Chapter 2
Handling Textual Data

This chapter introduces the main variable classes that are used in the MATLAB®
programming environment for representing and handling text. First, in Sect. 2.1,
the basic variable type for representing text, which is the character array, is
described. Then, in Sects. 2.2 and 2.3, cell arrays and structures, which are the
most commonly used variable classes for handling and operating with text, are
described, respectively. Finally, in Sect. 2.4, a brief overview is provided on the
specific MATLAB® built-in functions for operating with text, as well as other
useful functions worth to be known.

2.1 Characters and Character Arrays

The basic variable type for representing text in the MATLAB® programming
environment is the character. A character is a variable used to represent symbols in
some predefined encoding system. Depending on the encoding scheme being used,
a character can be represented with one, two or more bytes. By default, when
writing and reading text files from your system, the MATLAB® environment uses
the default encoding of the operating system. However, in the case of MATLAB®
data files, the unicode encoding system is used. This guarantees the portability of
data files across systems. The specific encoding of a given text can be changed at
any moment by using MATLAB® functions native2unicode and uni-
code2native. More details on the encoding scheme issue will be given in
Chap. 5, where we will focus our attention in the problem of writing and reading
text files.

A text string is represented as an array (or matrix) of characters. For defining a
variable as a character array, it is required that its value is provided within
apostrophes. Try the following example in the command line:

R. E. Banchs, Text Mining with MATLAB®, DOI: 10.1007/978-1-4614-4151-9_2, 15
© Springer Science+Business Media New York 2013

http://dx.doi.org/10.1007/978-1-4614-4151-9_5

16 2 Handling Textual Data

>> string = 'Hello, this is a string!’'
string = (2.1)

Hello, this is a string!

Such a command defines and initializes the variable string as a character
array. By using MATLAB® command whos we can list all current variables in the
workspace along with their corresponding sizes and classes:

>> whos
Name Size Bytes Class Attributes (2.2)
string 1x24 48 char

You can get the numerical codes assigned to each character in the array by
casting the variable string from character to integer as it is shown in the
following example:

>> codes = cast(string, 'intl6')
codes =
Columns 1 through 10
72 101 108 108 111 44 32 116 104 105
Columns 11 through 20
115 32 105 115 32 97 32 115 116 114
Columns 21 through 24

105 110 103 33
(2.3a)
>> whos
Name Size Bytes Class Attributes
(2.3b)
codes 1x24 48 1intlé
string 1x24 48 char

Similarly, you can recover the original variable string from variable codes
by either casting it back from integer to character or, alternatively, by using the
function char:

>> cast(codes, 'char')

ans = (2.4a)

Hello, this is a string!

>> char(codes)

ans = (2.4b)

Hello, this is a string!

2.1 Characters and Character Arrays 17

In the same way any numerical variable is handled by default as a matrix,
characters are also handled as matrices. Indeed, as already seen in example (2.2), a
string of n characters is actually represented in the MATLAB® workspace as a
1 x n matrix of characters. According to this, any list or array of strings can be
represented by means of a matrix. Take a look at the following example:

>> list = ['This is the first string ';'This is the second string']
list =
(2.5a)
This is the first string
This is the second string
>> whos list
Name Size Bytes Class Attributes (2.5b)

list 2x25 100 char

The only problem with this particular way of representing string arrays is that
all the strings in the array (rows in the matrix) are required to have the same
number of characters. This is why we added a white space at the end of the first
string in example (2.5a)!

If you try to reproduce the same example without including the trailing white
space at the end of the first string, you will get the following error message:

>> list = ['This is the first string';'This is the second string']
??? Error using ==> vertcat (2,6)

CAT arguments dimensions are not consistent.

So, it is very important to remember that representing string arrays by means of
matrices will always require padding with blanks all the strings up to the length of
the largest one. In this sense, and with the exception of some very specific cases,
we do not recommend using matrices for representing string arrays. Indeed, as we
will see in the following two sections, handling text by using other classes of data
types such a cell arrays and structures is much more convenient.

