
Chapter 2
Vibration Dynamics

In this chapter, we review the dynamics of vibrations and the methods of deriv-
ing the equations of motion of vibrating systems. The Newton–Euler and Lagrange
methods are the most common methods of deriving the equations of motion. Having
symmetric coefficient matrices is the main advantage of using the Lagrange method
in mechanical vibrations.

Fig. 2.1 A one DOF
vibrating systems and its FBD

2.1 Newton–Euler Method

When a vibrating system is modeled as a combination of masses mi , dampers ci ,
and springs ki , it is called a discrete or lumped model of the system.

To find the equations of motion of a low degree-of-freedom (DOF) discrete
model of a vibrating system, the Newton–Euler method works very well. We move
all the masses mi out of their equilibria at positions xi with velocities ẋi . Then a free
body diagram (FBD) of the lumped masses indicates the total force Fi on mass mi .
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52 2 Vibration Dynamics

Employing the momentum pi = mi vi of the mass mi , the Newton equation provides
us with the equation of motion of the system:

Fi = d

dt
pi = d

dt
(mi vi ) (2.1)

When the motion of a massive body with mass moment Ii is rotational, then its equa-
tion of motion will be found by Euler equation, in which we employ the moment of
momentum Li = Ii ω of the mass mi :

Mi = d

dt
Li = d

dt
(Ii ω) (2.2)

For example, Fig. 2.1 illustrates a one degree-of-freedom (DOF) vibrating sys-
tem. Figure 2.1(b) depicts the system when m is out of the equilibrium position at x

and moving with velocity ẋ, both in positive direction. The FBD of the system is as
shown in Fig. 2.1(c). The Newton equation generates the equations of motion:

ma = −cv − kx + f (x, v, t) (2.3)

The equilibrium position of a vibrating system is where the potential energy of
the system, V , is extremum:

∂V

∂x
= 0 (2.4)

We usually set V = 0 at the equilibrium position. Linear systems with constant
stiffness have only one equilibrium or infinity equilibria, while nonlinear systems
may have multiple equilibria. An equilibrium is stable if

∂2V

∂x2
> 0 (2.5)

and is unstable if

∂2V

∂x2
< 0 (2.6)

The geometric arrangement and the number of employed mechanical elements
can be used to classify discrete vibrating systems. The number of masses times the
DOF of each mass makes the total DOF of the vibrating system n. Each indepen-
dent DOF of a mass is indicated by an independent variable, called the generalized
coordinate. The final set of equations would be n second-order differential equa-
tions to be solved for n generalized coordinates. When each moving mass has one
DOF, then the system’s DOF is equal to the number of masses. The DOF may
also be defined as the minimum number of independent coordinates that defines the
configuration of a system.

The equation of motion of an n DOF linear mechanical vibrating system of can
always be arranged as a set of second-order differential equations

[m]ẍ + [c]ẋ + [k]x = F (2.7)
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Fig. 2.2 Two, three, and one
DOF models for vertical
vibrations of vehicles

Fig. 2.3 A 1/8 car model
and its free body diagram

in which, x is a column array of describing coordinates of the system, and f is a
column array of the associated applied forces. The square matrices [m], [c], [k] are
the mass, damping, and stiffness matrices.

Example 30 (The one, two, and three DOF model of vehicles) The one, two, and
three DOF model for analysis of vertical vibrations of a vehicle are shown in
Fig. 2.2(a)–(c). The system in Fig. 2.2(a) is called the quarter car model, in which
ms represents a quarter mass of the body, and mu represents a wheel. The param-
eters ku and cu are models for tire stiffness and damping. Similarly, ks and cu are
models for the main suspension of the vehicle. Figure 2.2(c) is called the 1/8 car
model, which does not show the wheel of the car, and Fig. 2.2(b) is a quarter car
with a driver md. The driver’s seat is modeled by kd and cd.

Example 31 (1/8 car model) Figure 2.3(a) shows the simplest model for vertical
vibrations of a vehicle. This model is sometimes called 1/8 car model. The mass ms
represents one quarter of the car’s body, which is mounted on a suspension made of
a spring ks and a damper cs. When ms is at a position such as shown in Fig. 2.3(b),
its free body diagram is as in Fig. 2.3(c).
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Fig. 2.4 Equivalent
mass–spring vibrator for a
pendulum

Applying Newton’s method, the equation of motion would be

msẍ = −ks(xs − y) − cs(ẋs − ẏ) (2.8)

which can be simplified to

msẍ + csẋs + ksxs = ksy + csẏ (2.9)

The coordinate y indicates the input from the road and x indicates the absolute
displacement of the body. Absolute displacement refers to displacement with respect
to the motionless background.

Example 32 (Equivalent mass and spring) Figure 2.4(a) illustrates a pendulum made
by a point mass m attached to a massless bar with length l. The coordinate θ shows
the angular position of the bar. The equation of motion for the pendulum can be
found by using the Euler equation and employing the FBD shown in Fig. 2.4(b):

IAθ̈ =
∑

MA (2.10)

ml2θ̈ = −mgl sin θ (2.11)

Simplifying the equation of motion and assuming a very small swing angle yields

lθ̈ + gθ = 0 (2.12)

This equation is equivalent to an equation of motion of a mass–spring system made
by a mass me ≡ l, and a spring with stiffness ke ≡ g. The displacement of the mass
would be xe ≡ θ . Figure 2.4(c) depicts such an equivalent mass–spring system.

Example 33 (Gravitational force in rectilinear vibrations) When the direction of
the gravitational force on a mass m is not varied with respect to the direction of
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Fig. 2.5 A mass–spring–damper system indicating that the gravitational force in rectilinear vibra-
tions provides us with a static deflection

motion of m, the effect of the weight force can be ignored in deriving the equation
of motion. In such a case the equilibrium position of the system is at a point where
the gravity is in balance with a deflection in the elastic member. This force–balance
equation will not be altered during vibration. Consequently we may ignore both
forces; the gravitational force and the static elastic force. It may also be interpreted
as an energy balance situation where the work of gravitational force is always equal
to the extra stored energy in the elastic member.

Consider a spring k and damper c as is shown in Fig. 2.5(a). A mass m is put on
the force free spring and damper. The weight of m compresses the spring a static
length xs to bring the system at equilibrium in Fig. 2.5(b). When m is at equilibrium,
it is under the balance of two forces, mg and −kxs:

mg − kxs = 0 (2.13)

While the mass is in motion, its FBD is as shown in Fig. 2.5(c) and its equation of
motion is

mẍ = −kx − cẋ + mg − kxs

= −kx − cẋ (2.14)

It shows that if we examine the motion of the system from equilibrium, we can
ignore both the gravitational force and the initial compression of the elastic member
of the system.

Example 34 (Force proportionality) The equation of motion for a vibrating system
is a balance between four different forces: a force proportional to displacement,
−kx, a force proportional to velocity, −cv, a force proportional to acceleration, ma,
and an applied external force f (x, v, t), which can be a function of displacement,
velocity, and time. Based on Newton method, the force proportional to acceleration,
ma, is always equal to the sum of all the other forces:

ma = −cv − kx + f (x, v, t) (2.15)
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Fig. 2.6 A 1/4 car model
and its free body diagram

Example 35 (A two DOF base excited system) Figure 2.6(a)–(c) illustrate the equi-
librium, motion, and FBD of a two DOF system. The FBD is plotted based on the
assumption

xs > xu > y (2.16)

Applying Newton’s method provides us with two equations of motion:

ms ẍs = −ks(xs − xu) − cs(ẋs − ẋu) (2.17)

mu ẍu = ks(xs − xu) + cs(ẋs − ẋu)

− ku(xu − y) − cu(ẋu − ẏ) (2.18)

The assumption (2.16) is not necessary. We can find the same Eqs. (2.17)
and (2.18) using any other assumption, such as xs < xu > y, xs > xu < y, or
xs < xu < y. However, having an assumption helps to make a consistent free body
diagram.

We usually arrange the equations of motion for a linear system in a matrix form
to take advantage of matrix calculus:

[M]ẋ + [C]ẋ + [K]x = F (2.19)

Rearrangement of Eqs. (2.17) and (2.18) yields
[
ms 0
0 mu

][
ẍs
ẍu

]
+

[
cs −cs

−cs cs + cu

][
ẋs
ẋu

]

+
[

ks −ks
−ks ks + ku

][
xs
xu

]
=

[
0

kuy + cuẏ

]
(2.20)

Example 36 � (Inverted pendulum and negative stiffness) Figure 2.7(a) illustrates
an inverted pendulum with a tip mass m and a length l. The pendulum is supported
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Fig. 2.7 An inverted
pendulum with a tip mass m

and two supportive springs

by two identical springs attached to point B at a distance a < l from the pivot A.
A free body diagram of the pendulum is shown in Fig. 2.7(b). The equation of
motion may be found by taking a moment about A:

∑
MA = IAθ̈ (2.21)

mg(l sin θ) − 2kaθ(a cos θ) = ml2θ̈ (2.22)

To derive Eq. (2.22) we assumed that the springs are long enough to remain almost
straight when the pendulum oscillates. Rearrangement and assuming a very small θ

show that the nonlinear equation of motion (2.22) can be approximated by

ml2θ̈ + (
mgl − 2ka2)θ = 0 (2.23)

which is equivalent to a linear oscillator:

meθ̈ + keθ = 0 (2.24)

with an equivalent mass me and equivalent stiffness ke:

me = ml2 ke = mgl − 2ka2 (2.25)

The potential energy of the inverted pendulum is

V = −mgl(1 − cos θ) + ka2θ2 (2.26)

which has a zero value at θ = 0. The potential energy V is approximately equal to
the following equation if θ is very small:

V ≈ −1

2
mglθ2 + ka2θ2 (2.27)
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because

cos θ ≈ 1 − 1

2
θ2 + O

(
θ4) (2.28)

To find the equilibrium positions of the system, we may solve the equation ∂V/∂θ =
0 for any possible θ :

∂V

∂θ
= −2mglθ + 2ka2θ = 0 (2.29)

The solution of the equation is

θ = 0 (2.30)

which shows that the upright vertical position is the only equilibrium of the inverted
pendulum as long as θ is very small. However, if

mgl = ka2 (2.31)

then any θ around θ = 0 would be an equilibrium position and, hence, the inverted
pendulum would have an infinity of equilibria.

The second derivative of the potential energy

∂2V

∂x2
= −2mgl + 2ka2 (2.32)

indicates that the equilibrium position θ = 0 is stable if

ka2 > mgl (2.33)

A stable equilibrium pulls the system back if it deviates from the equilibrium, while
an unstable equilibrium repels the system. Vibration happens when the equilibrium
is stable.

This example also indicates the fact that having a negative stiffness is possible
by geometric arrangement of mechanical components of a vibrating system.

Example 37 � (Force function in equation of motion) Qualitatively, force is what-
ever changes the motion, and quantitatively, force is whatever is equal to mass times
acceleration. Mathematically, the equation of motion provides us with a vectorial
second-order differential equation

mr̈ = F(ṙ, r, t) (2.34)

We assume that the force function may generally be a function of time t , position r,
and velocity ṙ. In other words, the Newton equation of motion is correct as long as
we can show that the force is only a function of ṙ, r, t .

If there is a force that depends on the acceleration, jerk, or other variables that
cannot be reduced to ṙ, r, t , the system is not Newtonian and we do not know the
equation of motion, because

F(r, ṙ, r̈,
...
r , . . . , t) �= mr̈ (2.35)
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In Newtonian mechanics, we assume that force can only be a function of ṙ, r, t and
nothing else. In real world, however, force may be a function of everything; however,
we always ignore any other variables than ṙ, r, t .

