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  Abstract   Vector-borne diseases provide unique challenges to public health because 
the epidemiology is so closely tied to external environmental factors such as cli-
mate, landscape, and population migration, as well as the complicated biology of 
vector-transmitted pathogens. In particular, this close link between the epidemiol-
ogy, the environment, and pathogen biology means that the traditional view that 
many vector-borne diseases are relatively stable in numerous regions does not pro-
vide a complete picture of their complexity. In fact, several regions exist with low 
levels of endemicity most of the time, punctuated by severe, often explosive, epi-
demics. These regions are considered unstable transmission settings. Ordinary dif-
ferential equation (ODE) models have thus far dominated the study of vector-borne 
disease and have provided considerable insight into our understanding of transmis-
sion and effective control in stable transmission settings. To address the short- 
comings of autonomous ODE models, we present a class of models, differential-delay 
equation (DDE) models, that have the potential to better describe unstable endemic 
settings for vector-borne disease. These models develop naturally out of the biology 
of diseases transmitted by vectors because of the extrinsic and intrinsic incubation 
periods and vector maturation process necessary for successful transmission of vec-
tor-transmitted pathogens. In this chapter, we introduce  fi ve examples of vector-
borne diseases that span the globe, and discuss the clinical implications of unstable 
transmission of these diseases. Next, we present the original ODE version of the 
Ross-Macdonald model for vector-borne diseases, modify this model by introduc-
ing different types of naturally occurring delays, then illustrate how these models 
can exhibit more complex behavior such as oscillations via Hopf bifurcation and 
chaos via period-doubling, that the ODE model cannot produce. Finally, we explore 
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the possibility for delay-models to contribute to our understanding of unstable 
transmission settings, which in turn will inform the development of effective control 
strategies for these epidemic-prone regions.  
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       1   Introduction 

 During the late 19th century, it was discovered that mosquitoes are capable of trans-
mitting diseases. Since then, arthropods have been identi fi ed as responsible for the 
spread of many other diseases. Although discovering this transmission mechanism 
led to new insights into how to better control these vector-borne diseases, more than 
one hundred years later, vector-borne diseases continue to pose a signi fi cant burden 
worldwide (Gubler  1998 ). The development of vector resistance to insecticides, 
changes in public health programs, climate change, changes in agricultural prac-
tices, the increased mobility of humans, and urban growth are all factors that con-
tribute to the dif fi culty in controlling and eliminating vector-borne diseases. To 
further complicate matters, vector-borne diseases typically occur in developing 
countries with limited resources and access to health care. Because controlled epi-
demiological experiments are usually not possible, mathematical models have 
played an important role in developing a better understanding for how to mitigate 
the burden of these diseases. This chapter presents several examples of important 
vector-borne diseases, illustrating the diversity in this class of infectious diseases 
and consequently the need for mathematical models to address this diversity. We 
then discuss the difference between stable and unstable transmission settings and 
the implications these different settings have for public health. In Section  2.2 , we 
introduce the Ross-Macdonald model for vector-borne diseases and consider sev-
eral modi fi cations of this model by introducing different types of delays relevant to 
the biology of vector-borne diseases. Finally, we discuss the contribution that these 
delay-differential equation models can make to better understanding unstable vec-
tor-borne disease transmission settings. 

    1.1   The Diversity of Vector-Borne Diseases 

 The formulation of mathematical models should take into consideration the epide-
miology of each vector-borne disease. Some important vector-borne diseases that 
remain prevalent today include malaria, dengue, Chagas disease, leishmaniasis, 
and St. Louis encephalitis. Dengue, Chagas disease, and leishmaniasis are included 
in the World Health Organizations list of neglected tropical diseases  (  WHO  ) . 
These  fi ve diseases are caused by different types of pathogens, are transmitted 
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by different vectors, have different clinical manifestations, result in different lev-
els of immunity, and have different geographical distributions. To add to this com-
plexity, while a disease may be endemic in one region, the same disease can exhibit 
an epidemic pattern of transmission in another region. Understanding how to 
model unstable transmission as well as stable transmission of vector-borne dis-
eases is important because of the different implications that these unique transmis-
sion settings have for public health. 

    1.1.1   Malaria 

 Malaria, a disease transmitted between Anopheles mosquitoes and mammals, is 
considered the most important vector-borne disease (Gubler  1998 ), causing an 
estimated 190 –311 million clinical episodes, and 708,000 - 1,003,000 deaths in 2008 
worldwide  (  CDC  ) . Malaria is responsible for the  fi fth greatest number of deaths due 
to infectious diseases and is the second leading cause of death in Africa behind HIV/
AIDS (Gubler  1998 ). Four Plasmodium parasite species are responsible for malaria 
infection in humans:  Plasmodium falciparum ,  Plasmodium vivax ,  Plasmodium 
ovale , and  Plasmodium malariae . Of these,  P. falciparum  causes the most severe 
clinical symptoms and is responsible for the greatest number of deaths due to 
malaria infection. However, recent severe clinical cases of  P. vivax  malaria have 
started to change the perception that  vivax  malaria is relatively benign (Kochar et al. 
 2009 ). In fact, cases of  P. vivax  monoinfection have been reported with clinical 
manifestations similar to those of severe infection with  P. falciparum  malaria. These 
severe manifestations include cerebral malaria, anemia, respiratory distress syn-
drome, and acute renal failure (Kochar et al.  2009 ). The widespread distribution of 
 P. vivax , causing roughly 100-300 million clinical cases each year, is cause for con-
cern (Kochar et al.  2009 ). In regions with endemic malaria, the number of clinical 
cases can place a signi fi cant burden on the social and economic welfare of that 
population (Mendis et al.  2001 ), even if mortality rates are fairly low. People living 
in regions with moderate  P. vivax  endemicity experience 10 to 30 or more episodes 
of malaria throughout their childhood and working life, each episode resulting in 
about 5 to 15 days absent from work or school. Consequently, malaria, which typi-
cally af fl icts poor, developing countries, continues the cycle of poverty by hamper-
ing the education and productivity of those at risk (Mendis et al.  2001 ).  

    1.1.2   Leishmaniasis 

 In contrast to malaria infection in humans, which is caused by four Plasmodium 
species and transmitted by mosquitoes, leishmaniasis, another dangerous vector-
borne disease, is caused by over 20 leishmanial parasite species and is transmitted 
by roughly 30 different species of sand fl ies. The clinical manifestations of leishma-
niases can be divided into four categories: cutaneous leishmaniasis, muco-cutaneous 
leishmaniasis, visceral leishmaniasis (VL) or kala-azar, and post-kala-azar 
dermal leishmaniasis (PKDL). Cutaneous leishmaniasis is characterized by ulcers 
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or nodules in the skin that eventually heal spontaneously, but slowly, causing 
dis fi guring scars. According to the World Health Organization, there are roughly 1.5 
million new cases of cutaneous leishmaniasis each year  (  WHO  ) . Several months or 
years after an initial episode of cutaneous leishmaniasis, some patients suffer from 
more severe ulcers that do not spontaneously heal  ( Chappuis et al.  2007  )  and can 
partially or completely destroy the mucous membranes of the nose, mouth, throat 
cavities, and surrounding tissues  (  WHO  ) . This more severe clinical manifestation is 
called muco-cutaneous leishmaniasis (Chappuis et al.  2007 ,  WHO ). The most dan-
gerous manifestation of leishmaniasis is visceral leishmaniasis, which is fatal if 
untreated  ( Chappuis et al.  2007  ) . As with malaria, visceral leishmaniasis primarily 
affects those in less developed countries and the burden on these countries is great, 
with approximately 500,000 new cases arising each year, 90% of which occur in 
only 5 countries: India, Bangladesh, Nepal, Sudan, and northeastern Brazil (Guerin 
et al.  2002 ). 50% of visceral leishmaniasis cases occur in India, Bangladesh, and 
Nepal alone (Olliaro et al.  2009 ). Treatments for VL exist but are expensive and 
impractical because treatment either requires a long hospitalization for proper 
administration of intravenous treatment, or because patients must self-treat with an 
oral drug and adhere to that treatment for four weeks (Olliaro et al.  2009 ). Another 
concern is that monotherapies increase selective pressure, leading to parasite resis-
tance (Olliaro et al.  2009 ). Olliaro et al.  2009  estimated that the 2006 average house-
hold cost of an episode of VL in India is US$209 - an enormous expense considering 
the median household income was US$49 per month. Even when treatment is 
administered, treated visceral leishmaniasis cases are sometimes followed (0-6 
months post-treatment in Sudan and 6 months-3 years post-treatment in India) by 
PKDL  ( Chappuis et al.  2007  ) . PKDL is characterized by highly infectious nodular 
lesions on the skin. These parasite-containing lesions act as a reservoir for anthro-
ponotic (vector-to-human) VL between epidemics  ( Chappuis et al.  2007  ) . While the 
global distribution of visceral leishmaniasis is not as expansive as the distribution of 
malaria, it places second (behind malaria) for the highest mortality caused by para-
sitic disease, resulting in more than 50,000 deaths each year, and subsequently plac-
ing an unfortunate strain on the health and well-being of the people in a few 
developing countries.  

