Chapter 2
Unstable Dynamics of Vector-Borne Diseases:
Modeling Through Delay-Differential Equations

Maia Martcheva and Olivia Prosper

Abstract Vector-borne diseases provide unique challenges to public health because
the epidemiology is so closely tied to external environmental factors such as cli-
mate, landscape, and population migration, as well as the complicated biology of
vector-transmitted pathogens. In particular, this close link between the epidemiol-
ogy, the environment, and pathogen biology means that the traditional view that
many vector-borne diseases are relatively stable in numerous regions does not pro-
vide a complete picture of their complexity. In fact, several regions exist with low
levels of endemicity most of the time, punctuated by severe, often explosive, epi-
demics. These regions are considered unstable transmission settings. Ordinary dif-
ferential equation (ODE) models have thus far dominated the study of vector-borne
disease and have provided considerable insight into our understanding of transmis-
sion and effective control in stable transmission settings. To address the short-
comings of autonomous ODE models, we present a class of models, differential-delay
equation (DDE) models, that have the potential to better describe unstable endemic
settings for vector-borne disease. These models develop naturally out of the biology
of diseases transmitted by vectors because of the extrinsic and intrinsic incubation
periods and vector maturation process necessary for successful transmission of vec-
tor-transmitted pathogens. In this chapter, we introduce five examples of vector-
borne diseases that span the globe, and discuss the clinical implications of unstable
transmission of these diseases. Next, we present the original ODE version of the
Ross-Macdonald model for vector-borne diseases, modify this model by introduc-
ing different types of naturally occurring delays, then illustrate how these models
can exhibit more complex behavior such as oscillations via Hopf bifurcation and
chaos via period-doubling, that the ODE model cannot produce. Finally, we explore
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the possibility for delay-models to contribute to our understanding of unstable
transmission settings, which in turn will inform the development of effective control
strategies for these epidemic-prone regions.

Keywords Vector-borne diseases ® Malaria ® Mathematical models ® Delay-differential
equations * Reproduction number ¢ Unstable dynamics ® Oscillations ® Chaos

1 Introduction

During the late 19th century, it was discovered that mosquitoes are capable of trans-
mitting diseases. Since then, arthropods have been identified as responsible for the
spread of many other diseases. Although discovering this transmission mechanism
led to new insights into how to better control these vector-borne diseases, more than
one hundred years later, vector-borne diseases continue to pose a significant burden
worldwide (Gubler 1998). The development of vector resistance to insecticides,
changes in public health programs, climate change, changes in agricultural prac-
tices, the increased mobility of humans, and urban growth are all factors that con-
tribute to the difficulty in controlling and eliminating vector-borne diseases. To
further complicate matters, vector-borne diseases typically occur in developing
countries with limited resources and access to health care. Because controlled epi-
demiological experiments are usually not possible, mathematical models have
played an important role in developing a better understanding for how to mitigate
the burden of these diseases. This chapter presents several examples of important
vector-borne diseases, illustrating the diversity in this class of infectious diseases
and consequently the need for mathematical models to address this diversity. We
then discuss the difference between stable and unstable transmission settings and
the implications these different settings have for public health. In Section 2.2, we
introduce the Ross-Macdonald model for vector-borne diseases and consider sev-
eral modifications of this model by introducing different types of delays relevant to
the biology of vector-borne diseases. Finally, we discuss the contribution that these
delay-differential equation models can make to better understanding unstable vec-
tor-borne disease transmission settings.

1.1 The Diversity of Vector-Borne Diseases

The formulation of mathematical models should take into consideration the epide-
miology of each vector-borne disease. Some important vector-borne diseases that
remain prevalent today include malaria, dengue, Chagas disease, leishmaniasis,
and St. Louis encephalitis. Dengue, Chagas disease, and leishmaniasis are included
in the World Health Organizations list of neglected tropical diseases (WHO).
These five diseases are caused by different types of pathogens, are transmitted
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by different vectors, have different clinical manifestations, result in different lev-
els of immunity, and have different geographical distributions. To add to this com-
plexity, while a disease may be endemic in one region, the same disease can exhibit
an epidemic pattern of transmission in another region. Understanding how to
model unstable transmission as well as stable transmission of vector-borne dis-
eases is important because of the different implications that these unique transmis-
sion settings have for public health.

1.1.1 Malaria

Malaria, a disease transmitted between Anopheles mosquitoes and mammals, is
considered the most important vector-borne disease (Gubler 1998), causing an
estimated 190-311 million clinical episodes, and 708,000 - 1,003,000 deaths in 2008
worldwide (CDC). Malaria is responsible for the fifth greatest number of deaths due
to infectious diseases and is the second leading cause of death in Africa behind HIV/
AIDS (Gubler 1998). Four Plasmodium parasite species are responsible for malaria
infection in humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium
ovale, and Plasmodium malariae. Of these, P. falciparum causes the most severe
clinical symptoms and is responsible for the greatest number of deaths due to
malaria infection. However, recent severe clinical cases of P. vivax malaria have
started to change the perception that vivax malaria is relatively benign (Kochar et al.
2009). In fact, cases of P. vivax monoinfection have been reported with clinical
manifestations similar to those of severe infection with P. falciparum malaria. These
severe manifestations include cerebral malaria, anemia, respiratory distress syn-
drome, and acute renal failure (Kochar et al. 2009). The widespread distribution of
P. vivax, causing roughly 100-300 million clinical cases each year, is cause for con-
cern (Kochar et al. 2009). In regions with endemic malaria, the number of clinical
cases can place a significant burden on the social and economic welfare of that
population (Mendis et al. 2001), even if mortality rates are fairly low. People living
in regions with moderate P. vivax endemicity experience 10 to 30 or more episodes
of malaria throughout their childhood and working life, each episode resulting in
about 5 to 15 days absent from work or school. Consequently, malaria, which typi-
cally afflicts poor, developing countries, continues the cycle of poverty by hamper-
ing the education and productivity of those at risk (Mendis et al. 2001).

1.1.2 Leishmaniasis

In contrast to malaria infection in humans, which is caused by four Plasmodium
species and transmitted by mosquitoes, leishmaniasis, another dangerous vector-
borne disease, is caused by over 20 leishmanial parasite species and is transmitted
by roughly 30 different species of sandflies. The clinical manifestations of leishma-
niases can be divided into four categories: cutaneous leishmaniasis, muco-cutaneous
leishmaniasis, visceral leishmaniasis (VL) or kala-azar, and post-kala-azar
dermal leishmaniasis (PKDL). Cutaneous leishmaniasis is characterized by ulcers
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or nodules in the skin that eventually heal spontaneously, but slowly, causing
disfiguring scars. According to the World Health Organization, there are roughly 1.5
million new cases of cutaneous leishmaniasis each year (WHO). Several months or
years after an initial episode of cutaneous leishmaniasis, some patients suffer from
more severe ulcers that do not spontaneously heal (Chappuis et al. 2007) and can
partially or completely destroy the mucous membranes of the nose, mouth, throat
cavities, and surrounding tissues (WHO). This more severe clinical manifestation is
called muco-cutaneous leishmaniasis (Chappuis et al. 2007, WHO). The most dan-
gerous manifestation of leishmaniasis is visceral leishmaniasis, which is fatal if
untreated (Chappuis et al. 2007). As with malaria, visceral leishmaniasis primarily
affects those in less developed countries and the burden on these countries is great,
with approximately 500,000 new cases arising each year, 90% of which occur in
only 5 countries: India, Bangladesh, Nepal, Sudan, and northeastern Brazil (Guerin
et al. 2002). 50% of visceral leishmaniasis cases occur in India, Bangladesh, and
Nepal alone (Olliaro et al. 2009). Treatments for VL exist but are expensive and
impractical because treatment either requires a long hospitalization for proper
administration of intravenous treatment, or because patients must self-treat with an
oral drug and adhere to that treatment for four weeks (Olliaro et al. 2009). Another
concern is that monotherapies increase selective pressure, leading to parasite resis-
tance (Olliaro et al. 2009). Olliaro et al. 2009 estimated that the 2006 average house-
hold cost of an episode of VL in India is US$209 - an enormous expense considering
the median household income was US$49 per month. Even when treatment is
administered, treated visceral leishmaniasis cases are sometimes followed (0-6
months post-treatment in Sudan and 6 months-3 years post-treatment in India) by
PKDL (Chappuis et al. 2007). PKDL is characterized by highly infectious nodular
lesions on the skin. These parasite-containing lesions act as a reservoir for anthro-
ponotic (vector-to-human) VL between epidemics (Chappuis et al. 2007). While the
global distribution of visceral leishmaniasis is not as expansive as the distribution of
malaria, it places second (behind malaria) for the highest mortality caused by para-
sitic disease, resulting in more than 50,000 deaths each year, and subsequently plac-
ing an unfortunate strain on the health and well-being of the people in a few
developing countries.