Because Eq. (2.34) is a linear equation for force F, it accepts the superposition
principle. When a mass m is affected by several forces F1, F2,F3, . . . , we may
calculate their summation vectorially

F = F1 + F2 + F3 + · · · (2.36)

and apply the resultant force on m. So, if a force F1 provides us with acceleration
r̈1, and F2 provides us with r̈2,

mr̈1 = F1 mr̈2 = F2 (2.37)

then the resultant force F3 = F1 + F2 provides us with the acceleration r̈3 such that

r̈3 = r̈1 + r̈2 (2.38)

To see that the Newton equation of motion is not correct when the force is not
only a function of ṙ, r, t , let us assume that a particle with mass m is under two
acceleration dependent forces F1(ẍ) and F2(ẍ) on x-axis:

mẍ1 = F1(ẍ1) mẍ2 = F2(ẍ2) (2.39)

The acceleration of m under the action of both forces would be ẍ3

mẍ3 = F1(ẍ3) + F2(ẍ3) (2.40)

however, though we must have

ẍ3 = ẍ1 + ẍ2 (2.41)

we do have

m(ẍ1 + ẍ2) = F1(ẍ1 + ẍ2) + F2(ẍ1 + ẍ2)

�= F1(ẍ1) + F2(ẍ2) (2.42)

2.2 � Energy

In Newtonian mechanics, the acting forces on a system of bodies can be divided
into internal and external forces. Internal forces are acting between bodies of the
system, and external forces are acting from outside of the system. External forces
and moments are called the load. The acting forces and moments on a body are
called a force system. The resultant or total force F is the sum of all the external
forces acting on the body, and the resultant or total moment M is the sum of all
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the moments of the external forces about a point, such as the origin of a coordinate
frame:

F =
∑

i

Fi M =
∑

i

Mi (2.43)

The moment M of a force F, acting at a point P with position vector rP , about a
point Q at rQ is

MQ = (rP − rQ) × F (2.44)

and, therefore, the moment of F about the origin is

M = rP × F (2.45)

The moment of the force about a directional line l passing through the origin is

Ml = û · (rP × F) (2.46)

where û is a unit vector on l. The moment of a force may also be called torque or
moment.

The effect of a force system is equivalent to the effect of the resultant force and
resultant moment of the force system. Any two force systems are equivalent if their
resultant forces and resultant moments are equal. If the resultant force of a force
system is zero, the resultant moment of the force system is independent of the origin
of the coordinate frame. Such a resultant moment is called a couple.

When a force system is reduced to a resultant FP and MP with respect to a
reference point P , we may change the reference point to another point Q and find
the new resultants as

FQ = FP (2.47)

MQ = MP + (rP − rQ) × FP = MP + QrP × FP (2.48)

The momentum of a moving rigid body is a vector quantity equal to the total mass
of the body times the translational velocity of the mass center of the body:

p = mv (2.49)

The momentum p is also called the translational momentum or linear momentum.
Consider a rigid body with momentum p. The moment of momentum, L, about a

directional line l passing through the origin is

Ll = û · (rC × p) (2.50)

where û is a unit vector indicating the direction of the line, and rC is the position
vector of the mass center C. The moment of momentum about the origin is

L = rC × p (2.51)

The moment of momentum L is also called angular momentum.
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Kinetic energy K of a moving body point P with mass m at a position GrP , and
having a velocity GvP , in the global coordinate frame G is

K = 1

2
mGvP · GvP = 1

2
mGv2

P (2.52)

where G indicates the global coordinate frame in which the velocity vector vP is
expressed. The work done by the applied force GF on m in moving from point 1 to
point 2 on a path, indicated by a vector Gr, is

1W2 =
∫ 2

1

GF · dGr (2.53)

However,
∫ 2

1

GF · dGr = m

∫ 2

1

Gd

dt

Gv · Gv dt = 1

2
m

∫ 2

1

d

dt
v2 dt

= 1

2
m
(
v2

2 − v2
1

) = K2 − K1 (2.54)

which shows that 1W2 is equal to the difference of the kinetic energy of terminal
and initial points:

1W2 = K2 − K1 (2.55)

Equation (2.55) is called the principle of work and energy. If there is a scalar po-
tential field function V = V (x, y, z) such that

F = −∇V = −dV

dr
= −

(
∂V

∂x
ı̂ + ∂V

∂y
ĵ + ∂V

∂z
k̂

)
(2.56)

then the principle of work and energy (2.55) simplifies to the principle of conserva-
tion of energy,

K1 + V1 = K2 + V2 (2.57)

The value of the potential field function V = V (x, y, z) is the potential energy of
the system.

Proof Consider the spatial integral of Newton equation of motion
∫ 2

1
F · dr = m

∫ 2

1
a · dr (2.58)

We can simplify the right-hand side of the integral (2.58) by the change of variable
∫ r2

r1

F · dr = m

∫ r2

r1

a · dr = m

∫ t2

t1

dv
dt

· v dt

= m

∫ v2

v1

v · dv = 1

2
m
(
v2

2 − v2
1

)
(2.59)
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The kinetic energy of a point mass m that is at a position defined by Gr and having
a velocity Gv is defined by (2.52). Whenever the global coordinate frame G is the
only involved frame, we may drop the superscript G for simplicity. The work done
by the applied force GF on m in going from point r1 to r2 is defined by (2.53).
Hence the spatial integral of equation of motion (2.58) reduces to the principle of
work and energy (2.55):

1W2 = K2 − K1 (2.60)

which says that the work 1W2 done by the applied force GF on m during the dis-
placement r2 − r1 is equal to the difference of the kinetic energy of m.

If the force F is the gradient of a potential function V ,

F = −∇V (2.61)

then F · dr in Eq. (2.58) is an exact differential and, hence,

∫ 2

1
F · dr =

∫ 2

1
dV = −(V2 − V1) (2.62)

E = K1 + V1 = K2 + V2 (2.63)

In this case the work done by the force is independent of the path of motion between
r1 and r2 and depends only upon the value of the potential V at start and end points
of the path. The function V is called the potential energy; Eq. (2.63) is called the
principle of conservation of energy, and the force F = −∇V is called a potential, or a
conservative force. The kinetic plus potential energy of the dynamic system is called
the mechanical energy of the system and is denoted by E = K +V . The mechanical
energy E is a constant of motion if all the applied forces are conservative.

A force F is conservative only if it is the gradient of a stationary scalar function.
The components of a conservative force will only be functions of space coordinates:

F = Fx(x, y, z)ı̂ + Fy(x, y, z)ĵ + Fz(x, y, z)k̂ (2.64)

�

Example 38 (Energy and equation of motion) Whenever there is no loss of energy
in a mechanical vibrating system, the sum of kinetic and potential energies is a
constant of motion:

E = K + V = const (2.65)

A system with constant energy is called a conservative system. The time derivative
of a constant of motion must be zero at all time.

The mass–spring system of Fig. 2.10 is a conservative system with the total me-
chanical energy of

E = 1

2
mẋ2 + 1

2
kx2 (2.66)
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Fig. 2.8 A multi DOF
conservative vibrating system

Having a zero rate of energy,

Ė = mẋẍ + kxẋ = ẋ(mẍ + kx) = 0 (2.67)

and knowing that ẋ cannot be zero at all times provides us with the equation of
motion:

mẍ + kx = 0 (2.68)

Example 39 � (Energy and multi DOF systems) We may use energy method and
determine the equations of motion of multi DOF conservative systems. Consider
the system in Fig. 2.8 whose mechanical energy is

E = K + V = 1

2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 + 1

2
m3ẋ

2
3

+ 1

2
k1x

2
1 + 1

2
k2(x1 − x2)

2 + 1

2
k3(x2 − x3)

2 + 1

2
k4x

2
3 (2.69)

To find the first equation of motion associated to x1, we assume x2 and x3 are con-
stant and take the time directive:

Ė = m1ẋ1ẍ1 + k1x1ẋ1 + k2(x1 − x2)ẋ1 = 0 (2.70)

Because ẋ1 cannot be zero at all times, the first equation of motion is

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (2.71)

To find the second equation of motion associated to x2, we assume that x1 and x3
are constant and we take a time directive of E

Ė = m2ẋ2ẍ2 − k2(x1 − x2)ẋ2 + k3(x2 − x3)ẋ2 = 0 (2.72)

which provides us with

m2ẍ2 − k2(x1 − x2) + k3(x2 − x3) = 0 (2.73)

To find the second equation of motion associated to x2, we assume that x1 and x3
are constant and we take the time directive of E

Ė = m3ẋ3ẍ3 − k3(x2 − x3)ẋ3 + k4x3ẋ3 = 0 (2.74)
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Fig. 2.9 A two DOF
conservative nonlinear
vibrating system

which provides us with

m3ẍ3 − k3(x2 − x3) + k4x3 = 0 (2.75)

We may set up the equations in a matrix form:
⎡

⎣
m1 0 0
0 m2 0
0 0 m3

⎤

⎦

⎡

⎣
ẍ1
ẍ2
ẍ3

⎤

⎦

+
⎡

⎣
k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ = 0 (2.76)

Example 40 � (Energy and nonlinear multi DOF systems) The energy method can
be applied on every conservative system regardless of linearity of the system. Fig-
ure 2.9 illustrates a two DOF nonlinear system whose kinetic and potential energies
are

K = 1

2
m1ẋ

2 + 1

2
m2

(
ẋ2 + k2θ̇2 + 2lẋθ̇ sin θ

)2 (2.77)

V = 1

2
kx2 − m2g(x − l cos θ) (2.78)

We assumed that the motionless hanging down position is the equilibrium of inter-
est, and that the gravitational energy is zero at the level of m1 at the equilibrium.

Example 41 (Maximum energy and frequency of vibrations) The mechanical vibra-
tions is a continuous exchange of energy between kinetic and potential. If there is
no waste of energy, their maximum values must be equal.

Consider the simple mass–spring system of Fig. 2.10. The harmonic motion,
kinetic energy, and potential energy of the system are

x = X sinωt (2.79)

K = 1

2
mẋ2 = 1

2
mX2ω2 cos2 ωt (2.80)
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Fig. 2.10 A mass–spring
system

Fig. 2.11 A wheel turning,
without slip, over a
cylindrical hill

V = 1

2
kx2 = 1

2
kX2 sin2 ωt (2.81)

Equating the maximum K and V

1

2
mX2ω2 = 1

2
kX2 (2.82)

provides us with the frequency of vibrations:

ω2 = k

m
(2.83)

Example 42 � (Falling wheel) Figure 2.11 illustrates a wheel turning, without slip,
over a cylindrical hill. We may use the conservation of mechanical energy to find
the angle at which the wheel leaves the hill.

Initially, the wheel is at point A. We assume the initial kinetic and potential, and
hence, the mechanical energies E = K + V are zero. When the wheel is turning
over the hill, its angular velocity, ω, is

ω = v

r
(2.84)

where v is the speed at the center of the wheel. At any other point B , the wheel
achieves some kinetic energy and loses some potential energy. At a certain angle,
where the normal component of the weight cannot provide more centripetal force,

mg cos θ = mv2

R + r
(2.85)
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Fig. 2.12 A turning wheel
moving up a step

the wheel separates from the surface. Employing the conservation of energy, we
have

KA + VA = KB + VB (2.86)

The kinetic and potential energy at the separation point B are

KB = 1

2
mv2 + 1

2
ICω2 (2.87)

VB = −mg(R + r)(1 − cos θ) (2.88)

where IC is the mass moment of inertia for the wheel about its center. Therefore,

1

2
mv2 + 1

2
ICω2 = mg(R + r)(1 − cos θ) (2.89)

and substituting (2.84) and (2.85) yields

(
1 + IC

mr2

)
(R + r)g cos θ = 2g(R + r)(1 − cos θ) (2.90)

and, therefore, the separation angle is

θ = cos−1 2mr2

IC + 3mr2
(2.91)

Let us examine the equation for a disc wheel with

IC = 1

2
mr2 (2.92)

and find the separation angle:

θ = cos−1 4

7
≈ 0.96 rad ≈ 55.15 deg (2.93)

Example 43 � (Turning wheel over a step) Figure 2.12 illustrates a wheel of radius
R turning with speed v to go over a step with height H < R. We may use the
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principle of energy conservation and find the speed of the wheel after getting across
the step. Employing the conservation of energy, we have

KA + VA = KB + VB (2.94)

1

2
mv2

1 + 1

2
ICω2

1 + 0 = 1

2
mv2

2 + 1

2
ICω2

2 + mgH (2.95)