    1.1.3   Chagas disease 

 Chagas disease is another parasitic infection caused by the protozoan  Trypanosoma 
cruzi  (Rassi Jr et al.  2010 ). This vector-borne disease is transmitted by the reduviid 
bugs of the subfamily Triatominae to humans and over 150 species of domestic ani-
mals and wild animals (Rassi Jr et al.  2010 ).  T. cruzi  is an enzootic disease, which 
only leads to infection in humans if the vector has adapted to human dwellings. The 
 T. cruzi  parasites reside in the feces of infected reduviid bugs. When one of these 
bugs takes a blood-meal from a human, it defecates on the host, allowing infected 
fecal matter to enter the host through the mucosa of the eye, nose, or mouth (Prata 
 2000 ). Transmission of Chagas disease can also occur through blood transfusion and 
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vertically from mother to child (Prata  2000 , Rassi Jr et al.  2010 ). Unlike malaria and 
leishmaniasis, roughly 10% of all Chagas cases are a result of transfusions and is the 
primary transmission mechanism in urban areas (Prata  2000 , Rassi Jr et al.  2010 ). 
5000 to 18,000 cases per year are congenitally transmitted, and occasionally cases 
are a result of the consumption of contaminated food (Prata  2000 , Rassi Jr et al. 
 2010 ). Most cases of Chagas disease occur in Latin America, where  T. cruzi  is 
endemic. However, more recently, the immigration of people from Latin America to 
the US, Canada, parts of Europe and the western Paci fi c, has led to an increase in the 
number of cases in these non-endemic regions (Rassi Jr et al.  2010 ). Chagas disease 
manifests in different stages. The initial phase lasts 4 to 8 weeks and is often asymp-
tomatic. If symptoms do occur, the onset is roughly 1 to 2 weeks after acquiring the 
infection vectorially. Other transmission mechanisms have different incubation peri-
ods. During this acute phase, the  T. cruzi  parasite along with the host’s 
immunoin fl ammatory response can cause tissue and organ damage. 5-10% of vecto-
rially infected patients with acute symptoms do not survive the acute phase. However, 
in 90% of infected individuals, the acute phase will end spontaneously, even without 
treatment, and approximately 30-40% of those individuals will develop a chronic 
form of the disease usually 10-30 years later presenting as cardiac, digestive, or car-
diodigestive disease. This chronic phase, called the determinate form of chronic dis-
ease, lasts for the remainder of the patient’s life and can be fatal if the patient develops 
Chagas heart disease. The remaining 60-70% who recover from the acute phase but 
never develop clinical symptoms thereafter, have the intermediate form of chronic 
Chagas disease. These individuals have developed the antibodies against  T. cruzi , 
but show none of the ailments characteristic of the determinate form. Although prog-
ress has been made to control Chagas disease in Latin America, the various mecha-
nisms of transmission compounded with human movement continues to place several 
countries, including non-endemic areas, at risk (Rassi Jr et al.  2010 ).  

    1.1.4   Dengue 

 Not all vector-borne diseases are caused by protozoan parasites. Dengue and dengue 
hemorrhagic fever (DHF), a complication of Dengue, are examples of tropical vec-
tor-borne diseases caused by four serotypes (DEN-1, DEN-2, DEN-3, DEN-4) of the 
dengue virus (Gubler and Clark  1995 ). The principal vector of dengue virus is the 
 Aedes aegypti  mosquito (Gubler and Clark  1995 ). This mosquito prefers taking 
blood-meals from humans and typically bites during the day. Because of the  A. 
aegypti  mosquito’s preference for biting humans (Gubler and Clark  1995 ) and its 
ability to breed in containers holding rainwater (such as tires and cisterns) ( WHO ), it 
is considered a predominantly urban vector. In 1981, the America’s experienced its 
 fi rst major DHF outbreak resulting from importation of a new strain of DEN-2 from 
Southeast Asia, and by 1995, DHF spread to 14 countries in the Americas, several of 
which experienced endemic DHF (Gubler and Clark  1995 ). The geographic distribu-
tion of dengue continues to grow, resulting in roughly 50 million dengue cases 
worldwide each year ( WHO ), spanning more than 100 countries (Gubler et al.  2002 ). 
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One of the dif fi culties posed by dengue is the circulation of the 4 different serotypes, 
which do not confer immunity to one another. Consequently, an individual may 
become infected up to 4 times during his/her lifetime (Gubler and Clark  1995 ). 
Furthermore, a secondary dengue infection can increase the likelihood of developing 
DHF, a potentially lethal complication of dengue (Gubler et al.  1998 ).  

    1.1.5   St. Louis encephalitis 

 St. Louis encephalitis (SLE) is another example of a vector-borne disease caused by 
a virus. Unlike malaria, leishmaniasis, Chagas disease, and dengue, the St. Louis 
encephalitis virus (SLEV) is endemic to North America (Day  2001 ). The  fi rst known 
SLE epidemic occurred in 1933 and there have been at least 41 SLE outbreaks in 
North America since spanning from as far south as Tampa, Florida, to as north as 
Toronto, Canada. Different species of  Culex  mosquito are responsible for transmis-
sion in different regions of the US and southern Canada. SLEV is an enzootic disease, 
requiring transmission between vertebrate hosts (usually wild birds) and mosquitoes, 
before it becomes prevalent enough in the mosquito population to spill-over to 
humans. This pre-epidemic period where the number of SLEV-infected mosquitoes 
increases dramatically is referred to as ampli fi cation. This ampli fi cation period might 
coincide with seasons when there are a lot of nestling birds that are more susceptible 
to infection and more vulnerable to being bitten. Some nestling birds also have higher-
titer viremias and remain infectious longer because of their less-developed immune 
systems. Symptoms of SLE infection in humans, which are most common in people 
over age 59, include sustained fever above 100  °  F, altered consciousness, or neuro-
logic disfunction. Most infections, however, are asymptomatic. SLE epidemics do 
not occur yearly, but may last for months at a time, interfering with the economy of 
the affected region as well as the daily lives of the people. Unfortunately, outbreaks 
of SLE are dif fi cult to predict. The right combination of SLEV in the environment, 
climatic conditions for adequate mosquito breeding and shortening of the extrinsic 
incubation period, and suf fi cient ampli fi cation hosts such as nestling birds is neces-
sary for spillover to the human population to occur. Some studies indicate that freezes 
prime south Florida for SLE epidemics (Day  2001 ). Another study using a hydrody-
namic model to predict mosquito abundance and SLEV transmission dynamics in 
Florida suggests that drought can facilitate the ampli fi cation of SLEV, and conse-
quently the spillover to humans (Shaman et al.  2002 ). 

 While the burden of epidemics in North America caused by SLEV is small rela-
tive to the burden tropical vector-borne diseases place on developing countries, the 
complex interactions leading to these outbreaks makes the disease very unpredict-
able, and consequently a system to better predict the occurrence of outbreaks is of 
interest (Day  2001 ). This disease also highlights that North America, while better 
equipped to handle epidemics, is not immune to the problems caused by vector-
borne diseases that developing countries are all too familiar with. To a lesser degree, 
vector-borne diseases can burden the health-care system and hinder a state’s econ-
omy as they do in the developing world, meaning that constant surveillance is still 
necessary even in developed countries.   
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    1.2   Stable versus Unstable Transmission and their relative 
impact on Public Health 

 Malaria provides an ideal backdrop for understanding the differences between stable 
and unstable transmission settings and the implications each has for public health. 
In many countries, malaria transmission is stable, with perhaps some peaks and valleys 
in prevalence throughout the year as a result of seasonality. However, within these 
countries, some regions may provide less than ideal conditions for the transmission 
of malaria, and hence experience relatively low prevalences of the disease. These 
low-endemicity regions are called “unstable” if long periods of low prevalence are 
disrupted by epidemics (Kiszewski and Teklehaimanot  2004 ). 

 In regions with stable malaria, the likelihood of acquiring multiple infections is 
higher than in regions with unstable malaria. As a result, many individuals become 
clinically immune to malaria in stable transmission regions (Kiszewski and 
Teklehaimanot  2004 , Giha et al.  2000 ). In these regions, children are the age-group 
at greatest risk for symptomatic malaria since they lack suf fi cient exposures to 
malaria to acquire clinical immunity. In contrast, individuals of all ages in unstable 
transmission settings do not have the immune response that adults acquire in stable 
transmission regions (Kiszewski and Teklehaimanot  2004 , Giha et al.  2000 ). 
Unfortunately, this lack of acquired clinical immunity can result in violent out-
breaks of malaria when conditions in the region change to favor disease transmis-
sion (Kiszewski and Teklehaimanot  2004 ). In fact, case fatality rates are up to 10 
times greater during an epidemic in an unstable transmission region than in a stable 
region for the most part because the clinical manifestations of the disease are much 
more severe in individuals who have not developed immunity. Transmission inten-
sity is negatively correlated with the severity of disease in children. Children are 
still at greatest risk in unstable regions as they are in stable regions, however when 
severe malaria does occur in slightly older individuals (8-15 year-olds), these 
patients are more likely to develop cerebral malaria. The lack of acquired immunity 
in epidemic-prone areas results in a more even distribution of clinical cases across 
age groups (Kiszewski and Teklehaimanot  2004 ). 