1.1.3 Chagas disease

Chagas disease is another parasitic infection caused by the protozoan Trypanosoma
cruzi (Rassi Jr et al. 2010). This vector-borne disease is transmitted by the reduviid
bugs of the subfamily Triatominae to humans and over 150 species of domestic ani-
mals and wild animals (Rassi Jr et al. 2010). 7. cruzi is an enzootic disease, which
only leads to infection in humans if the vector has adapted to human dwellings. The
T. cruzi parasites reside in the feces of infected reduviid bugs. When one of these
bugs takes a blood-meal from a human, it defecates on the host, allowing infected
fecal matter to enter the host through the mucosa of the eye, nose, or mouth (Prata
2000). Transmission of Chagas disease can also occur through blood transfusion and
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vertically from mother to child (Prata 2000, Rassi Jr et al. 2010). Unlike malaria and
leishmaniasis, roughly 10% of all Chagas cases are a result of transfusions and is the
primary transmission mechanism in urban areas (Prata 2000, Rassi Jr et al. 2010).
5000 to 18,000 cases per year are congenitally transmitted, and occasionally cases
are a result of the consumption of contaminated food (Prata 2000, Rassi Jr et al.
2010). Most cases of Chagas disease occur in Latin America, where 7. cruzi is
endemic. However, more recently, the immigration of people from Latin America to
the US, Canada, parts of Europe and the western Pacific, has led to an increase in the
number of cases in these non-endemic regions (Rassi Jr et al. 2010). Chagas disease
manifests in different stages. The initial phase lasts 4 to 8 weeks and is often asymp-
tomatic. If symptoms do occur, the onset is roughly 1 to 2 weeks after acquiring the
infection vectorially. Other transmission mechanisms have different incubation peri-
ods. During this acute phase, the T cruzi parasite along with the host’s
immunoinflammatory response can cause tissue and organ damage. 5-10% of vecto-
rially infected patients with acute symptoms do not survive the acute phase. However,
in 90% of infected individuals, the acute phase will end spontaneously, even without
treatment, and approximately 30-40% of those individuals will develop a chronic
form of the disease usually 10-30 years later presenting as cardiac, digestive, or car-
diodigestive disease. This chronic phase, called the determinate form of chronic dis-
ease, lasts for the remainder of the patient’s life and can be fatal if the patient develops
Chagas heart disease. The remaining 60-70% who recover from the acute phase but
never develop clinical symptoms thereafter, have the intermediate form of chronic
Chagas disease. These individuals have developed the antibodies against 7. cruzi,
but show none of the ailments characteristic of the determinate form. Although prog-
ress has been made to control Chagas disease in Latin America, the various mecha-
nisms of transmission compounded with human movement continues to place several
countries, including non-endemic areas, at risk (Rassi Jr et al. 2010).

1.1.4 Dengue

Not all vector-borne diseases are caused by protozoan parasites. Dengue and dengue
hemorrhagic fever (DHF), a complication of Dengue, are examples of tropical vec-
tor-borne diseases caused by four serotypes (DEN-1, DEN-2, DEN-3, DEN-4) of the
dengue virus (Gubler and Clark 1995). The principal vector of dengue virus is the
Aedes aegypti mosquito (Gubler and Clark 1995). This mosquito prefers taking
blood-meals from humans and typically bites during the day. Because of the A.
aegypti mosquito’s preference for biting humans (Gubler and Clark 1995) and its
ability to breed in containers holding rainwater (such as tires and cisterns) (WHO), it
is considered a predominantly urban vector. In 1981, the America’s experienced its
first major DHF outbreak resulting from importation of a new strain of DEN-2 from
Southeast Asia, and by 1995, DHF spread to 14 countries in the Americas, several of
which experienced endemic DHF (Gubler and Clark 1995). The geographic distribu-
tion of dengue continues to grow, resulting in roughly 50 million dengue cases
worldwide each year (WHO), spanning more than 100 countries (Gubler et al. 2002).
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One of the difficulties posed by dengue is the circulation of the 4 different serotypes,
which do not confer immunity to one another. Consequently, an individual may
become infected up to 4 times during his/her lifetime (Gubler and Clark 1995).
Furthermore, a secondary dengue infection can increase the likelihood of developing
DHE, a potentially lethal complication of dengue (Gubler et al. 1998).

1.1.5 St. Louis encephalitis

St. Louis encephalitis (SLE) is another example of a vector-borne disease caused by
a virus. Unlike malaria, leishmaniasis, Chagas disease, and dengue, the St. Louis
encephalitis virus (SLEV) is endemic to North America (Day 2001). The first known
SLE epidemic occurred in 1933 and there have been at least 41 SLE outbreaks in
North America since spanning from as far south as Tampa, Florida, to as north as
Toronto, Canada. Different species of Culex mosquito are responsible for transmis-
sion in different regions of the US and southern Canada. SLEV is an enzootic disease,
requiring transmission between vertebrate hosts (usually wild birds) and mosquitoes,
before it becomes prevalent enough in the mosquito population to spill-over to
humans. This pre-epidemic period where the number of SLEV-infected mosquitoes
increases dramatically is referred to as amplification. This amplification period might
coincide with seasons when there are a lot of nestling birds that are more susceptible
to infection and more vulnerable to being bitten. Some nestling birds also have higher-
titer viremias and remain infectious longer because of their less-developed immune
systems. Symptoms of SLE infection in humans, which are most common in people
over age 59, include sustained fever above 100°F, altered consciousness, or neuro-
logic disfunction. Most infections, however, are asymptomatic. SLE epidemics do
not occur yearly, but may last for months at a time, interfering with the economy of
the affected region as well as the daily lives of the people. Unfortunately, outbreaks
of SLE are difficult to predict. The right combination of SLEV in the environment,
climatic conditions for adequate mosquito breeding and shortening of the extrinsic
incubation period, and sufficient amplification hosts such as nestling birds is neces-
sary for spillover to the human population to occur. Some studies indicate that freezes
prime south Florida for SLE epidemics (Day 2001). Another study using a hydrody-
namic model to predict mosquito abundance and SLEV transmission dynamics in
Florida suggests that drought can facilitate the amplification of SLEV, and conse-
quently the spillover to humans (Shaman et al. 2002).

While the burden of epidemics in North America caused by SLEV is small rela-
tive to the burden tropical vector-borne diseases place on developing countries, the
complex interactions leading to these outbreaks makes the disease very unpredict-
able, and consequently a system to better predict the occurrence of outbreaks is of
interest (Day 2001). This disease also highlights that North America, while better
equipped to handle epidemics, is not immune to the problems caused by vector-
borne diseases that developing countries are all too familiar with. To a lesser degree,
vector-borne diseases can burden the health-care system and hinder a state’s econ-
omy as they do in the developing world, meaning that constant surveillance is still
necessary even in developed countries.
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1.2 Stable versus Unstable Transmission and their relative
impact on Public Health

Malaria provides an ideal backdrop for understanding the differences between stable
and unstable transmission settings and the implications each has for public health.
In many countries, malaria transmission is stable, with perhaps some peaks and valleys
in prevalence throughout the year as a result of seasonality. However, within these
countries, some regions may provide less than ideal conditions for the transmission
of malaria, and hence experience relatively low prevalences of the disease. These
low-endemicity regions are called “unstable” if long periods of low prevalence are
disrupted by epidemics (Kiszewski and Teklehaimanot 2004).

