ 120�, the c direction being taken along the unique axis in the lattice.

Lattices in the Trigonal System

A two-dimensional unit cell in which a ¼ b and g ¼ 120� is compatible with either sixfold or

threefold symmetry; see Fig. 2.22, plane groups p6 and p3. For this reason, the hexagonal lattice (P

unit cell) may be used for certain crystals which belong to the trigonal system. However, as shown in

Fig. 2.11, the presence of two threefold axes within a unit cell, with x, y coordinates of 2
3
; 1
3
and 1

3
; 2
3
, and

parallel to the z axis, introduces the possibility of a lattice which, although belonging to the trigonal

system, has a triply primitive unit cell Rhex, with lattice points at
2
3
; 1
3
; 1
3
, and 1

3
; 2
3
; 2
3
(in addition to 0, 0, 0)

in the unit cell. Thus, for some trigonal crystals the unit cell will be P, and for others it will be Rhex, the

60 2 Lattices and Space-Group Theory



latter being distinguished by systematically absent X-ray reflections, Table 3.2. The Rhex cell can be

transformed to a primitive rhombohedral unit cell R, with a ¼ b ¼ c and a ¼ b ¼ g 6C 90 and<120�;
the threefold axis is then along [111]. The R cell may be thought of as a cube extended (or squashed)

along one of its threefold axes.

The lattice based on an R unit cell is the only truly exclusive trigonal lattice, the trigonal lattice

based on a P unit cell being borrowed from the hexagonal system, Table 2.3.

We note in passing that the symbols P, R, A, B,C, I, and F cannot apply, strictly, to lattices [1]; they

are unit-cell symbols, and refer to the types of unit cells already chosen to represent their lattices.

However, terminology such as “P lattice” is in general use and, as long as it is used with understanding,

is perfectly acceptable.

Fig. 2.11 Trigonal lattice;

the fractions refer to values

of chex. (a) Rhombohedral

(R) unit cell in the obverse

setting developed from a

triply primitive hexagonal

(Rhex) unit cell. In the

reverse setting, the
rhombohedral lattice and

unit cell are rotated about

[111] 60� clockwise with
respect to the Rhex axes.

The ratio of the volumes

of any two unit cells in one

and the same lattice is

equal to the ratio of the

numbers of lattice points in

the two unit-cell volumes.

In the reverse, setting, the
lattice points in the unit cell

lie at 2
3
; 1
3
; 1
3
and 1

3
; 2
3
; 2
3
.

(b) Plan view of (a) as seen

along chex
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2.3 Families of Planes and Interplanar Spacings

Figure 2.12 shows one unit cell of an orthorhombic lattice projected on to the a, b plane. The trace of the

(110) plane nearest the originO is indicated by a dashed line, and the perpendicular distance of this plane

from O is d(110). By repeating the operation of the translation �d(110) on the plane (110), a series, or

family, of parallel, equidistant planes is generated, as shown in Fig. 2.13. Miller indices, Sect. 1.2.3, are

by definition prime to one another: in discussing X-ray diffraction effects, however, it is necessary to

consider planes for which the indices h, k, and l may contain a common factor while still making

intercepts a/h, b/k, and c/l on the x, y, and z axes, respectively, as required by the definition of Miller

indices. It follows that the plane with indices (nh, nk, nl) makes intercepts a/nh, b/nk, and c/nl along x, y,
and z, respectively, and that this plane is nearer to the origin by a factor of 1/n than is the plane (hkl). In

other words, d(nh, nk, nl) ¼ d(hkl)/n.

In general, we denote a family of planes as (hkl) where h, k, and l may contain a common factor.

For example, the (220) family of planes is shown in Fig. 2.14 with interplanar spacing d(220) ¼ d

(110)/2; alternate (220) planes therefore coincide with (110) planes. Note, that an external crystal face

normal to d(hh0) would always be designated (110), since external observations reveal the shape but

not the size for the unit cell.

Fig. 2.12 One P unit cell in an orthorhombic lattice in projection on (001), showing the trace of the (110) plane

Fig. 2.13 Family of (110) planes in an orthorhombic lattice, as seen in projection along c

Fig. 2.14 Family of (220) planes in an orthorhombic lattice, as seen in projection along c
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2.4 Reciprocal Lattice: Geometrical Treatment

Although we shall discuss the reciprocal lattice in detail in the next chapter, it is useful to introduce it

here, because there exists a reciprocal lattice for each of the Bravais lattices. The reciprocal lattice, a

lattice in reciprocal (diffraction) space, is derived here graphically from the Bravais lattice, a lattice in

real (direct) space, and we choose the monoclinic system for an example.

Figure 2.15a represents a monoclinic lattice as seen in projection along the y axis, the normal to the

(010) plane in this example. From the origin O of a P unit cell, lines are drawn normal to families of

planes (hkl) in real space. We note in passing that the normal to a plane (hkl) does not, in general,

coincide with the direction [hkl]: see Sect. 2.2. However, there are special cases, such as [010] and the
normal to (010) in the present example, in which the two directions do coincide.

Along each line, reciprocal lattice points hkl (no parentheses) are marked off such that the distance

from the origin to the first point in any line is inversely proportional to the corresponding interplanar

spacing d(hkl).

Fig. 2.15 Direct and reciprocal lattices. (a) Monoclinic P, as seen in projection along b, showing three families of

planes. (b) Corresponding reciprocal lattice showing the points representing these three and other families of planes
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In three dimensions, we refer to d*(100), d*(010), and d*(001) as a*, b*, and c*, respectively, and so
define a unit cell in the reciprocal lattice. In general,

d�ðhklÞ ¼ k=dðhklÞ (2.11)

where k is a constant. Hence, for the monoclinic system,

a� ¼ k=dð100Þ ¼ k=ða sin bÞ (2.12)

From Fig. 2.15a, the scalar product a � a� is given by

a � a� ¼ aa� cosðb� 90Þ ¼ ak
cosðb� 90Þ

a sin b
¼ k (2.13)

The mixed scalar products, such as a � c� are identically zero, because the angle between a and

c* is 90�.
The reciprocal lattice points form a true lattice with a representative unit cell outlined by a*, b*, and c*

which, therefore, involves six reciprocal unit-cell parameters in the most general case, three sides a*, b*,

and c*, and three angles a*, b*, and g*. The size of the reciprocal unit cell is governed by the choice of the
constant k. In practice, k may be taken as the wavelength l of the X-radiation used in an experiment, in

which case reciprocal lattice units are dimensionless.Alternatively,kmaybe taken as unity, inwhich case

reciprocal lattice units have the dimensions of length�1. The different situations where one or other

convention is used will become clear as we proceed.

A reciprocal lattice row hkl; 2h,2k,2l; . . . may be considered to be derived from the families of

planes (nh, nk, nl) with n ¼ 1, 2, . . ., since d(nh, nk, nl) ¼ d(hkl)/n. Hence,

d�ðnh; nk; nlÞ ¼ nd�ðhklÞ (2.14)

where d*(hkl) is the distance of the reciprocal lattice point hkl from the origin, expressed in the

appropriate reciprocal lattice units (RU). Since h, k, and l are the coordinates of reciprocal lattice

points, the vector d* (hkl) is given by

d�ðhklÞ ¼ ha� þ kb� þ lc� (2.15)

Hence, taking the dot product of d*(hkl) with itself, we have

d�ðhklÞ � d�ðhklÞ ¼ d�2ðhklÞ
¼ h2a�2 þ k2b�2 þ l2c�2

þ 2klb�c� cos a�

þ 2lhc�a� cos b�

þ 2hka�b� cos g� (2.16)

Now d(hkl) may be obtained from (2.11) and (2.16). Simplifications of (2.16) arise through

symmetry constraints on the unit-cell vectors in different crystal systems. The reader should check

the entries in Table 2.4, starting with Table 2.3 and (2.16).
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2.5 Unit-Cell Transformations

Here, we consider the transformations of unit-cell vectors, zone symbols and directions, Miller indices,

reciprocal unit-cell vectors, and fractional coordinates of sites in the unit cell, all involving no

change in the origin of the unit cell. Such transformations are necessary when a nonstandard unit cell

needs to be re-cast in standard form.

2.5.1 Bravais Unit-Cell Vectors

Let a, b, and c be transformed to a0, b0, and c0, such that

a0 ¼ s11aþ s12bþ s13c

b0 ¼ s21aþ s22bþ s23c

c0 ¼ s31aþ s32bþ s33c

(2.17)

which may be written in matrix notation as

a0

b0

c0

24 35 ¼
s11 s12 s13
s21 s22 s23
s31 s32 s33

24 35 �
a

b

c

24 35 (2.18)

or, more concisely, as

a0 ¼ S � a (2.19)

where the dot � here symbolizes matrix multiplication; a and a0 represent the two sets of column

vectors a, b, c, and a0, b0, c0, and S is the 3 	 3 matrix of elements sij. The inverse transformation is

obtained by multiplying both sides of (2.19) by S�1, since S � S�1 ¼ 1:

Table 2.4 Expressions for d*2(hkl), and d2(hkl) with k ¼ 1

System d*2(hkl) d2(hkl)

Triclinic h2a�2 þ k2b�2 þ l2c�2 þ 2klb�c� cos a�

þ 2lhc�a� cos b� þ 2hka�b� cos g�
1/d*2(hkl)

Monoclinic h2a�2 þ k2b�2 þ l2c�2 þ 2hla�c� cos b� 1

sin2b
h2

a2
þ l2

c2
� 2hl cos b

ac

� �
þ k2

b2

� ��1

Orthorhombic h2a�2 þ k2b�2 þ l2c�2 h2

a2
þ k2

b2
þ l2

c2

� ��1

Tetragonal ðh2 þ k2Þa�2 þ l2c�2 h2 þ k2

a2
þ l2

c2

� ��1

Hexagonal and

trigonal (P)
ðh2 þ k2 þ hkÞa�2 þ l2c�2 4ðh2 þ k2 þ hkÞ

3a2
þ l2

c2

� ��1

Trigonal (R)
(rhombohedral)

½h2 þ k2 þ l2 þ 2ðhk þ klþ hlÞðcos a�Þ�a�2 a2ðTRÞ�1
, where

T ¼ h2 þ k2 þ l2 þ 2ðhk þ klþ hl)

½ðcos2 a� cos aÞ=sin2 a� and
R ¼ ðsin2 aÞ=ð1� 3 cos2 aþ 2 cos3 aÞ

Cubic ðh2 þ k2 þ l2Þa�2 h2 þ k2 þ l2

a2

� ��1

¼ a2

h2 þ k2 þ l2
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a ¼ S�1 � a0 (2.20)

where S�1 is the matrix

S�1 ¼
t11 t12 t13
t21 t22 t23
t31 t32 t33

24 35 (2.21)

The elements tij may be obtained by rearranging (2.17), or by the following equations:

tij ¼ ð�1ÞiþjjMjij=jSj

jSj ¼ s11
s22s23

s32s33

�����
�����þ s21

s12s13

s22s23

�����
�����þ s31

s12s13

s22s23

�����
����� (2.22)

where jMjij is the minor determinant of S obtained by striking out its jth row and ith column, and jSj is
the determinant value of the matrix S.