 Public health facilities in regions with unstable malaria are not prepared for the 
surge in cases during epidemics. Instead, these facilities tend to adapt to a patient 
load typical of an inter-epidemic period when transmission is fairly low. Once an 
outbreak erupts, the patient load strains the capacity of health facilities and depletes 
health facilities of the resources necessary to properly care for the clinically ill. The 
combination of low-immunity to malaria in patients and inadequate care creates a 
recipe for high mortality rates during epidemics in regions with unstable malaria. 
Overwhelmed health care facilities also result in underreporting of cases, and sub-
sequently the true burden of these outbreaks in unstable transmission regions is 
unknown (Kiszewski and Teklehaimanot  2004 ). 

 Epidemics of leishmaniasis, Chagas, dengue, and St. Louis encephalitis also 
occur. The mechanisms that are thought to stimulate these outbreaks are similar for 
these different diseases. Migrations of people from non-endemic regions to endemic 
regions often result in outbreaks of malaria because lack of exposure to malaria in 
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these individuals makes them highly susceptible to clinical manifestations of the 
disease (Kiszewski and Teklehaimanot  2004 ). Similarly, movement of non-immune 
individuals in southern Sudan as a consequence of civil war contributed to a series 
of devastating epidemics of visceral leishmaniasis from 1984 to 1994 (Seaman et al.  
 1996 ). Changes in the environment that enhance transmission potential, such as 
changes in climate and landscape, as well as the pullback of control programs and 
increased vector and pathogen resistance, can also prime a region for malaria epi-
demics (Kiszewski and Teklehaimanot  2004 ). The same mechanisms produce epi-
demics in several other vector-borne diseases, including those discussed here with 
the possible exception of Chagas disease (Gubler  1998 ). Microepidemics of Chagas 
disease are thought to be due to orally transmitted Chagas resulting from contami-
nated food (Prata  2000 ). Population growth and unplanned urbanization have also 
contributed to epidemic disease as humans continue to encroach on environments 
where vector-borne diseases are more readily transmitted (Gubler  1998 , Gubler 
et al.  2002 , Jeronimo et al.  1994 ). While each vector-borne disease confers different 
immunities in their hosts, it is likely that outbreaks of these diseases pose a similar 
burden on public health systems to that of epidemic malaria in unstable transmis-
sion regions. Consequently,  fi nding means to better understand various vector-borne 
diseases in unstable settings is an important issue. 

 Autonomous ordinary differential equations are frequently used for endemic 
vector-borne diseases, however, other types of differential equation models may be 
more appropriate for modeling disease in unstable transmission settings. In particu-
lar, incorporating delays which occur naturally in vector-borne diseases by express-
ing the problem as a system of delay-differential equations (DDEs) can result in 
solutions to the system that exhibit sustained or transient oscillations, as well as 
more complicated chaotic behavior. Mathematicians have included seasonality in 
ordinary differential equation models for disease to re fl ect intra-annual  fl uctuations 
that are common in diseases spread by vectors. However, case data for malaria indi-
cates that transmission can show inter-annual  fl uctuations with a relatively stable 
period, suggesting that there may be an intrinsic mechanism driving these oscilla-
tions. In the following section, we present a simple model for vector-borne disease 
transmission and extend this model to include different delays that arise naturally in 
vector-borne disease transmission and give rise to complex dynamics.   

    2   Models of Vector-Borne Diseases with Delays 

 Ordinary differential equation (ODE) models of vector-borne diseases have a long 
history. Following his discovery in the late 19th century that female  Anopheles  mos-
quitoes are the vector responsible for malaria transmission (McKenzie and Samba 
 2004 ), Ronald Ross developed the  fi rst model of malaria in 1911 (Ross  1911 ). This 
model was later improved on by G. Macdonald in the 1950s. Ever since, the Ross-
Macdonald type models have been successfully used to guide health of fi cials in 
choosing and implementing control strategies to restrict the impact of many vector-
borne diseases. Analysis of the Ross-Macdonald model for malaria transmission 
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suggested that imagicides would be a more effective means of vector control than 
larvicides (Koella  1991 ), the vector population does not need to be exterminated but 
simply reduced below a key threshold, and a multi-faceted approach to malaria 
control would be more effective than any single type of intervention (McKenzie and 
Samba  2004 ). People began to build upon the original Ross-Macdonald model, 
introducing additional complexities such as human immunity. Such a model was 
developed and confronted with data in the Garki project in Nigeria (McKenzie and 
Samba  2004 ), a project devoted to understanding the epidemiology of malaria and 
determining effective control interventions in West Africa (Molineaux and 
Gramiccia  1982 ). Just as introducing human immunity into the Ross-Macdonald 
model was a natural extension in the Garki project, incorporating delays is another 
intuitive way to extend the original model. In the following section, we  fi rst 
introduce a simple Ross-Macdonald type ODE model of a vector-borne disease 
without immunity. We reduce the model to a classical two equation model. Then, 
we consider several modi fi cations of the vector-borne ODE models by introducing 
delay into them. Although the epidemiology of each vector-borne disease is unique, 
the models presented in the following section provide a framework that captures the 
features common across many vector-borne diseases as well as a framework from 
which we can build models tailored to a particular disease. 

    2.1   ODE Models of Vector-Borne Diseases 

 Transmission in vector-borne diseases involves at least two species, the vector and the 
host. Since most vectors once infected do not recover, the simplest model for the vec-
tor is an SI model. Let us denote the susceptible vectors by  S  

 v 
  and the infected vectors 

by  I  
 v 
 . A susceptible vector becomes infected upon biting an infected human  I  

 H 
  with a 

biting rate  a  and probability of transmission of the disease given by  p . The dynamical 
system that describes the vector is given by the following differential equations: 

     

= Λ − −
= −

v v v H v

v v H v

S paS I S

I paS I I

¢

¢

m
m    (2.1)  

Here,  L  
 v 
  is the birth rate of the vectors, and   m   is the death rate of the vectors. Since 

the vectors, such as the mosquito, usually have a very short life-cycle, demography 
should be included. The total vector population size  N  

 v 
  =  S  

 v 
  +  I  

 v 
  is then given by the 

constrained logistic equation  N ¢   
 v 
  =  L  

 v 
   −   m  N  

 v 
  whose solution can be obtained in 

explicit form. Since  N  
 v 
 ( t ) is essentially a given function of  t , we may express the 

number of susceptible vectors in terms of infected vectors  S  
 v 
  =  N  

 v 
  −  I  

 v 
  and replace it 

in the second equation of system ( 2.1 ), thus reducing the two-dimensional vector 
system to one equation 

     ( ( ) )v v v H vI pa N t I I I¢ m= − −    (2.2)   
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 Now, we turn to the system for the humans. Although humans usually recover 
from an infection, for most vector-borne diseases recovery is not permanent and the 
recovered individual can become re-infected. As a starting point, we model the 
transmission of a vector-borne disease in humans with an SIS model. Some of the 
vector-borne diseases, such as chikungunya, occur as outbreaks, and in this case, 
omitting births and deaths for humans is acceptable. Other vector-borne diseases, 
such as malaria, are endemic and inclusion of demography in the human portion of 
the model is necessary. We begin with the simplest host model – an SIS model with-
out demography. However, involving host’s demography will result in the same 
limiting system that we will study, so we lose no generality by assuming that there 
is no demography in the host population. Susceptible hosts in class  S  

 H 
  become 

infected when bitten by an infectious vector. If we assume that infected vectors bite 
at the same rate as susceptible vectors, namely  a , with  q  denoting the probability of 
transmission, then the model takes the form. 