In regions with stable malaria, the likelihood of acquiring multiple infections is
higher than in regions with unstable malaria. As a result, many individuals become
clinically immune to malaria in stable transmission regions (Kiszewski and
Teklehaimanot 2004, Giha et al. 2000). In these regions, children are the age-group
at greatest risk for symptomatic malaria since they lack sufficient exposures to
malaria to acquire clinical immunity. In contrast, individuals of all ages in unstable
transmission settings do not have the immune response that adults acquire in stable
transmission regions (Kiszewski and Teklehaimanot 2004, Giha et al. 2000).
Unfortunately, this lack of acquired clinical immunity can result in violent out-
breaks of malaria when conditions in the region change to favor disease transmis-
sion (Kiszewski and Teklehaimanot 2004). In fact, case fatality rates are up to 10
times greater during an epidemic in an unstable transmission region than in a stable
region for the most part because the clinical manifestations of the disease are much
more severe in individuals who have not developed immunity. Transmission inten-
sity is negatively correlated with the severity of disease in children. Children are
still at greatest risk in unstable regions as they are in stable regions, however when
severe malaria does occur in slightly older individuals (8-15 year-olds), these
patients are more likely to develop cerebral malaria. The lack of acquired immunity
in epidemic-prone areas results in a more even distribution of clinical cases across
age groups (Kiszewski and Teklehaimanot 2004).

Public health facilities in regions with unstable malaria are not prepared for the
surge in cases during epidemics. Instead, these facilities tend to adapt to a patient
load typical of an inter-epidemic period when transmission is fairly low. Once an
outbreak erupts, the patient load strains the capacity of health facilities and depletes
health facilities of the resources necessary to properly care for the clinically ill. The
combination of low-immunity to malaria in patients and inadequate care creates a
recipe for high mortality rates during epidemics in regions with unstable malaria.
Overwhelmed health care facilities also result in underreporting of cases, and sub-
sequently the true burden of these outbreaks in unstable transmission regions is
unknown (Kiszewski and Teklehaimanot 2004).

Epidemics of leishmaniasis, Chagas, dengue, and St. Louis encephalitis also
occur. The mechanisms that are thought to stimulate these outbreaks are similar for
these different diseases. Migrations of people from non-endemic regions to endemic
regions often result in outbreaks of malaria because lack of exposure to malaria in



50 M. Martcheva and O. Prosper

these individuals makes them highly susceptible to clinical manifestations of the
disease (Kiszewski and Teklehaimanot 2004). Similarly, movement of non-immune
individuals in southern Sudan as a consequence of civil war contributed to a series
of devastating epidemics of visceral leishmaniasis from 1984 to 1994 (Seaman et al.
1996). Changes in the environment that enhance transmission potential, such as
changes in climate and landscape, as well as the pullback of control programs and
increased vector and pathogen resistance, can also prime a region for malaria epi-
demics (Kiszewski and Teklehaimanot 2004). The same mechanisms produce epi-
demics in several other vector-borne diseases, including those discussed here with
the possible exception of Chagas disease (Gubler 1998). Microepidemics of Chagas
disease are thought to be due to orally transmitted Chagas resulting from contami-
nated food (Prata 2000). Population growth and unplanned urbanization have also
contributed to epidemic disease as humans continue to encroach on environments
where vector-borne diseases are more readily transmitted (Gubler 1998, Gubler
et al. 2002, Jeronimo et al. 1994). While each vector-borne disease confers different
immunities in their hosts, it is likely that outbreaks of these diseases pose a similar
burden on public health systems to that of epidemic malaria in unstable transmis-
sion regions. Consequently, finding means to better understand various vector-borne
diseases in unstable settings is an important issue.

Autonomous ordinary differential equations are frequently used for endemic
vector-borne diseases, however, other types of differential equation models may be
more appropriate for modeling disease in unstable transmission settings. In particu-
lar, incorporating delays which occur naturally in vector-borne diseases by express-
ing the problem as a system of delay-differential equations (DDEs) can result in
solutions to the system that exhibit sustained or transient oscillations, as well as
more complicated chaotic behavior. Mathematicians have included seasonality in
ordinary differential equation models for disease to reflect intra-annual fluctuations
that are common in diseases spread by vectors. However, case data for malaria indi-
cates that transmission can show inter-annual fluctuations with a relatively stable
period, suggesting that there may be an intrinsic mechanism driving these oscilla-
tions. In the following section, we present a simple model for vector-borne disease
transmission and extend this model to include different delays that arise naturally in
vector-borne disease transmission and give rise to complex dynamics.

2 Models of Vector-Borne Diseases with Delays

Ordinary differential equation (ODE) models of vector-borne diseases have a long
history. Following his discovery in the late 19th century that female Anopheles mos-
quitoes are the vector responsible for malaria transmission (McKenzie and Samba
2004), Ronald Ross developed the first model of malaria in 1911 (Ross 1911). This
model was later improved on by G. Macdonald in the 1950s. Ever since, the Ross-
Macdonald type models have been successfully used to guide health officials in
choosing and implementing control strategies to restrict the impact of many vector-
borne diseases. Analysis of the Ross-Macdonald model for malaria transmission
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suggested that imagicides would be a more effective means of vector control than
larvicides (Koella 1991), the vector population does not need to be exterminated but
simply reduced below a key threshold, and a multi-faceted approach to malaria
control would be more effective than any single type of intervention (McKenzie and
Samba 2004). People began to build upon the original Ross-Macdonald model,
introducing additional complexities such as human immunity. Such a model was
developed and confronted with data in the Garki project in Nigeria (McKenzie and
Samba 2004), a project devoted to understanding the epidemiology of malaria and
determining effective control interventions in West Africa (Molineaux and
Gramiccia 1982). Just as introducing human immunity into the Ross-Macdonald
model was a natural extension in the Garki project, incorporating delays is another
intuitive way to extend the original model. In the following section, we first
introduce a simple Ross-Macdonald type ODE model of a vector-borne disease
without immunity. We reduce the model to a classical two equation model. Then,
we consider several modifications of the vector-borne ODE models by introducing
delay into them. Although the epidemiology of each vector-borne disease is unique,
the models presented in the following section provide a framework that captures the
features common across many vector-borne diseases as well as a framework from
which we can build models tailored to a particular disease.

2.1 ODE Models of Vector-Borne Diseases

Transmission in vector-borne diseases involves at least two species, the vector and the
host. Since most vectors once infected do not recover, the simplest model for the vec-
tor is an SI model. Let us denote the susceptible vectors by S and the infected vectors
by I . A susceptible vector becomes infected upon biting an infected human /,, with a
biting rate a and probability of transmission of the disease given by p. The dynamical
system that describes the vector is given by the following differential equations:

S\; = Av _paSvIH _:uSv
I'=paS]1, —ul, 2.1

Here, A is the birth rate of the vectors, and u is the death rate of the vectors. Since
the vectors, such as the mosquito, usually have a very short life-cycle, demography
should be included. The total vector population size N =S +1 is then given by the
constrained logistic equation N”=A —uN, whose solution can be obtained in
explicit form. Since N (¢) is essentially a given function of 7z, we may express the
number of susceptible vectors in terms of infected vectors § =N -1 and replace it
in the second equation of system (2.1), thus reducing the two-dimensional vector
system to one equation

I = pa(N,()=I)I, —ul, (2.2)
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Now, we turn to the system for the humans. Although humans usually recover
from an infection, for most vector-borne diseases recovery is not permanent and the
recovered individual can become re-infected. As a starting point, we model the
transmission of a vector-borne disease in humans with an SIS model. Some of the
vector-borne diseases, such as chikungunya, occur as outbreaks, and in this case,
omitting births and deaths for humans is acceptable. Other vector-borne diseases,
such as malaria, are endemic and inclusion of demography in the human portion of
the model is necessary. We begin with the simplest host model — an SIS model with-
out demography. However, involving host’s demography will result in the same
limiting system that we will study, so we lose no generality by assuming that there
is no demography in the host population. Susceptible hosts in class S, become
infected when bitten by an infectious vector. If we assume that infected vectors bite
at the same rate as susceptible vectors, namely a, with ¢ denoting the probability of
transmission, then the model takes the form.