(
m + IC

R2

)
v2

1 =
(

m + IC

R2

)
v2

2 + 2mgH (2.96)

and, therefore,

v2 =
√

v2
1 − 2gH

1 + IC

mR2

(2.97)

The condition for having a real v2 is

v1 >

√
2gH

1 + IC

mR2

(2.98)

The second speed (2.97) and the condition (2.98) for a solid disc with IC = mR2/2
are

v2 =
√

v2
1 − 4

3
Hg (2.99)

v1 >

√
4

3
Hg (2.100)

Example 44 (Newton equation) The application of a force system is emphasized by
Newton’s second law of motion, which states that the global rate of change of linear
momentum is proportional to the global applied force:

GF =
Gd

dt

Gp =
Gd

dt

(
mGv

)
(2.101)

The second law of motion can be expanded to include rotational motions. Hence, the
second law of motion also states that the global rate of change of angular momentum
is proportional to the global applied moment:

GM =
Gd

dt

GL (2.102)
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Proof Differentiating the angular momentum (2.51) shows that

Gd

dt

GL =
Gd

dt
(rC × p) =

(
GdrC

dt
× p + rC ×

Gdp
dt

)

= GrC ×
Gdp
dt

= GrC × GF = GM (2.103)

�

Example 45 � (Integral and constant of motion) Any equation of the form

f (q, q̇, t) = c (2.104)

c = f (q0, q̇0, t0) (2.105)

q = [
q1 q2 · · · qn

]
(2.106)

with total differential

df

dt
=

n∑

i=1

(
∂f

∂qi

q̇i + ∂f

∂q̇i

q̈i

)
+ ∂f

∂t
= 0 (2.107)

that the generalized positions q and velocities q̇ of a dynamic system must satisfy
at all times t is called an integral of motion. The parameter c, of which the value
depends on the initial conditions, is called a constant of motion. The maximum
number of independent integrals of motion for a dynamic system with n degrees
of freedom is 2n. A constant of motion is a quantity of which the value remains
constant during the motion.

Any integral of motion is a result of a conservation principle or a combination
of them. There are only three conservation principles for a dynamic system: en-
ergy, momentum, and moment of momentum. Every conservation principle is the
result of a symmetry in position and time. The conservation of energy indicates the
homogeneity of time, the conservation of momentum indicates the homogeneity in
position space, and the conservation of moment of momentum indicates the isotropy
in position space.

Proof Consider a mechanical system with fC degrees of freedom. Mathematically,
the dynamics of the system is expressed by a set of n = fC second-order differential
equations of n unknown generalized coordinates qi(t), i = 1,2, . . . , n:

q̈i = Fi(qi, q̇i , t) i = 1,2, . . . , n (2.108)

The general solution of the equations contains 2n constants of integrals.

q̇i = q̇i (c1, c2, . . . , cn, t) i = 1,2, . . . , n (2.109)

qi = qi(c1, c2, . . . , c2n, t) i = 1,2, . . . , n (2.110)
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To determine these constants and uniquely identify the motion of the system, it is
necessary to know the initial conditions qi(t0), q̇i (t0), which specify the state of the
system at some given instant t0:

cj = cj

(
q(t0), q̇(t0), t0

)
j = 1,2, . . . ,2n (2.111)

fj

(
q(t), q̇(t), t

) = cj

(
q(t0), q̇(t0), t0

)
(2.112)

Each of these functions fj is an integral of the motion and each ci is a constant of
the motion. An integral of motion may also be called a first integral, and a constant
of motion may also be called a constant of integral.

When an integral of motion is given,

f1(q, q̇, t) = c1 (2.113)

we can substitute one of the equations of (2.108) with the first-order equation of

q̇1 = f (c1, qi, q̇i+1, t) i = 1,2, . . . , n (2.114)

and solve a set of n − 1 second-order and one first-order differential equations:
{

q̈i+1 = Fi+1(qi, q̇i , t)

q̇1 = f (c1, qi, q̇i+1, t)
i = 1,2, . . . , n (2.115)

If there exist 2n independent first integrals fj , j = 1,2, . . . ,2n, then instead of solv-
ing n second-order equations of motion (2.108), we can solve a set of 2n algebraic
equations

fj (q, q̇) = cj

(
q(t0), q̇(t0), t0

)
j = 1,2, . . . ,2n (2.116)

and determine the n generalized coordinates qi , i = 1,2, . . . , n:

qi = qi(c1, c2, . . . , c2n, t) i = 1,2, . . . , n (2.117)

Generally speaking, an integral of motion f is a function of generalized coordi-
nates q and velocities q̇ such that its value remains constant. The value of an integral
of motion is the constant of motion c, which can be calculated by substituting the
given value of the variables q(t0), q̇(t0) at the associated time t0. �

Example 46 � (A mass–spring–damper vibrator) Consider a mass m attached to a
spring with stiffness k and a damper with damping c. The equation of motion of the
system and its initial conditions are

mẍ + cẋ + kx = 0 (2.118)

x(0) = x0 ẋ(0) = ẋ0 (2.119)

Its solution is

x = c1 exp(s1t) + c2 exp(s2t) (2.120)
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Fig. 2.13 A planar pendulum

s1 = c − √
c2 − 4km

−2m
s2 = c + √

c2 − 4km

−2m
(2.121)

Taking the time derivative, we find ẋ:

ẋ = c1s1 exp(s1t) + c2s2 exp(s2t) (2.122)

Using x and ẋ, we determine the integrals of motion f1 and f2:

f1 = ẋ − xs2

(s1 − s2) exp(s1t)
= c1 (2.123)

f2 = ẋ − xs1

(s2 − s1) exp(s2t)
= c2 (2.124)

Because the constants of integral remain constant during the motion, we can calcu-
late their value at any particular time such as t = 0:

c1 = ẋ0 − x0s2

(s1 − s2)
c2 = ẋ0 − x0s1

(s2 − s1)
(2.125)

Substituting s1 and s2 provides us with the constants of motion c1 and c2:

c1 =
√

c2 − 4km(cx0 + x0
√

c2 − 4km + 2mẋ0)

2(c2 − 4km)
(2.126)

c2 =
√

c2 − 4km(cx0 − x0
√

c2 − 4km + 2mẋ0)

2(c2 − 4km)
(2.127)

Example 47 � (Constraint and first integral of a pendulum) Figure 2.13(a) illus-
trates a planar pendulum. The free body diagram of Fig. 2.13(b) provides us with
two equations of motion:

mẍ = −T
x

l
(2.128)

mÿ = −mg + T
y

l
(2.129)
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Eliminating the tension force T , we have one second-order equation of two vari-
ables:

ÿx + ẍy + gx = 0 (2.130)

Because of the constant length of the connecting bar we have a constraint equation
between x and y:

x2 + y2 − l2 = 0 (2.131)

Having one constraint indicates that we can express the dynamic of the system by
only one generalized coordinate. Choosing θ as the generalized coordinate, we can
express x and y by θ , writing the equation of motion (2.130) as

θ̈ + g

l
sin θ = 0 (2.132)

Multiplying the equation by θ̇ and integrating provides us with the integral of en-
ergy:

f (θ, θ̇) = 1

2
θ̇2 − g

l
cos θ = E (2.133)

E = 1

2
θ̇2

0 − g

l
cos θ0 (2.134)

The integral of motion (2.133) is a first-order differential equation:

θ̇ =
√

2E + 2
g

l
cos θ (2.135)

This equation expresses the dynamic of the pendulum upon solution.
Let us assume that θ is too small to approximate the equation of motion as

θ̈ + g

l
θ = 0 (2.136)

The first integral of this equation is

f (θ, θ̇) = 1

2
θ̇2 − g

l
θ = E (2.137)

E = 1

2
θ̇2

0 − g

l
θ0 (2.138)

that provides us with a separated first-order differential equation:

θ̇ =
√

2E + 2
g

l
θ (2.139)

Its solution is

t =
∫

dθ√
2E + 2 g

l
θ

= √
2

l

g

√
g

l
θ + E − p (2.140)
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where p is the second constant of motion:

p = l

g
θ̇0 (2.141)

Now, let us ignore the energy integral and solve the second-order equation of
motion (2.136):

θ = c1 cos

√
g

l
t + c2 sin

√
g

l
t (2.142)

The time derivative of the solution
√

l

g
θ̇ = −c1 sin

√
g

l
t + c2 cos

√
g

l
t (2.143)

can be used to determine the integrals and constants of motion:

f1 = θ cos

√
g

l
t −

√
l

g
θ̇ sin

√
g

l
t (2.144)

f2 = θ sin

√
g

l
t +

√
l

g
θ̇ cos

√
g

l
t (2.145)

Using the initial conditions θ(0) = θ0, θ̇ (0) = θ̇0, we have

c1 = θ0 c2 =
√

l

g
θ̇0 (2.146)

A second-order equation has only two constants of integrals. Therefore, we should
be able to express E and p in terms of c1 and c2 or vice versa:

E = 1

2
θ̇2

0 − g

l
θ0 = 1

2

g

l
c2

2 − g

l
c1 (2.147)

p = l

g
θ̇0 = l

g

√
g

l
c2 (2.148)

c2 =
√

l

g
θ̇0 = g

l

√
l

g
p (2.149)

c1 = θ0 = 1

2

g

l
p2 − l

g
E (2.150)

E is the mechanical energy of the pendulum, and p is proportional to its moment of
momentum.
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Fig. 2.14 A globally fixed
G-frame and a body B-frame
with a fixed common origin
at O

2.3 � Rigid Body Dynamics

A rigid body may have three translational and three rotational DOF. The transla-
tional and rotational equations of motion of the rigid body are determined by the
Newton–Euler equations.

2.3.1 � Coordinate Frame Transformation

Consider a rotation of a body coordinate frame B(Oxyz) with respect to a global
frame G(OXYZ) about their common origin O as illustrated in Fig. 2.14. The com-
ponents of any vector r may be expressed in either frame. There is always a trans-
formation matrix GRB to map the components of r from the frame B(Oxyz) to the
other frame G(OXYZ):

Gr = GRB
Br (2.151)

In addition, the inverse map Br = GR−1
B

Gr can be done by BRG,

Br = BRG
Gr (2.152)

where
∣∣GRB

∣∣ = ∣∣BRG

∣∣ = 1 (2.153)

and
BRG = GR−1

B = GRT
B (2.154)

When the coordinate frames B and G are orthogonal, the rotation matrix GRB is
called an orthogonal matrix. The transpose RT and inverse R−1 of an orthogonal
matrix [R] are equal:

RT = R−1 (2.155)
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Because of the matrix orthogonality condition, only three of the nine elements of
GRB are independent.

Proof Employing the orthogonality condition

r = (r · ı̂)ı̂ + (r · ĵ )ĵ + (r · k̂)k̂ (2.156)

and decomposition of the unit vectors of G(OXYZ) along the axes of B(Oxyz),

Î = (Î · ı̂)ı̂ + (Î · ĵ )ĵ + (Î · k̂)k̂ (2.157)

Ĵ = (Ĵ · ı̂)ı̂ + (Ĵ · ĵ )ĵ + (Ĵ · k̂)k̂ (2.158)

K̂ = (K̂ · ı̂)ı̂ + (K̂ · ĵ )ĵ + (K̂ · k̂)k̂ (2.159)

introduces the transformation matrix GRB to map the local axes to the global axes:

⎡

⎣
Î

Ĵ

K̂

⎤

⎦ =
⎡

⎣
Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤

⎦

⎡

⎣
ı̂

ĵ

k̂

⎤

⎦ = GRB

⎡

⎣
ı̂

ĵ

k̂

⎤

⎦ (2.160)

where

GRB =
⎡

⎣
Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤

⎦

=
⎡

⎣
cos(Î , ı̂) cos(Î , ĵ ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ ) cos(K̂, k̂)

⎤

⎦ (2.161)

Each column of GRB is the decomposition of a unit vector of the local frame
B(Oxyz) in the global frame G(OXYZ):

GRB = [
Gı̂ Gĵ Gk̂

]
(2.162)

Similarly, each row of GRB is decomposition of a unit vector of the global frame
G(OXYZ) in the local frame B(Oxyz).