2.5.2 Directions (Zone Symbols)

From Sect. 2.2, we have

r ¼ Uaþ VbþWc (2.23)

and for the transformed cell

r ¼ U0a0 þ V 0b0 þW0c0 (2.24)

Thus, from (2.23) and (2.24),

½U0V0W0�
a0

b0

c0

0@ 1A ¼ ðUVWÞ
a

b

c

0@ 1A ¼ ðUVWÞS�1
a0

b0

c0

0@ 1A (2.25)

or

U0V 0W0ð Þ ¼ UVWð ÞS�1 (2.26)

Hence, and concisely,

U0 ¼ US�1 ¼ ðS�1ÞTU (2.27)

where U and U0 are now column vectors.
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Since (S�1)T ¼ (ST)�1, pre-multiplication of (2.27) by ST leads to

STU0 ¼ STðSTÞ�1
U ¼ U (2.28)

or

U ¼ ST � U0 (2.29)

2.5.3 Coordinates of Sites in the Unit Cell

For any point x, y, z in a unit cell, the vector r from the origin to that point is given by

r ¼ xaþ ybþ zc (2.30)

Comparison of this equation with (2.23), and by a procedure similar to (2.24)–(2.28), we see that

coordinates transform as do zone symbols. Thus,

x0 ¼ ðS�1ÞT � x (2.31)

2.5.4 Miller Indices

From (2.15) and (2.23), it follows that

d�ðhklÞ � r ¼ hU þ kV þ lW (2.32)

Thus, with (2.29),

d�ðhklÞ � r ¼ ½hkl� �
U
V
W

24 35 ¼ ½hkl� � ST �
U0

V0

W0

24 35 (2.33)

But also

d�ðh0k0l0Þ � r ¼ ½h0k0l0� �
U0

V0

W0

24 35 (2.34)

because d*(hkl) and d*(h0k0l0) are one and the same vector in the same plane but with different indices.

Hence

½h0k0l0� ¼ ½hkl� � ST (2.35)
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Transposing

h0

k0

l0

24 35 ¼ S �
h
k
l

24 35 (2.36)

or

h0 ¼ S � h (2.37)

where h and h0 are column vectors with components h, k, l and h0, k0, l0, respectively. Thus, Miller

indices transform in the same way as do unit-cell vectors in real space. If we operate on both sides of

(2.37) by S�1, then

S�1 � h0 ¼ S�1 � S � h

or

h ¼ S�1 � h0 (2.38)

We may note here that if a plane (hkl) lies in the [UVW] zone and the normal to the plane is d�ðhklÞ
then d�ðhklÞ � r ¼ 0, then from (2.15) and (2.23), it follows that hU + kV + lW ¼ 0, which is the Weiss

Zone Law, since products such as a�a* and a�b* are unity and zero, respectively (k ¼ 1).

2.5.5 Reciprocal Unit-Cell Vectors

From (2.15), we develop

d�ðhklÞ ¼ ½a�b�c�� �
h

k

l

264
375

¼ ½a�b�c�� � S�1 �
h0

k0

l0

264
375

(2.39)

In the transformed reciprocal unit cell

d�ðhklÞ ¼ ½a0�b0�c0�� �
h0

k0

l0

24 35 (2.40)

so that

½a0�b0�c0�� ¼ ½a�b�c�� � S�1 (2.41)
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Transposing

a0�

b0�

c0�

24 35 ¼ ðS�1ÞT �
a�

b�

c�

24 35 (2.42)

or

a0� ¼ ðS�1ÞT � a� (2.43)

so that reciprocal unit-cell vectors transform in the same way as do zone symbols.

As an example of the transformations that we have just derived, let a transformation matrix from

unit cell 1 to unit cell 2 may be written as

S ¼
1 0 1

0 1 �2
1 2 1

24 35
Given the plane ð1�35Þ and the site �0.10, 0.15, 0.25 in unit cell 1, determine the corresponding

values for unit cell 2.

Miller indices: h2 ¼ h1 þ l1 ¼ 6

k2 ¼ k1 � 2l1 ¼ 13

l2 ¼ h1 þ 2k1 þ l1 ¼ 0

that is, the plane is ð613; 0Þ in unit cell 2.

For the coordinates we need the matrix (S�1)T. The determinant jSj is 4. Then, applying (2.22),

S�1 ¼
5=4 1=2 �1=4
�1=2 0 1=2
�1=4 �1=2 1=4

24 35
whereupon the transpose becomes

ðS�1ÞT ¼
5=4 �1=2 �1=4
1=2 0 �1=2
�1=4 1=2 1=4

24 35
then the transformed coordinates are

x2 ¼ 5x1=4� y1=2� z1=4 ¼ �0:2625

y2 ¼ x1=2� z1=2 ¼ �0:1750

z2 ¼ �x14þ y1=2þ z1=4 ¼ 0:1625

that is, the site �0.2625, �0.1750, 0.1625.
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A reciprocal lattice has the same symmetry as the Bravais lattice from which it was deduced. This

fact may be appreciated from a comparison of the constructions of the reciprocal lattice and the

stereogram. Both of these constructions are built up from normals to planes, so that the symmetry

expressed through the poles of a stereogram is the same as that at the reciprocal lattice points, but the

reciprocal lattice adds dimensions to the representation; see also Sect. 3.4.1.

The transformations that we have discussed can be summarized by the mnemonic scheme in

Fig. 2.16, for any matrix M and its inverse M�1. The arrow symbols, such as

Fig. 2.16 Mnemonic

scheme for operating on a

matrix or its inverse and its

inverse; two examples are

shown
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should be interpreted as a0 in terms of a, and so on. The scheme for the inverse is equivalent to writing,

x0 ¼ ðM�1ÞT � x and then multiplying in the usual manner.

2.6 Rotational Symmetries of Lattices

We now discuss analytically the permissible rotational symmetries in the lattices of periodic crystals,

already stated to be of degrees 1, 2, 3, 4, and 6. In Fig. 2.17, let A and B represent two adjacent lattice

points, of repeat distance t, in any row. An R-fold rotation axis is imagined to act at each point and to

lie normal to the plane of the diagram. An anticlockwise rotation of F about A maps B on to B0, and a
clockwise rotation of the same value F about B maps A on to A0. It follows from the geometry of the

figure that AB is parallel to A0B0 and, from the property of lattices, A0B0 ¼ Jt, where J is an integer.

Lines A0S and B0T are drawn perpendicular to AB, as shown. Hence,

A0B0 ¼ TS ¼ AB� ðAT þ BSÞ (2.44)

or

Jt ¼ t� 2t cos F (2.45)

whence

cos F ¼ ð1� JÞ=2 ¼ M=2 (2.46)

Fig. 2.17 Rotational symmetry in crystal lattices. Permissible values of F are 360(0), 180, 120, 90, and 60�,
corresponding to one-, two-, three-, four-, and sixfold rotations, respectively
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where M is another integer. Since � 1
 cos F
 1, it follows from (2.46) that the only admissible

values forM are 0, �1, �2, and these values give rise to the rotational symmetries already discussed.

This treatment gives a quantitative aspect to the packing considerations mentioned previously,

Sect. 1.4.2.

2.7 Space Groups

In order to extend our study of crystals further into the realm of atomic arrangements, we must

consider now the symmetry of extended, ideally infinite, patterns in space. We recall that a point

group describes the symmetry of a finite body, and that a lattice constitutes a mechanism for

repetition, to an infinite extent, by translations parallel to three noncoplanar directions. We may

ask, therefore, what is the result of repeating a point-group pattern by the translations of a Bravais

lattice? It is a space group, and we shall see that it produces an arrangement like atoms in a crystal.

A space group can be described as an infinite set of symmetry elements, the operation with
respect to any of which brings the infinite array of points to which they refer into a state that is

indistinguishable from that before the operation. In practice, we may apply space-group rules to

crystals because the dimensions of crystals used in experimental investigations are very large in

comparison with the repeat distances of the pattern. For example, the dimension a of the face-

centered cubic unit cell of sodium chloride is 0.564 nm. Thus, in a crystal of experimental size

(ca. 0.2, 0.2, 0.2 mm), there are approximately 4.5 	 1016 unit cells.

A space group may be considered to be made up of two parts, a pattern motif and a repeat

mechanism. An analogy can be drawn with a wallpaper-type pattern, a simple example of which is

shown in Fig. 2.18a. We shall analyze this pattern.

The conventional unit cell for this pattern is indicated by the vectors a and b. If we choose a pattern

motif consisting of two flowers, Fig. 2.18b, and continue it indefinitely by the repeat vectors a and b,

Fig. 2.18 Wallpaper-type

pattern. (a) Extended pat-

tern. (b) Asymmetric unit,

or pattern motif; the space-

group symmetry applied to

the asymmetric unit gener-

ates the infinite pattern
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the plane pattern is generated. However, we have ignored the symmetry between the two flowers in

the pattern motif itself. If one flower (1) is reflected across the dashed line (g) to (10) and then translated
by a/2, it then occupies the position of the second flower (2); thus, the pattern represented in Fig. 2.18a

is brought from one state to another indistinguishable state by this symmetry operation. This operation

takes place across a glide line, a symmetry element that occurs in some extended two-dimensional

patterns. The two motions constitute a single symmetry operation.

The necessary and sufficient pattern motif for a whole, extended figure is a single flower,

occupying the asymmetric unit—the unshaded (or shaded) portion of Fig. 2.18b. If the single flower

is repeated by both the glide-line symmetry and the unit-cell translations, that is, overall by the space-

group symmetry, then the infinitely extended pattern is generated. Thus, if we know the asymmetric

unit of a crystal structure, which need not be the whole unit-cell contents, and the space-group symbol

for the crystal, we can generate the whole structure.

2.7.1 Two-Dimensional Space Groups (Plane Groups)

Oblique System

Our discussion leads naturally into two-dimensional space groups, or plane groups. Consider the pattern
motif showing twofold symmetry, illustrated in Fig. 2.19a; the symmetry symbols that we have used in

point groups are continued into the realm of space groups. Next, consider a primitive oblique net,

Fig. 2.19b; it is of infinite extent in the plane, and the framework of lines divides the field, conceptually,

into a number of identical primitive (p) unit cells. An origin is chosen at a lattice point; it could be

anywhere in the unit cell, but is desirably, and conventionally, linked to a symmetry element.