S, =—qaS,I +ad,
I, =qaS,I o, 2.3)

where a. is the recovery rate. The total host population size N, is constant. We can
reduce the host system by replacing the susceptible hosts S, with §, =N, —1, in the
second equation. The system above (2.3) reduces to the following equation

I)/Ll:qa(NH_IH)I —ody, 2.4

The system for the infected vectors and infected humans becomes

I =pa(N,(t)-1)I, —ul,
I, =qa(N, -1,)I, —al, 2.5)

The right-hand side of this system depends on the unknown dependent variables
I and I, and the known function of time N (#). This makes the right-hand side
explicitly dependent on time, and the model non-autonomous. However, system
(2.5) depends on time only through the function N (¢) which has a limit as time goes
to infinity, namely,

N, (t)—

v

A
~=N,.
u

Since all solutions of the original system are bounded, results on asymptotically
autonomous systems (Thieme 1993) allow us to replace system (2.5) with the fol-
lowing limiting system
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I’ =pa(N, —1)I, —ul,
I, =qa(N, -1,)I —ol, (2.6)

The limiting system (2.6) is an autonomous system, which is easier to work
with. It only contains as dynamic variables the number of infected humans and the
number of infected mosquitos. Sometimes a rescaled version of the system is con-
sidered where the proportions of infected humans and the proportion of infected
mosquitoes are incorporated. In malaria, for instance, it is known from studies that
only a small proportion of the mosquitoes are actually infected. The fraction of
infected mosquitoes varies around 1% (Bockarie and Dagoro 2006).

System (2.6) has been thoroughly analyzed. To state the results on the global
behavior we define the reproduction number of the vector-borne disease.
Transmission of vector-borne diseases involves two transmission cycles, namely
host to vector and vector to host, and each of these transmission processes may be
characterized by its own disease reproduction number. These two numbers may be
combined to form a single dimensionless number that indicates whether or not, and
to some extent how seriously, the vector-host system is open to invasion by the
parasite. The Kermack-McKendrick-Macdonald approach places one infected
human in a population of susceptible vectors; this will result in R, secondary
infected vectors. Similarly, placing one infected vector in a population of suscepti-
ble humans, will produce R, infected humans, where

N N
R, =L R, =3

o u

To connect these definitions to the mathematical expressions for R, and R, ,
consider the incidence term in the equation for the vectors pa(N -1 )I, which gives
the number of secondary infections of vectors /, infected hosts will produce per unit
of time. Then, one infected host will produce paN  infected vectors in an entirely
susceptible vector population per unit of time. One infected host is infectious for
1/00 time units, hence we obtain R . Similar reasoning leads to the expression for
'R,,- To account for the secondary host infections that one infected host will pro-
duce, we notice that one infected host will produce R,, infected vectors, each of
which will produce R , infected hosts, giving

Ry =R, Ry,

secondary host infections. This expression gives the classical reproduction number
of vector-borne diseases. The reproduction numbers of some of the vector-borne
diseases with human host are given in Table 2.1. These reproduction numbers are
defined as the number of secondary infections that one infected individual will
produce in an entirely susceptible population.
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Table 2.1 Vector-borne diseases and their reproduction numbers

Disease R, Region Years References

Malaria 1-3000 Africa - (Smith et al. 2007)
Dengue 2.0-3.09 Colima, Mexico 2002 (Chowell et al. 2007)
Dengue 8.0 Bandung, Indonesia 2003-2007 (Supriatna 2009)
Chagas disease 1.25 Brazil 2006 (Massad 2008)
Yellow Fever 2.38-3.59 New Orleans 1878 (Curtis et al. 2007)
Chikungunya 0.35-2.3 Reunion Island 2005-2006 (Dumont et al. 2008)
CCHF* 2.18 - - (Matser et al. 2009)
TBE" 1.58 - - (Matser et al. 2009)

“Crimean-Congo hemorrhagic fever (CCHF)
Tick-borne encephalitis (TBE)

The model (2.6) has two equilibria: a disease free equilibrium £,=(0,0), and an
endemic equilibrium, £* = a1, where

‘ -1 -1
r=N,—l oy Tatl

H H ’ v v °
paN iR, qaN, iR,
u o 2.7

From these expressions it is clear that the endemic equilibrium exists and is
positive if and only if R ;> 1. Furthermore, it can be established that the disease-free
equilibrium is globally asymptotically stable if R, <1 and unstable if R > 1. In addi-
tion, the endemic equilibrium is locally and globally stable, whenever it exists. This
means that all solutions that start from positive initial conditions converge to the
endemic equilibrium.

2.2 Models of Vector-Borne Diseases with Delays

Delay differential equations differ from ordinary differential equations in that the
derivative at any time depends on the solution at prior times. The simplest constant
delay equations have the form

x(t)=F(,x(t),x(t—-7),x(t=7,),...,x(t = T,))

where the time delays T, are positive constants. Additional information is required
to specify a system of delay differential equations. Because the derivative in the
equation above depends on the solution at the previous time 7—1,, it is necessary to
provide an initial history function, or a vector of functions, to specify the value of
the solution before time #=0.

Interest in such systems arises when traditional pointwise modeling assumptions
are replaced by dependence of the rate of change on the prior population numbers.
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As mentioned in the introduction, delays occur naturally in vector-borne diseases
because steps in the development of the vector and the pathogen take a significant
amount of time, particularly compared to the lifespan of the vector. This makes
delay differential equations a natural choice for modeling vector-borne diseases.
Three typical time delays have so far been incorporated in mathematical models of
vector-borne diseases. These are:

2.2.1 Delays related to the extrinsic incubation period

When the pathogen enters the body of the vector, some time elapses before the vector
becomes infectious. This time period is called the extrinsic incubation period.
Inclusion of the extrinsic incubation period in the dynamics of the vector is particu-
larly important as the length of that period is often of duration comparable to the mean
lifespan of the vector. For instance, the extrinsic incubation period of Plasmodium
species that cause malaria is about two weeks, while on average, a female mosquito
is known to live anywhere between 15 to 100 days. These incubation periods tend to
be shorter at higher temperatures and longer at lower temperatures for several patho-
gens, including Plasmodium parasites, dengue viruses, and the St. Louis encephalitis
virus (Ruan et al. 2009, Patz 2000). The fact that vectors may or may not survive the
extrinsic incubation period affects significantly the dynamics of the infectious dis-
ease. This makes imperative the inclusion of the extrinsic incubation period as a delay
in the vector-host epidemic models. Furthermore, delay models of this type include
the probability that the vector survives the extrinsic incubation period.

To incorporate the delay caused by the extrinsic incubation period, we modify
equations (2.6). We include the delay in the incidence term, as well as the proba-
bility that the vector survives that delay. The vectors that become infectious at
time ¢ were infected at time 71—t where T is the delay induced by the extrinsic
incubation period. In practical terms 7 is, in fact, given by the length of the extrin-
sic period. For instance, in malaria, since the length of the extrinsic incubation
period is about two weeks, then T~0.5 months. The number of vectors becoming
infectious is given by the number of vectors infected #—t units ago:
pa(N —1 (t—1))I(t—1) discounted by the probability of survival of the vector,
given by e #*. Including the probability of survival of the vector is important. In
malaria, for instance, only 40% of the vectors survive the extrinsic incubation
period (Cox et al. 1999), even in optimal environmental conditions.