GRB =
⎡

⎣
BÎT

BĴ T

BK̂T

⎤

⎦ (2.163)

so the elements of GRB are directional cosines of the axes of G(OXYZ) in
B(Oxyz) or B in G. This set of nine directional cosines completely specifies the
orientation of B(Oxyz) in G(OXYZ) and can be used to map the coordinates of
any point (x, y, z) to its corresponding coordinates (X,Y,Z).
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Alternatively, using the method of unit-vector decomposition to develop the ma-
trix BRG leads to

Br = BRG
Gr = GR−1

B
Gr (2.164)

BRG =
⎡

⎣
ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤

⎦

=
⎡

⎣
cos(ı̂, Î ) cos(ı̂, Ĵ ) cos(ı̂, K̂)

cos(ĵ , Î ) cos(ĵ , Ĵ ) cos(ĵ , K̂)

cos(k̂, Î ) cos(k̂, Ĵ ) cos(k̂, K̂)

⎤

⎦ (2.165)

It shows that the inverse of a transformation matrix is equal to the transpose of the
transformation matrix,

GR−1
B = GRT

B (2.166)

or

GRB · GRT
B = I (2.167)

A matrix with condition (2.166) is called an orthogonal matrix. Orthogonality of
GRB comes from the fact that it maps an orthogonal coordinate frame to another
orthogonal coordinate frame.

An orthogonal transformation matrix GRB has only three independent elements.
The constraint equations among the elements of GRB will be found by applying the
matrix orthogonality condition (2.166):

⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦

⎡

⎣
r11 r21 r31
r12 r22 r32
r13 r23 r33

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (2.168)

Therefore, the inner product of any two different rows of GRB is zero, and the inner
product of any row of GRB by itself is unity:

r2
11 + r2

12 + r2
13 = 1

r2
21 + r2

22 + r2
23 = 1

r2
31 + r2

32 + r2
33 = 1

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0

(2.169)
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These relations are also true for columns of GRB and evidently for rows and
columns of BRG. The orthogonality condition can be summarized by the equation

3∑

i=1

rij rik = δjk j, k = 1,2,3 (2.170)

where rij is the element of row i and column j of the transformation matrix GRB

and δjk is the Kronecker delta δij ,

δij = δji =
{

1 i = j

0 i �= j
(2.171)

Equation (2.170) provides us with six independent relations that must be satisfied
by the nine directional cosines. Therefore, there are only three independent direc-
tional cosines. The independent elements of the matrix GRB cannot be in the same
row or column or any diagonal.

The determinant of a transformation matrix is equal to unity,
∣∣GRB

∣∣ = 1 (2.172)

because of Eq. (2.167) and noting that
∣∣GRB · GRT

B

∣∣ = ∣∣GRB

∣∣ · ∣∣GRT
B

∣∣ = ∣∣GRB

∣∣ · ∣∣GRB

∣∣ = ∣∣GRB

∣∣2 = 1 (2.173)

Using linear algebra and column vectors Gı̂,Gĵ , and Gk̂ of GRB , we know that
∣∣GRB

∣∣ = Gı̂ · (Gĵ × Gk̂
)

(2.174)

and because the coordinate system is right handed, we have Gĵ × Gk̂ = Gı̂ and,
therefore,

∣∣GRB

∣∣ = Gı̂T · Gı̂ = +1 (2.175)

�

Example 48 (Global position using Br and BRG) The position vector r of a point
P may be described in either the G(OXYZ) or the B(Oxyz) frame. If Br = 10ı̂ −
5ĵ + 15k̂ and the transformation matrix to map Gr to Br is

Br = BRG
Gr =

⎡

⎣
0.866 0 0.5

−0.353 0.707 0.612
0.353 0.707 −0.612

⎤

⎦Gr (2.176)

then the components of Gr in G(OXYZ) would be

Gr = GRB
Br = BRT

G
Br =

⎡

⎣
15.72
7.07

−7.24

⎤

⎦ (2.177)
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Example 49 (Two-point transformation matrix) The global position vectors of two
points P1 and P2, of a rigid body B are

GrP1 =
⎡

⎣
1.077
1.365
2.666

⎤

⎦ GrP2 =
⎡

⎣
−0.473
2.239

−0.959

⎤

⎦ (2.178)

The origin of the body B(Oxyz) is fixed on the origin of G(OXYZ), and the points
P1 and P2 are lying on the local x- and y-axis, respectively.

To find GRB , we use the local unit vectors Gı̂ and Gĵ ,

Gı̂ =
GrP1

|GrP1 |
=

⎡

⎣
0.338
0.429
0.838

⎤

⎦ Gĵ =
GrP2

|GrP2 |
=

⎡

⎣
−0.191
0.902

−0.387

⎤

⎦ (2.179)

to obtain Gk̂:

Gk̂ = ı̂ × ĵ =
⎡

⎣
−0.922
−0.029
0.387

⎤

⎦ (2.180)

Hence, the transformation matrix GRB would be

GRB = [
Gı̂ Gĵ Gk̂

] =
⎡

⎣
0.338 −0.191 −0.922
0.429 0.902 −0.029
0.838 −0.387 0.387

⎤

⎦ (2.181)

Example 50 (Length invariant of a position vector) Expressing a vector in different
frames utilizing rotation matrices does not affect the length and direction properties
of the vector. Therefore, the length of a vector is an invariant property:

|r| = ∣∣Gr
∣∣ = ∣∣Br

∣∣ (2.182)

The length invariant property can be shown as

|r|2 = GrTGr = [G
RB

Br
]TGRB

Br = BrTGRT
B

GRB
Br

= BrTBr (2.183)

Example 51 (Multiple rotation about global axes) Consider a globally fixed point
P at

Gr =
⎡

⎣
1
2
3

⎤

⎦ (2.184)

The body B will turn 45 deg about the X-axis and then 45 deg about the Y -axis.
An observer in B will see P at
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Br = Ry,−45 Rx,−45
Gr

=
⎡

⎣
cos −π

4 0 − sin −π
4

0 1 0
sin −π

4 0 cos −π
4

⎤

⎦

⎡

⎢⎣
1 0 0
0 cos −π

4 sin −π
4

0 − sin −π
4 cos −π

4

⎤

⎥⎦

⎡

⎣
1
2
3

⎤

⎦

=
⎡

⎣
0.707 0.5 0.5

0 0.707 −0.707
−0.707 0.5 0.5

⎤

⎦

⎡

⎣
1
2
3

⎤

⎦ =
⎡

⎣
3.207

−0.707
1.793

⎤

⎦ (2.185)

To check this result, let us change the role of B and G. So, the body point at

Br =
⎡

⎣
1
2
3

⎤

⎦ (2.186)

undergoes an active rotation of 45 deg about the x-axis followed by 45 deg about
the y-axis. The global coordinates of the point would be

Br = Ry,45 Rx,45
Gr (2.187)

so
Gr = [Ry,45 Rx,45]TBr = RT

x,45 RT
y,45

Br (2.188)

Example 52 (Multiple rotations about body axes) Consider a globally fixed point P

at

Gr =
⎡

⎣
1
2
3

⎤

⎦ (2.189)

The body B will turn 45 deg about the x-axis and then 45 deg about the y-axis.
An observer in B will see P at

Br = RY,−45 RX,−45
Gr

=
⎡

⎣
cos −π

4 0 sin −π
4

0 1 0
− sin −π

4 0 cos −π
4

⎤

⎦

⎡

⎢⎣
1 0 0
0 cos −π

4 − sin −π
4

0 sin −π
4 cos −π

4

⎤

⎥⎦

⎡

⎣
1
2
3

⎤

⎦

=
⎡

⎣
0.707 0.5 −0.5

0 0.707 0.707
0.707 −0.5 0.5

⎤

⎦

⎡

⎣
1
2
3

⎤

⎦ =
⎡

⎣
0.20711
3.5356
1.2071

⎤

⎦ (2.190)

Example 53 (Successive rotations about global axes) After a series of sequential
rotations R1, R2, R3, . . . ,Rn about the global axes, the final global position of a
body point P can be found by

Gr = GRB
Br (2.191)
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where

GRB = Rn · · ·R3 R2 R1 (2.192)

The vectors Gr and Br indicate the position vectors of the point P in the global and
local coordinate frames, respectively. The matrix GRB , which transforms the local
coordinates to their corresponding global coordinates, is called the global rotation
matrix.

Because matrix multiplications do not commute, the sequence of performing ro-
tations is important and indicates the order of rotations.

Proof Consider a body frame B that undergoes two sequential rotations R1 and
R2 about the global axes. Assume that the body coordinate frame B is initially
coincident with the global coordinate frame G. The rigid body rotates about a global
axis, and the global rotation matrix R1 gives us the new global coordinate Gr1 of
the body point:

Gr1 = R1
Br (2.193)

Before the second rotation, the situation is similar to the one before the first rota-
tion. We put the B-frame aside and assume that a new body coordinate frame B1

is coincident with the global frame. Therefore, the new body coordinate would be
B1r ≡ Gr1. The second global rotation matrix R2 provides us with the new global
position Gr2 of the body points B1r:

B1r = R2
B1r (2.194)

Substituting (2.193) into (2.194) shows that

Gr = R2 R1
Br (2.195)

Following the same procedure we can determine the final global position of a body
point after a series of sequential rotations R1, R2, R3, . . . ,Rn as (2.192). �

Example 54 (Successive rotations about local axes) Consider a rigid body B with
a local coordinate frame B(Oxyz) that does a series of sequential rotations R1, R2,
R3, . . . ,Rn about the local axes. Having the final global position vector Gr of a body
point P , we can determine its local position vector Br by

Br = BRG
Gr (2.196)

where

BRG = Rn · · ·R3R2R1 (2.197)

The matrix BRG is called the local rotation matrix and it maps the global coordi-
nates of body points to their local coordinates.
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Proof Assume that the body coordinate frame B was initially coincident with the
global coordinate frame G. The rigid body rotates about a local axis, and a local
rotation matrix R1 relates the global coordinates of a body point to the associated
local coordinates:

Br = R1
Gr (2.198)

If we introduce an intermediate space-fixed frame G1 coincident with the new posi-
tion of the body coordinate frame, then

G1r ≡ Br (2.199)

and we may give the rigid body a second rotation about a local coordinate axis. Now
another proper local rotation matrix R2 relates the coordinates in the intermediate
fixed frame to the corresponding local coordinates:

Br = R2
G1r (2.200)

Hence, to relate the final coordinates of the point, we must first transform its global
coordinates to the intermediate fixed frame and then transform to the original body
frame. Substituting (2.198) in (2.200) shows that

Br = R2 R1
Gr (2.201)

Following the same procedure we can determine the final global position of a body
point after a series of sequential rotations R1, R2, R3, . . . ,Rn as (2.197).