Now, let themotif be repeated around eachpoint in thenet, and in the sameorientation,with the twofold

rotation points of the motif and the net in coincidence, Fig. 2.19c. It will be seen that additional twofold

rotation points are introduced at the unique fractional coordinates 0; 1
2
; 1
2
; 0; and 1

2
; 1
2
in each unit cell,

Fig. 2.19 Plane group p2.
(a) Twofold symmetry

motif. (b) Oblique net with

p unit cells outlined. (c)

Extended pattern of plane

group p2 obtained by a

combination of (a) with (b)
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see Sect. 2.2.2. We must always look for such “extra” symmetry elements after the point-group motif

has been operated on by the unit-cell translations. Ultimately, this will be found to be quite straightfor-

ward. Meanwhile, a simple check consists in ensuring that any point on the diagram can be reached

from any other point bymeans of a single symmetry operation, including translations as necessary. This

plane group is given the symbol p2.

In general, we shall not need to draw several unit cells; one cell will suffice provided that the pattern

motif is completed around all lattice points intercepted by the given unit cell. Figure 2.20 illustrates

the standard drawing of p2: the origin is taken on a twofold point, the x axis runs from top to bottom,

and the y axis runs from left to right. Thus, the origin is considered to be in the top left-hand corner of

the cell as drawn, but each twofold rotation point could be an equivalent origin; we must remember

always that the drawing is a representative portion of an infinite array, whether in two or three

dimensions.

The asymmetric unit (which may be a chemical species) represented here by O, may be placed

anywhere in the unit cell, but for convenience, near the origin. It is then repeated by the symmetry p2

to build up the complete picture, taking care to complete the arrangements around each corner of the

unit cell. The additional twofold points can then be identified. The reader should now carry out this

construction.

The list of fractional coordinates in Fig. 2.20 refers to the unique symmetry-related sites in the unit

cell. The first row of these sites, related by the space-group symmetry, lists the general equivalent

positions. In p2 they are given the coordinates x, y, and �x, �y. We could use 1 � x, 1 � y instead of �x, �y,
but it is more usual to list the set of coordinates near one and the same origin.

Each coordinate line in the space-group description lists, in order from left to right, the number of

positions in each set, the Wyckoff [2] notation, used for reference purposes, the symmetry at each site

in the set, and the fractional coordinates of all sites in the set.

In a conceptual two-dimensional crystal, or projected real atomic arrangement, the asymmetric

unit may contain either a single atom or a group of atoms. If it consists of part, half, in this plane

group, of one molecule then the whole molecule, as seen in projection at least, must contain twofold

rotational symmetry, or a symmetry of which 2 is a subgroup.

There are four unique twofold rotation points in the unit cell; in theWyckoff notation they are the sets

(a), (b), (c), and (d), and they constitute the sets of special equivalent positions, point symmetry 2 in this

plane group. Notice that general positions always have symmetry 1, whereas special positions always

have a higher crystallographic point-group symmetry. Where the unit cell contains fewer (an integral

submultiple) of a species than the number of general equivalent positions in its space group, then it may

be assumed that the species are occupying special equivalent positions and have the symmetry consistent

with that of the special site. Exceptions to this rule may arise in disordered structures, Sect. 8.9.

Fig. 2.20 Standard drawing and description of plane group p2. The lines which divide the unit cell into four quadrants
are, as usual, drawn for convenience only
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Rectangular System

We move next to the rectangular system, which includes point groups m and 2mm, and both p and c

unit cells. We shall consider first plane groups pm and cm.

The formation of these plane groups may be considered along the lines already described for p2,
and we refer immediately to Fig. 2.21a. The origin is chosen on m, but its y coordinate is not defined

by this symmetry element. In a structure of this symmetry, the origin is specified by fixing arbitrarily

the y coordinate of one of the atoms in the unit cell. In pm, the general equivalent positions are two in
number, and there are two sets of special equivalent positions on m lines.

Plane group cm, Fig. 2.21b, introduces several new features. The coordinate list is headed by the

expression ð0; 0; 1
2
; 1
2
Þ þ ; this means that the two translations 0, 0 and 1

2
; 1
2
are added to all the listed

coordinates. Hence, the full list of general (equivalent) positions would read

x; y; �x; y; 1
2
þ x; 1

2
þ y; 1

2
� x; 1

2
þ y

Fig. 2.21 Plane groups

in the rectangular system.

(a) pm. (b) cm; glide lines
(g) are indicated by the

dashed lines
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Given x, the distance 1
2
� x, for example, is found by first moving 1

2
along the a axis from the origin

and then moving back along the same line by the amount x.

The centering of the unit cell in conjunction with the m lines introduces the glide-line symmetry

element, symbol g and graphic symbol - - - . The glide lines interleave the mirror lines, and their action is

a combination of reflection and translation, the two movements comprising again a single symmetry

operation. The translational component is one half of the repeat distance in the direction of the glide line.

Thus, the pair of general positions x, y and 1
2
� x; 1

2
þ y are related by the g line at x ¼ 1

4
, y ¼ 0.We shall

encounter glide lines in any centered plane group wherem lines are present, and in certain other groups.

For example, we may ask if there is any meaning to the symbol pg, a glide-symmetry motif repeated by

the translations of a p unit-cell? The answer is that pg is a possible plane group; in fact, it is the symmetry

of the pattern in Fig. 2.18. The differing orientations of the glide lines in Figs. 2.18 and 2.22 (standard) are

expressed by the full symbols p11g (g ⊥ y) and p1g1 (g ⊥ x), respectively.
There is only one set of special positions in cm, in contrast to two sets in pm. This situation arises

because the centering condition in cm requires that both mirror lines in the unit cell be included in

one and the same set. If we try to postulate two sets, by analogy with pm, we obtain

0; y; 1
2
; 1
2
þ y (2.47)

and

1
2
; y; 0ðor 1Þ;1

2
þ y (2.48)

However, expressions (2.47) and (2.48) involve only a shift in the origin, and therefore do not

constitute two different sets of special equivalent positions.

We could refer to plane group cm by the symbol cg. If we begin with the origin on g and mark in the

general positions as before, we should find now the glide lines interleaved withm lines. Two patterns that

differ only in the choice of origin or in the numerical values attached to the coordinates of the equivalent

positions do not constitute different space groups. The reader can illustrate this statement by drawing cg,

and by drawing pg also, can show that pm and pg are different. The glide line or, indeed, any translational

symmetry element is not encountered in point groups; it is a property of infinite patterns.

The 17 Plane Groups

The 17 plane groups are illustrated in Fig. 2.22. The two diagrams for each plane group show the general

equivalent positions and the symmetry elements. The asymmetric unit is represented therein by a scalene

triangle instead of by the usual circle. Space groups that are derived by the repetition of a point-group

motif by the lattice translations are termed symmorphic space groups, as with p2, pm, and c2mm, but

otherwise as non-symmorphic space groups, as with pg, p2mg, and p2gg.

Conditions Governing X-Ray Reflection

Our main reason for studying space-group symmetry is that it provides information about the repeat

patterns of atoms in crystal structures. X-ray diffraction spectra are characterized in position by the

indices of the families of planes from which, in the Bragg treatment of diffraction which we

consider in Sect. 3.3.2, the X-rays are considered to be reflected. The pattern of the indices of the

reflecting planes reveals information about the space group of the crystal. Where a space group

contains translational symmetry, certain sets of reflections will be systematically absent from the

experimental diffraction data record. We meet this situation for the first time in cm, Fig. 2.21b; two-

dimensional reflections hk (l ¼ 0) are limited to those for which the sum h + k is an even number.
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Figure 2.23 illustrates a rectangular lattice. Two unit cells are depicted on this lattice, a centered

cell with vectors A and B, and a primitive cell with vectors a and b. The relationship between them

is summarized by the equations

A ¼ a� b

B ¼ aþ b (2.49)

We have shown in Sect. 2.5.4 that Miller indices of planes transform in the same way as unit-cell

vectors, so it follows that

H ¼ h� k

K ¼ hþ k
(2.50)

where H and K apply to the unit cellA, B and h and k to the unit cell a, b. Adding equations (2.50), we
obtain

H þ K ¼ 2h (2.51)

which is even for all values of h. Thus, in this centered unit cell, reflections can occur only when the

sum of the indices, H + K, is an even integer. This topic is discussed more fully in Sect. 3.7ff,

whereupon the significance of the extreme right-hand column of data in figures such as Figs. 2.21

and 2.24 will become clear.

2.7.2 Plane Groups Related to 2mm

Point group 2mm belongs to the rectangular system and, as a final example in two dimensions, we

shall study plane group p2gg. It is often helpful to recall the “parent” point group of any space group:

we ignore the unit-cell symbol, and replace any translational symmetry elements by the

Fig. 2.23 Centered rectangular unit cell A, B and primitive unit cell a, b within the same lattice
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corresponding nontranslational symmetry elements. Thus, pg is derived from point groupm, and p2gg

from 2mm.
In point group 2mm, we know that the two m lines intersect in the twofold rotation point, and this

remains true for plane group p2mm. In p2gg, however, we may not assume that the twofold rotation

point lies at the intersection of the g lines. In our study of point groups, we saw that the symmetry

elements in a given symbol have a definite relative orientation with respect to the crystallographic

axes; this is preserved in the corresponding space groups. Thus, we know that the g lines are normal to

the x and y axes, and we can take an origin, initially, at their intersection, Fig. 2.24a. In Fig. 2.24b, the
general equivalent positions have been inserted; this diagram reveals the positions of the twofold

points, inserted now in Fig. 2.24c, together with the additional g lines in the unit cell. The standard

Fig. 2.24 Formation and

description of plane group

p2gg
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orientation of p2gg places the twofold point at the origin; Fig. 2.24d shows this setting and the

description of this plane group. We see again that two interacting symmetry elements have a

combined action which is equivalent to that of a third symmetry element, but their positions must

be chosen correctly. This question did not arise in point groups because, by definition, all symmetry

elements pass through a point, the origin. What group would arise if we did place the twofold rotation

point at the intersection of the glide lines?

There are two sets of special equivalent positions in p2gg, but the pairs of twofold rotation points

that constitute each set must be selected correctly. One way of ensuring a proper selection is by

inserting the coordinate values of the point-group symmetry element constituting a special position

into the coordinates of the general positions. Thus, by taking x ¼ y ¼ 0, for one of the twofold points,

we obtain a set of special positions with coordinates 0,0 and 1
2
; 1
2
. If we had chosen 0,0 and 0; 1

2
as a set,

the resulting pattern would not have conformed to p2gg symmetry, but to pm, as Fig. 2.25 shows.

Special positions always form a subset of the general positions, under the same space-group symmetry.

The general equivalent positions give rise to two conditions limiting reflections, because

the structure is “halved” with respect to a for the reflections h0, and with respect to b for the

reflections 0k. The special positions take both of these conditions, and the extra conditions shown,

because occupancy of the special positions in this plane group gives rise to centered arrangements.

The entities occupying special positions must, themselves, be consistent with the symmetry of the

crystal structure.

After the development of the structure factor in Sects. 3.2.3ff and 3.5.1ff, limiting conditions will

be derived analytically.