With the inclusion of the delay corresponding to the extrinsic incubation period,
model (2.6) becomes:

I =pae™ (N, —1,(t—7),(t—1)—ul,
I, = qa(N, -1,)I —al,, 2.8)

The first equation in the system above is a differential-delay equation where the
unknown functions depend on the delay. In order to solve the system above, we need
to know / (0) and /,(0) for 6 e [-1,0].
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2.2.2 Delays related to the intrinsic incubation period

Besides the incubation period in the vector, vector-borne pathogens also have an
incubation period within the host. This incubation period is called the intrinsic
incubation period. Although the intrinsic incubation period is much shorter relative
to the host lifespan, it is often customary to include it as a delay in the vector-host
model. For instance, the intrinsic incubation period of malaria is 6 to 25 days, while
the average lifespan of humans is roughly 70 years. Although the probability that
the host survives the intrinsic incubation period is very large, this probability is still
included in vector-borne disease models.

To incorporate the delay caused by the intrinsic incubation period, we modify
again equations (2.6). We include the delay in the incidence term, as well as the
probability the host survives that delay. Hosts that become infectious at time ¢ were
infected at time ¢ —t, where 7 is the delay induced by the intrinsic incubation period.
The number of those becoming infectious is given by the number of those infected
t—7 units ago: ga(N,,—1I,(t—1))I (t—1), discounted by the probability of survival of
the host as infectious, given by e~

The model (2.6), modified by incorporating delay within the host, becomes:

I' = pa(N, -1 ), —ul,
I, =qae” ™ (N, —1,(t—1)I (1 —-T)—ol,, 2.9)

The second equation in the system above is a differential-delay equation where
the unknown functions depend on the delay. We need to know / (6) and /,(6) where
Oe [—1,0] in order to solve the system above.

Inclusion of delay in response to the intrinsic incubation period is of less impor-
tance as the host has a relatively high probability of surviving the incubation period
once infected, and subsequently becoming infectious. For this reason, models as the
one above are typically not considered. However, models that involve two delays,
one to include the extrinsic incubation period, and another to include the intrinsic
incubation period, are of particular interest. We include here the Ross-Macdonald
model with two delays, introduced by Ruan et al. (2009). If T, >0 is the delay caused
by the extrinsic incubation period and t, is the delay caused by the intrinsic incuba-
tion period, then the combination of model (2.8) and model (2.9) results in the fol-
lowing differential-delay model with two delays:

I =pae™" (N, -1 (t—t ), (t—7,)—ul,
1;1 =qae_mz(NH -1, -t (t-71,)-ol, (2.10)

The above model was considered by Ruan et al. (2009) who established the follow-
ing results. The reproduction number of the model (2.10) is given by

R, = pqa’N,N, e e "
por ’
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which can also be interpreted as the product of the human and vector reproduction
numbers. When R <1, then the system has a unique disease-free equilibrium
€,=(0,0) which is locally stable. If R >1, then the system also has an endemic
equilibrium R*=(I",1}) and the disease-free equilibrium is unstable. Furthermore,
when 1 =0, there exists 17 such that the endemic equilibrium is locally asymptoti-
cally stable for t,e [0,7)). Finally, for t,e [0,1]) there exists 7;(t;) such that the
endemic equilibrium is locally asymptotically stable for t, € [0,7}) and 7, € [0, 7).
Ruan et al. do not consider the special but important case when the extrinsic incu-
bation period is taken into account (t,#0) while the intrinsic incubation period is
not (1,=0).

It is important to note that delay equations can be simulated just as the ordinary
differential equations using computer algebra systems such as MATLAB,
Mathematica and others. In particular, using such computer systems delay differen-
tial equations can be fitted to data — both prevalence and incidence data. When fitted
to human incidence data, the human incidence term qae“”z(NH—IH(t—rz))lv(t—rz)
has to be fitted to the given data at time .

2.2.3 Delays related to the maturation period of the vector

The last source of delays in vector-borne models comes from the adaptive matura-
tion delays of the vector. Many vectors, which are arthropods, undergo several life
stages before they reach adulthood and are able to transmit the disease. For instance,
a mosquito’s life-cycle consists of three successive juvenile phases (egg, larva,
pupa) before reaching the adult phase. It usually takes about 1-2 weeks before mos-
quitoes mature to adulthood, a time frame which is large relative to the average
lifespan of the mosquito. To account for this delay, delay-differential equation
models with delay in recruitment are composed. Such models have been previously
considered by Fan et al. (2010) in the discussion of the impact on dynamics of the
mosquito-borne pathogen West Nile Virus, and by Ngwa et al. (2010) in the discus-
sion of a model, focused on the vector, with maturation delays. Prolonged develop-
mental times are also experienced by other vectors, such as triatomines (Triatominae,
Reduviidae), the vectors of Chagas disease Ngwa et al. (2010).

To develop a vector-borne disease model with maturation delays, we need to use
a baseline ODE model that incorporates recruitment of the vector. Hence, model
(2.6) is not appropriate. We need to go back to model (2.1). Development of juve-
nile stages of vectors is density dependent and it is best modeled through a Ricker’s
type function as a recruitment rate into the population of adult vectors. If we denote
the maturation delay by t, then the total number of vectors that produce offsprings
at time 71—t is N, (r—1). Suppose d is the death rate of juvenile vectors. Then, the
probability of a juvenile vector surviving the juvenile stages and becoming an adult
is e~ The Ricker density dependent model assumes that the per capita birth rate
declines exponentially with population size, so a term of the form e P"v(=? ig
included, where 1/p is the size of the vector population at which progeny production
is maximized for a given total adult population size. Finally, r is the maximum per capita
per unit of time vector progeny production rate. We replace the constant recruitment
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rate of the vector in model (2.1) with the recruitment rate rN (t—T1)e P"W D¢,
The model with maturation delay of the vector becomes

S =rN,(t— T)e PimDemdt _ paS, I, —vS,

I =paS I, —vI,
S, =—qaS,I, +al,
I, =qaS,I —al, @.11)

The total population size of the vector in this model is given by the following
delay-differential equation:

N, =rN,(t=1)e ™ e N, (2.12)

The equation for the total vector population size (2.12) has been completely
analyzed (Cook et al. 1999), and oscillations in that model have been found. Because
the total population size of the vector is not necessarily asymptotically constant, the
equation for the susceptible vectors cannot be eliminated from the above model.
However, since the total population size for the human host remains constant, the
susceptible human host population can still be removed.

3 Unstable Dynamics of Vector-Borne Diseases and Delay
Differential Equation Models

Vector-borne diseases exhibit different patterns of occurrence. Parasitic and bacte-
rial diseases, such as malaria and Lyme disease, tend to produce a high disease
incidence that is not typically confounded with major epidemics. An exception to
this rule is plague, a bacterial disease that does cause outbreaks. In contrast, many
vector viral diseases, such as Yellow fever, dengue, Japanese encephalitis, and chi-
kungunya commonly cause major epidemics.

3.1 Unstable Dynamics of Vector-Borne Diseases: Malaria as a
Case Study

Even though the dynamics of malaria, one of the most prominent and deadly vector-
borne diseases, is typically stable and persistent, exceptions to this observation exist
as we illustrated in section 2.1.2. These exceptions have serious implications for
modeling, response, and control of malaria. Unstable dynamics of malaria can occur
in two distinct regimes:

1. relatively low baseline prevalence with occasional major outbreaks;
2. nearly oscillatory behavior where high prevalence follows low prevalence in
consecutive years.
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Fig. 2.1 Number of malaria cases in Egypt for the years 1990-2003. The data exhibit background
oscillatory dynamics with an outbreak in 1994. Data taken from (WHO).
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Fig. 2.2 Number of P. falciparum cases in Haiti for the years 1990-2001. The data exhibit clear
oscillatory dynamics. Data taken from (WHO).