     

H H v H

H H v H

S qaS I I

I qaS I I

¢

¢

a
a

= − +
= −    (2.3)  

where  a  is the recovery rate. The total host population size  N  
 H 
  is constant. We can 

reduce the host system by replacing the susceptible hosts  S  
 H 
  with  S  

 H 
  =  N  

 H 
  −  I  

 H 
  in the 

second equation. The system above ( 2.3 ) reduces to the following equation 

     
( )H H H v HI qa N I I I¢ a= − −

   (2.4)  

The system for the infected vectors and infected humans becomes 

     

( ( ) )

( )
v v v H v

H H H v H

I pa N t I I I

I qa N I I I

¢

¢

m
a

= − −
= − −    (2.5)  

The right-hand side of this system depends on the unknown dependent variables 
 I  

 v 
  and  I  

 H 
 , and the known function of time  N  

 v 
 ( t ). This makes the right-hand side 

explicitly dependent on time, and the model  non-autonomous . However, system 
( 2.5 ) depends on time only through the function  N  

 v 
 ( t ) which has a limit as time goes 

to in fi nity, namely, 

     

Λ
→ =( ) .v

v vN t N
m    

 Since all solutions of the original system are bounded, results on asymptotically 
autonomous systems (Thieme  1993 ) allow us to replace system ( 2.5 ) with the fol-
lowing limiting system 
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( )

( )
v v v H v

H H H v H

I pa N I I I

I qa N I I I

¢

¢

m
a

= − −
= − −    (2.6)  

 The limiting system ( 2.6 ) is an autonomous system, which is easier to work 
with. It only contains as dynamic variables the number of infected humans and the 
number of infected mosquitos. Sometimes a rescaled version of the system is con-
sidered where the proportions of infected humans and the proportion of infected 
mosquitoes are incorporated. In malaria, for instance, it is known from studies that 
only a small proportion of the mosquitoes are actually infected. The fraction of 
infected mosquitoes varies around 1% (Bockarie and Dagoro  2006 ). 

 System ( 2.6 ) has been thoroughly analyzed. To state the results on the global 
behavior we de fi ne the reproduction number of the vector-borne disease. 
Transmission of vector-borne diseases involves two transmission cycles, namely 
host to vector and vector to host, and each of these transmission processes may be 
characterized by its own disease reproduction number. These two numbers may be 
combined to form a single dimensionless number that indicates whether or not, and 
to some extent how seriously, the vector-host system is open to invasion by the 
parasite. The Kermack-McKendrick-Macdonald approach places one infected 
human in a population of susceptible vectors; this will result in  R  

 H 
  secondary 

infected vectors. Similarly, placing one infected vector in a population of suscepti-
ble humans, will produce  R  

 M 
  infected humans, where 

     
= =, .v H

H M

paN qaN

a m
R R

   

To connect these de fi nitions to the mathematical expressions for  R  
 H 
  and  R  

 M 
 , 

consider the incidence term in the equation for the vectors  pa ( N  
 v 
  −  I  

 v 
 ) I  

 H 
  which gives 

the number of secondary infections of vectors  I  
 H 
  infected hosts will produce per unit 

of time. Then, one infected host will produce  paN  
 v 
  infected vectors in an entirely 

susceptible vector population per unit of time. One infected host is infectious for 
1 ⁄  a  time units, hence we obtain  R  

 H 
 . Similar reasoning leads to the expression for 

 R  
 M 
 . To account for the secondary  host  infections that one infected host will pro-

duce, we notice that one infected host will produce  R  
 H 
  infected vectors, each of 

which will produce  R  
 M 
  infected hosts, giving 

     0 H M=R R R    

secondary host infections. This expression gives the classical reproduction number 
of vector-borne diseases. The reproduction numbers of some of the vector-borne 
diseases with human host are given in Table  2.1 . These reproduction numbers are 
de fi ned as the number of secondary infections that one infected individual will 
produce in an entirely susceptible population.  
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 The model ( 2.6 ) has two equilibria: a disease free equilibrium  e  
0
  = (0, 0), and an 

endemic equilibrium,  e   ∗   = ( I  
 v 
   ∗  ,  I  

 H 
   ∗  ) where 

     

0 0

0 0

1 1
, .H H v v

H v

I N I N
paN qaN

∗ ∗− −
= =

+ +

R R

R R
m a    (2.7)  

 From these expressions it is clear that the endemic equilibrium exists and is 
positive if and only if  R  

0
  > 1. Furthermore, it can be established that the disease-free 

equilibrium is globally asymptotically stable if  R  
0
  < 1 and unstable if  R  

0
  > 1. In addi-

tion, the endemic equilibrium is locally and globally stable, whenever it exists. This 
means that  all  solutions that start from positive initial conditions converge to the 
endemic equilibrium.  

    2.2   Models of Vector-Borne Diseases with Delays 

 Delay differential equations differ from ordinary differential equations in that the 
derivative at any time depends on the solution at prior times. The simplest constant 
delay equations have the form 

     1 2( ) ( , ( ), ( ), ( ), , ( ))kx t F t x t x t x t x t¢ t t t= − − … −    

where the time delays  t  
 j 
  are positive constants. Additional information is required 

to specify a system of delay differential equations. Because the derivative in the 
equation above depends on the solution at the previous time  t  −  t  

 j 
 , it is necessary to 

provide an initial history function, or a vector of functions, to specify the value of 
the solution before time  t  = 0. 

 Interest in such systems arises when traditional pointwise modeling assumptions 
are replaced by dependence of the rate of change on the prior population numbers. 

   Table 2.1    Vector-borne diseases and their reproduction numbers   
 Disease   R  

0
   Region  Years  References 

 Malaria  1-3000  Africa  -   ( Smith et al.  2007  )  
 Dengue  2.0-3.09  Colima, Mexico  2002   ( Chowell et al.  2007  )  
 Dengue  8.0  Bandung, Indonesia  2003-2007   ( Supriatna  2009  )  
 Chagas disease  1.25  Brazil  2006   ( Massad  2008  )  
 Yellow Fever  2.38-3.59  New Orleans  1878   ( Curtis et al.  2007  )  
 Chikungunya  0.35-2.3  Reunion Island  2005-2006   ( Dumont et al.  2008  )  
 CCHF  a    2.18  -  -   ( Matser et al.  2009  )  
 TBE  b    1.58  -  -   ( Matser et al.  2009  )  

    a  Crimean-Congo hemorrhagic fever (CCHF)
  b  Tick-borne encephalitis (TBE)  
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 As mentioned in the introduction, delays occur naturally in vector-borne diseases 
because steps in the development of the vector and the pathogen take a signi fi cant 
amount of time, particularly compared to the lifespan of the vector. This makes 
delay differential equations a natural choice for modeling vector-borne diseases. 
Three typical time delays have so far been incorporated in mathematical models of 
vector-borne diseases. These are: 

    2.2.1   Delays related to the extrinsic incubation period 

 When the pathogen enters the body of the vector, some time elapses before the vector 
becomes infectious. This time period is called the  extrinsic incubation period . 
Inclusion of the extrinsic incubation period in the dynamics of the vector is particu-
larly important as the length of that period is often of duration comparable to the mean 
lifespan of the vector. For instance, the extrinsic incubation period of  Plasmodium  
species that cause malaria is about two weeks, while on average, a female mosquito 
is known to live anywhere between 15 to 100 days. These incubation periods tend to 
be shorter at higher temperatures and longer at lower temperatures for several patho-
gens, including Plasmodium parasites, dengue viruses, and the St. Louis encephalitis 
virus (Ruan et al.  2009 , Patz  2000 ). The fact that vectors may or may not survive the 
extrinsic incubation period affects signi fi cantly the dynamics of the infectious dis-
ease. This makes imperative the inclusion of the extrinsic incubation period as a delay 
in the vector-host epidemic models. Furthermore, delay models of this type include 
the probability that the vector survives the extrinsic incubation period. 

 To incorporate the delay caused by the extrinsic incubation period, we modify 
equations ( 2.6 ). We include the delay in the incidence term, as well as the proba-
bility that the vector survives that delay. The vectors that become infectious at 
time  t  were infected at time  t  −  t  where  t  is the delay induced by the extrinsic 
incubation period. In practical terms  t  is, in fact, given by the length of the extrin-
sic period. For instance, in malaria, since the length of the extrinsic incubation 
period is about two weeks, then  t   »  0. 5 months. The number of vectors becoming 
infectious is given by the number of vectors infected  t  −  t  units ago: 
 pa ( N  

 v 
  −  I  

 v 
 ( t  −  t )) I  

 H 
 ( t  −  t ) discounted by the probability of survival of the vector, 

given by  e   −  m  t  . Including the probability of survival of the vector is important. In 
malaria, for instance, only 40% of the vectors survive the extrinsic incubation 
period (Cox et al.  1999 ), even in optimal environmental conditions. 

 With the inclusion of the delay corresponding to the extrinsic incubation period, 
model ( 2.6 ) becomes: 

     

( ( )) ( )

( )
v v v H v

H H H v H

I pae N I t I t I

I qa N I I I

mt¢

¢

t t m
a

−= − − − −
= − −    (2.8)  

 The  fi rst equation in the system above is a differential-delay equation where the 
unknown functions depend on the delay. In order to solve the system above, we need 
to know  I  

 v 
 ( q ) and  I  

 H 
 ( q ) for  q  ∈ [ −  t , 0].  
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    2.2.2   Delays related to the intrinsic incubation period 

 Besides the incubation period in the vector, vector-borne pathogens also have an 
incubation period within the host. This incubation period is called the  intrinsic 
incubation period . Although the intrinsic incubation period is much shorter relative 
to the host lifespan, it is often customary to include it as a delay in the vector-host 
model. For instance, the intrinsic incubation period of malaria is 6 to 25 days, while 
the average lifespan of humans is roughly 70 years. Although the probability that 
the host survives the intrinsic incubation period is very large, this probability is still 
included in vector-borne disease models. 