2.7.3 Three-Dimensional Space Groups

The principles that have emerged from the discussion on plane groups can be extended to

three dimensions. Whereas the plane groups are limited to 17 in number, there are 230 space groups.

We shall limit our discussion to a few space groups mainly in the monoclinic and orthorhombic

systems. We believe this will prove a satisfactory working procedure because many of the important

principles will evolve and, from a practical point of view, a large percentage of crystals belong to these

two systems.

Monoclinic Space Groups

In the monoclinic system, the lattices are characterized by P and C unit-cell descriptors, and the point

groups are 2, m, and 2/m. We consider first space groups P2 and C2.

Fig. 2.25 Occupation of the special positions 0, 0 and 0; 1
2
in p2gg leads to pm (p1m1) symmetry, even though the

occupying entity has itself symmetry 2
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Aswith the plane groups, wemay begin with amotif, which has twofold symmetry, but now about a

line or axis, in three-dimensional space. This motif is arranged in a fixed orientation with respect to the

points of a monoclinic lattice. Figure 2.26 shows a stereoscopic pair of illustrations for a unit cell of

space group C2, drawn with respect to the conventional right-handed axes.

In Fig. 2.27, space groups P2 and C2 are shown in projection. The standard drawing of space-

group diagrams is on the a, b plane of the unit cell, with +x running from top to bottom, þy from left

to right, both in the plane of the paper, and +z directed upwards from the paper. The positive or

negative signs attached to the representative points indicate the z coordinates, that is, in the

symbolism O+ and O�, the signs stand for z and �z, respectively. The relationship with the preferred

stereogram notation Sect. 1.3, will be evident here.

In both P2 and C2, the origin is chosen on 2, and is, thus, defined with respect to the x and z axes,

but not with respect to y; compare pm and cm. How is the origin fixed in Pm? The graphic symbol

for a diad axis in the plane of the diagram is!; if the axis lies at, say, z ¼ 1
4
, the symbol ! 1

4
is used.

In space group P2, the general and special equivalent positions may be derived quite readily. The

special sets (b) and (d) should be noted carefully; they are sometimes forgotten by the beginner

because symmetry elements distant c/2 from those drawn in the a, b plane are not indicated on the

conventional diagrams. The diad axis at x ¼ 0, 1
2
, for example, relates x, y, z to a point at �x, y, 1 � z; its

presence, and that of the diad at x ¼ z ¼ 1
2
, may be illustrated by drawing the space group in projection

on the ac plane of the unit cell. The reader should make this drawing and compare it with Fig. 2.27a.

It is often useful to consider a structure in projection on to one of the principal planes (100), (010),

or (001). The symmetry of a projected space group corresponds to that of a plane group, and the

symmetries of the principal projections are included with the space-group description, Fig. 2.27. The

full plane-group symbols, given in parentheses, indicate the orientations of all symmetry elements,

including identity, in the space group, Table 1.5. In C2, certain projections produce more than one

repeat in some directions; the projected cell dimensions, represented by a0 and b0 are then halved with
respect to their original values. The Miller indices transform with the change of unit cell: thus, for

example, with b halved, 220 becomes 210, and 210 becomes 410 (which is equivalent to halving the k
index in each case).

The projection of C2 on to (100) is shown by Fig. 2.28 in three stages, starting from the y and z
coordinates of the set of general equivalent positions. The symmetry of the projection is determined

by the arrangements of points, now in two dimensions, and the relation between them is clearly that of

Fig. 2.26 Stereoscopic pair of illustrations of the environs of one unit cell of space group C2; the general equivalent
positions are shown. The diagram reveals nine axes of symmetry 2, and six axes of symmetry 21. Can you identify

their positions?
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Fig. 2.27 Monoclinic space groups in the standard setting. (a) P2. (b) C2
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m symmetry. A correct and sufficient projected unit cell is determined by a and b/2. It is important to

remember that, in the plane groups, as in the two-dimensional point groups, all symmetry operations

take place wholly within the plane of the figure.

The general equivalent positions in C2 may be obtained by adding the translations 1
2
; 1
2
; 0, namely,

those associated with a C unit cell (Table 2.2), to the equivalent positions of P2. This operation is

equivalent to repeating the original twofold motif at the lattice points of the C monoclinic unit cell.

This simple relationship between P and C cells is indicated by the heading ð0; 0; 0; 1
2
; 1
2
; 0Þ þ of the

coordinate list in C2; it may be compared with that for cm, Fig. 2.21b.

There are four sets of special positions in P2, but only two sets in C2; the reason for this has been

discussed in relation to plane groups pm and cm, Sect. 2.7.1.

2.7.4 Screw Axes

Screw axes are symmetry elements that can relate points in an infinite, three-dimensional, regular

array; they are not a feature of point groups. A screw-axis operation may be thought of as a

combination of rotation and translation, although it is a single symmetry operation: an infinitely

long spiral staircase gives an indication of the nature of the symmetry operation.

Imagine that the bottom step, Fig. 2.29, is rotated, anticlockwise, looking in a direction down the

stairs, by 60� about the vertical support, or axis, and then translated upward by one sixth of the repeat

Fig. 2.28 Projection of C2 on to (100). (a) y, z Positions from C2 (z axis left to right). (b) Two-dimensional symmetry

elements, m lines, added. (c) One unit cell: p1m (p11m), b0 ¼ b/2, c0 ¼ c. Plane groups p11m and p1m1 are equivalent
because they correspond only to an interchange of the x and y axes; 1 is the trivial symmetry element
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distance between steps in similar orientations; it then takes the place of the second step, which itself

moves upward in a similar manner. Clearly, if this procedure were repeated six times, the bottom step

would reach the position and orientation of the sixth step up; we symbolize this screw axis as 61.

Infinite length is, theoretically, a requirement because as the bottom step is rotated and translated

upward, so another step, below the figure, comes up into its position in order that indistinguishability

is maintained. The spiral staircases of the Monument in London and of the Statue of Liberty in

New York seem to be of infinite length, and might be considered as macroscopic near-examples of

screw axes. Examine them carefully on your next visit and determine their symmetry nature.

The centering of the unit cell in C2 introduces screw axes which interleave the diad axes,

Fig. 2.27. A screw axis may be designated Rp (p < R) and a screw-axis operation consists of an R-fold
rotation coupled with a translation parallel to the screw axis of p/R times the repeat in the direction of

the axis. Forp ¼ R, the translation parallel to the screwaxis is unity, and result of the operation corresponds

effectively to simple rotation: P22 � P2. In C2, the screw axis is of the type 21 and has a translational

component of 1
2
parallel to b. The general equivalent positions x, y, z and 1

2
� x; 1

2
þ y; �z are related by

a 21 axis along ½1
4
; y; 0�.6 Screw axes are present in the positions shown by their graphic symbol (see

also Table 2.5).

Limiting Conditions in C2

Wereferredbriefly to limiting conditions inSect. 2.7.1. The limiting conditions forC2are listed inFig. 2.27.
Two of them are placed in parentheses; this notation is used to indicate that they are dependent upon amore

general condition. Thus, since we know that the hkl reflections are limited by the condition h + k ¼ 2n

(even), because thecell isC-centered, it follows that theh0l reflectionsare limitedbyh ¼ 2n (0 is effectively
an even number). There are several other nonindependent conditions that could have been listed.

For example, 0kl: k ¼ 2n and h00: h ¼ 2n. However, in the monoclinic system, in addition to the

Fig. 2.29 Spiral staircase: an illustration of 61 screw-axis symmetry

6We use this notation to describe lines, in this example, the line parallel to the y axis through x ¼ 1
4
, z ¼ 0.
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hkl reflections, we are concerned particularly onlywith h0l and 0k0, because the symmetry plane is parallel

to (010) and the symmetry axis is parallel to [010]. This feature is discussed more fully in Sect. 3.7ff.

Space Group P21
Space groupsC2 andC21 are equivalent andmaybe comparedwith the pair cm and cg. On the other hand,
P2 contains no translational symmetry, soP21 is a new space group, Fig. 2.30; it occurs with a frequency

of6%among recorded structures. Thereare no special positions inP21. Special positions cannot exist ona

translational symmetry element, since it would mean that the entity placed on such an element consisted

of a pattern of infinite repeat.

Table 2.5 Notation for symmetry axes in space groups, and limiting

conditions for screw axes

Notes: (1) The 31 and 32 axes are referred to the hexagonal setting of the

trigonal system. (2) Compare the 21, 42, and 63 axes, the 41 and 43 axes, and

31, 32, 62, 64 axes
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2.7.5 Glide Planes

Consider again Fig. 2.18, but let each dashed line be now the trace of a glide plane normal to b. Whereas

in two dimensions, the direction of translation, after the reflection part of the operation, is unequivocal, in

three dimensions there are several possibilities, although each of them will not necessarily give rise to a

different space group.

In the case of the glide plane normal to b, the reflection is across the mirror plane normal to b, and

the direction of translation could be along a of amount a/2, along c of amount c/2, along a diagonal

direction n of amount (a + c)/2, or, in certain groups, along a diagonal direction d of amount such as

(a � c)/4. The d-glide plane is not often encountered in practice, and will not be discussed in detail

here [3].

The graphic symbols for glide planes carry information about the glide planes. Thus, in Fig. 2.36, an a-

glide plane at c/4 is shown by the arrow with 1
4
adjacent to it. The symbol n may refer to more than one

orientation (Table 2.6), but the space-group symbol here, which relates back to the corresponding point-

group symbol in Table 1.5, provides the necessary information. Thus, if the n-glide plane is normal to a,

the translation component of the n-glide-symmetry operation must be (b + c)/2. This is why it is so

important to understand fully the Hermann–Mauguin point-group notation [4], Table 1.5, because that

for space groups follows in a parallel manner. The translational components for screw axes and for glide

planes are always integer fractions of the repeat distances.

If a space group is formed from the combination of a point group with m planes and a lattice of

centered unit cells, glide planes are always introduced into the space group. The nature and direction

of the translations in screw-axis and glide-plane symmetries are implicit in their symbolism (see

Tables 2.5 and 2.6).

Space Group P21/c

As an example of a space group with glide planes, we shall study P21/c, a space group encountered

frequently (36%) in practice. This space group is derived from point group 2/m, and must, therefore,

be centrosymmetric. However, the center of symmetry does not lie at the intersection of 21 and c.

Fig. 2.30 General equivalent positions and symmetry elements in space group P21
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It is normally desirable to place the origin on a center of symmetry in centrosymmetric space groups

and, in this example, we must determine the appropriate positions of the symmetry elements in the

unit cell. We note here that sometimes an origin will have a point symmetry greater than 1, for

example, 2/m or mmm, but 1 is a subgroup of such symmetries. We shall approach the solution of

this problem in two ways, the first of which is similar to our treatment of plane group p2gg.
Since the screw axis must intersect the glide plane normally, according to the space-group symbol,

the point of intersection will be taken as an origin and the space group drawn, Fig. 2.31. We see now

that the centers of symmetry lie at points such as 0; 1
4
; 1
4
. This point may be taken as a new origin, and

the space group redrawn, Fig. 2.32; the fraction 1
4
placed next to the center of symmetry symbol

indicates its fractional position above (and below) the ab plane.