The disease dynamics of several countries, including Botswana, Egypt, Iraq,
Kyrgyzstan and Turkmenistan, have exhibited the first type of instability since 1990.
The case of Egypt is illustrated in Fig. 2.1 where a major outbreak occurred in 1994
and resulted in nearly 10 times the usual number of cases. Brazil, and particularly
Haiti in the period 1990-2000, are examples of the second type of dynamics where
the malaria prevalence oscillates between high and low with a relatively stable
median. The number of cases in Haiti is given in Fig. 2.2.
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Major outbreaks or epidemics of malaria occur primarily in regions where the
overall transmissibility of the disease is low. The unstable nature of malaria in such
regions, and of other vector-borne diseases, present serious clinical threat to the
populations of the affected areas. Inter-epidemic periods of very low transmissibil-
ity, particularly when long, allow for the immunity in the population to wane. Thus,
during an outbreak or epidemic, young children are at higher risk of contracting
malaria, while older children and adults are much more vulnerable to serious com-
plications of the disease compared with stable transmission settings. The random-
ness of the outbreaks has a serious detrimental impact on the ability to predict,
prepare for, and control the outbreak. Consequently, the outbreaks present a burden
to the health care system of epidemic-prone countries.

Nearly oscillatory behavior, although more predictable, requires significant
flexibility and adaptability of the response network. Similar difficulties arise in the
control of malaria in such areas. The reasons for the inter-annual cycles of malaria,
exhibited in such areas, are not completely understood, which complicates the
efficient control of the disease in years of higher prevalence.

3.2 Capturing Oscillatory Dynamics and Chaos
with Delay Models

Traditionally, vector borne diseases have been modeled by ordinary differential
equations. The delays introduced by the incubation and maturation periods can be
included in ODE models by incorporating additional stages in the model. For
instance, the incubation periods can be modeled via exposed compartments in the
vector and/or the host systems. Such models have been considered in (Chitnis et al.
2006). However, these compartmental ODE systems are only an adequate modeling
tool when the disease exhibits stable dynamics as they typically predict conver-
gence to an equilibrium. Ordinary differential equations in general display a low
potential for complex dynamics. Oscillatory dynamics in ODEs occurs in two or
higher dimensional systems. Chaos can only be obtained from three or higher
dimensional systems. Yet, even high dimensional ODE models tend to have glob-
ally stable equilibria. In contrast, delay-differential equations can exhibit complex
dynamics — oscillations and chaos — even in one dimensional models. Moreover,
delay-differential models of vector-borne diseases, unlike their ODE counterparts,
are capable of showing such complex dynamics. This makes them a better modeling
tool for unstably transmitted vector-borne diseases. The idea that vector-borne dis-
ease models with delay can model oscillatory dynamics is not new. Several articles
suggest that delay models of vector-borne diseases can exhibit oscillatory behavior
(Thieme 1993). Consider a model of a vector-borne disease with permanent immu-
nity and delay. They show that the endemic equilibrium can be destabilized via
Hopf bifurcation. More recently Saker (2010) established the presence of Hopf
bifurcation in the vector-host model with two delays (2.10). Other authors have
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also found oscillations in delay-differential equation models of vector-borne
diseases (Hancock and Goodfray 2007, Tang 2007, Wei et al. 2008).

In what follows we show that delay equations, even a simple single delay equation,
are capable of displaying oscillations and chaos. To obtain this single equation, we
begin from the delay model with two delays (2.10). The single delay equation that
we derive is suitable to model malaria, and other vector borne diseases, where the
extrinsic and intrinsic incubation periods are nearly equal in duration.

3.2.1 Reducing the Delay Model to a Single Equation

Biologists often use various methods to reduce the dimension of a system describing
vector-borne disease. The newly obtained system does not necessarily have the
same dynamical behavior as the original one but it is still useful in obtaining initial
insights into the disease dynamics.

Justification for the reduction in dimension is typically based on the assumption
that the lifespan of the vector is much shorter than the duration of infectiousness of
the humans, that is, we assume that ¢>>o and this leads to much faster equilibra-
tion of the dynamics of the vector population compared with the host population.
This assumption is common for vector- borne diseases transmitted by mosquitoes,
such as malaria (Chiyaka et al. 2010). Furthermore, we assume that the intrinsic
incubation period is approximately equal to the extrinsic incubation period, that is
T,=1,=7. This is certainly the case in malaria where the incubation period in the
humans typically lasts between 10 days and four weeks. The extrinsic period is
often temperature-dependent but lasts 10-18 days. If we assume that the two incuba-
tion periods are the same, the model with two delays (2.10) becomes:

I' = pae™ (N, —1,(t—t)1, (t—7)—ul,
I, = qae ™ (N, —1,(—-t),(t-7)-a, (2.13)

Furthermore, since the vector dynamics has reached equilibrium, we have 1/=0.
At equilibrium, the population numbers at time ¢ and f—1 are approximately the
same. Hence, from the first equation we have

pae”™" N I,(t—1)
pae ™I, (t—T)+u

I(t-1)=

Substituting / in the second equation, we obtain the following single delay
equation for the dynamics of the humans:

_ pa‘qge e "N I, (t—1)
pae "I, (t—1)+u

I,

(N, —-1,t-1)—al, (2.14)
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It is helpful to normalize this equation by setting x=1,/N,,. The equation for the
proportion of humans infected becomes:

2 —-oT _—UT
pa-gme “e " x(t—1)
[ 1 _ — — o
pae " x(t—1)+ U (=x(=-) ® (2.15)

where m=N /N, is the ratio of the number of vectors to the number of humans and
aN,, has been replaced again by a.
Delay equations, just like ODEs, have equilibria. The value x* is an equilibrium
of model (2.15) if it satisfies the equation
pa’qme e ' x’ . .
_—(l—x )—ax =0.
pae " x"+ 1 (2.16)

This equation clearly has the solution x*=0 which gives the disease-free
equilibrium. To investigate the stability of the disease-free equilibrium, we linearize
the equation. We look for a solution x(f)=x"+y(f) where y(#) is the perturbation
around the equilibrium, and x* =0. This means that we have to replace x with y and
linearize the nonlinear term. Notice that

1 1
pae* x(t—T)+pu  p(pal pe y(t—7)+1)

~ i[l —palpe ™ y(t 1))

Hence, the linearization around the disease-free equilibrium is given by:

ot

,:pazqme_ e "yt —1)

—oy(1).

Because we now have a linear system, we look for a solution of the form
y(t)=ye*, and subsequently obtain the following characteristic equation

2 — — —
pa’qme are yre At

u

Ato=

The above equation is a transcendental equation, that is an equation containing
a transcendental function of A, namely ¢**. A can be a real or complex variable. If we
think of A as a real variable, the left-hand side of the above equation is an increasing
linear function of A while the right-hand side is a decreasing function of A. This
equation always has a unique real solution which is positive if and only if R >1
where we define the reproduction number R to be
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B pa’qme e

Ry = uo ' (2.17)

So if R0> 1, the disease-free equilibrium is unstable. If R0< 1, the unique real
eigenvalue is negative. We show that all other eigenvalues, which are complex,
have negative real parts. Assume we have an eigenvalue A=b+ci, where i is the
imaginary unit, that has a nonnegative real part, that is 5>0. Then

[A+a|=y(b+0) +c* 2b+o > o - At the same time

2 — — —
|pll gme are /u'e At

u |
@tk | g7 |
u
_ pa’qme e
u
. pa’qme e
1 (2.18)

_ pazqme_

-yt _—b
Ht gmbt

2 — _
pa‘gme “e "

u
all the eigenvalues have negative real parts, the disease-free equilibrium is locally
asymptotically stable if R < 1. We note that if R =1, then A=0 is an eigenvalue and

we cannot use this argument to make conclusions. We consider again the equation
for the equilibria. Canceling x*, the equation for the equilibria (2.16).

which contradicts the fact that RO< 1, that is o > . Hence, because

2 -at —Ut
%(I—X*)—azo. (2.19)
pae " x +U

Multiplying by the denominator, we obtain a linear equation in x* which can be
solved to give the unique endemic equilibrium.