 To incorporate the delay caused by the intrinsic incubation period, we modify 
again equations ( 2.6 ). We include the delay in the incidence term, as well as the 
probability the host survives that delay. Hosts that become infectious at time  t  were 
infected at time  t  −  t , where  t  is the delay induced by the intrinsic incubation period. 
The number of those becoming infectious is given by the number of those infected 
 t  −  t  units ago:  qa ( N  

 H 
  −  I  

 H 
 ( t  −  t )) I  

 v 
 ( t  −  t ), discounted by the probability of survival of 

the host as infectious, given by  e   −  a  t  . 
 The model ( 2.6 ), modi fi ed by incorporating delay within the host, becomes: 

     

( )

( ( )) ( )
v v v H v

H H H v H

I pa N I I I

I qae N I t I t I

¢

at¢

m
t t a−

= − −
= − − − −    (2.9)  

The second equation in the system above is a differential-delay equation where 
the unknown functions depend on the delay. We need to know  I  

 v 
 ( q ) and  I  

 H 
 ( q ) where 

 q  ∈ [ −  t , 0] in order to solve the system above. 
 Inclusion of delay in response to the intrinsic incubation period is of less impor-

tance as the host has a relatively high probability of surviving the incubation period 
once infected, and subsequently becoming infectious. For this reason, models as the 
one above are typically not considered. However, models that involve two delays, 
one to include the extrinsic incubation period, and another to include the intrinsic 
incubation period, are of particular interest. We include here the Ross-Macdonald 
model with two delays, introduced by Ruan et al. ( 2009 ). If  t  

1
  > 0 is the delay caused 

by the extrinsic incubation period and  t  
2
  is the delay caused by the intrinsic incuba-

tion period, then the combination of model ( 2.8 ) and model ( 2.9 ) results in the fol-
lowing differential-delay model with two delays: 

     

1

2

1 1

2 2

( ( )) ( )

( ( )) ( )
v v v H v

H H H v H

I pae N I t I t I

I qae N I t I t I

mt¢

at¢

t t m
t t a

−

−

= − − − −
= − − − −    (2.10)  

The above model was considered by Ruan et al. ( 2009 ) who established the follow-
ing results. The reproduction number of the model ( 2.10 ) is given by 

     

1 22

0 ,v Hpqa N N e e− −

=R
mt at

ma    
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which can also be interpreted as the product of the human and vector reproduction 
numbers. When  R  

0
  < 1, then the system has a unique disease-free equilibrium 

 e  
0
  = (0, 0) which is locally stable. If  R  

0
  > 1, then the system also has an endemic 

equilibrium  R  ∗   = ( I  
 v 
  ∗  ,  I  

 H 
  ∗  ) and the disease-free equilibrium is unstable. Furthermore, 

when  t  
1
  = 0, there exists  t  

2
  ∗   such that the endemic equilibrium is locally asymptoti-

cally stable for  t  
2
  ∈ [0,  t  

2
  ∗  ). Finally, for  t  

2
  ∈ [0,  t  

2
  ∗  ) there exists  t  

1
  ∗  ( t  

2
  ∗  ) such that the 

endemic equilibrium is locally asymptotically stable for  t  
1
  ∈ [0,  t  

1
  ∗  ) and  t  

2
  ∈ [0,  t  

2
  ∗  ). 

Ruan  et al.  do not consider the special but important case when the extrinsic incu-
bation period is taken into account ( t  

1
  ¹ 0) while the intrinsic incubation period is 

not ( t  
2
  = 0). 

 It is important to note that delay equations can be simulated just as the ordinary 
differential equations using computer algebra systems such as MATLAB, 
Mathematica and others. In particular, using such computer systems delay differen-
tial equations can be  fi tted to data – both prevalence and incidence data. When  fi tted 
to human incidence data, the human incidence term  qae   −  a  t   2 ( N  

 H 
  −  I  

 H 
 ( t  −  t  

2
 )) I  

 v 
 ( t  −  t  

2
 ) 

has to be  fi tted to the given data at time  t .  

    2.2.3   Delays related to the maturation period of the vector 

 The last source of delays in vector-borne models comes from the adaptive matura-
tion delays of the vector. Many vectors, which are arthropods, undergo several life 
stages before they reach adulthood and are able to transmit the disease. For instance, 
a mosquito’s life-cycle consists of three successive juvenile phases (egg, larva, 
pupa) before reaching the adult phase. It usually takes about 1-2 weeks before mos-
quitoes mature to adulthood, a time frame which is large relative to the average 
lifespan of the mosquito. To account for this delay, delay-differential equation 
models with delay in recruitment are composed. Such models have been previously 
considered by Fan et al. ( 2010 ) in the discussion of the impact on dynamics of the 
mosquito-borne pathogen West Nile Virus, and by Ngwa et al. ( 2010 ) in the discus-
sion of a model, focused on the vector, with maturation delays. Prolonged develop-
mental times are also experienced by other vectors, such as triatomines (Triatominae, 
Reduviidae), the vectors of Chagas disease Ngwa et al. ( 2010 ). 

 To develop a vector-borne disease model with maturation delays, we need to use 
a baseline ODE model that incorporates recruitment of the vector. Hence, model 
( 2.6 ) is not appropriate. We need to go back to model ( 2.1 ). Development of juve-
nile stages of vectors is density dependent and it is best modeled through a Ricker’s 
type function as a recruitment rate into the population of adult vectors. If we denote 
the maturation delay by  t , then the total number of vectors that produce offsprings 
at time  t  −  t  is  N  

 V 
 ( t  −  t ). Suppose  d  

 v 
  is the death rate of juvenile vectors. Then, the 

probability of a juvenile vector surviving the juvenile stages and becoming an adult 
is  e   −   d   n   t . The Ricker density dependent model assumes that the per capita birth rate 
declines exponentially with population size, so a term of the form  e   −  r  N   

 
n

 
  ( t  −  t ) is 

included, where 1 ⁄  r  is the size of the vector population at which progeny production 
is maximized for a given total adult population size. Finally,  r  is the maximum per capita 
per unit of time vector progeny production rate. We replace the constant recruitment 
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rate of the vector in model ( 2.1 ) with the recruitment rate  rN  
 V 
 ( t  −  t ) e   −  r  N    n  ( t  −  t ) e   −  d    n   t . 

The model with maturation delay of the vector becomes 
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 The total population size of the vector in this model is given by the following 
delay-differential equation: 

     
( )( ) .v vN t d

v V vN rN t e e vNr t t¢ t − − −= − −    (2.12)  

 The equation for the total vector population size ( 2.12 ) has been completely 
analyzed (Cook et al.  1999 ), and oscillations in that model have been found. Because 
the total population size of the vector is not necessarily asymptotically constant, the 
equation for the susceptible vectors cannot be eliminated from the above model. 
However, since the total population size for the human host remains constant, the 
susceptible human host population can still be removed.    

    3   Unstable Dynamics of Vector-Borne Diseases and Delay 
Differential Equation Models 

 Vector-borne diseases exhibit different patterns of occurrence. Parasitic and bacte-
rial diseases, such as malaria and Lyme disease, tend to produce a high disease 
incidence that is not typically confounded with major epidemics. An exception to 
this rule is plague, a bacterial disease that does cause outbreaks. In contrast, many 
vector viral diseases, such as Yellow fever, dengue, Japanese encephalitis, and chi-
kungunya commonly cause major epidemics. 

    3.1   Unstable Dynamics of Vector-Borne Diseases: Malaria as a 
Case Study 

 Even though the dynamics of malaria, one of the most prominent and deadly vector-
borne diseases, is typically stable and persistent, exceptions to this observation exist 
as we illustrated in section  2.1.2 . These exceptions have serious implications for 
modeling, response, and control of malaria. Unstable dynamics of malaria can occur 
in two distinct regimes:

    1.    relatively low baseline prevalence with occasional major outbreaks;  
    2.    nearly oscillatory behavior where high prevalence follows low prevalence in 

consecutive years.     
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 The disease dynamics of several countries, including Botswana, Egypt, Iraq, 
Kyrgyzstan and Turkmenistan, have exhibited the  fi rst type of instability since 1990. 
The case of Egypt is illustrated in Fig.  2.1  where a major outbreak occurred in 1994 
and resulted in nearly 10 times the usual number of cases. Brazil, and particularly 
Haiti in the period 1990-2000, are examples of the second type of dynamics where 
the malaria prevalence oscillates between high and low with a relatively stable 
median. The number of cases in Haiti is given in Fig.  2.2 .   