Rotation about the local coordinate axes is conceptually interesting. This is be-
cause in a sequence of rotations each rotation is about one of the axes of the local
coordinate frame, which has been moved to its new global position during the last
rotation. �

2.3.2 � Velocity Kinematics

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference frame
G(OXYZ), as shown in Fig. 2.15. We express the motion of the body by a time-
varying rotation transformation matrix between B and G to transform the instanta-
neous coordinates of body points to their coordinates in the global frame:

Gr(t) = GRB(t)Br (2.202)

The velocity of a body point in the global frame is

Gv(t) = Gṙ(t) = GṘB(t)Br = Gω̃B
Gr(t) = GωB × Gr(t) (2.203)

where GωB is the angular velocity vector of B with respect to G. It is equal to a
rotation with angular speed φ̇ about an instantaneous axis of rotation û:
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Fig. 2.15 A rotating rigid
body B(Oxyz) with a fixed
point O in a global frame
G(OXYZ)

ω =
⎡

⎣
ω1
ω2
ω3

⎤

⎦ = φ̇ û (2.204)

The angular velocity vector is associated with a skew-symmetric matrix Gω̃B called
the angular velocity matrix,

ω̃ =
⎡

⎣
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ (2.205)

where

Gω̃B = GṘB
GRT

B = φ̇ũ (2.206)

The B-expression of the angular velocity is similarly defined:

B
Gω̃B = GRT

B
GṘB (2.207)

Employing the global and body expressions of the angular velocity of the body
relative to the global coordinate frame, Gω̃B and B

Gω̃B , we determine the global and
body expressions of the velocity of a body point as

G
GvP = G

GωB × GrP (2.208)

B
GvP = B

GωB × BrP (2.209)

The G-expression Gω̃B and B-expression B
Gω̃B of the angular velocity matrix

can be transformed to each other using the rotation matrix GRB :

Gω̃B = GRB
B
Gω̃B

GRT
B (2.210)

B
Gω̃B = GRT

B
G
Gω̃B

GRB (2.211)

They are also related to each other directly by

Gω̃B
GRB = GRB

B
Gω̃T

B (2.212)
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Fig. 2.16 A body fixed point
P at Br in the rotating body
frame B

GRT
BGω̃B = B

Gω̃B
GRT

B (2.213)

The relative angular velocity vectors of relatively moving rigid bodies can be
done only if all the angular velocities are expressed in one coordinate frame:

0ωn = 0ω1 + 0
1ω2 + 0

2ω3 + · · · + 0
n−1ωn =

n∑

i=1

0
i−1ωi (2.214)

The inverses of the angular velocity matrices Gω̃B and B
Gω̃B are

Gω̃−1
B = GRB

GṘ−1
B (2.215)

B
Gω̃−1

B = GṘ−1
B

GRB (2.216)

Proof Consider a rigid body with a fixed point O and an attached frame B(Oxyz)

as shown in Fig. 2.16. The body frame B is initially coincident with the global frame
G. Therefore, the position vector of a body point P at the initial time t = t0 is

Gr(t0) = Br (2.217)

and at any other time is found by the associated transformation matrix GRB(t):

Gr(t) = GRB(t)Br = GRB(t)Gr(t0) (2.218)

The global time derivative of Gr is

Gv = Gṙ =
Gd

dt

Gr(t) =
Gd

dt

[
GRB(t)Br

] =
Gd

dt

[
GRB(t)Gr(t0)

]

= GṘB(t)Gr(t0) = GṘB(t)Br (2.219)

Eliminating Br between (2.218) and (2.219) determines the velocity of the global
point in the global frame:

Gv = GṘB(t)GRT
B(t)Gr(t) (2.220)
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We denote the coefficient of Gr(t) by Gω̃B

Gω̃B = GṘB
GRT

B (2.221)

and rewrite Eq. (2.220) as

Gv = Gω̃B
Gr(t) (2.222)

or equivalently as

Gv = GωB × Gr(t) (2.223)

where GωB is the instantaneous angular velocity of the body B relative to the global
frame G as seen from the G-frame.

Transforming Gv to the body frame provides us with the body expression of the
velocity vector:

B
GvP = GRT

B
Gv = GRT

BGω̃B
Gr = GRT

B
GṘB

GRT
B

Gr

= GRT
B

GṘB
Br (2.224)

We denote the coefficient of Br by B
Gω̃B

B
Gω̃B = GRT

B
GṘB (2.225)

and rewrite Eq. (2.224) as

B
GvP = B

Gω̃B
BrP (2.226)

or equivalently as

B
GvP = B

GωB × BrP (2.227)

where B
GωB is the instantaneous angular velocity of B relative to the global frame

G as seen from the B-frame.
The time derivative of the orthogonality condition, GRB

GRT
B = I, introduces an

important identity,

GṘB
GRT

B + GRB
GṘT

B = 0 (2.228)

which can be used to show that the angular velocity matrix Gω̃B = [GṘB
GRT

B ] is
skew-symmetric:

GRB
GṘT

B = [G
ṘB

GRT
B

]T (2.229)

Generally speaking, an angular velocity vector is the instantaneous rotation of
a coordinate frame A with respect to another frame B that can be expressed in or
seen from a third coordinate frame C. We indicate the first coordinate frame A by
a right subscript, the second frame B by a left subscript, and the third frame C by
a left superscript, C

BωA. If the left super and subscripts are the same, we only show
the subscript.
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We can transform the G-expression of the global velocity of a body point P ,
GvP , and the B-expression of the global velocity of the point P , B

GvP , to each other
using a rotation matrix:

B
GvP = BRG

GvP = BRGGω̃B
GrP = BRGGω̃B

GRB
BrP

= BRG
GṘB

GRT
B

GRB
BrP = BRG

GṘB
BrP

= GRT
B

GṘB
BrP = B

Gω̃B
BrP = B

GωB × BrP (2.230)

GvP = GRB
B
GvP = GRB

B
Gω̃B

BrP = GRB
B
Gω̃B

GRT
B

GrP

= GRB
GRT

B
GṘB

GRT
B

GrP = GṘB
GRT

B
GrP

= Gω̃B
GrP = GωB × GrP = GRB

(B
G
ωB × BrP

)
(2.231)

From the definitions of Gω̃B and B
Gω̃B in (2.221) and (2.225) and comparing with

(2.230) and (2.231), we are able to transform the two angular velocity matrices by

Gω̃B = GRB
B
Gω̃B

GRT
B (2.232)

B
Gω̃B = GRT

BGω̃B
GRB (2.233)

and derive the following useful equations:

GṘB = Gω̃B
GRB (2.234)

GṘB = GRB
B
Gω̃B (2.235)

Gω̃B
GRB = GRB

B
Gω̃B (2.236)

The angular velocity of B in G is negative of the angular velocity of G in B if
both are expressed in the same coordinate frame:

G
Gω̃B = −G

B ω̃G
G
GωB = −G

BωG (2.237)

B
Gω̃B = −B

Bω̃G
B
GωB = −B

BωG (2.238)

The vector GωB can always be expressed in the natural form

GωB = ωû (2.239)

with the magnitude ω and a unit vector û parallel to GωB that indicates the instan-
taneous axis of rotation.

To show the addition of relative angular velocities in Eq. (2.214), we start from
a combination of rotations,

0R2 = 0R1
1R2 (2.240)

and take the time derivative:

0Ṙ2 = 0Ṙ1
1R2 + 0R1

1Ṙ2 (2.241)
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Substituting the derivative of the rotation matrices with

0Ṙ2 = 0ω̃2
0R2 (2.242)

0Ṙ1 = 0ω̃1
0R1 (2.243)

1Ṙ2 = 1ω̃2
1R2 (2.244)

results in

0ω̃2
0R2 = 0ω̃1

0R1
1R2 + 0R11ω̃2

1R2

= 0ω̃1
0R2 + 0R11ω̃2

0RT
1

0R1
1R2

= 0ω̃1
0R2 + 0

1ω̃2
0R2 (2.245)

where

0R11ω̃2
0RT

1 = 0
1ω̃2 (2.246)

Therefore, we find

0ω̃2 = 0ω̃1 + 0
1ω̃2 (2.247)

which indicates that two angular velocities may be added when they are expressed
in the same frame:

0ω2 = 0ω1 + 0
1ω2 (2.248)

The expansion of this equation for any number of angular velocities would be
Eq. (2.214).

Employing the relative angular velocity formula (2.248), we can find the relative
velocity formula of a point P in B2 at 0rP :

0v2 = 0ω2
0rP = (

0ω1 + 0
1ω2

)0rP = 0ω1
0rP + 0

1ω2
0rP

= 0v1 + 0
1v2 (2.249)

The angular velocity matrices Gω̃B and B
Gω̃B are skew-symmetric and not invert-

ible. However, we can define their inverse by the rules

Gω̃−1
B = GRB

GṘ−1
B (2.250)

B
Gω̃−1

B = GṘ−1
B

GRB (2.251)

to get

Gω̃−1
B Gω̃B = Gω̃BGω̃−1

B = [I] (2.252)

B
Gω̃−1

B
B
Gω̃B = B

Gω̃B
B
Gω̃−1

B = [I] (2.253)

�
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Example 55 � (Rotation of a body point about a global axis) Consider a rigid body
is turning about the Z-axis with a constant angular speed α̇ = 10 deg/s. The global
velocity of a body point at P(5,30,10) when the body is at α = 30 deg is

GvP = GṘB(t)BrP

=
Gd

dt

⎛

⎝

⎡

⎣
cosα − sinα 0
sinα cosα 0

0 0 1

⎤

⎦

⎞

⎠

⎡

⎣
5

30
10

⎤

⎦

= α̇

⎡

⎣
− sinα − cosα 0
cosα − sinα 0

0 0 0

⎤

⎦

⎡

⎣
5

30
10

⎤

⎦

= 10π

180

⎡

⎣
− sin π

6 − cos π
6 0

cos π
6 − sin π

6 0
0 0 0

⎤

⎦

⎡

⎣
5
30
10

⎤

⎦ =
⎡

⎣
−4.97
−1.86

0

⎤

⎦ (2.254)

The point P is now at

GrP = GRB
BrP

=
⎡

⎣
cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤

⎦

⎡

⎣
5
30
10

⎤

⎦ =
⎡

⎣
−10.67
28.48

10

⎤

⎦ (2.255)

Example 56 � (Rotation of a global point about a global axis) A body point P at
BrP = [5 30 10]T is turned α = 30 deg about the Z-axis. The global position of P

is at

GrP = GRB
BrP

=
⎡

⎣
cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤

⎦

⎡

⎣
5
30
10

⎤

⎦ =
⎡

⎣
−10.67
28.48

10

⎤

⎦ (2.256)

If the body is turning with a constant angular speed α̇ = 10 deg/s, the global velocity
of the point P would be

GvP = GṘB
GRT

B
GrP

= 10π

180

⎡

⎣
−s π

6 −c π
6 0

c π
6 −s π

6 0
0 0 0

⎤

⎦

⎡

⎣
c π

6 −s π
6 0

s π
6 c π

6 0
0 0 1

⎤

⎦
T ⎡

⎣
−10.67
28.48

10

⎤

⎦

=
⎡

⎣
−4.97
−1.86

0

⎤

⎦ (2.257)
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Example 57 � (Simple derivative transformation formula) Consider a point P that
can move in the body coordinate frame B(Oxyz). The body position vector BrP is
not constant, and, therefore, the B-expression of the G-velocity of such a point is

Gd

dt

BrP = B
GṙP =

Bd

dt

BrP + B
GωB × BrP (2.258)

The result of Eq. (2.258) is used to define the transformation of the differential
operator on a B-vector B� from the body to the global coordinate frame:

Gd

dt

B� = B
G�̇ =

Bd

dt

B� + B
GωB × B� (2.259)

However, special attention must be paid to the coordinate frame in which the vector
B� and the final result are expressed. The final result is B

G�̇, showing the global
(G) time derivative expressed in the body frame (B) or simply the B-expression
of the G-derivative of B�. The vector B� may be any vector quantity such as po-
sition, velocity, angular velocity, momentum, angular momentum, a time-varying
force vector.

Equation (2.259) is called a simple derivative transformation formula and relates
the derivative of a B-vector as it would be seen from the G-frame to its derivative
as seen from the B-frame. The derivative transformation formula (2.259) is more
general and can be applied to every vector for a derivative transformation between
every two relatively moving coordinate frames.