Nevertheless, one of the main advantages of the matrix representation discussed
here is that any of the conventional MATLAB® matrix indexing strategies can be
used with it. For instance, try reproducing the following sequence of examples in
the command line:

>> dataset = ['name age';'mark 35'; 'beth 26';'peter 39']
dataset =
name age
2.7a
mark 35 ()
beth 26

peter 39

18 2 Handling Textual Data

>> names = dataset(2:end,l:end-4)

names =

mark (2.7b)
beth

peter

>> ages = dataset(2:end,end-1l:end)

ages =

35 (2.7¢)
26

39

>> people_in_ their_ 30s = dataset(dataset(:,end-1)=='3',1l:end-4)
people_in_their_30s =
(2.7d)

mark

peter

In the examples presented in (2.7a), first a list of names and ages was defined
and written into a variable called dataset, which is just a two dimensional array
of characters. As seen from (2.7a), the defined array of characters looks like a
table, the first row containing the headers for each column in the table: name and
age, and the subsequent rows containing the corresponding data entries, one
sample per row.

By just using matrix indexing operations, several different tasks can be
accomplished. For instance, in (2.7b), the names in dataset were extracted by
retaining columns 1 to 5 from rows two and onwards. Similarly, in (2.7c), the ages
were extracted by retaining the last two columns from rows two and onwards.
Finally, (2.7d) shows a more elaborated example, in which only the names for
those people whose age’s first digit was equal to 3 were extracted.

2.2 Handling Text with Cell Arrays

The most convenient way of representing strings in the MATLAB® programming
environment is by using a special class of variables denominated cell arrays. A cell
array is a special class of structure that allows organizing variables into a matrix
form regardless their size and type.

Consider the following example, in which a 2 x 2 cell array is defined:

>> cell_array = {'Hello World',eye(3);5+j,dataset}
cell_array =
(2.8)

'Hello World' [3x%x3 double]
[5.0000 + 1.0000i] [4x9 char]

2.2 Handling Text with Cell Arrays 19

In this example, the variable cell_array constitutes a 2 x 2 matrix of
elements, where element {1,1} is a text string, element {1,2} is by itself a 3 x 3
numerical matrix, element {2,1} is a complex number, and element {2,2} is the
same 4 x 9 matrix of characters created in (2.7a).

Different from the case of conventional arrays and matrices (whose elements
are retrieved by indicating their indexes within parentheses), the elements within a
cell array must be retrieved by using braces. So, the four elements of the 2 x 2 cell
array defined in (2.8) can be retrieved as follows:

>> cell_array{1l,1}

ans = (2.93)

Hello World

>> cell_array{1l,2}

ans =

1 0 0 (2.9b)
0 1 0
0 0 1

>> cell_array{2,1}

ans = (2.90)

5.0000 + 1.0000i

>> cell_array{2,2}
ans =

name age

(2.9d)
mark 35
beth 26
peter 39

According to this, the best way to represent any set of strings is by using cell
arrays. In this kind of representation, each individual string is represented by
means of a character array, and a vector (or matrix) of strings can be constructed
by means of a cell array.

Consider the following example, in which a list of strings is constructed by
using the cell array data class:

>> list = {'This is the 1st string';'This is the 2nd one';'And the 3rd'}
list =

'This is the 1lst string'

'This is the 2nd one’'

'And the 3rd’'

(2.10)

20 2 Handling Textual Data

Notice that with this kind of representation strings are not required to have the
same number of characters. And, like in any cell array, each individual string can
be retrieved by using braces as follows:

>> list{l} % retrieves the first string in list

ans = (2.113)

This is the 1st string

>> list{2} % retrieves the second string

ans = (2.11b)

This is the 2nd one

>> list{3} % retrieves the third string

ans = (2.110)

And the 3rd

Additionally, each character or substring within the strings can be retrieved in
the same way it is done in the case of character arrays:

>> % retrieves the first four characters in the first string
>> list{1}(1:4)
(2.12a)

ans =

This

>> % retrieves the last three characters in the second string
>> list{2}(end-2:end)
(2.12b)

ans =

one

>> % retrieves all non-white-space characters in the third string
>> list{3}(not(list{3}==' '))
(2.12¢)

ans =

Andthe3rd

It should be known that cell arrays also admit the use of parentheses for
retrieving their contents. However, it is important to understand the difference
between using parentheses or braces for accessing cell array elements. When using
parentheses, the retrieved elements are the cells of the cell array (i.e. retrieved
elements are also of the class cell array), while when using braces the retrieved
elements are the contents within the cells (i.e. whichever class is contained in each
cell).