  Fig. 2.1    Number of malaria cases in Egypt for the years 1990–2003. The data exhibit background 
oscillatory dynamics with an outbreak in 1994. Data taken from  (  WHO  ) .       
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  Fig. 2.2    Number of  P. falciparum  cases in Haiti for the years 1990–2001. The data exhibit clear 
oscillatory dynamics. Data taken from  (  WHO  ) .       
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 Major outbreaks or epidemics of malaria occur primarily in regions where the 
overall transmissibility of the disease is low. The unstable nature of malaria in such 
regions, and of other vector-borne diseases, present serious clinical threat to the 
populations of the affected areas. Inter-epidemic periods of very low transmissibil-
ity, particularly when long, allow for the immunity in the population to wane. Thus, 
during an outbreak or epidemic, young children are at higher risk of contracting 
malaria, while older children and adults are much more vulnerable to serious com-
plications of the disease compared with stable transmission settings. The random-
ness of the outbreaks has a serious detrimental impact on the ability to predict, 
prepare for, and control the outbreak. Consequently, the outbreaks present a burden 
to the health care system of epidemic-prone countries. 

 Nearly oscillatory behavior, although more predictable, requires signi fi cant 
 fl exibility and adaptability of the response network. Similar dif fi culties arise in the 
control of malaria in such areas. The reasons for the inter-annual cycles of malaria, 
exhibited in such areas, are not completely understood, which complicates the 
ef fi cient control of the disease in years of higher prevalence.  

    3.2   Capturing Oscillatory Dynamics and Chaos 
with Delay Models 

 Traditionally, vector borne diseases have been modeled by ordinary differential 
equations. The delays introduced by the incubation and maturation periods can be 
included in ODE models by incorporating additional stages in the model. For 
instance, the incubation periods can be modeled via exposed compartments in the 
vector and/or the host systems. Such models have been considered in (Chitnis et al. 
 2006 ). However, these compartmental ODE systems are only an adequate modeling 
tool when the disease exhibits stable dynamics as they typically predict conver-
gence to an equilibrium. Ordinary differential equations in general display a low 
potential for complex dynamics. Oscillatory dynamics in ODEs occurs in two or 
higher dimensional systems. Chaos can only be obtained from three or higher 
dimensional systems. Yet, even high dimensional ODE models tend to have glob-
ally stable equilibria. In contrast, delay-differential equations can exhibit complex 
dynamics – oscillations and chaos – even in one dimensional models. Moreover, 
delay-differential models of vector-borne diseases, unlike their ODE counterparts, 
are capable of showing such complex dynamics. This makes them a better modeling 
tool for unstably transmitted vector-borne diseases. The idea that vector-borne dis-
ease models with delay can model oscillatory dynamics is not new. Several articles 
suggest that delay models of vector-borne diseases can exhibit oscillatory behavior 
(Thieme  1993 ). Consider a model of a vector-borne disease with permanent immu-
nity and delay. They show that the endemic equilibrium can be destabilized via 
Hopf bifurcation. More recently Saker  (  2010  )  established the presence of Hopf 
bifurcation in the vector-host model with two delays ( 2.10 ). Other authors have 
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also found oscillations in delay-differential equation models of vector-borne 
 diseases (Hancock and Goodfray  2007 , Tang  2007 , Wei et al.  2008 ). 

 In what follows we show that delay equations, even a simple single delay equation, 
are capable of displaying oscillations and chaos. To obtain this single equation, we 
begin from the delay model with two delays ( 2.10 ). The single delay equation that 
we derive is suitable to model malaria, and other vector borne diseases, where the 
extrinsic and intrinsic incubation periods are nearly equal in duration. 

    3.2.1   Reducing the Delay Model to a Single Equation 

 Biologists often use various methods to reduce the dimension of a system describing 
vector-borne disease. The newly obtained system does not necessarily have the 
same dynamical behavior as the original one but it is still useful in obtaining initial 
insights into the disease dynamics. 

 Justi fi cation for the reduction in dimension is typically based on the assumption 
that the lifespan of the vector is much shorter than the duration of infectiousness of 
the humans, that is, we assume that  m  > >  a  and this leads to much faster equilibra-
tion of the dynamics of the vector population compared with the host population. 
This assumption is common for vector- borne diseases transmitted by mosquitoes, 
such as malaria (Chiyaka et al.  2010 ). Furthermore, we assume that the intrinsic 
incubation period is approximately equal to the extrinsic incubation period, that is 
 t  

1
  =  t  

2
  =  t . This is certainly the case in malaria where the incubation period in the 

humans typically lasts between 10 days and four weeks. The extrinsic period is 
often temperature-dependent but lasts 10-18 days. If we assume that the two incuba-
tion periods are the same, the model with two delays ( 2.10 ) becomes: 
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 Furthermore, since the vector dynamics has reached equilibrium, we have  I  
 v 
   ¢   = 0. 

At equilibrium, the population numbers at time  t  and  t  −  t  are approximately the 
same. Hence, from the  fi rst equation we have 
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 Substituting  I  
 v 
  in the second equation, we obtain the following single delay 

equation for the dynamics of the humans: 
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It is helpful to normalize this equation by setting  x  =  I  
 H 
  ⁄  N  

 H 
 . The equation for the 

proportion of humans infected becomes:  

     

2 ( )
(1 ( )) ( )

( )

pa qme e x t
x x t x t

pae x t

at mt

¢
mt

t
t a

t m

− −

−

−
= − − −

− +    (2.15)  

where  m  =  N  
 v  
  ⁄  N  

 H 
  is the ratio of the number of vectors to the number of humans and 

 aN  
 H 
  has been replaced again by  a . 

 Delay equations, just like ODEs, have equilibria. The value  x   ∗   is an equilibrium 
of model ( 2.15 ) if it satis fi es the equation 
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 This equation clearly has the solution  x   ∗   = 0 which gives the disease-free 
equilibrium. To investigate the stability of the disease-free equilibrium, we linearize 
the equation. We look for a solution  x ( t ) =  x   ∗   +  y ( t ) where  y ( t ) is the perturbation 
around the equilibrium, and  x   ∗   = 0. This means that we have to replace  x  with  y  and 
linearize the nonlinear term. Notice that 
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 Hence, the linearization around the disease-free equilibrium is given by: 
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 Because we now have a linear system, we look for a solution of the form 
    ( ) ty t ye= l   , and subsequently obtain the following characteristic equation 
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 The above equation is a  transcendental equation , that is an equation containing 
a transcendental function of  l , namely  e   l  t  .  l  can be a real or complex variable. If we 
think of  l  as a real variable, the left-hand side of the above equation is an increasing 
linear function of  l  while the right-hand side is a decreasing function of  l . This 
equation always has a unique real solution which is positive if and only if  R  

0
  > 1 

where we de fi ne the reproduction number  R  
0
  to be 
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So if  R  
0
  > 1, the disease-free equilibrium is unstable. If  R  

0
  < 1, the unique real 

eigenvalue is negative. We show that all other eigenvalues, which are complex, 
have negative real parts. Assume we have an eigenvalue  l  =  b  +  ci , where  i  is the 
imaginary unit, that has a nonnegative real part, that is  b   ³  0. Then 
    2 2| | ( )b c b+ = + + ≥ + ≥l a a a a   . At the same time 
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which contradicts the fact that  R  
0
  < 1, that is     

2pa qme e− −

>
at mt

a
m

  . Hence, because 

all the eigenvalues have negative real parts, the disease-free equilibrium is locally 
asymptotically stable if  R  

0
  < 1. We note that if  R  

0
  = 1, then  l  = 0 is an eigenvalue and 

we cannot use this argument to make conclusions. We consider again the equation 
for the equilibria. Canceling  x   ∗  , the equation for the equilibria ( 2.16 ).
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 Multiplying by the denominator, we obtain a linear equation in  x   *   which can be 
solved to give the unique endemic equilibrium. 
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 It is clear from this expression that the endemic equilibrium exists and is posi-
tive if and only if  R  

0
  > 1. To investigate the stability of the endemic equilibrium, we 

linearize around it. Set  x ( t ) =  x   ∗   +  y ( t ), where  y ( t ) is the perturbation of the endemic 
equilibrium. The perturbation  y  can take positive and negative values. Furthermore, 
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to simplify the notation, we will denote  Q  =  pa  2  qme   −  a  t   e   −  m  t   and  P  =  pae   −  m  t  . Substituting 
in the delay equation ( 2.3 ) we obtain the following equation for the perturbation 

     

( ( ))
( ) [1 ( )] ( ( )).