It is desirable, however, to be able to draw the standard space-group illustration at the outset. From

a choice of origin, and using the full meaning of the space-group symbol, we can obtain the positions

of the symmetry elements by means of a simple scheme:

Let the symmetry elements be placed as follows:
�1 at 0, 0, 0 (choice of origin)

21 along [p, y, r], parallel to the y axis

c the plane (x, q, z), normal to the y axis
It is important to note that we have employed only the standard choice of origin and the

information contained in the space-group symbol. Next, we carry out the symmetry operations as

shown in the scheme of Fig. 2.33.

Table 2.6 Notation for symmetry planes in space groups, and limiting conditions for glide planes

Symbol Graphic symbol

Glide plane

orientation

and translation

Limiting

condition

m ⊥ paper – –

jj paper – –

a ⊥ paper (h0l) a/2 h0l: h ¼ 2n

jj paper (hk0) a/2 hk0: h ¼ 2n

b ⊥ paper (0kl) b/2 0kl: k ¼ 2n

jj paper (hk0) b/2 hk0: k ¼ 2n

c ?paper

?paper

(
(0kl) c/2 0kl: l ¼ 2n
(h0l) c/2 h0l: l ¼ 2n

n ?paper

?paper

(
(0kl) (b + c)/2 0kl: k + l ¼ 2n
(h0l) (c + a)/2 h0l: l + h ¼ 2n

jj paper (hk0) (a + b)/2 hk0: h + k ¼ 2n

d ?paper

?paper

(
(0kl) (b � c)/4 0kl: k + l ¼ 4n
(h0l) (c � a)/4 h0l: l + h ¼ 4n

jj paper (hk0) (a � b)/4 hk0: h + k ¼ 4n

Notes: (1) The trigonal system is here referred to hexagonal axes. (2) An arrow shows the direction of the

glide translation. A fraction indicates the z height of the plane. (3) The condition (a + b + c)/4 exists for

d-glide planes parallel to f1�10g in the tetragonal and cubic systems
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Fig. 2.31 Space group P21/c with the origin at an intersection of 21 and c

Fig. 2.32 Space group P21/c with the origin on �1 (standard setting)

Fig. 2.33 Operation about a 21 axis along the line [p, y, 0]: The x coordinate of point 2 relative to that of point 1 is

2p � x. A similar construction may be used for the y coordinate in the c-glide operation
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The symbol �c is used to indicate that the c-glide translation of 1
2
is subtracted, which is

crystallographically equivalent to being added.7

We use the fact that the combined effect of two operations is equivalent to a third operation,

starting from the original point (1). Symbolically, in operator notation, c 21 ¼ �1, that is, 21 followed

by c is equivalent to �1. Thus, points (3) and (4) are one and the same, whence, by comparing

coordinates, p ¼ 0 and q ¼ r ¼ 1
4
. Comparison with Fig. 2.32 shows that these conditions lead to

the desired positions of the symmetry elements in P21/c.

The change in the x coordinate in the operation (1) ! (2) is illustrated in Fig. 2.33; the argument

can be applied to any similar situation in other space groups, and we consider one coordinate at a time.

The completion of the details of this space group forms the basis of a problem at the end of this chapter.

We shall not discuss centered monoclinic space groups, but they do not present difficulty once the

primitive space groups have been mastered. Figure 2.34 shows a stereoscopic pair of illustrations of the

zinc and iodine atoms in the structure of diiodo-(N, N, N0, N0-tetramethylethylenediamine)zinc(II) [5]. It

crystallizes in space groupC2/cwith fourmolecules per unit cell; the zinc atoms lie on twofold axes. The

reader should make a drawing of C2/c, putting in all the symmetry elements and a set of

general equivalent positions, for comparison with Fig. 2.34.

2.7.6 Analysis of the Space-Group Symbol

In this section we consider the general relationship between space-group symbols and point-group

symbols.On encountering a space-group symbol, the first problem is to determine the parent point group.

This process has been discussed, Sect. 2.7.2; here are a few more examples. It is not necessary to have

explored all space groups in order to carry out this exercise:

P21=c ! ð21=cÞ ! ð2=cÞ ! 2=m

Ibca ! mmm

P41212 ! 422

F43c ! 43m

7�1 may always be added to a coordinate to give a crystallographically equivalent position.

Fig. 2.34 Stereoview of the unit cell for the structure of diiodo-(N, N, N0, N0-tetramethylethylenediamine)zinc(II),

showing the zinc and iodine (larger circles) atoms
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Next we must identify a crystal system for each point group:

2=m ! monoclinic

mmm ! orthorhormbic

422 ! tetragonal

43m ! cubic

Now, from Table 1.5, we can associate certain crystallographic directions with each symmetry

element in the space group symbol:

P21/c: Primitive, monoclinic unit cell; c-glide plane ⊥ b; 21 axis jj b; centrosymmetric.

Ibca: Body-centered, orthorhombic unit cell; b-glide plane⊥ a; c-glide plane⊥ b; a-glide plane⊥ c;
centrosymmetric.

P41212: Primitive, tetragonal unit cell; 41 axis jj c; 21 axes jj a and b; twofold axes at 45� to a and b, in
the ab plane; non-centrosymmetric.

F�43c: Face-centered, cubic unit cell; �4 axes jj a, b, and c; threefold axes jj h111i; c-glide planes ⊥
h110i; non-centrosymmetric.

It should be noted carefully that the symmetry elements, where there are more than two present, in

a given space-group symbol may not intersect in the third, equivalent symmetry element, and the

origin must always be selected with care. Appropriate procedures for the monoclinic and orthorhom-

bic systems have been discussed; in working with higher symmetry space groups, similar rules can be

drawn up, as we shall see.

Because of the similarities between space groups and their parent point groups, a reflection

symmetry, for example, in a given orientation with respect to the crystallographic axes always

produces similar changes in the signs of the coordinates. Thus, an m plane perpendicular to z in

point groupmmm changes x, y, z to x, y, �z. The a-glide plane in Pnma, which is at c/4, changes x, y, z to
1
2
þ x; y; 1

2
� z; the translational components of 1

2
are a feature of the space group, but the signs of x, y,

and z are still +, +, and � after the operation, as with mmm.

2.7.7 Orthorhombic Space Groups

We shall consider two orthorhombic space groups,P212121 andPnma. The first is illustrated in Fig. 2.35;
it should be noted that the three mutually perpendicular 21 axes do not intersect one another in this space

group. Although P212121, which occurs to the extent of ca. 10%, is a non-centrosymmetric space group,

the three principal projections are centrosymmetric; each corresponds to the two-dimensional space

group p2gg.

Change of Origin

Consider the projection of P212121 on to (001). From the general equivalent positions we obtain the

two-dimensional set of coordinates:

x; y; 1
2
� x; �y; 1

2
þ x; 1

2
� y; �x; 1

2
þ y

It is convenient to change the origin to a twofold rotation point, currently at 1
4
; 0. To carry out this

transformation, the coordinates of the new origin are subtracted from the original coordinates:

x� 1
4
; y; 1

4
� x; �y; 1

4
þ x; 1

2
� y; �x� 1

4
; 1
2
þ y
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Next, new variables x0 and y0 are chosen such that x0 ¼ x� 1
4
and y0 ¼ y. Then, by substitution,

we obtain:

x0; y0; �x0; �y0;
1
2
þ x0;

1
2
� y0;

1
2
� x0;

1
2
þ y0

If the subscript is dropped, these coordinates are exactly those given already for p2gg, Fig. 2.24d,

which is the plane group of the projection of P212121 on (001), and also on (100) and (010). This type
of change of origin is useful when studying projections.

The orthorhombic space group Pnma is shown with the origin on �1 in Fig. 2.36. The symbol tells us

that the unit cell is primitive, with an n-glide plane normal to the x axis (see Table 2.6), anm plane normal

to y, and an a-glide plane normal to z. Although this space group is derived from point group mmm, we

have a problem similar to that discussed with P21/c. The solution of this type of problem depends upon

the fact that, in the standard orientation,m m m ¼1, and is illustrated fully in Problem 2.10 at the end of

this chapter. It may be noted that a double application of Euler’s theorem is used here:

m m ¼ mm2 and m ðmm2Þ � 1

The coordinates of the general and the special equivalent positions can be derived easily from the

diagram. The translational symmetry elements n and a give rise to the limiting conditions shown on

the diagram.Nonindependent conditions are shown in parentheses; in the orthorhombic system, all of the

classes of reflection listed should be considered, as will be discussed in Sect. 3.7ff.

Fig. 2.35 Space group P212121. In space-group diagrams, represents a 21 axis normal to the plane of projection

(Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by

courtesy of I. U. Cr.)
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It is useful to remember that among the triclinic, monoclinic, and orthorhombic space groups, at

least, pairs of coordinates which have one sign change of x, y, or z indicate a symmetry plane normal

to the axis of the coordinate with the changed sign. If two sign changes exist, a symmetry axis lies

parallel to the axis of the coordinate that has not changed sign. Three sign changes indicate a center of

symmetry. In these three systems, where any coordinate, say x, is related by symmetry to another at

t � x, that symmetry element intersects the x axis at t/2, by virtue of Fig. 2.33 mutatis mutandis.

2.7.8 Relative Orientations of Symmetry Elements in Space Groups

Earlier in this chapter, we looked briefly at the problem of choosing the relative positions of the

symmetry elements in space groups while keeping a particular symmetry element at a given site, such

as a center of symmetry at the origin in space groups of class 2/m. We now discuss some simple rules

whereby this task can be accomplished readily, with due regard to the relative orientations of the

symmetry elements given by the space-group symbol itself, Tables 1.5 and 2.5. We shall consider

here the symmetry planes and symmetry axes in space groups derived from point groups mmm and

2/m, although the rules can be applied more widely.

Fig. 2.36 Space group Pnma; the full space-group symbol is P 21
n

21
m

21
a (Lonsdale K, Henry NFM (1965) International

tables for X-ray crystallography, vol I. Kynoch Press. Reproduced by courtesy of I. U. Cr.)
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Half-Translation Rule

Location of Symmetry Planes

Consider space group Pnna: the translations associated with the three symmetry planes are (b + c)/2,

(c + a)/2 and a/2, respectively. If they are summed, the result T is (a + b/2 + c). We disregard the

whole translations a and c because they refer to unit-cell repetitions. Thus, the center of symmetry is

found displaced by T/2, or b/4, from the point of intersection of the three symmetry planes n, n, and a.

This means that, with �1 at the origin, we have njjð0; y; zÞ; njjðx; 1
4
; zÞ and ajj(x, y, 0). As a second

example, consider Pmma. The only translation is a/2; thus, T ¼ a/2, and the center of symmetry is

displaced by a/4 from the intersection of m, m and a.