o Rl (2.20)
palue™ +R,

It is clear from this expression that the endemic equilibrium exists and is posi-
tive if and only if R > 1. To investigate the stability of the endemic equilibrium, we
linearize around it. Set x(#) =x" +y(¢), where y(¢) is the perturbation of the endemic
equilibrium. The perturbation y can take positive and negative values. Furthermore,
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to simplify the notation, we will denote Q = pa*qme=""e~** and P =pae~"". Substituting
in the delay equation (2.3) we obtain the following equation for the perturbation

O(x" +y(t—1))
P(x"+yt—-1)+ U

y(1) = [1-x"—y(t—1)]—a(x" + y(1)). 2.21)

Taking into account the equation for the equilibrium

—Q’; A=X) _ o (2.22)
X 4+ U

and linearizing as in the case of the disease-free equilibrium, we obtain the following
equation for the perturbation y:

1_ * _ ® 1_ * _
= QU= | Ox [P( x)y(t=1)

+y(t-1)|—oy@). (2.23)
Px+u Px+u Px +u 4 ):| e

This equation can be simplified as follows:

y'(®)

_ 00 -x)y(t=1) [1— Py }_ Ocyt=1) oy (224)
Px +u Px'+pu Px +u

Using the equation for the equilibrium (2.22) and the fact that R =Q/(apn), we
obtain the following simplified linearized equation

o
Px*

N D
Y@= +u(1 Ryx" )yt =) —ouy(t).

(2.25)

Looking for the exponential solution y(f)=ye” , we obtain the following
characteristic equation

(X,‘Ll 4 -t
1—Ryx* . (2.26)
Px+u ( *")e

Ao =

If R x" <1, the coefficient in front of the term e~*" is positive and smaller than

a,, which corresponds to the case when R <1 in the characteristic equation for the
disease-free equilibrium. A similar argument can show that all roots of the equation



2 Unstable Dynamics of Vector-Borne Diseases... 65

(2.26) have negative real parts, and the endemic equilibrium is locally asymptotically
stable. We summarize these results in the following Theorem:

Theorem 1 [f R < I the differential delay equation (2.15) has only the disease-free
equilibrium x* = 0 which is locally asymptotically stable. If R j > 1 the differential
delay equation (2.15) has the disease-free equilibrium and a unique endemic equi-
librium x*. If R > I the disease-free equilibrium is unstable. The endemic equilib-
rium is locally asymptotically stable, if in addition R x* < I.

This Theorem suggests a rather curious conclusion — the endemic equilibrium is
stable if x <1/R,. Since the reproduction number of malaria R is often large, then the
equilibrium is stable if the fraction of infected individuals is rather small. This suggests
that in countries, like Egypt, where the year to year prevalence is typically very low,
outbreaks such as the one that occurred in 1994 may not be possible to capture with this
simple single-equation model of malaria and may be a result of stochastic events.

3.2.2 Oscillations and Chaos in the Delay Differential Equation

If R x> 1, then the coefficient on the right-hand side of the characteristic equation
(2.26) is negative, and the equation can have as principal eigenvalues (eigenvalues
with the largest real part) a pair of complex conjugate eigenvalues. However, as a
parameter changes, this pair of principal eigenvalues may cross the imaginary axis
giving rise to a stable oscillatory solution. At the same time, the principal eigenval-
ues start having positive real part and the endemic equilibrium becomes unstable.
This process that gives rise to a stable oscillatory solution is called Hopf bifurca-
tion. The result is valid for ODEs and delay-differential equations. For differential
delay equations, it is given in the Hopf bifurcation Theorem below:

Theorem 2 Consider the differential delay equation
x()=F(x(t),xt-71),...,x(t—=7T, ), L) (2.27)

where L is a parameter. If:

1. F is analytic in x and [ in a neighborhood of (0, 0) in " xR.

e F(0, 1) = 0 for W in an open interval containing 0, and x(t) = 0 is an isolated
stationary solution of (2.27).

 The characteristic equation of (2.27) has a pair of complex conjugate eigenvalues
A and A such that A(u) = b(u) + io(u) where o(0) = @, > 0, b(0) = 0 and
b10)=0.

e The remaining eigenvalues of the characteristic equation have strictly negative
real parts.

Then, the differential delay equation (2.27) has a family of Hopf periodic solutions.
One can apply Theorem 2.3.2 to show rigorously that Hopf bifurcation occurs
in equation (2.15). Instead, we will build a specific numerical example of such an
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oscillatory solution. To find sustained oscillations in equation (2.15), we need to
find values of the parameters for which such oscillations occur. We begin from the
characteristic equation (2.26), which we simplify further, and write as

Ato=pe™ (2.28)

o

where p =
x4+ U

(1-Ryx"). We recall that we have assumed that p<0. Let
A=b+iw. We separate the real and the imaginary part:

b+a=pe " cos[wr]
o= pe " sin[w1]. (2.29)

Now we ask the question: Can we find parameters o>0 and p<0 such that the
system above has positive solution >0 and w>0? We solve in terms of a and p

o =-b+wcot[wT]
p= we” escot]. (2.30)

As we have seen earlier, some of the parameters that have physical meaning can
be pre-estimated, or at least reasonable biological ranges can be determined for
them. In the equations above, we assume values for b and 1 and interpret o and p as
functions of @. Using a computer algebra system we can make a parametric plot of
o and p in the (o, p)-plane. This plot is shown in Fig. 2.3.

We pick a value for @, say w=5.2. From system (2.29) we obtain the values
a=2.74768 and p=—5.94514. The value of o corresponds to an infectious period
of 1/2.74768=0.3639 years which is a reasonable duration for Plasmodium falci-
parum malaria. Now we have to assume values for the remaining parameters, so that
the combined value of p is as given. We assume the value (=12, which gives a vec-
tor lifespan of one month. This duration is a realistic estimate for a mosquito’s
lifespan. Furthermore, we have to find Q and P so that the following system holds

01-x)__
Px +u

Ho(1—"Ryx") _
Px* + ' (2.31)

Dividing these two equations we have

Ry(1-x") _a
1-Rx  p
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Fig. 2.3 Parametric plot of ¢ and p in the (¢, p)-plane as given by equations (2.18). The values of
b and 7 are taken as follow: b=0.01, 7=1. The value of 7 which is equal to one year is rather high
for Plasmodium falciparum malaria. The plot is made for 4.5 < w<6.

From here, assuming a value of R x”, we can compute R as
. o
Ry, =Ryx +;(1—Rox ).

If we take Rox* =5, then RO =6.84869. From here we can compute x* =0. 73. Finally,
Q=TR,ou=225.816. From the second equation in system (2.31) we determine
P=13.9498. With these parameters we plot the solution of equation (2.15) in Fig. 2.4.

The trajectory in Fig. 2.4 suggests that the endemic equilibrium is indeed
unstable. However, the trajectory is not periodic. It is aperiodic, suggesting the
presence of chaos in the model (2.3). What is chaos? There are many definitions of
chaos. Perhaps the most useful in biology is the following:

Definition 1 Chaos is aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions.
This definition has several components:

1. Aperiodic long-term behavior means that there are trajectories which do not
settle down to fixed points, periodic orbits, or quasi-periodic orbits as r— oo. For
practical purposes we require that these aperiodic orbits are not too rare.

2. Deterministic means that the system has no random or noisy inputs.

3. Sensitive dependence on initial conditions means that nearby trajectories sepa-
rate exponentially fast.
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Fig. 2.4 Plot of the solution of equation (2.3) with P=pae~*"=13.9498, O =Pqame=*"=225.816,
t=1, #=2.74768, u=12 and initial condition x(0)=0.73. The resulting trajectory is aperiodic sug-
gesting presence of chaotic behavior.

From Fig. 2.4 we see that the delay malaria model (2.15) has solutions that are
aperiodic, that is their trajectory does not repeat even when we run for a long time.
Furthermore, the trajectories exhibit sensitive dependence on initial data. If we start
very close to the trajectory above, the two trajectories “coincide” for a certain
amount of time, called the time horizon, after which the two trajectories completely
diverge and one doesn’t look like the other. The sensitive dependence is illustrated
in Fig. 2.5.