( ( ))
 

Q x y t
y t x y t x y t

P x y t

t
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t m

∗
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+ −
= − − − − +

+ − +    
(2.21)  

 Taking into account the equation for the equilibrium 
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+
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and linearizing as in the case of the disease-free equilibrium, we obtain the following 
equation for the perturbation  y : 
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This equation can be simpli fi ed as follows: 
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Using the equation for the equilibrium ( 2.22 ) and the fact that  R  
0
  =  Q  ⁄ ( a  m ), we 

obtain the following simpli fi ed linearized equation 

     
0( ) (1 ) ( ) ( ).

m
m

∗′
∗

= − − −
+

Ry t x y t y t
Px

α
τ α

   (2.25)  

 Looking for the exponential solution     ( ) ty t ye= l   , we obtain the following 
characteristic equation 

     
0(1 ) . 

m
m

−∗
∗

+ = −
+

R x e
Px

λτα
λ α

  
 (2.26)  

 If  R  
0
  x   *   < 1, the coef fi cient in front of the term  e   −  l  t   is positive and smaller than 

 a , which corresponds to the case when  R  
0
  < 1 in the characteristic equation for the 

disease-free equilibrium. A similar argument can show that all roots of the equation 
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( 2.26 ) have negative real parts, and the endemic equilibrium is locally asymptotically 
stable. We summarize these results in the following Theorem: 

  Theorem 1    If R  
0
   < 1 the differential delay equation  ( 2.15 )  has only the disease-free 

equilibrium x  ∗   = 0 which is locally asymptotically stable. If R  
0
   > 1 the differential 

delay equation  ( 2.15 )  has the disease-free equilibrium and a unique endemic equi-
librium x  ∗  . If R  

0
   > 1 the disease-free equilibrium is unstable. The endemic equilib-

rium is locally asymptotically stable, if in addition R  
0
  x  ∗   < 1.   

 This Theorem suggests a rather curious conclusion – the endemic equilibrium is 
stable if  x   ∗   < 1 ⁄  R  

0
 . Since the reproduction number of malaria  R  

0
  is often large, then the 

equilibrium is stable if the fraction of infected individuals is rather small. This suggests 
that in countries, like Egypt, where the year to year prevalence is typically very low, 
outbreaks such as the one that occurred in 1994 may not be possible to capture with this 
simple single-equation model of malaria and may be a result of stochastic events.  

    3.2.2   Oscillations and Chaos in the Delay Differential Equation 

 If  R  
0
  x   ∗   > 1, then the coef fi cient on the right-hand side of the characteristic equation 

( 2.26 ) is negative, and the equation can have as principal eigenvalues (eigenvalues 
with the largest real part) a pair of complex conjugate eigenvalues. However, as a 
parameter changes, this pair of principal eigenvalues may cross the imaginary axis 
giving rise to a stable oscillatory solution. At the same time, the principal eigenval-
ues start having positive real part and the endemic equilibrium becomes unstable. 
This process that gives rise to a stable oscillatory solution is called  Hopf bifurca-
tion . The result is valid for ODEs and delay-differential equations. For differential 
delay equations, it is given in the Hopf bifurcation Theorem below: 

  Theorem 2    Consider the differential delay equation  

     1 1( ) ( ( ), ( ), , ( ), )′
−= − τ … − τ μnx t F x t x t x t    (2.27)  

 where  m  is a parameter. If:  

    1. F is analytic in x and  m  in a neighborhood of (  0 , 0) in ℜ n  ×ℜ.  
   • F(  0,  m ) = 0 for  m  in an open interval containing 0, and x(t) = 0 is an isolated 
stationary solution of  ( 2.27 ).  
   • The characteristic equation of  ( 2.27 )  has a pair of complex conjugate eigenvalues 
 l  and      l    such that  l ( m ) = b( m ) + i w  ( m ) where  w  (0) =  w   

0
   > 0, b(0) = 0 and 

b ¢ (0) π 0.   
   • The remaining eigenvalues of the characteristic equation have strictly negative 
real parts.     

  Then, the differential delay equation  ( 2.27 )  has a family of Hopf periodic solutions.   
 One can apply Theorem  2.3.2  to show rigorously that Hopf bifurcation occurs 

in equation ( 2.15 ). Instead, we will build a speci fi c numerical example of such an 
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oscillatory solution. To  fi nd sustained oscillations in equation ( 2.15 ), we need to 
 fi nd values of the parameters for which such oscillations occur. We begin from the 
characteristic equation ( 2.26 ), which we simplify further, and write as 

     a r −+ = e λτλ    (2.28)  

where     0(1 )∗
∗= −

+
x

Px
R

amr
m

  . We recall that we have assumed that  r  < 0. Let 

 l  =  b  +  i  w . We separate the real and the imaginary part: 
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b

b e

e    (2.29)  

Now we ask the question: Can we  fi nd parameters  a  > 0 and  r  < 0 such that the 
system above has positive solution  b  > 0 and  w  > 0? We solve in terms of  a  and  r  

     

cot[ ]

[ ].

a w wt
r w wt

= − +
= b

b

e cscτ
   (2.30)  

 As we have seen earlier, some of the parameters that have physical meaning can 
be pre-estimated, or at least reasonable biological ranges can be determined for 
them. In the equations above, we assume values for  b  and  t  and interpret  a  and  r  as 
functions of  w . Using a computer algebra system we can make a parametric plot of 
 a  and  r  in the ( a ,  r )-plane. This plot is shown in Fig.  2.3 .  

 We pick a value for  w , say  w  = 5. 2. From system ( 2.29 ) we obtain the values 
 a  = 2. 74768 and  r  =  − 5. 94514. The value of  a  corresponds to an infectious period 
of 1 ⁄ 2. 74768 = 0. 3639 years which is a reasonable duration for  Plasmodium falci-
parum  malaria. Now we have to assume values for the remaining parameters, so that 
the combined value of  r  is as given. We assume the value  m  = 12, which gives a vec-
tor lifespan of one month. This duration is a realistic estimate for a mosquito’s 
lifespan. Furthermore, we have to  fi nd  Q  and  P  so that the following system holds 
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Dividing these two equations we have 
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From here, assuming a value of  R  
0
  x   ∗  , we can compute  R  

0
  as 

     
0 0 0(1 ).x x∗ ∗= + −R R R

a
r    

If we take  R  
0
  x   ∗   = 5, then  R  

0
  = 6. 84869. From here we can compute  x   ∗   = 0. 73. Finally, 

 Q  =  R  
0
  a  m  = 225. 816. From the second equation in system ( 2.31 ) we determine 

 P  = 13. 9498. With these parameters we plot the solution of equation ( 2.15 ) in Fig.  2.4 .  
 The trajectory in Fig.  2.4  suggests that the endemic equilibrium is indeed 

unstable. However, the trajectory is not periodic. It is  aperiodic , suggesting the 
presence of  chaos  in the model ( 2.3 ). What is chaos? There are many de fi nitions of 
chaos. Perhaps the most useful in biology is the following: 

  De fi nition 1    Chaos  is aperiodic long-term behavior in a deterministic system that 
exhibits sensitive dependence on initial conditions.  

 This de fi nition has several components:

    1.     Aperiodic long-term behavior  means that there are trajectories which do not 
settle down to  fi xed points, periodic orbits, or quasi-periodic orbits as  t  →  ∞ . For 
practical purposes we require that these aperiodic orbits are not too rare.  

    2.     Deterministic  means that the system has no random or noisy inputs.  
    3.     Sensitive dependence on initial conditions  means that nearby trajectories sepa-

rate exponentially fast.     

  Fig. 2.3    Parametric plot of  a  and  r  in the ( a ,  r )-plane as given by equations ( 2.18 ). The values of 
 b  and  t  are taken as follow:  b  = 0. 01,  t  = 1. The value of  t  which is equal to one year is rather high 
for  Plasmodium falciparum  malaria. The plot is made for 4. 5  £   w   £  6.       
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 From Fig.  2.4  we see that the delay malaria model ( 2.15 ) has solutions that are 
aperiodic, that is their trajectory does not repeat even when we run for a long time. 
Furthermore, the trajectories exhibit sensitive dependence on initial data. If we start 
very close to the trajectory above, the two trajectories “coincide” for a certain 
amount of time, called the  time horizon , after which the two trajectories completely 
diverge and one doesn’t look like the other. The sensitive dependence is illustrated 
in Fig.  2.5 .  

 The existence of sensitive dependence on initial conditions in simple but chaotic 
models means that we have lost the ability to make long-term predictions. We can 
still make short-term predictions based on chaotic models which are valid for the 
duration of the time horizon. Chaotic behavior emerges from periodic behavior 
through a process called period doubling. This sequence of period doubling leading 
to chaos is often demonstrated on a chaos bifurcation diagram which plots the long-
term behavior of the solution with respect to some parameter. Such a chaos bifurca-
tion diagram is plotted in Fig.  2.6 . Because chaos emerge from a periodic solution 
as a result of increase in the delay parameter, this suggests that if we decrease the 
bifurcation parameter  t , we will obtain a regular periodic solution. This is indeed 
the case. Fig.  2.7  shows a periodic trajectory produced with the same parameters as 
above and  t  = 0. 6.   

 We see that even  fi rst order deterministic delay models can exhibit chaotic behav-
ior and sustained oscillations. This suggests that delay-differential equation models 
are a suitable tool to produce unstable, oscillatory, nearly oscillatory or chaotic 
dynamics in vector-borne diseases.   