The following example better clarifies the difference between using parentheses
or braces for accessing cell array contents:

2.2 Handling Text with Cell Arrays 21

>> with_braces = list{1l}
with_braces = (2133)
This is the 1lst string

>> with_parentheses = list(1l)

with_parentheses = (213]3)
'This is the 1lst string'

>> whos list with braces with_parentheses

Name Size Bytes Class Attributes

list 3x1 440 cell (2.13¢)
with_braces 1x22 44 char

with_parentheses 1x1 156 cell

As can be seen from (2.13c), while the variable with_braces is a character
array of size 1 x 22, the variable with_parentheses is a cell array of size
1 x 1. In this latter case, we have retrieved cell 1 from cell array 1ist, while in
the first case, we have retrieved the string within the cell. This difference might not
seem important at this point, but it will definitively be very important later on.

2.3 Handling Text with Structures

Another alternative for handling text is using structures. As many other pro-
gramming languages, the MATLAB® environment supports the definition and use
of structures. A structure is actually a set of variables that are indexed as fields of a
common main variable. This kind of representation is especially useful for
importing and exporting data from and to databases or XML formats. Consider, for
instance, the following example in which a structure with 4 fields is created:

>> structure = struct('fl','Hello World',6 'f2',eye(3),'£3',5+3); (2143)

>> structure.f4.names = ['mark ';'beth ';'peter'];

(2.14b)

>> structure.f4.ages = [35;26;39];

Notice from (2.14b) that the fourth field of structure is defined as a
structure itself, which is composed of subfields names and ages. Structures, as
well as cell arrays, admit nested constructs.

For accessing structure contents, each field in a structure can be retrieved by
appending a dot to the name of the main variable followed by the name of the
field:

22 2 Handling Textual Data

>> structure.fl % retrieves field f1

ans = (2.153)

Hello World

>> structure.f2 % retrieves field f2

ans =

1 0 0 (2.15b)
0 1 0
0 0 1

>> structure.f3 % retrieves field £3

ans = (2.15C)

5.0000 + 1.0000i

>> structure.f4 % retrieves field f4
ans =
(2.15d)

names: [3x5 char]

ages: [3x1l double]

In the particular case of nested structures, such as the one in structure. £4,
each element can be retrieved by concatenating with dots the names of the cor-
responding sequence of fields:

>> structure.fd.ages' % retrieves (and transposes) subfield ages of £f4
ans =

35 26 39

(2.16a)

>> structure.f4.names % retrieves subfield names of £f4

ans =

mark (2.16b)
beth

peter

>> % retrieves the second row of subfield names of £f4
>> structure.f4.names(2,:)
(2.16¢)

ans =

beth

Finally, very important and useful resources for converting structure-based text
representations into cell-array-based text representations, and vice versa, are
available through MATLAB® built-in functions struct?2 cell, fieldnames
and cell2struct. In the remaining of this section, we illustrate the use of these
three functions in detail.

2.3 Handling Text with Structures 23

Let us consider again the sample dataset defined in (2.7a), which contains
information about the names and ages of three people. In (2.7a), this dataset was
represented by using of a two dimensional array of characters. Now, let us consider
a more appropriate representation by means of a structure array composed of the
two fields name and age. In the following example, such a structure array is
created and filled in with the corresponding three data entries:

>> data = struct('name', {'mark';'beth';'peter'},'age',{'35';'26';'39'})
data =
3x1 struct array with fields:

name

age

(2.17)

As seen from (2.17), our sample dataset has been stored into a structure array of
3 x 1 elements (one element per data entry), and each element of the structure
array is composed of two fields: name and age.

Now, let us consider the procedure for converting the structure-based repre-
sentation of (2.17) into a cell-array-based representation. For this, the two func-
tions struct2cell and fieldnames must be used. While the former maps the
fields of the structure array into a cell array, the latter retrieves the names of the
fields into another cell array. We proceed as follows:

>> datacell = struct2cell(data)
datacell =

(2.18a)
'mark’ 'beth' 'peter’
l35l I26I l39l
>> datafields = fieldnames (data)
datafields =
2.18b
'name’ ()
rage!’