2.3.3 � Acceleration Kinematics

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference frame
G(OXYZ) such as shown in Fig. 2.17. When the body rotates in G, the global
acceleration of a body point P is given by

Ga = Gv̇ = Gr̈ = GSB
Gr (2.260)

= GαB × Gr + GωB × (
GωB × Gr

)
(2.261)

= (
G
α̃B + Gω̃2

B

)
Gr (2.262)

= GR̈B
GRT

B
Gr (2.263)

where GαB is the angular acceleration vector of B relative to G,

GαB =
Gd

dt
GωB (2.264)

and Gα̃B is the angular acceleration matrix

Gα̃B = G
˙̃ωB = GR̈B

GRT
B + GṘB

GṘT
B (2.265)
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Fig. 2.17 A rotating rigid
body B(Oxyz) with a fixed
point O in a reference frame
G(OXYZ)

and GSB is the rotational acceleration transformation:

GSB = GR̈B
GRT

B = Gα̃B + Gω̃2
B = Gα̃B − Gω̃BGω̃T

B (2.266)

The angular velocity vector GωB and matrix Gω̃B are

Gω̃B = GṘB
GRT

B (2.267)

GωB = φ̇û = φ̇ûω (2.268)

The relative angular acceleration of two bodies B1, B2 in the global frame G can
be combined as

Gα2 =
Gd

dt
Gω2 = Gα1 + G

1 α2 (2.269)

GS2 = GS1 + G
1 S2 + 2Gω̃1

G
1 ω̃2 (2.270)

The B-expressions of Ga and GSB are

B
Ga = B

GαB × Br + B
GωB × (

B
GωB × Br

)
(2.271)

B
GSB = BRG

GR̈B = B
Gα̃B + B

Gω̃2
B (2.272)

The global and body expressions of the rotational acceleration transformations GSB

and B
GSB can be transformed to each other by the following rules:

GSB = GRB
B
GSB

GRT
B (2.273)

B
GSB = GRT

BGSB
GRB (2.274)

Proof The global position and velocity vectors of the body point P are

Gr = GRB
Br (2.275)

Gv = Gṙ = GṘB
Br = Gω̃B

Gr = GωB × Gr (2.276)

where Gω̃B is also the rotational velocity transformation because it transforms the
global position vector of a point, Gr, to its velocity vector Gv.
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Differentiating Eq. (2.276) and using the notation GαB = Gd
dt GωB yield

Eq. (2.261):

Ga = Gr̈ = Gω̇B × Gr + GωB × Gṙ

= GαB × Gr + GωB × (
GωB × Gr

)
(2.277)

We may substitute the matrix expressions of angular velocity and acceleration in
(2.277) to derive Eq. (2.262):

Gr̈ = GαB × Gr + GωB × (
GωB × Gr

)

= Gα̃B
Gr + Gω̃BGω̃B

Gr

= (
G
α̃B + Gω̃2

B

)
Gr (2.278)

Recalling that

Gω̃B = GṘB
GRT

B (2.279)

Gṙ(t) = Gω̃B
Gr(t) (2.280)

we find Eqs. (2.263) and (2.265):

Gr̈ =
Gd

dt

(G
ṘB

GRT
B

Gr
)

= GR̈B
GRT

B
Gr + GṘB

GṘT
B

Gr + [G
ṘB

GRT
B

][G
ṘB

GRT
B

]
Gr

= [
GR̈B

GRT
B + GṘB

GṘT
B + [G

ṘB
GRT

B

]2]Gr

= [
GR̈B

GRT
B − [G

ṘB
GRT

B

]2 + [
GṘB

GRT
B

]2]Gr

= GR̈B
GRT

B
Gr (2.281)

Gα̃B = G
˙̃ωB = GR̈B

GRT
B + GṘB

GṘT
B

= GR̈B
GRT

B + GṘB
GRT

B
GRB

GṘT
B

= GR̈B
GRT

B + [
GṘB

GRT
B

][
GṘB

GRT
B

]T

= GR̈B
GRT

B + Gω̃BGω̃T
B = GR̈B

GRT
B − Gω̃2

B (2.282)

which indicates that

GR̈B
GRT

B = Gα̃B + Gω̃2
B = GSB (2.283)
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The expanded forms of the angular accelerations GαB , Gα̃B and rotational ac-
celeration transformation GSB are

Gα̃B = G
˙̃ωB = φ̈ũ + φ̇ ˙̃u =

⎡

⎣
0 −ω̇3 ω̇2
ω̇3 0 −ω̇1

−ω̇2 ω̇1 0

⎤

⎦

=
⎡

⎣
0 −u̇3φ̇ − u3φ̈ u̇2φ̇ + u2φ̈

u̇3φ̇ + u3φ̈ 0 −u̇1φ̇ − u1φ̈

−u̇2φ̇ − u2φ̈ u̇1φ̇ + u1φ̈ 0

⎤

⎦ (2.284)

GαB =
⎡

⎣
ω̇1
ω̇2
ω̇3

⎤

⎦ =
⎡

⎣
u̇1φ̇ + u1φ̈

u̇2φ̇ + u2φ̈

u̇3φ̇ + u3φ̈

⎤

⎦ (2.285)

GSB = G
˙̃ωB + Gω̃2

B = Gα̃B + Gω̃2
B

=
⎡

⎣
−ω2

2 − ω2
3 ω1ω2 − ω̇3 ω̇2 + ω1ω3

ω̇3 + ω1ω2 −ω2
1 − ω2

3 ω2ω3 − ω̇1

ω1ω3 − ω̇2 ω̇1 + ω2ω3 −ω2
1 − ω2

2

⎤

⎦ (2.286)

GSB = φ̈ũ + φ̇ ˙̃u + φ̇2ũ2

=
⎡

⎣
−(1 − u2

1)φ̇
2 u1u2φ̇

2 − u̇3φ̇ − u3φ̈ u1u3φ̇
2 + u̇2φ̇ + u2φ̈

u1u2φ̇
2 + u̇3φ̇ + u3φ̈ −(1 − u2

2)φ̇
2 u2u3φ̇

2 − u̇1φ̇ − u1φ̈

u1u3φ̇
2 − u̇2φ̇ − u2φ̈ u2u3φ̇

2 + u̇1φ̇ + u1φ̈ −(1 − u2
3)φ̇

2

⎤

⎦

(2.287)

The angular velocity of several bodies rotating relative to each other can be re-
lated according to (2.214):

0ωn = 0ω1 + 0
1ω2 + 0

2ω3 + · · · + 0
n−1ωn (2.288)

The angular accelerations of several relatively rotating rigid bodies follow the same
rule:

0αn = 0α1 + 0
1α2 + 0

2α3 + · · · + 0
n−1αn (2.289)

To show this fact and develop the relative acceleration formula, we consider a pair
of relatively rotating rigid links in a base coordinate frame B0 with a fixed point at
O . The angular velocities of the links are related as

0ω2 = 0ω1 + 0
1ω2 (2.290)

So, their angular accelerations are

0α1 =
0d

dt
0ω1 (2.291)
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0α2 =
0d

dt
0ω2 = 0α1 + 0

1α2 (2.292)

and, therefore,

0S2 = 0α̃2 + 0ω̃
2
2 = 0α̃1 + 0

1α̃2 + (
0ω̃1 + 0

1ω̃2
)2

= 0α̃1 + 0
1α̃2 + 0ω̃

2
1 + 0

1ω̃
2
2 + 20ω̃1

0
1ω̃2

= 0S1 + 0
1S2 + 20ω̃1

0
1ω̃2 (2.293)

Equation (2.293) is the required relative acceleration transformation formula. It
indicates the method of calculation of relative accelerations for a multibody. As a
more general case, consider a six-link multibody. The angular acceleration of link
(6) in the base frame would be

0S6 = 0S1 + 0
1S2 + 0

2S3 + 0
3S4 + 0

4S5 + 0
5S6

+ 20ω̃1
(0

1ω̃2 + 0
2ω̃3 + 0

3ω̃4 + 0
4ω̃5 + 0

5ω̃6
)

+ 20
1ω̃2

(0
2ω̃3 + 0

3ω̃4 + 0
4ω̃5 + 0

5ω̃6
)

...

+ 20
4ω̃5

(0
5ω̃6

)
(2.294)

We can transform the G and B-expressions of the global acceleration of a body
point P to each other using a rotation matrix:

B
GaP = BRG

GaP = BRGGSB
GrP = BRG GSB

GRB
BrP

= BRG
GR̈B

GRT
B

GRB
BrP = BRG

GR̈B
BrP

= GRT
B

GR̈B
BrP = B

GSB
BrP = (B

G
α̃B + B

Gω̃2
B

)
BrP

= B
GαB × Br + B

GωB × (
B
GωB × Br

)
(2.295)

GaP = GRB
B
GaP = GRB

B
GSB

BrP = GRB
B
GSB

GRT
B

GrP

= GRB
GRT

B
GR̈B

GRT
B

GrP = GR̈B
GRT

B
GrP

= GSB
GrP = (

G
α̃B + Gω̃2

B

)
Gr

= GαB × Gr + GωB × (
GωB × Gr

)
(2.296)

From the definitions of GSB and B
GSB in (2.266) and (2.272) and comparing with

(2.295) and (2.296), we are able to transform the two rotational acceleration trans-
formations by

GSB = GRB
B
GSB

GRT
B (2.297)
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B
GSB = GRT

BGSB
GRB (2.298)

and derive the useful equations

GR̈B = GSB
GRB (2.299)

GR̈B = GRB
B
GSB (2.300)

GSB
GRB = GRB

B
GSB (2.301)

The angular acceleration of B in G is negative of the angular acceleration of G

in B if both are expressed in the same coordinate frame:

Gα̃B = −G
B α̃G GαB = −G

BαG (2.302)

B
Gα̃B = −Bα̃G

B
GαB = −BαG (2.303)

The term GαB × Gr in (2.277) is called the tangential acceleration, which is a
function of the angular acceleration of B in G. The term GωB × (GωB × Gr) in
Ga is called centripetal acceleration and is a function of the angular velocity of B

in G. �

Example 58 � (Rotation of a body point about a global axis) Consider a rigid
body is turning about the Z-axis with a constant angular acceleration α̈ = 2 rad/s2.
The global acceleration of a body point at P(5,30,10) cm when the body is at
α̇ = 10 rad/s and α = 30 deg is

GaP = GR̈B(t)BrP

=
⎡

⎣
−87.6 48.27 0
−48.27 −87.6 0

0 0 0

⎤

⎦

⎡

⎣
5

30
10

⎤

⎦ =
⎡

⎣
1010

−2869.4
0

⎤

⎦ cm/s (2.304)

where

GR̈B =
Gd2

dt2
GRB = α̇

Gd

dα

GRB = α̈
Gd

dα

GRB + α̇2
Gd2

dα2
GRB

= α̈

⎡

⎣
− sinα − cosα 0
cosα − sinα 0

0 0 0

⎤

⎦+ α̇2

⎡

⎣
− cosα sinα 0
− sinα − cosα 0

0 0 0

⎤

⎦ (2.305)

At this moment, the point P is at

GrP = GRB
BrP

=
⎡

⎣
cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤

⎦

⎡

⎣
5
30
10

⎤

⎦ =
⎡

⎣
−10.67
28.48

10

⎤

⎦ cm (2.306)
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Example 59 � (Rotation of a global point about a global axis) A body point P at
BrP = [5 30 10]T cm is turning with a constant angular acceleration α̈ = 2 rad/s2

about the Z-axis. When the body frame is at α = 30 deg, its angular speed
α̇ = 10 deg/s.

The transformation matrix GRB between the B- and G-frames is

GRB =
⎡

⎣
cos π

6 − sin π
6 0

sin π
6 cos π

6 0
0 0 1

⎤

⎦ ≈
⎡

⎣
0.866 −0.5 0

0.5 0.866 0
0 0 1

⎤

⎦ (2.307)

and, therefore, the acceleration of point P is

GaP = GR̈B
GRT

B
GrP =

⎡

⎣
1010

−2869.4
0

⎤

⎦ cm/s2 (2.308)

where
Gd2

dt2
GRB = α̈

Gd

dα

GRB − α̇2
Gd2

dα2
GRB (2.309)

is the same as (2.305).

Example 60 � (B-expression of angular acceleration) The angular acceleration ex-
pressed in the body frame is the body derivative of the angular velocity vector. To
show this, we use the derivative transport formula (2.259):

B
GαB = B

Gω̇B =
Gd

dt

B
GωB

=
Bd

dt

B
GωB + B

GωB × B
GωB =

Bd

dt

B
GωB (2.310)

Interestingly, the global and body derivatives of B
GωB are equal:

Gd

dt

B
GωB =

Bd

dt

B
GωB = B

GαB (2.311)

This is because GωB is about an axis û that is instantaneously fixed in both B and G.
A vector α can generally indicate the angular acceleration of a coordinate frame

A with respect to another frame B . It can be expressed in or seen from a third
coordinate frame C. We indicate the first coordinate frame A by a right subscript,
the second frame B by a left subscript, and the third frame C by a left superscript,
C
BαA. If the left super and subscripts are the same, we only show the subscript. So,
the angular acceleration of A with respect to B as seen from C is the C-expression
of BαA:

C
BαA = CRBBαA (2.312)
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Fig. 2.18 A simple
pendulum

Example 61 � (B-expression of acceleration) Transforming Ga to the body frame
provides us with the body expression of the acceleration vector:

B
GaP = GRT

B
Ga = GRT

BGSB
Gr = GRT

B
GR̈B

GRT
B

Gr

= GRT
B

GR̈B
Br (2.313)

We denote the coefficient of Br by B
GSB

B
GSB = GRT

B
GR̈B (2.314)

and rewrite Eq. (2.313) as

B
GaP = B

GSB
BrP (2.315)

where B
GSB is the rotational acceleration transformation of the B-frame relative to

G-frame as seen from the B-frame.