  Fig. 2.4    Plot of the solution of equation ( 2.3 ) with  P  =  pae   −  m  t   = 13. 9498,  Q  =  Pqame   −  a  t   = 225. 816, 
 t  = 1,  a  = 2. 74768,  m  = 12 and initial condition  x (0) = 0. 73. The resulting trajectory is aperiodic sug-
gesting presence of chaotic behavior.       
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  Fig. 2.5    Plot of two solutions of equation ( 2.3 ) with  P  =  pae   −  m  t   = 13. 9498,  Q  =  Pqame   −  a  t   = 225. 816, 
 t  = 1,  a  = 2. 74768,  m  = 12 and initial conditions  x  

1
 (0) = 0. 73 and  x  

2
 (0) = 0. 730001. The two close 

trajectories coincide for a while and then diverge suggesting sensitive dependence on the initial 
conditions.       
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  Fig. 2.6    Plot of the chaos bifurcation diagram with  P  =  pae   −  m  t   = 13. 9498,  Q  =  Pqame   −  a  t   = 225. 816, 
 a  = 2. 74768,  m  = 12 and initial condition  x (0) = 0. 73. The delay parameter  t  is a bifurcation param-
eter. Long-term behavior of  x  is plotted on the  y  axis.       
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    3.3   Delay-Differential Equations as a Modeling Tool for Intrinsic 
Drivers of Instabilities in Vector-BorneDiseases 

 The main question that needs to be addressed is: How should we model malaria and 
other vector-borne diseases so that we can capture the instabilities in the dynamics? 
There are three possibilities that may be used to model and explain unstable out-
break dynamics or inter-annual oscillations in malaria. These are:

    1.    The inter-annual cycles are driven by climate, and thus should be modeled by exter-
nal forcing dependent on rainfall, temperature and other climatic covariates. This 
hypothesis has been investigated on numerous occasions and a number of articles 
address the impact of El Nino oscillation, and other climatic variables on the dynam-
ics of malaria (Poveda et al.  2001 , Laneri et al.  2010 , Pasqual et al.  2008 ).  

    2.    The inter-annual cycles are generated by the intrinsic dynamics of the disease. In 
this case they presumably should be obtained from autonomous differential 
equation models. Few studies have been carried out that investigate the possibil-
ity that intrinsic reasons are responsible for the inter-annual oscillation and 
unstable outbreak dynamics of vector-borne diseases. The relatively stable 
dynamics of even multi-dimensional ODE models, and the relatively recent real-
ization that delay models have the potential to produce oscillations have 
obstructed more serious studies into the possibility the unstable dynamics may 
be produced by autonomous deterministic differential equation models. Here, we 
suggest that, if autonomous, non-stochastic differential equation models have the 
potential to produce the complex dynamics of vector-borne diseases in nature, 
these should be differential-delay models.  

  Fig. 2.7    Plot of a periodic solution of equation ( 2.3 ) with  P  =  pae   −  m  t   = 13. 9498, 
 Q  =  Pqame   −  a  t   = 225. 816,  t  = 0. 6,  a  = 2. 74768,  m  = 12 and initial condition  x (0) = 0. 73.       
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    3.    The inter-annual cycles are a result of the joint action of climatic and internal 
mechanisms. In this case, the baseline autonomous differential equation model 
on which the stochastic and/or externally forced version is built, should also be 
able to produce oscillations itself. Hence, this baseline model should be a differ-
ential-delay model, rather than an ODE model.     

 In a recent article Laneri et al.  (  2010  )  compare the three options based on an ODE 
model with external forcing and stochasticity. The results in that article suggested that 
“the nonlinear dynamics of the disease itself plays a role at the seasonal, but not the 
inter-annual, time scales.” The article seems to settle the question in favor of climatic 
drivers, but that conclusion is reached in the absence of any understanding in the lit-
erature regarding what particular  intrinsic  mechanisms could cause such an unstable, 
oscillatory or chaotic dynamics. Here, we argue that delay-differential equations are a 
good modeling tool on which investigation of the intrinsic mechanisms can be built.   

    4   Discussion 

 Vector-borne diseases are stable in many regions; however, a closer look reveals 
that there is diversity in how these diseases manifest in different areas. The mecha-
nisms producing this diversity in disease dynamics are still not well understood. 
Seasonality in weather is a reasonable mechanism for intra-annual  fl uctuations in 
vector-borne disease prevalence because of the dependence of arthropod abundance 
on rainfall and temperature. However, it is unlikely that climate alone can explain 
inter-annual oscillations like those observed in Haiti (Fig.  2.2 ), particularly when 
the period of these oscillations appears predictable. Because delay-differential equa-
tion models are capable of producing inter-annual oscillations, this class of deter-
ministic models appears to be an appropriate choice for exploring the mechanisms 
behind these less intuitive patterns in disease prevalence. Such exploration could 
lead to different insights: either intrinsic aspects of vector-borne diseases can cause 
inter-annual oscillations, seasonality and intrinsic mechanisms may work together 
to produce inter-annual oscillations, or perhaps neither of these hypotheses is sup-
ported and further research is required to  fi nd other possible causes of these unstable 
disease patterns. Regardless of the outcome, it is likely that studying delay-differential 
equation models for vector-borne disease will contribute to our understanding of 
unstable transmission, particularly if these models are confronted with data. 

 Many of the vector-borne diseases have a more complex biology than the models 
included in this chapter. For instance, individuals infected with  Plasmodium vivax  
malaria who have been treated and have recovered from clinical symptoms may 
relapse (Adak et al.  1998 ). Furthermore, a malaria infected individual may become 
bitten by an infectious mosquito and become super-infected with a different strain 
– a scenario modeled by the concept of multiplicity of infection (Smith and Hay 
 2009 ). One individual can become infected by more than one  Plasmodium  species 
(co-infection). All these scenarios have been captured by ordinary differential equa-
tion models (Chiyaka et al.  2010 ). These ordinary differential equation models with 
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superinfection, co-infection and relapse can be recast to incorporate delays in the 
same way discussed in this chapter, although if the different strains have different 
delay times, it may not be possible to eliminate the dynamic equation for the vector. 
Still, the resulting delay-differential equations will exhibit competition and coexis-
tence of strains in the context of oscillatory behavior and chaos. 

 Ruan et al. ( 2009 ) study of malaria transmission using a delayed Ross-Macdonald 
model provided the insight that increasing the duration of either the intrinsic or 
extrinsic incubation periods would result in reducing the basic reproduction num-
ber. This  fi nding has important implications for the future of malaria and malaria 
control. Climate change, for example, could result in prolonging the extrinsic incu-
bation period in some regions, potentially changing the distribution of malaria, or 
further increasing malaria prevalence in already endemic countries. More optimisti-
cally, it also suggests that there is an opportunity for a different approach to malaria 
control. The current control measures include larvicides, insecticides, bed nets, and 
treatment. However, a less traditional approach, such as the use of drugs that pro-
long incubation periods, may also be an effective means of control. 

 Another concern that arises from our current knowledge about delay-differential 
equation models for vector-borne diseases, such as the possibility of Hopf bifurca-
tion, is that changes in the incubation periods may alter the dynamics of the disease, 
causing a stable transmission region to become unstable, or vice versa. Consequently, 
understanding if and when these transitions are likely to occur may be very important 
in determining the effects of climate change, or intervention strategies that prolong 
incubation periods. Ruan et al. ( 2009 ) also suggest that long incubation periods may 
play an important role in “nonlocal” disease transmission since longer incubation 
periods means that humans and mosquitoes are more likely to travel long distances 
prior to becoming infectious or symptomatic. Thus, delays in vector-borne diseases 
may play a critical role in understanding the spatial spread of these diseases in addi-
tion to understanding unstable transmission. The combination of delays and human 
migration also could potentially contribute to epidemic patterns of transmission. 

 The indirect transmission between vector and host, the vector’s and pathogen’s 
climate-dependent survival, and the relationship between the pathogen’s extrinsic 
incubation period and temperature contribute to the complexity of vector-borne dis-
eases, challenging our understanding of their dynamic and varied behavior in differ-
ent regions around the world. Stochastic events such as natural disasters or human 
migrations further complicate and cloud the picture. Understanding the mechanisms 
producing unstable transmission patterns in order to improve current control efforts 
seems like a daunting task. However, history has demonstrated the utility of devel-
oping mathematical models to understand complicated phenomena such as disease 
transmission. Consequently, we should feel encouraged that pursuing the study of 
delay-differential equations in epidemiology may provide similar insight into the 
mechanisms driving vector-borne disease dynamics in unstable transmission set-
tings. A better understanding of unstable transmission will then allow public health 
of fi cials to develop intervention strategies more appropriate for these epidemic-
prone regions, alleviating the burden on health facilities during outbreaks and 
mitigating the risk of high morbidity and mortality within a population.      
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