Space group Immamay be formed from Pmma by introducing the body-centering translation 1
2
; 1
2
; 1
2
,

Fig. 6.18b. Alternatively, the half-translation rule may be applied to the complete space-group

symbol. In all, Imma contains the translations (a + b + c)/2 and a/2, so that T ¼ a + (b + c)/2, or

(b + c)/2; hence, the center of symmetry is displaced by (b + c)/4 from the intersection ofm,m and a.
This center of symmetry lies in one of the four sets, Wyckoff (a)–(d), that are introduced by the body-

centering translation at 1
4
; 1
4
; 1
4
, half the I translation, from a Pmma center of symmetry. This alternative

setting is given in the International Tables for X-Ray Crystallography [3]; it corresponds to that in

Fig. 6.18b with the origin shifted to the center of symmetry at 1
4
; 1
4
; 1
4
. Space groups in classmmm based

on A, B, C, and F unit cells similarly introduce additional sets of centers of symmetry. The reader may

care to apply these rules to space group Pnma and then check the result with Fig. 2.36. Note that there
are two sets of special equivalent positions on 1, which is why an origin on either center of symmetry

can be chosen.

Type and Location of Symmetry Axes

The quantity T also shows the types of twofold axes parallel to a, b, and c. Thus, if T contains an a/

2 component, then if a twofold axis parallel to a exists in the space group, it is a 21 axis. Similarly for

twofold axes parallel to y and z. Thus, in Pnna, T ¼ b/2, and so 2x � 2, 2y � 21, and 2z � 2. In Pbca,

T ¼ (b + c + a)/2; hence, all axes are 21 and the full space-group symbol is P
21

b

21

c

21

a
.

The location of each twofold axis may be obtained from the orientation of the symmetry plane

perpendicular to it, being displaced by half the corresponding glide translation, where appropriate.

Thus, in Pnna, we find 2 along ½x1
4
; 1
4
�, 21 along ½1

4
; y; 1

4
� and 2 along ½1

4
; 0; z�. In Pmma, 21 is along [x, 0,

0], 2 is along [0, y, 0] and 2 is along ½1
4
; 0; z�. The reader may care to continue the study with space

group Pnma, and then check the results against Fig. 2.36.

In the monoclinic space groups of class 2/m, a 21 axis with a translational component of b/2 shifts

the center of symmetry by b/4 with respect to the point of intersection of 21 with m; carry out Problem
7.3 and check you result in Tutorial Solution 7.3. In P2/c, the center of symmetry is shifted by c/4 with

respect to 2/c, and in P21/c the corresponding shift is (b + c)/4, see Fig. 2.32.

General Equivalent Positions

Once we know the positions of the symmetry elements in a space-group pattern, the coordinates of the

general equivalent positions in the unit cell follow readily.

Consider Pmma. Following out the above analysis, we may write the orientation of the symmetry

elements:
�1 at 0,0,0; choice of origin

mx, the plane ð14; y; zÞ
my, the plane (x, 0, z)

a, the plane (x, y, 0)
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Taking a point x, y, z across each of the three symmetry planes, we have, from Fig. 2.33:

x; y; z�!mx 1
2
� x; y; z

�!my

x; y; z

�!a 1
2
þ x; y; z

If these four points are now operated on by �1 the total of eight equivalent positions for Pmma are

obtained: � fx; y; z; 1
2
� x; y; z; x; y; z; 1

2
þ x; y; zg.

A similar analysis may be carried out for the space groups in the mm2 class, with respect to origins
on 2 or 21, although we have not discussed these space groups in this book. For example, work

through the space group Pma�, and check your result with Sect. 3.7.2 and Fig. 3.25, or with the

International Tables for X-ray Crystallography [3].

2.7.9 Tetragonal and Hexagonal Space Groups

We shall examine one space group from each of the tetragonal and hexagonal systems because new

features arise on account of the higher rotational symmetry in these two systems.

Tetragonal Space Group P4nc

It is evident that this space group is based on the point group 4mm. Reference to Table 1.5 shows that
the symbol has the following interpretation: a fourfold axis along z; n-glide planes normal to x (and to

y, because of the fourfold symmetry); c-glide planes normal to [110] and its fourfold symmetry-

related direction ½1�10�. The orientation of the n glides can be handled in the manner already discussed.

In the case of the c glide, it is straightforward to show, from Problem 2.21, that if the glide plane

intercepts the x and y axes at the value q, then a point x, y, z is reflected across the glide plane and

translated to the position q� y; q� x; 1
2
þ z. Thus, as in Sect. 2.7.5, we can set up the interpretation of

the symbol P4nc, again using Euler’s theorem, that the combination of any two operations is

equivalent to a third operation. Thus, n 4 ¼ c, but, in contradistinction to the point group 4mm, the

three operators do not all pass through the origin point.

Let the symmetry elements be placed as follows:

4 along the z axis, that is, the line [0, 0, z]
n normal to x, being the plane (x, b, z)
c normal to ½110�, the plane (q, q, z)

A point x, y, z (1) rotated about the 4-axis becomes �y; x; z (2); this point is taken across the n glide to
1
2
� y; 2b� x; 1

2
þ z (3). If we now operate on the original point (1) by the c glide, then x, y, z is

reflected to q� y; q� x; 1
2
þ z (4). Now, points (3) and (4) are one and the same, so that q ¼ 1

2
and

a ¼ 1
4
. This setting of the symmetry elements gives rise to the standard diagram for P4nc, shown in

Fig. 2.37. A similar result may be obtained by an initial clockwise rotation and the equivalent n glide
parallel to (a, y, z). The positions of the additional symmetry elements, not apparent from the symbol,

should again be noted. The diagram of the unit cell and its environs is complete, because any point

shown can be reached from any other point on the diagram by a single symmetry operation, plus unit-

cell translations as necessary.

Hexagonal Space Group P63/m

In this space group we encounter sixfold and threefold rotation operations. From Web Appendix

WA4, we show that a point x, y, z on hexagonal axes rotated anticlockwise about a 63 screw axis along
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z would be moved to the position x� y; x; 1
2
þ z. The translation of 1

2
accompanying the z coordinate

arises from the translation associated with the 63 axis, namely, a translation of 3/6, or 1
2
along z. The

sequence of points obtained by the successive operations of 63 about [0001] are:

x; y; z; x� y; x; 1
2
þ z; �y; x� y; z; �x; �y; 1

2
þ z;

ð1Þ ð2Þ ð3Þ ð4Þ
y� x; �x; z; y; y� x; 1

2
þ z

ð5Þ ð6Þ

Points (1) and (3) are related by a threefold rotation: note that 3 � 623, that is, two successive

operations of 63, whereas points (1) and (4) are related by 21 symmetry. The space group is completed

by introducing the m plane at z ¼ 1
4
: this position ensures that the center of symmetry is at the origin;

actually the symmetry at the origin is �3: �1 is a subgroup of �3. Other important symmetry elements now

in evidence include �6, 3, and �1.

Figure 2.38 illustrates space group P63/m. The 12 general equivalent positions comprise the six

listed above and another six obtained by their inversion across the center of symmetry at the origin; all

coordinates change sign. Consider point (2) reflected across the m plane to x� y; x; 1
2
� z. How may

this point be reached from x, y, z in a single operation? Either a clockwise �3 operation, or an

Fig. 2.37 Diagrams to show the general equivalent positions and symmetry elements for the tetragonal space group

P4nc (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced

by courtesy of I. U. Cr.)
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anticlockwise �32 operation, which is equivalent to two successive anticlockwise �3 operations, relates

these two points; we note in passing that both 3 and 32 are symmetry operations in this group, related

to the single symmetry element �3.

A scheme for handling hexagonal space groups, similar to those used for the lower-symmetry

systems, could be devised, but it will be more straightforward to use matrix operations, as we shall

now demonstrate.

Fig. 2.38 Diagrams to show the general equivalent positions and symmetry elements for the hexagonal space group

P63/m (Lonsdale K, Henry NFM (1965) International tables for X-ray crystallography, vol I. Kynoch Press. Reproduced

by courtesy of I. U. Cr.)
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2.8 Matrix Representation of Symmetry Operations

The representation of symmetry operations by matrices has a certain inherent elegance, and is useful

for displaying the close relationship between point groups and space groups. In this discussion, we

shall use the triplet x, y, z to represent a point in three-dimensional space. It could lie on the normal to

the face of a crystal or be an atom in a crystal structure, and we can indicate it concisely by the vector x.

A symmetry operation may be written as

R xþ t ¼ x0 (2.52)

where x and x0 are column vector triplets before and after the operation, R is a matrix representing the

symmetry operation, and t is a translation vector with components parallel to x, y, and z.

2.8.1 Matrices in Point-Group Symmetry

From the definition of point group, Sect. 1.4, it follows that t is identically zero in a point group. All

symmetry elements pass through a single point, the origin: if it were not the case, then parallel

symmetry axes, for example, could be generated. The consequence of this arrangement for a twofold

axis is shown in Fig. 2.39.

Thus, for point groups, (2.52) reduces to

R x¼x0 (2.53)

Let R1 represent an m plane perpendicular to the x axis, as in the orthorhombic system, for

example. Then, we have

1 0 0

0 1 0

0 0 1

24 35
R1

�
x
y
z

24 35
x

¼
�x
y
z

24 35
x0

(2.54)

Fig. 2.39 Points 1 and 2, related by the diad (twofold axis) a, when rotated about the axis b produce points 4 and 3. But
3 and 4 are now related by another diad, c. The effect of diad c on points 1 and 2 is to produce points 6 and 5. But these
points are related to 3 and 4 by diad d and to each other by diad e. Now 3 and 4, for example, can be rotated about e, and
so on. Clearly, this process would lead to an infinite number of parallel, equidistant diad axes, together with the

symmetry-related points, a situation that is totally incompatible with a point group
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The multiplication is carried out, as usual, along the row and down the column, with the result at

the intersection marked; that is,

(2.55)

�x ¼ �1	 xþ 0	 yþ 0	 z (2.56)

and similarly for y and z.

Let the triplet x0 now suffer reflection across a mirror plane normal to y, using matrix R2:

1 0 0

0 �1 0

0 0 1

24 35
R2

�
�x
y
z

24 35
x

¼
�x
�y
z

24 35
x00

(2.57)

It should be clear that the relationship between x and x00 is that of a twofold rotation about the z
axis. Thus, for the two m planes,

m m¼2 (2.58)

as we have seen already, Sect. 1.4.2.