Notice from (2.18a) how the resulting cell array datacell contains the same
data entries as the structure array data. The mapping has been done such that
elements and fields of the structure array correspond to columns and rows of the
cell array, respectively; i.e. the 3 x 1 structure array has been mapped into a
2 x 3 x 1 cell array. In general, struct2cell will map any N x M structure
array of K fields into a K x N x M cell array.

In addition to struct2cell, as seen from (2.18b), function fieldnames
should be used if we are also interested in retrieving the field names in the structure.
In this case, the structure’s field names are retrieved within a one-dimensional
cell array of strings.

Let us now consider the problem of going back from the cell-array-based
representation obtained in (2.18) to the original structure-based representation in

24 2 Handling Textual Data

(2.17). In this case, the function cell2struct must be used as it is illustrated in
the following example:

>> databack = cell2struct(datacell,datafields, 1)

databack =

3x1 struct array with fields: (2.193)
name

age

>> databack(1)

ans =

(2.19b)
name: 'mark’
age: '35"
>> databack(2)
ans =
(2.19¢)
name: 'beth’
age: '26"'
>> databack(3)
ans =
(2.19d)

name: 'peter'

age: '39'

As seen from (2.19a), function cell2struct requires three input parameters:
the cell array to be mapped into the structure, a cell array of strings containing the
names of the fields to be used in the structure definition, and the dimension along
which the cell array is to be folded into the structure fields (as the original fields
were mapped into rows in (2.18a); in this case, this parameter must be 1).

2.4 Some Useful Functions

After having seen the most fundamental issues related to handling textual data, and
before moving forward to more advanced procedures and techniques, we will
devote this section to present an overview of the most common MATLAB® built-
in functions for handling and operating with text strings, as well as some other
general functions that are worth to be known. More than a comprehensive revision,
this section presents a general overview, which is actually intended to be a quick
reference. In this sense, a very basic description of the functions is presented here.
Most of these functions will be studied and described in more detail in the
following two chapters, while other functions are left for self-studying in some of
the exercises proposed in Sect. 2.6.

2.4 Some Useful Functions 25

Table 2.1 summarizes the main functions that are available in the MATLAB®
programming environment for handling and operating with strings, along with
their corresponding categories and descriptions (this same information can be
listed in the MATLAB® command window by typing: help strfun).

There are 41 functions in total in Table 2.1, which are distributed into six
different categories. From these six categories, string operations constitutes the
most extensive one. Most of the functions within this category will be described
and studied in detail in Chaps. 3 and 4, while others are covered by some proposed
exercises within those chapters. More specifically:

e Chapter 3 is fully devoted to function regexp (and its case insensitive version
regexpi) which is the MATLAB® implementation for matching regular
expressions.

e Chapter 4 devotes special attention to string functions that are specifically suited
for: search and comparing (strfind, strcmp, strcmpi, strncmp and
strncmpi), replacement and insertion (regexprep and strrep), and
segmentation and concatenation (strtok, strcat and strvcat).

e The rest of functions within the category string operations are covered by
proposed exercises in the exercise sections of Chaps. 3 and 4.

Most of the functions belonging to the three conversion categories (character
set conversion, string to number conversion and base number conversion) are left
to you for self-studying. Basic descriptions for these functions can be obtained by
using the help command. The functions belonging to the two remaining cate-
gories general and string test are partially covered by exercises in Sect. 2.6.
Special attention is paid to functions char, cellstr and sprintf in Sect. 4.3.

Figure 2.1 presents a two-dimensional map of the basic string functions listed
in Table 2.1. In the map, each function is represented by a marker and each of the
six function categories are identified with a different marker. Function names are
printed next to the markers for further reference.

In addition to the string related functions presented in Table 2.1, there are other
MATLAB® functions of more general scope that are worth to be known too. These
functions are summarized in Table 2.2 and described thereafter.