Example 62 (Velocity and acceleration of a simple pendulum) A point mass at-
tached to a massless rod hanging from a revolute joint is what we call a simple
pendulum. Figure 2.18 illustrates a simple pendulum. A local coordinate frame B is
attached to the pendulum, which rotates in a global frame G about the Z-axis. The
kinematic information of the mass is given by

Br = lı̂ (2.316)

Gr = GRB
Br =

⎡

⎣
l sinφ

−l cosφ

0

⎤

⎦ (2.317)

B
GωB = φ̇k̂ (2.318)

GωB = GRT
B

B
GωB = φ̇ K̂ (2.319)
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Fig. 2.19 A spherical
pendulum

GRB =
⎡

⎢⎣
cos( 3

2π + φ) − sin( 3
2π + φ) 0

sin( 3
2π + φ) cos( 3

2π + φ) 0

0 0 1

⎤

⎥⎦

=
⎡

⎣
sinφ cosφ 0

− cosφ sinφ 0
0 0 1

⎤

⎦ (2.320)

Therefore,

B
Gv = B ṙ + B

GωB × B
Gr = 0 + φ̇k̂ × lı̂ = lφ̇ĵ (2.321)

Gv = GRB
Bv =

⎡

⎣
l φ̇ cosφ

l φ̇ sinφ

0

⎤

⎦ (2.322)

and

B
Ga = B

Gv̇ + B
GωB × B

Gv = l φ̈ĵ + φ̇k̂ × l φ̇ĵ = l φ̈ĵ − l φ̇2 ı̂ (2.323)

Ga = GRB
Ba =

⎡

⎣
l φ̈ cosφ − l φ̇2 sinφ

l φ̈ sinφ + l φ̇2 cosφ

0

⎤

⎦ (2.324)

Example 63 (Spherical pendulum) A pendulum free to oscillate in any plane is
called a spherical pendulum. This name comes from the codominants that we use
to locate the tip mass. Consider a pendulum with a point mass m at the tip point of
a long, massless, and straight string with length l. The pendulum is hanging from a
point A(0,0,0) in a local coordinate frame B1(x1, y1, z1).

To indicate the mass m, we attach a coordinate frame B2(x2, y2, z2) to the pen-
dulum at point A as is shown in Fig. 2.19. The pendulum makes an angle β with the
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vertical z1-axis. The pendulum swings in the plane (x2, z2) and makes an angle γ

with the plane (x1, z1). Therefore, the transformation matrix between B2 and B1 is

2R1 = Ry2,−β Rz2,γ

=
⎡

⎣
cosγ cosβ cosβ sinγ sinβ

− sinγ cosγ 0
− cosγ sinβ − sinγ sinβ cosβ

⎤

⎦ (2.325)

The position vectors of m are

2r =
⎡

⎣
0
0
−l

⎤

⎦ 1r = 1R2
2r =

⎡

⎣
l cosγ sinβ

l sinβ sinγ

−l cosβ

⎤

⎦ (2.326)

The equation of motion of m is

1M = I 1α2 (2.327)
1r × m1g = ml2

1α2 (2.328)
⎡

⎣
l cosγ sinβ

l sinβ sinγ

−l cosβ

⎤

⎦× m

⎡

⎣
0
0

−g0

⎤

⎦ = ml2
1α2 (2.329)

Therefore,

1α2 = g0

l

⎡

⎣
− sinβ sinγ

cosγ sinβ

0

⎤

⎦ (2.330)

To find the angular acceleration of B2 in B1, we use 2R1:

1Ṙ2 = β̇
d

dβ

2R1 + γ̇
d

dγ

2R1

=
⎡

⎣
−β̇cγ sβ − γ̇ cβsγ −γ̇ cγ γ̇ sβsγ − β̇cβcγ

γ̇ cβcγ − β̇sβsγ −γ̇ sγ −β̇cβsγ − γ̇ cγ sβ

β̇cβ 0 −β̇sβ

⎤

⎦ (2.331)

1ω̃2 = 1Ṙ2
1RT

2 =
⎡

⎣
0 −γ̇ −β̇ cosγ

γ̇ 0 −β̇ sinγ

β̇ cosγ β̇ sinγ 0

⎤

⎦ (2.332)

1R̈2 = β̈
d

dβ

2R1 + β̇2 d2

dβ2
2R1 + β̇γ̇

d2

dγ dβ

2R1

+ γ̈
d

dγ

2R1 + γ̇ β̇
d2

dβ dγ

2R1 + γ̇ 2 d2

dγ 2
2R1 (2.333)
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1α̃2 = 1R̈2
1RT

2 − 1ω̃
2
2

=
⎡

⎣
0 −γ̈ −β̈cγ + β̇γ̇ sγ

γ̈ 0 −β̈sγ − β̇γ̇ cγ

β̈cγ − β̇γ̇ sγ β̈sγ + β̇γ̇ cγ 0

⎤

⎦ (2.334)

Therefore, the equation of motion of the pendulum would be

g0

l

⎡

⎣
− sinβ sinγ

cosγ sinβ

0

⎤

⎦ =
⎡

⎣
β̈ sinγ + β̇γ̇ cosγ

−β̈ cosγ + β̇γ̇ sinγ

γ̈

⎤

⎦ (2.335)

The third equation indicates that

γ̇ = γ̇0 γ = γ̇0t + γ0 (2.336)

The second and third equations can be combined to form

β̈ = −
√

g2
0

l2
sin2 β + β̇2γ̇ 2

0 (2.337)

which reduces to the equation of a simple pendulum if γ̇0 = 0.

Example 64 � (Equation of motion of a spherical pendulum) Consider a particle
P of mass m that is suspended by a string of length l from a point A, as shown in
Fig. 2.19. If we show the tension of the string by T, then the equation of motion of
P is

1T + m1g = m1r̈ (2.338)

or −T 1r + m1g = m1r̈. To eliminate 1T, we multiply the equation by 1r,

1r × 1g = 1r × 1r̈
⎡

⎣
l cosγ sinβ

l sinβ sinγ

−l cosβ

⎤

⎦×
⎡

⎣
0
0

−g0

⎤

⎦ =
⎡

⎣
l cosγ sinβ

l sinβ sinγ

−l cosβ

⎤

⎦×
⎡

⎣
ẍ

ÿ

z̈

⎤

⎦
(2.339)

and find
⎡

⎣
−lg0 sinβ sinγ

lg0 cosγ sinβ

0

⎤

⎦ =
⎡

⎣
lÿ cosβ + lz̈ sinβ sinγ

−lẍ cosβ − lz̈ cosγ sinβ

lÿ cosγ − lẍ sinγ

⎤

⎦ (2.340)

These are the equations of motion of m. However, we may express the equations
only in terms of γ and β . To do so, we may either take time derivatives of 1r or use
1α2 from Example 64 and find 1r̈:

1r̈ = 1α2 × 1r (2.341)

In either case, Eq. (2.335) would be the equation of motion in terms of γ and β .
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Fig. 2.20 Foucault pendulum
is a simple pendulum hanging
from a point A above a point
P on Earth surface

Example 65 � (Foucault pendulum) Consider a pendulum with a point mass m

at the tip of a long, massless, and straight string with length l. The pendulum is
hanging from a point A(0,0, l) in a local coordinate frame B1(x1, y1, z1) at a point
P on the Earth surface. Point P at longitude ϕ and latitude λ is indicated by Ed
in the Earth frame E(Oxyz). The E-frame is turning in a global frame G(OXYZ)

about the Z-axis.
To indicate the mass m, we attach a coordinate frame B1(x1, y1, z1) to the pen-

dulum at point A as shown in Fig. 2.20. The pendulum makes an angle β with the
vertical z1-axis. The pendulum swings in the plane (x2, z2) and makes an angle γ

with the plane (x1, z1). Therefore, the transformation matrix between B2 and B1 is

1T2 = 1D2
1R2

=

⎡

⎢⎢⎣

cosγ cosβ − sinγ − cosγ sinβ 0
cosβ sinγ cosγ − sinγ sinβ 0

sinβ 0 cosβ l

0 0 0 1

⎤

⎥⎥⎦ (2.342)

The position vector of m is

2r =
⎡

⎣
0
0
−l

⎤

⎦ (2.343)

1r = 1T2
2r =

⎡

⎣
x1
y1
z1

⎤

⎦ =
⎡

⎣
l cosγ sinβ

l sinβ sinγ

l − l cosβ

⎤

⎦ (2.344)

Employing the acceleration equation,

1
Ga = 1a + 1

Gα1 × 1r + 21
Gω1 × 1v + 1

Gω1 × (1
Gω1 × 1r

)
(2.345)



2.3 Rigid Body Dynamics 99

we can write the equation of motion of m as

1
GF − m1

Gg = m1
Ga (2.346)

where 1F is the applied nongravitational force on m.
Recalling that

1
Gα1 = 0 (2.347)

we find the general equation of motion of a particle in frame B1 as

1
GF + m1

Gg = m
(1a + 21

Gω1 × 1v + 1
Gω1 × (1

Gω1 × 1r
))

(2.348)

The individual vectors in this equation are

1g =
⎡

⎣
0
0

−g0

⎤

⎦ 1
GF =

⎡

⎣
Fx

Fy

Fz

⎤

⎦ 1
Gω1 =

⎡

⎣
ωE cosλ

0
ωE sinλ

⎤

⎦ (2.349)

1v =
⎡

⎣
ẋ1
ẏ1
ż1

⎤

⎦ =
⎡

⎣
lβ̇ cosβ cosγ − lγ̇ sinβ sinγ

lβ̇ cosβ sinγ + lγ̇ cosγ sinβ

lβ̇ sinβ

⎤

⎦ (2.350)

1a =
⎡

⎣
ẍ

ÿ

z̈

⎤

⎦ =

⎡

⎢⎢⎢⎢⎣

l(β̈ cosγ − β̇2 sinγ − β̇γ̇ sinγ ) cosβ

− l(γ̈ sinγ + γ̇ 2 cosγ + β̇γ̇ cosγ ) sinβ

l(β̈ sinγ + β̇2 cosγ + β̇γ̇ cosγ ) cosβ

+ l(γ̈ cosγ − γ̇ 2 sinγ − β̇γ̇ sinγ ) sinβ

lβ̈ sinβ

⎤

⎥⎥⎥⎥⎦
(2.351)

In a spherical pendulum, the external force 1F is the tension of the string:

1
GF = −F

l

1r (2.352)

Substituting the above vectors in (2.348) provides us with three coupled ordinary
differential equations for two angular variables γ and β . One of the equations is not
independent and the others may theoretically be integrated to determine γ = γ (t)

and β = β(t).
For example, let us use

ωE ≈ 7.292 1 × 10−5 rad/s

g0 ≈ 9.81 m/s2

l = 100 m

λ = 28◦58′30′′N ≈ 28.975 deg N

ϕ = 50◦50′17′′E ≈ 50.838 deg E

x0 = l cos 10 = 17.365 m (2.353)
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Fig. 2.21 The projection of
the path of a pendulum with
length l = 100 m at latitude
λ ≈ 28.975 deg N on Earth
for a few oscillations (not to
scale)

and find

x = 8.6839 cos(0.313 16t) + 8.6811 cos(−0.313 26t) (2.354)

y = 8.6839 sin(0.313 16t) + 8.6811 sin(−0.313 26t) (2.355)

At the given latitude, which corresponds to Bushehr, Iran, on the Persian Gulf
shore, the plane of oscillation turns about the local g-axis with an angular speed
ω = −3.532 5 × 10−5 rad/s ≈ −87.437 deg/d. These results are independent of
longitude. Therefore, the same phenomena will be seen at Orlando, Florida, or New
Delhi, India, which are almost at the same latitude. Figure 2.21 depicts the pro-
jection of m on the (x, y)-plane for a few oscillations. It takes T ≈ 49.4 h for the
pendulum to turn 2π :

T = 2π

3.5325 × 10−5
= 1.7787 × 105 s = 49.408 h (2.356)

However, the pendulum gets back to the (y, x)-plane after t = T/2 = 24.704 h. By
that time, the pendulum must have oscillated about n ≈ 4433 times:

n = ωn

2π

T

2
= 0.313 21

2π

1.7787 × 105

2
= 4433.3 (2.357)

By shortening the length of the pendulum, say l = 1 m, the rotation speed remains
the same while the number of oscillations increases to n ≈ 44333.