Another way of reaching the same final result is first to combine the two matrices R1 and R2,

1 0 0

0 1 0

0 0 1

264
375

R2

�
1 0 0

0 1 0

0 0 1

264
375

R1

¼
1 0 0

0 1 0

0 0 1

264
375

R3

(2.59)

and then to use the right-hand side of (2.59) in (2.53):

�1 0 0

0 �1 0

0 0 1

24 35
R3

�
x
y
z

24 35
x

¼
�x
y
z

24 35
x00

(2.60)

Equation (2.59) corresponds to operation R2 R1 (R1 followed by R2), the order of multiplication

following (2.55). If a rotational symmetry axis forming an operator R is less than or equal to degree

2 or to m, the order of multiplication need not be followed, but it is good practice to multiply the

matrices in the standard manner; we can highlight this feature by considering point group 4mm.
The matrices for a fourfold rotation along the z axis and anm plane perpendicular to x are, in order,

1 0 0

0 1 0

0 0 1

24 35
R2

m?x

�
0 1 0

1 0 0

0 0 1

24 35
R3

4 along z

¼
0 1 0

1 0 0

0 0 1

24 35
R3

(2.61)
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Hence, R2 R1 ¼ R3, and R3 xðx; y; zÞ ¼ x0ðy; x; zÞ; R3 represents an m plane symmetry operator

normal to ½1�10�. Multiplying in the reverse order, that is,

ðR1 R2Þx ¼ x00 (2.62)

gives

R1 R2 ¼ R4 (2.63)

where x00 is now �y, �x, z, andR4 is a matrix operator representing anm plane normal to [110]. Write out

this matrix. The m planes represented by R3 and R4 are equivalent under symmetry R1 or R2, but lead

to physically different sites. Thus, if we are expecting x0 from x and obtain x00 instead, it may be

confusing and, in considering some physical properties, could be significantly different. All other

point groups may be treated in the standard manner just described.

2.8.2 Matrices in Space-Group Symmetry

In space-group symmetry, t in (2.52) is not necessarily equal to zero. Such a situation will exist

whenever the space group under consideration contains translational symmetry. We will consider first

space group P21/c, Sect. 2.7.5. As before, we set the origin on �1 ðR3Þ, 21 (R1) along [p, y, r], and c
(R2) the plane (x, q, z). The operation R1 followed by R2, from our previous discussion, may be

formulated as

1 0 0

0 �1 0

0 0 1

24 35
R2

þ
0

2q
1
2

24 35
t2

�
�1 0 0

0 1 0

0 0 �1

24 35
R1

þ
2p
1
2

2r

24 35
t1

¼
�1 0 0

0 �1 0

0 0 �1

24 35
R3

þ
0

0

0

24 35
t3

(2.64)

Matrix R1 is just that for twofold rotation about a line parallel to the y axis, as represented above,

and R2 is the matrix for an m plane normal to y, as given above. The translation vectors t1 and t2 may

be obtained from the setting, following the argument relating to Fig. 2.33. Matrix R3 is the multipli-

cation R2 R1 and, clearly, is equivalent to a center of symmetry (�1) at the origin. Since, by definition

of the standard origin, t3 must be zero, we have the translation vectors

t2 þ t1 ¼ t3 ¼ 0 (2.65)

It follows that p ¼ 0, q ¼ 1
4
and r ¼ 1

4
, as before. These results may be regarded as a matrix

justification of the scheme used in Sect. 2.7.5, and expressed in the half-translation rule, Sect. 2.7.8.

As a final example, we shall consider space group Pnma, see Sect. 2.7.7. From the symbol, we can

write

R1: n is the plane (p, y, z) with n-translation 0, 1
2
; 1
2

R2: m is the plane (x, q, z) with no translation

R3: a is the plane (x, y, r) with a-translation 1
2
; 0; 0

R4: �1 is the center of symmetry at 0,0,0 (no translation)

We know that, for space groups in the mmm class, we have

R3 R2 R1 ¼ R4 (2.66)
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Hence,

1 0 0

0 1 0

0 0 �1

264
375

R3

þ
1
2

0

2r

264
375

t3

8>><>>:
1 0 0

0 �1 0

0 0 1

264
375

R2

þ
0

2q

0

264
375

t2

�1 0 0

0 1 0

0 0 1

264
375

R1

þ
2p
1
2
1
2

264
375

t1

9>>=>>;
¼

�1 0 0

0 �1 0

0 0 �1

264
375

R4

þ
0

0

0

264
375

t4

(2.67)

And we have

t3 þ t2 þ t1 ¼ t4 ¼ 0 (2.68)

Multiplying the matrices and adding the translation vectors we obtain p ¼ 1
4
; q ¼ 1

4
, and r ¼ 1

4
as

given in Fig. 2.36. The full symbol of point group mmm is
2

m

2

m

2

m
, so that in Pnma there are 2 or 21

axes normal to the symmetry planes. We can obtain the results readily from (2.67), inserting the

values of p, q, and r into the translation vectors; if the fraction 1
2
appears in line with the x coordinate in

a plane normal to x, then the axis is 21, and similarly for the y and z positions. Hence, the full symbol

for this space group is P
21

n

21

m

21

a
. The same result could be achieved with the scheme used for

solving Problem 2.10, perhaps with less elegance.

The essential difference between point groups and space groups rests in the translation vectors, and

the infinite space to which the space groups refer. Symmorphic space groups such as Pm, C2/m, and
Imm2, some of which contain translational symmetry elements, do not need any special treatment to

determine the orientation of the symmetry elements with respect to the origin, since the symmorphic

space groups contain the point-group symbol, the origin is given immediately, for example, on m in

Pm, at 2/m (�1) in C2/m, and along mm2 in Imm2; all translation vectors in equations such as (2.64) are

zero in these space groups. The half-translation rule, once understood, is the simplest method of

locating the origin, certainly for the non-symmorphic space groups in the monoclinic and orthorhom-

bic systems, which represent the majority of known crystals.

2.9 Diffraction Symbols

We look ahead briefly to some results in later chapters, and note that after a crystal has been examined to

the extent that indices can be assigned to the X-ray diffraction spectra, the totality of the diffraction

information can be assembled into a diffraction symbol. This parameter includes the Laue group and the

symmetry determined through the systematic absences.
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In Table 2.7, we list the diffraction symbols for the orthorhombic space groups. A full discussion

of diffraction symbols for the 230 space groups may be found in the International Tables for X-Ray

Crystallography (2002, Volume A) or (1965, Volume I).

Table 2.7 Orthorhombic space group diffraction symbols

Point group

Diffraction symbol 222 mm2 mmm

mmmP . . . P222 Pmm2 Pmmm

mmmP . . 21 P2221

mmmP 21 21 . P21212

mmmP 21 21 21 P212121

mmmP c . . Pc2m ¼
Pcm21 ¼

Pma2

Pmc21

 !
Pcmm ¼ Pmma

mmmP n . . Pnm21 ¼ Pmn21 Pnmm ¼ Pmmn

mmmP c c . Pcc2 Pccm

mmmP c a . Pca21 Pcam ¼ Pbcm

mmmP b a . Pba2 Pbam

mmmP n c . Pnc2 Pncm ¼ Pmna

mmmP n a . Pna21 Pnam ¼ Pnma

mmmP n n . Pnn2 Pnnm

mmmP c c a Pcca

mmmP b c a Pbca

mmmP c c n Pccn

mmmP b a n Pban

mmmP b c n Pbcn

mmmP n n a Pnna

mmmP n n n Pnnn

mmmC . . . C222 Cmm2 ¼
Cm2m ¼

Cmm2

Amm2

 !
Cmmm

mmmC . . 21 C2221

mmmC . c . Cmc21 ¼
C2cm ¼

Cmc21

Ama2

 !
Cmcm

mmmC . . a C2ma ¼ Abm2 Cmma

mmmC . c a C2ca ¼ Aba2 Cmca

mmmC c c . Ccc2 Cccm

mmmC c c a Ccca

mmmI . . . I222

I212121

" #
Imm2 Immm

mmmI . a . Ima2 Imam ¼ Imma

mmmI b a . Iba2 Ibam

mmmI b c a Ibca

mmmF . . . F222 Fmm2 Fmmm

mmmF d d . Fdd2

mmmF d d d Fddd

Notes: (1) Space groups shown in bold type, e.g. P212121, are uniquely determinable when the Laue group is known. (2)

Space groups shown in italic type, e.g. Pccm, are not uniquely determinable even when the Laue group is known. (3)

Special pairs of space groups are enclosed in brackets, e.g. [I222, I212121]. (4) Space groups enclosed in parentheses,

e.g. Pma2, Pc2m, are determinable if the point group and its orientation are known. (5) In rows containing two symbols,

e.g. Pc2m and Pma2, the symbol on the right is the standard setting, whether or not it is in parentheses
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2.10 Some Other Types of Symmetry

The symmetry concepts dealtwith so far have referred to the classical “non-color” groups.Considerationof

other patterns, such as those of wallpapers, tiled walls and floors of the Alhambra, reveal the existence of

color symmetry, the simplest example of which is black-white symmetry.

An example of the classical symmetry that we have been studying is shown in Fig. 2.40. At the

bottom of the illustration there are three fourfold rotation points, assuming a two-dimensional pattern.

If we choose the center point as an origin, then another three points in identical orientation form the

corners of a plane unit cell, set at 45� to the borders of the figure. It may be found convenient to make

a copy of the figure for this study. Not surprisingly, twofold rotation points exist at the mid-points of

the unit-cell edges, but the fourfold point at the center of the unit cell is in a different orientation from

those at the corners. There are also m lines and g lines in the pattern: the plane group is p4mg: see also

Fig. 2.22; p4mg � p4gm by interchange of axes.

2.10.1 Black-White Symmetry

The simplest nonclassical symmetry is black-white symmetry, of which Fig. 2.41 is an example. The

elements of this pattern are black beetles and white beetles, and the same symmetry elements as in

Fig. 2.40 are present in this illustration. The m lines in the figure are classical, but the g lines involve a

color change fromwhite to black and vice versa as do the fourfold rotation points. The plane groupmay

be designated p40gm.

Fig. 2.40 Classical plane

group of symmetry p4mg
(see also Fig. 2.22) (Mac-

gillavry CH (1965) Sym-

metry aspects of

M. C. Escher’s periodic

drawings. Reproduced

by courtesy of I. U. Cr.).

Scheltema and Holkema,

Bohn (for I. U. Cr., 1976)
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Potassium Chloride

Apractical example of very closely black-white symmetry is found in the structure of potassiumchloride,

which consists of the isoelectronic K+ and Cl� ions, Fig. 2.42. Because X-rays are scattered by electrons

in a crystal structure, each of these species appears identical in an X-ray beam. Thus, the structure

appeared on first examination to be based on a cubic P unit cell,8 since the resolution of the X-ray pattern

at that time was not high.

After other alkali halides, notably sodium chloride, had been examined and their structures found

to be cubic F, a more detailed examination showed that potassium chloride, too, was cubic F, and the

true repeat distance was revealed. The X-ray reflections that would have been indicated the F cubic

structure of potassium chloride were too weak to be revealed by the first experiments with the X-ray

ionization spectrometer. The correct repeat period is found also by neutron scattering, since the

scattering powers of the K+ and Cl� species differ significantly for neutron radiation, Sect. 12.5.