Next, let us illustrate the use of the functions presented in Table 2.2. Consider,
for instance, the following example in which we illustrate the use of lookfor
and help for searching functions and displaying their descriptions':
>> lookfor blanks % searches the string 'blanks' in all M-files
blanks - String of blanks. (2203)

deblank - Remove trailing blanks.

! Reprinted with permission from The MathWorks, Inc.

http://dx.doi.org/10.1007/978-1-4614-4151-9_3
http://dx.doi.org/10.1007/978-1-4614-4151-9_4
http://dx.doi.org/10.1007/978-1-4614-4151-9_3
http://dx.doi.org/10.1007/978-1-4614-4151-9_4
http://dx.doi.org/10.1007/978-1-4614-4151-9_3
http://dx.doi.org/10.1007/978-1-4614-4151-9_4
http://dx.doi.org/10.1007/978-1-4614-4151-9_4

26

2 Handling Textual Data

Table 2.1 Basic string functions and their corresponding categories and descriptions. (Reprinted
with permission from The MathWorks, Inc.)

Function Category Description

char General Create character array (string)

strings General Help for strings

cellstr General Create cell array of strings from character array
blanks General String of blanks

deblank General Remove trailing blanks

iscellstr String tests True for cell array of strings

ischar String tests True for character array (string)

isspace String tests True for white space characters

isstrprop String tests Check if string elements are of a specified category
regexp String operations Match regular expression

regexpi String operations Match regular expression, ignoring case
regexprep String operations Replace string using regular expression

strcat String operations Concatenate strings

strcmp String operations Compare strings

strncmp String operations Compare first N characters of strings

strcmpi String operations Compare strings ignoring case

strncmpi String operations Compare first N characters of strings ignoring case
strfind String operations Find one string within another

strjust String operations Justify character array

strrep String operations Replace string with another

strtok String operations Find token in string

strtrim String operations Remove insignificant whitespace

upper String operations Convert string to uppercase

lower String operations Convert string to lowercase

native2unicode Char set conversion Convert bytes to Unicode characters
unicode2native Char set conversion Convert Unicode characters to bytes

num2str String to number conversion Convert numbers to a string

int2str String to number conversion Convert integer to string

mat2str String to number conversion Convert a 2-D matrix to a string in MATLAB syntax
str2double String to number conversion Convert string to double precision value
str2num String to number conversion Convert string matrix to numeric array

sprintf String to number conversion Write formatted data to string

sscanf String to number conversion Read string under format control

hex2num Base number conversion Convert hexadecimal string to double precision num.
hex2dec Base number conversion Convert hexadecimal string to decimal integer
dec2hex Base number conversion Convert decimal integer to hexadecimal string
bin2dec Base number conversion Convert binary string to decimal integer
dec2bin Base number conversion Convert decimal integer to a binary string
base2dec Base number conversion Convert base B string to decimal integer
dec2base Base number conversion Convert decimal integer to base B string
num2hex Base number conversion Convert singles and doubles to hexadecimal strings

2.4 Some Useful Functions 27

< Base number conversion
» Character set conversion
u GeFielaI _ mchar
® String operations sisspace
String tests o o ischar
4 String to number conversion pyf diuvaZunicade moeistr
- numzZhex
®sipust Bceistr
« hex2num msirngs
o A Str2double
ex
‘Msezm?ﬂd!c & Str2num stmemp
deczb:sbehmgc aint2ste saper strem @ Strncmpi
qdec2bn .
A num2str @ lower @ strempi
mblanks @ Streat
& mat2str
A sprintf
@ issirprop mdeblank
@regexpi
@strfind
Asscanf @strep .
@ Sirtok ® sirtrim
 regexprep sregexp
Fig. 2.1 Semantic projection of the basic string functions listed in Table 2.1
Table 2.2 Other non-string-specific functions worth to be known
Function Description
help Displays the help text contained within a function
lookfor Searches for the specified keyword in all M-files
iskeyword Check if the given string constitutes a MATLAB keyword
pause Halts the execution and waits for a response from the user
keyboard Halts the execution and invokes the keyboard
input Prompts for the user to input either a number or a string
disp Displays the values of the given variable
inputdlg Dialog box for receiving input values from the user
questdlg Dialog box for receiving an input selection from the user
msgbox Message box for displaying a given string
>> help blanks % displays the description of function blanks
BLANKS String of blanks.
BLANKS(n) is a string of n blanks.
Use with DISP, e.g. DISP(['xxx' BLANKS(20) 'yyy'l).
(2.20b)