The existence of sensitive dependence on initial conditions in simple but chaotic
models means that we have lost the ability to make long-term predictions. We can
still make short-term predictions based on chaotic models which are valid for the
duration of the time horizon. Chaotic behavior emerges from periodic behavior
through a process called period doubling. This sequence of period doubling leading
to chaos is often demonstrated on a chaos bifurcation diagram which plots the long-
term behavior of the solution with respect to some parameter. Such a chaos bifurca-
tion diagram is plotted in Fig. 2.6. Because chaos emerge from a periodic solution
as a result of increase in the delay parameter, this suggests that if we decrease the
bifurcation parameter t, we will obtain a regular periodic solution. This is indeed
the case. Fig. 2.7 shows a periodic trajectory produced with the same parameters as
above and 1=0.6.

We see that even first order deterministic delay models can exhibit chaotic behav-
ior and sustained oscillations. This suggests that delay-differential equation models
are a suitable tool to produce unstable, oscillatory, nearly oscillatory or chaotic
dynamics in vector-borne diseases.
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3.3 Delay-Differential Equations as a Modeling Tool for Intrinsic

Drivers of Instabilities in Vector-BorneDiseases

The main question that needs to be addressed is: How should we model malaria and
other vector-borne diseases so that we can capture the instabilities in the dynamics?
There are three possibilities that may be used to model and explain unstable out-
break dynamics or inter-annual oscillations in malaria. These are:

1.

The inter-annual cycles are driven by climate, and thus should be modeled by exter-
nal forcing dependent on rainfall, temperature and other climatic covariates. This
hypothesis has been investigated on numerous occasions and a number of articles
address the impact of El Nino oscillation, and other climatic variables on the dynam-
ics of malaria (Poveda et al. 2001, Laneri et al. 2010, Pasqual et al. 2008).

. The inter-annual cycles are generated by the intrinsic dynamics of the disease. In

this case they presumably should be obtained from autonomous differential
equation models. Few studies have been carried out that investigate the possibil-
ity that intrinsic reasons are responsible for the inter-annual oscillation and
unstable outbreak dynamics of vector-borne diseases. The relatively stable
dynamics of even multi-dimensional ODE models, and the relatively recent real-
ization that delay models have the potential to produce oscillations have
obstructed more serious studies into the possibility the unstable dynamics may
be produced by autonomous deterministic differential equation models. Here, we
suggest that, if autonomous, non-stochastic differential equation models have the
potential to produce the complex dynamics of vector-borne diseases in nature,
these should be differential-delay models.
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3. The inter-annual cycles are a result of the joint action of climatic and internal
mechanisms. In this case, the baseline autonomous differential equation model
on which the stochastic and/or externally forced version is built, should also be
able to produce oscillations itself. Hence, this baseline model should be a differ-
ential-delay model, rather than an ODE model.

In a recent article Laneri et al. (2010) compare the three options based on an ODE
model with external forcing and stochasticity. The results in that article suggested that
“the nonlinear dynamics of the disease itself plays a role at the seasonal, but not the
inter-annual, time scales.” The article seems to settle the question in favor of climatic
drivers, but that conclusion is reached in the absence of any understanding in the lit-
erature regarding what particular intrinsic mechanisms could cause such an unstable,
oscillatory or chaotic dynamics. Here, we argue that delay-differential equations are a
good modeling tool on which investigation of the intrinsic mechanisms can be built.

4 Discussion

Vector-borne diseases are stable in many regions; however, a closer look reveals
that there is diversity in how these diseases manifest in different areas. The mecha-
nisms producing this diversity in disease dynamics are still not well understood.
Seasonality in weather is a reasonable mechanism for intra-annual fluctuations in
vector-borne disease prevalence because of the dependence of arthropod abundance
on rainfall and temperature. However, it is unlikely that climate alone can explain
inter-annual oscillations like those observed in Haiti (Fig. 2.2), particularly when
the period of these oscillations appears predictable. Because delay-differential equa-
tion models are capable of producing inter-annual oscillations, this class of deter-
ministic models appears to be an appropriate choice for exploring the mechanisms
behind these less intuitive patterns in disease prevalence. Such exploration could
lead to different insights: either intrinsic aspects of vector-borne diseases can cause
inter-annual oscillations, seasonality and intrinsic mechanisms may work together
to produce inter-annual oscillations, or perhaps neither of these hypotheses is sup-
ported and further research is required to find other possible causes of these unstable
disease patterns. Regardless of the outcome, it is likely that studying delay-differential
equation models for vector-borne disease will contribute to our understanding of
unstable transmission, particularly if these models are confronted with data.

Many of the vector-borne diseases have a more complex biology than the models
included in this chapter. For instance, individuals infected with Plasmodium vivax
malaria who have been treated and have recovered from clinical symptoms may
relapse (Adak et al. 1998). Furthermore, a malaria infected individual may become
bitten by an infectious mosquito and become super-infected with a different strain
— a scenario modeled by the concept of multiplicity of infection (Smith and Hay
2009). One individual can become infected by more than one Plasmodium species
(co-infection). All these scenarios have been captured by ordinary differential equa-
tion models (Chiyaka et al. 2010). These ordinary differential equation models with
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superinfection, co-infection and relapse can be recast to incorporate delays in the
same way discussed in this chapter, although if the different strains have different
delay times, it may not be possible to eliminate the dynamic equation for the vector.
Still, the resulting delay-differential equations will exhibit competition and coexis-
tence of strains in the context of oscillatory behavior and chaos.

Ruan et al. (2009) study of malaria transmission using a delayed Ross-Macdonald
model provided the insight that increasing the duration of either the intrinsic or
extrinsic incubation periods would result in reducing the basic reproduction num-
ber. This finding has important implications for the future of malaria and malaria
control. Climate change, for example, could result in prolonging the extrinsic incu-
bation period in some regions, potentially changing the distribution of malaria, or
further increasing malaria prevalence in already endemic countries. More optimisti-
cally, it also suggests that there is an opportunity for a different approach to malaria
control. The current control measures include larvicides, insecticides, bed nets, and
treatment. However, a less traditional approach, such as the use of drugs that pro-
long incubation periods, may also be an effective means of control.

Another concern that arises from our current knowledge about delay-differential
equation models for vector-borne diseases, such as the possibility of Hopf bifurca-
tion, is that changes in the incubation periods may alter the dynamics of the disease,
causing a stable transmission region to become unstable, or vice versa. Consequently,
understanding if and when these transitions are likely to occur may be very important
in determining the effects of climate change, or intervention strategies that prolong
incubation periods. Ruan et al. (2009) also suggest that long incubation periods may
play an important role in “nonlocal” disease transmission since longer incubation
periods means that humans and mosquitoes are more likely to travel long distances
prior to becoming infectious or symptomatic. Thus, delays in vector-borne diseases
may play a critical role in understanding the spatial spread of these diseases in addi-
tion to understanding unstable transmission. The combination of delays and human
migration also could potentially contribute to epidemic patterns of transmission.

The indirect transmission between vector and host, the vector’s and pathogen’s
climate-dependent survival, and the relationship between the pathogen’s extrinsic
incubation period and temperature contribute to the complexity of vector-borne dis-
eases, challenging our understanding of their dynamic and varied behavior in differ-
ent regions around the world. Stochastic events such as natural disasters or human
migrations further complicate and cloud the picture. Understanding the mechanisms
producing unstable transmission patterns in order to improve current control efforts
seems like a daunting task. However, history has demonstrated the utility of devel-
oping mathematical models to understand complicated phenomena such as disease
transmission. Consequently, we should feel encouraged that pursuing the study of
delay-differential equations in epidemiology may provide similar insight into the
mechanisms driving vector-borne disease dynamics in unstable transmission set-
tings. A better understanding of unstable transmission will then allow public health
officials to develop intervention strategies more appropriate for these epidemic-
prone regions, alleviating the burden on health facilities during outbreaks and
mitigating the risk of high morbidity and mortality within a population.
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