2.10.2 Color Symmetry

As an example of color symmetry, we examine Fig. 2.43. It comprises fish in four different colors and

orientations, but all fish of any given color have identical orientations. The 90� difference in

orientation between the pairs white-green, green-red, red-blue, and blue-white fish indicate the

presence of fourfold color-rotation points. The almost square elements of fins, of sequence white,

Fig. 2.41 Black/white

plane group of symmetry

p40gm (Macgillavry CH

(1965) Symmetry aspects

of M. C. Escher’s periodic

drawings. Reproduced by

courtesy of I. U. Cr.)

8 See Bibliography (Bragg 1949).
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Fig. 2.43 An example of a color symmetry plane group (Macgillavry CH (1965) Symmetry aspects of M. C. Escher’s

periodic drawings. Reproduced by courtesy of I. U. Cr.)

Fig. 2.42 The structure of potassium chloride, KCl, as seen in projection on to a cube face. Since K+ and Cl� are

isoelectronic (18 electrons each), their scattering of X-rays (q.v.) is closely similar
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green, red, blue, at the bottom center of the figure and three others in similar orientation form the

corners of a square unit cell.

The fourfold color-rotation point at the center of the unit cell, consisting of areas of fish tails,

shows the same color sequence but in a different orientation. The twofold rotation points are again

evident at the mid-points of the cell edges. In this pattern, however, the twofold rotations involve a

change of color, as indicated by the motifs at the fourfold rotation points: they are twofold color-
rotation points.

For further discussions on black-white and color symmetry, the reader is referred to the works of

Macgillavry and Shubnikov listed in the Bibliography at the end of the chapter.

2.11 Problems

2.1. Figure P2.1a shows the molecule of cyclosporin H repeated by translations in two dimensions.

In Fig. P2.1b, the molecules are related also by twofold rotation operations, while still subjected

to the same translations as in Fig. P2.1a. Four parallelogram-shaped, adjacent repeat units of

pattern from an ideally infinite array are shown in each diagram. Convince yourself that

Fig. P2.1 (a) The mole-

cule of cyclosporin H

repeated by translations in

two dimensions. (b) The

molecules are related also

by twofold rotation opera-

tions
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Fig. P2.1a is formed by repeating a single molecule by the unit-cell translations shown, and that

Fig. P2.1b follows from it by the addition of a single twofold operation acting at any parallelo-

gram corner. Furthermore, for Fig. P2.1b state in words:

(a) The locations of all twofold symmetry operators belonging to a single parallelogram unit.

(b) How many of these twofold operators are unique to a single parallelogram unit?

2.2. Two nets are described by the unit cells (1) a ¼ b, g ¼ 90� and (2) a ¼ b, g ¼ 120�. In each

case: (a) What is the symmetry at each net point? (b) To which two-dimensional system does

the net belong? (c) What are the results of centering the unit cell?

2.3. A monoclinic F unit cell has the dimensions a ¼ 6.000 Å, b ¼ 7.000 Å, c ¼ 8.000 Å, and

b ¼ 110.0�. Show that an equivalent monoclinic C unit cell, with an obtuse b angle, can

represent the same lattice, and calculate its dimensions. What is the ratio of the volume of the C
cell to that of the F cell?

2.4. Carry out the following exercises with drawings of a tetragonal P unit cell:

(a) Center the B faces. Comment on the result.

(b) Center the A and B faces. Comment on the result.

(c) Center all faces. What conclusions can you draw now?

2.5. Calculate the length of ½31�2� for both unit cells in Problem 2.3.

2.6. The relationships a 6C b 6C c, a 6C b 6C 90 or 120�, and g ¼ 90� may be said to define a diclinic

system. Is this an eighth system? Give reasons for your answer.

2.7. (a) Draw a diagram to show the symmetry elements and general equivalent positions in c2mm,
origin on 2mm. Write the coordinates and point symmetry of the general and special positions, in

their correct sets, and give the conditions limiting X-ray reflections in this plane group. (b) Draw a

diagram of the symmetry elements in plane group p2mg, origin on 2; take care not to put the

twofold point at the intersection ofm and g. Why? On the diagram, insert each of the motifs P, V,

and Z in turn, each letter drawn in its most symmetrical manner, using the minimum number of

motifs consistent with the space-group symmetry.

2.8. (a) Continue the study of space group P21/c, Sect. 2.7.5. Write the coordinates of the general and

special positions, in their correct sets. Give the limiting conditions for all sets of positions, andwrite

the plane-group symbols for the three principal projections. Draw a diagram of the space group as

seen along the b axis. (b) Biphenyl, , crystallizes in space group P21/c with two molecules

per unit cell. What can be deduced about both the positions of the molecules in the unit cell and the

molecular conformation? The benzene rings in the molecule may be assumed to be planar.

2.9. Write the coordinates of the vectors between all pairs of general equivalent positions in P21/c

with respect to the origin, and note that they are of two types. What is the “weight,” or

multiplicity, of each vector set? Remember that � 1
2
and þ 1

2
in a coordinate are crystallo-

graphically equivalent, because we can always add or subtract 1 from a fractional coordinate

without altering its crystallographic implication.

2.10. The orientation of the symmetry elements in the orthorhombic space group Pban may be

written as follows9:

�1 at 0; 0; 0 (choice of origin)

b - glide k ðp; y; zÞ
a - glide k ðx; q; zÞ
n - glide k ðx; y; rÞ

9>>=>>;ðfrom the space - group symbolÞ

9 In general, the symbol ǁ in this context indicates the plane (or line) specified; for example, the b-glide plane will be the
plane (p, y, z).
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Determine p, q, and r from the following scheme, using the fact that n a b � 1:

2.11. Construct a space-group diagram for Pbam, with the origin at the intersection of the three

symmetry planes. List the coordinates of both the general equivalent positions and the centers

of symmetry. Derive the standard coordinates for the general positions by transforming the

origin to a center of symmetry.

2.12. Show that space groups Pa, Pc, and Pn represent the same pattern, but that Ca is different from

Cc. What is the more usual symbol for space group Ca? What would be the space group for Cc

after an interchange of the x and z axes? Is Cn another monoclinic space group?

2.13. For each of the space groups P2/c, Pca21, Cmcm, P�421c, P6122, and Pa3:

(a) Write down the parent point group and crystal system.

(b) List the full meaning conveyed by the symbol.

(c) State the independent conditions limiting X-ray reflections.

(d) List the Buerger diffraction symbols for these space groups.

2.14. Consider Fig. 2.25. What would be the result of constructing this diagram with Z alone, and not

using its mirror image?

2.15. (a) Draw a P unit cell of a cubic lattice in the standard orientation.

(b) Center the A faces. What system and standard unit-cell type now exist?

(c) From the position at the end of (b), let c and all other lines parallel to it be angled backward

a few degrees in the ac plane. What system and standard unit-cell type now exist?

From the position at the end of (c), let c and all other lines parallel to it be angled sideways a

few degrees in the bc plane. What system and standard unit-cell type now exist? For (b) to

(d), write the transformation equations that take the unit cell as drawn into its standard

orientation.

2.16. Set up matrices for the following symmetry operations: �4 along the z axis, m normal to the y

axis. Hence, determine the Miller indices of a plane obtained by operating on (hkl) by �4, and on
the resulting plane by the operation m. What are the nature and orientation of the symmetry

element represented by the given combination of �4 followed by m?

2.17. The matrices for an n-glide plane normal to a and an a-glide plane normal to b in an orthorhom-

bic space group are as follows:

1 0 0

0 �1 0

0 0 1

264
375þ

1
2

0

0

264
375 �1 0 0

0 1 0

0 0 1

264
375þ

0
1
2
1
2

264
375

a t n t

What are the nature and orientation of the symmetry element arising from the combination of n

followed by a? What is the space-group symbol and its class?

2.18. (a) Determine thematrices for both a 63 rotation about [0, 0, z] and a c-glide plane normal to the y

axis and passing through the origin in space group P63c�. Use the fact that a threefold right-

handed rotation converts the point x, y, z to �y, x � y, z, and that 2 32 ¼ 6. (b) What is symmetry

represented by the symbol � in the space group symbol and what are the point-group and
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space-group symbols? (c)What is thematrix for the symmetry operation found in (b)? (d) Draw a

diagram for the space group. List the number of general equivalent positions, their Wyckoff

notation, point symmetry, coordinates, and conditions limiting reflections for the space group. (d)

Are there any special equivalent positions? If so, list them as under (c).

2.19. A unit cell is determined as a ¼ b ¼ 3 Å, c ¼ 9 Å, a ¼ b ¼ 90�, g ¼ 120�. Later, it proves to
be a triply primitive hexagonal unit cell. With reference to Fig. 2.11, determine the equations

for the unit-cell transformation Rhex ! Robv, and calculate the parameters of the rhombohedral

unit cell.

2.20. In relation to Problem 2.19, given the plane (13*4) and zone symbol ½1�2 � 3� in the hexagonal

unit cell, determine these parameters in the obverse rhombohedral unit cell. The symbol∗ here

indicates that the three integers given relate to the x, y, and z axes, respectively.
2.21. By means of a diagram, or otherwise, show that a site x, y, z reflected across the plane (qqz) in

the tetragonal system has the coordinates q � y, q � x, z after reflection.

2.22. Deduce a diffraction symbol table for the monoclinic space groups.

2.23. Draw the projection of an orthorhombic unit cell on (001), and insert the trace of the (210) plane

and the parallel plane through the origin.

(a) Consider the transformation a0 ¼ a/2, b0 ¼ b, c0 ¼ c. Using the appropriate transformation

matrix, write the indices of the (210) plane with respect to the new unit cell. Draw the new

unit cell and insert the planes at the same perpendicular spacing, starting with the plane

through the origin. Does the geometry of the diagram confirm the indices obtained from the

matrix?

(b) Make a new drawing, like the first, but now consider the transformation a0 ¼ a, b0 ¼ b/2,

c0 ¼ c. What does (210) become under this transformation? Draw the new unit cell and

insert the planes as before. Does the geometry confirm the result from the matrix?

2.24. Why are space groups Cmm2 and Amm2 distinct, yet Cmmm and Ammm are equivalent?

2.25. An orthorhombic P unit cell has the dimensions a ¼ 5.50 Å, b ¼ 6.75 Å, c ¼ 12.20 Å, and

their reciprocals (k ¼ 1) are a* ¼ 0.1818 Å�1, b* ¼ 0.1481 Å�1, c* ¼ 0.08197 Å�1. Use the

matrix M to transform: (a) The unit cell. (b) The Miller indices (312). (c) The zone symbol

[102]. (d) The reciprocal unit cell dimensions. (e) The point x ¼ 0.3142, y ¼ 0.4703,

z ¼ �0.5174.

M ¼
1 �1 1

2

1 1 �1
2

1
4

3
4

1
8

24 35
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