DISP(BLANKS(n)') moves the cursor down n lines.
See also clc, home, format.
Reference page in Help browser

doc blanks

The function iskeyword allows for checking if a given string is a MAT-
LAB® keyword. It is especially useful to check for the validity of variable names:

28 2 Handling Textual Data

>> iskeyword('start') % valid variable name

ans = (2.213)

0

>> iskeyword('end') % not valid name as it is a MATLAB keyword

ans = (2.21b)

1

The function pause allows for momentarily halting the execution either for
some specified amount of time or until the user hits any key in the keyboard:

>> pause(5) % halts the execution for 5 seconds (2.223)
>> pause % halts the execution until a key is hit (2.22b)

The function keyboard also halts the execution of the current program, but
additionally it gives access to the command window. The execution is resumed
when the user enters the command return and hits the enfer key:

>> keyboard % halts the program and gives access to the command window
K>> a = 5+1;

K>> return

(2.23)

The function input allows the user for entering either a numeric value or a
string directly from the command window:

>> r = input('How old are you? ') % prompts for a numeric variable

How old are you? 25
(2.24a)

r =

25

>> s = input('What is your name? ','s') % prompts for an input string
What is your name? John (2 24b)

John

2.4 Some Useful Functions 29

The function disp allows for displaying variables in the command window:

>> disp(dataset) % displays the variable dataset defined in (2.7a)

name age

mark 35 (2.25)
beth 26
peter 39

Finally, functions inputdlg, questdlg and msgbox allow for collecting
inputs and displaying information by means of interactive dialog and message
boxes. In the case of inputdlg, the entered information is returned into a cell
array; while in the case of questdlg, the selected option is returned in a string.

The function msgbox, by default, does not halt the execution of the current
program. If the execution is to be halted when displaying a message, the function
msgbox should be used along with function uiwait and the option 'modal'
must be included in the function call.

The following examples illustrate the use of these last three functions. The
resulting dialog and message boxes are depicted in Fig. 2.2.

>> boxname = 'Date'; gl = 'What day is it?'; g2 = 'What time is it?';

>> today = inputdlg({ql,qg2},boxname,2);

(2.26a)
>> boxname = 'Fruit'; gl = 'What is your favorite fruit?'; (2 26b)
>> fruit = questdlg(qgl,boxname, 'apple', 'banana', 'mango', 'mango'); ’
>> boxname = 'Notice'; msg = 'This is the end of section 2.4.';

(2.26c¢)

>> uiwait (msgbox (msg,boxname, 'modal'));

2.5 Further Reading

For more detailed information on the unicode character set you must refer to The
Unicode Consortium (2011). Some details about some other character encodings
are also provided in Sect. 5.1 when describing the function fopen.

For a more comprehensive description on string handling, as well as all string
related functions described in this chapter you should refer to the MATLAB® online
Product Documentation (The Mathworks 2011a). Similarly, more detailed infor-
mation on dialog boxes and other user interface functions are available from (The
Mathworks 2011b).

http://dx.doi.org/10.1007/978-1-4614-4151-9_5

30 2 Handling Textual Data

y | B’
Date =] 1&
- ‘What is your favorite fruit?

What day is it?

[apple] [nanann] | mango |

What time is 82

-

> B Notice |E_ﬁ
e

\ This is the end of section 2.4.

Fig. 2.2 Dialog and message boxes resulting from examples in (2.26). (Reprinted with
permission from The MathWorks, Inc.)

2.6 Proposed Exercises

1. Create the 2 x N cell array ascii_codes and store into it the corresponding
code values and symbols for ASCII codes in the range from 32 to 127.

e Store the numerical values of the codes (integers) in the first row of the cell
array, i.e. ascii_codes{1l,n}.

e Store the corresponding symbols (characters) in the second row of the cell
array, i.e. ascii_codes{2,n}.

e Consider using function char for casting code’s integer values into
characters.

2. Consider a dataset of personal contacts containing the full name, affiliation,
phone number and e-mail of each person in the dataset.

e Create a script for manually entering the data (consider using the functions
inputdlg and questdlg). Collect few data samples (about 10).

e Write a script for converting the collected data into a structure array.

e Organize the information in the following five fields: name, surname, affili-
ation, phone number and e-mail address.

3. Consider the dataset of personal contacts created in the previous exercise.

e Create a script for converting the structure into a cell array.

e Retrieve the field names and save them into another cell array.

e Sort the collection into alphabetical order according to the contact person’s
surnames (consider using the function sort).

2.6 Proposed Exercises 31

Use function disp in combination with function blanks to display a
header containing the five field names.

Just below the header line, generate a printout of the sorted dataset (notice
that you will need to implement a loop for doing this).

4. Create a function to convert a list of words between character array and cell
array format representations.

Use function input to manually enter 20 words. Save the words into a cell
array (one word per cell).

Create the function convert to convert the cell array representation into a
two-dimensional character array representation (one word per row) and vice
versa.

Consider using function char for converting from cell array into character
array representation, and function cellstr for converting from character
array into cell array.

The function should automatically identify whether the input variable is a
cell array or a character array. You might use function iscellstr or
ischar to identify the type of variable.

Modify the function such that it is able to display an error message in a
message box when an input different from a cell array and character array is
given.

5. Consider a dataset containing the following variables: name, gender, age,
weight and height, for a given group of people.

Create a script for manually collecting the data and storing it into a structure
array. Collect all variables as strings. Enter about 10 data samples.

Read the age, weight and height from the structure array and convert the
strings into numeric values (consider using function str2num).

Store the converted values into three numerical arrays, one for age, one for
weight and one for height.

Read the gender from the structure array and convert the strings into binary
values, and store the values into a binary array.

Compute the basic statistics (mean, standard deviation, maximum and min-
imum) of age, weight and height for men, women and the whole group.
Convert the resulting numeric values into strings (consider using function
num2str).

Generate a report of the results and display it.

6. Create a function that receives any string and returns the same string with all

white spaces

[T3RL) [TEEL)

replaced by underscores

32

2 Handling Textual Data

As a hint, consider the procedure illustrated in (2.12c) for identifying non-
white-space characters. In this case, you should identify them and replace
them with the underscore character “_”.*

Alternatively, you can consider the ASCII codes for the white space (32) and
the underscore (95), and replace one with another.

Modify the function so that it can receive either a single string or a cell array
of strings. In the case it receives a cell array of strings it must return a similar
cell array with all white spaces in each individual string replaced by
underscores.

The function should be able to automatically detect whether the input is a
single string or a cell array of strings and proceed accordingly.

References

The MathWorks (2011a) MATLAB product documentation: strings, http://www.mathworks.com/

help/techdoc/ref/strings.html. Accessed 18 Nov 2011

The MathWorks (2011b) MATLAB product documentation: dialog, http://www.mathworks.com/

help/techdoc/ref/dialog.html. Accessed 18 Nov 2011

The Unicode Consortium (2011) Unicode 6.0.0, http://www.unicode.org/versions/Unicode6.0.0/.

Accessed 6 Nov 2011

2

More details on character replacement will be given in Sect. 4.2.

http://www.mathworks.com/help/techdoc/ref/strings.html
http://www.mathworks.com/help/techdoc/ref/strings.html
http://www.mathworks.com/help/techdoc/ref/dialog.html
http://www.mathworks.com/help/techdoc/ref/dialog.html
http://www.unicode.org/versions/Unicode6.0.0/
http://dx.doi.org/10.1007/978-1-4614-4151-9_4

2 Springer
http://www.springer.com/978-1-4614-4150-2

Text Mining with MATLAB®
Banchs, R.E.

2013, Xll, 356 p., Hardcover
ISEMN: 278-1-4614-4150-2

	2 Handling Textual Data
	2.1…Characters and Character Arrays
	2.2…Handling Text with Cell Arrays
	2.3…Handling Text with Structures
	2.4…Some Useful Functions
	2.5…Further Reading
	2.6…Proposed Exercises
	References