2.3.4 � Translational Dynamics

Figure 2.22 depicts a moving body B in a global coordinate frame G. Assume that
the body frame is attached at the mass center of the body. Point P indicates an
infinitesimal sphere of the body, which has a very small mass dm. The point mass
dm is acted on by an infinitesimal force df and has a global velocity GvP .
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Fig. 2.22 A body point mass
moving with velocity GvP

and acted on by force df

According to Newton’s law of motion

df = GaP dm (2.358)

However, the equation of motion for the whole body in a global coordinate frame is

GF = mGaB (2.359)

which can be expressed in the body coordinate frame as

BF = mB
GaB + mB

GωB × BvB (2.360)
⎡

⎣
Fx

Fy

Fz

⎤

⎦ =
⎡

⎣
max + m(ωyvz − ωzvy)

may − m(ωxvz − ωzvx)

maz + m(ωxvy − ωyvx)

⎤

⎦ (2.361)

In these equations, GaB is the G-expression of the acceleration vector of the body
mass center C, m is the total mass of the body, and F is the G-expression of the
resultant of the external forces acted on the body at C.

Proof A body coordinate frame at the mass center is called a central frame. If frame
B is a central frame, then the center of mass, C, is defined such that

∫

B

Brdm dm = 0 (2.362)

The global position vector of dm is related to its local position vector by

Grdm = GdB + GRB
Brdm (2.363)



102 2 Vibration Dynamics

where GdB is the global position vector of the central body frame, and, therefore,

∫

B

Grdm dm =
∫

B

GdB dm + GRB

∫

m

Brdm dm

=
∫

B

GdB dm = GdB

∫

B

dm = mGdB (2.364)

The time derivative of both sides shows that

mGḋB = mGvB =
∫

B

Gṙdm dm =
∫

B

Gvdm dm (2.365)

and the other derivative is

mGv̇B = mGaB =
∫

B

Gv̇dm dm (2.366)

However, we have df = Gv̇P dm and, therefore,

mGaB =
∫

B

df (2.367)

The integral on the right-hand side collects all the forces acting on the body. The
internal forces cancel one another out, so the net result is the vector sum of all the
externally applied forces, F, and, therefore,

GF = mGaB = mGv̇B (2.368)

In the body coordinate frame we have

BF = BRG
GF = mBRG

GaB = mB
GaB

= mBaB + mB
GωB × BvB (2.369)

The expanded form of Newton’s equation in the body coordinate frame is then equal
to

BF = mBaB + mB
GωB × BvB

⎡

⎣
Fx

Fy

Fz

⎤

⎦ = m

⎡

⎣
ax

ay

az

⎤

⎦+ m

⎡

⎣
ωx

ωy

ωz

⎤

⎦×
⎡

⎣
vx

vy

vz

⎤

⎦

=
⎡

⎣
max + m(ωyvz − ωzvy)

may − m(ωxvz − ωzvx)

maz + m(ωxvy − ωyvx)

⎤

⎦ (2.370)

�
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2.3.5 � Rotational Dynamics

The rigid body rotational equation of motion is the Euler equation

BM =
Gd

dt

BL = B L̇ + B
GωB × BL

= BIB
Gω̇B + B

GωB × (
BIB

GωB

)
(2.371)

where L is the angular momentum

BL = BIB
GωB (2.372)

and I is the mass moment of the rigid body.

I =
⎡

⎣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎦ (2.373)

The expanded form of the Euler equation (2.371) is

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

−Iyz

(
ω2

z − ω2
y

)− ωx(ωzIxy − ωyIxz) (2.374)

My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

−Ixz

(
ω2

x − ω2
z

)− ωy(ωxIyz − ωzIxy) (2.375)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

−Ixy

(
ω2

y − ω2
x

)− ωz(ωyIxz − ωxIyz) (2.376)

which can be reduced to

M1 = I1ω̇1 − (I2 − I2)ω2ω3

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (2.377)

M3 = I3ω̇3 − (I1 − I2)ω1ω2

when the body coordinate is the principal coordinate frame. The principal coordi-
nate frame is denoted by numbers 123 to indicate the first, second, and third princi-
pal axes. The parameters Iij , i �= j , are zero in the principal frame. The body and
principal coordinate frame sit at the mass center C.

The kinetic energy of a rotating rigid body is

K = 1

2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)

− Ixyωxωy − Iyzωyωz − Izxωzωx (2.378)
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= 1

2
ω · L = 1

2
ωTI ω (2.379)

which in the principal coordinate frame reduces to

K = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(2.380)

Proof Let mi be the mass of the ith particle of a rigid body B , which is made of n

particles and let

ri = Bri = [
xi yi zi

]T (2.381)

be the Cartesian position vector of mi in a central body fixed coordinate frame
B(Oxyz). Assume that

ω = B
GωB = [

ωx ωy ωz

]T (2.382)

is the angular velocity of the rigid body with respect to the global coordinate frame
G(OXYZ), expressed in the body coordinate frame.

The angular momentum of mi is

Li = ri × mi ṙi = mi

[
ri × (ω × ri )

]

= mi

[
(ri · ri )ω − (ri · ω)ri

]

= mir
2
i ω − mi(ri · ω)ri (2.383)

Hence, the angular momentum of the rigid body would be

L = ω

n∑

i=1

mir
2
i −

n∑

i=1

mi(ri · ω)ri (2.384)

Substitution for ri and ω gives us

L = (ωx ı̂ + ωyĵ + ωzk̂)

n∑

i=1

mi

(
x2
i + y2

i + z2
i

)

−
n∑

i=1

mi(xiωx + yiωy + ziωz) · (xi ı̂ + yi ĵ + zi k̂) (2.385)

which can be rearranged as

L =
n∑

i=1

mi

(
y2
i + z2

i

)
ωxı̂ +

n∑

i=1

mi

(
z2
i + x2

i

)
ωyĵ +

n∑

i=1

mi

(
x2
i + y2

i

)
ωzk̂

−
(

n∑

i=1

(mixiyi)ωy +
n∑

i=1

(mixizi)ωz

)
ı̂
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−
(

n∑

i=1

(miyizi)ωz +
n∑

i=1

(miyixi)ωx

)
ĵ

−
(

n∑

i=1

(mizixi)ωx +
n∑

i=1

(miziyi)ωy

)
k̂ (2.386)

By introducing the mass moment matrix I with the following elements:

Ixx =
n∑

i=1

[
mi

(
y2
i + z2

i

)]
(2.387)

Iyy =
n∑

i=1

[
mi

(
z2
i + x2

i

)]
(2.388)

Izz =
n∑

i=1

[
mi

(
x2
i + y2

i

)]
(2.389)

Ixy = Iyx = −
n∑

i=1

(mixiyi) (2.390)

Iyz = Izy = −
n∑

i=1

(miyizi) (2.391)

Izx = Ixz = −
n∑

i=1

(mizixi) (2.392)

we may write the angular momentum L in concise form:

Lx = Ixxωx + Ixyωy + Ixzωz (2.393)

Ly = Iyxωx + Iyyωy + Iyzωz (2.394)

Lz = Izxωx + Izyωy + Izzωz (2.395)

or in matrix form:

L = I · ω (2.396)
⎡

⎣
Lx

Ly

Lz

⎤

⎦ =
⎡

⎣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎦

⎡

⎣
ωx

ωy

ωz

⎤

⎦ (2.397)

For a rigid body that is a continuous solid, the summations must be replaced by
integrations over the volume of the body as in Eq. (2.433).
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The Euler equation of motion for a rigid body is

BM =
Gd

dt

BL (2.398)

where BM is the resultant of the external moments applied on the rigid body. The
angular momentum BL is a vector quantity defined in the body coordinate frame.
Hence, its time derivative in the global coordinate frame is

GdBL
dt

= B L̇ + B
GωB × BL (2.399)

Therefore,

BM = dL
dt

= L̇ + ω × L = I ω̇ + ω × (Iω) (2.400)

or in expanded form

BM = (Ixxω̇x + Ixyω̇y + Ixzω̇z)ı̂ + ωy(Ixzωx + Iyzωy + Izzωz)ı̂

− ωz(Ixyωx + Iyyωy + Iyzωz)ı̂

+ (Iyxω̇x + Iyyω̇y + Iyzω̇z)ĵ + ωz(Ixxωx + Ixyωy + Ixzωz)ĵ

− ωx(Ixzωx + Iyzωy + Izzωz)ĵ

+ (Izxω̇x + Izyω̇y + Izzω̇z)k̂ + ωx(Ixyωx + Iyyωy + Iyzωz)k̂

− ωy(Ixxωx + Ixyωy + Ixzωz)k̂ (2.401)

and, therefore, the most general form of the Euler equations of motion for a rigid
body in a body frame attached to C are

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

− Iyz

(
ω2

z − ω2
y

)− ωx(ωzIxy − ωyIxz) (2.402)

My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

− Ixz

(
ω2

x − ω2
z

)− ωy(ωxIyz − ωzIxy) (2.403)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

− Ixy

(
ω2

y − ω2
x

)− ωz(ωyIxz − ωxIyz) (2.404)

Assume that we are able to rotate the body frame about its origin to find an orien-
tation that makes Iij = 0, for i �= j . In such a coordinate frame, which is called a
principal frame, the Euler equations reduce to

M1 = I1ω̇1 − (I2 − I2)ω2ω3 (2.405)

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (2.406)
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Fig. 2.23 A disc with mass
m and radius r , mounted on a
massless turning shaft

M3 = I3ω̇3 − (I1 − I2)ω1ω2 (2.407)

The kinetic energy of a rigid body may be found by the integral of the kinetic
energy of the mass element dm, over the whole body:

K = 1

2

∫

B

v̇2 dm = 1

2

∫

B

(ω × r) · (ω × r)dm

= ω2
x

2

∫

B

(
y2 + z2)dm + ω2

y

2

∫

B

(
z2 + x2)dm + ω2

z

2

∫

B

(
x2 + y2)dm

− ωxωy

∫

B

xy dm − ωyωz

∫

B

yzdm − ωzωx

∫

B

zx dm

= 1

2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)

− Ixyωxωy − Iyzωyωz − Izxωzωx (2.408)

The kinetic energy can be rearranged to a matrix multiplication form

K = 1

2
ωTI ω = 1

2
ω · L (2.409)

When the body frame is principal, the kinetic energy will simplify to

K = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(2.410)

�

Example 66 � (A tilted disc on a massless shaft) Figure 2.23 illustrates a disc with
mass m and radius R, mounted on a massless shaft. The shaft is turning with a
constant angular speed ω. The disc is attached to the shaft at an angle α. Because of
α, the bearings at A and B must support a rotating force.

We attach a principal body coordinate frame at the disc center as shown in the
figure. The G-expression of the angular velocity is a constant vector

GωB = ωÎ (2.411)
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and the expression of the angular velocity vector in the body frame is

B
GωB = ω cos θ ı̂ + ω sin θ ĵ (2.412)

The mass moment of inertia matrix is

BI =
⎡

⎣
mR2/2 0 0

0 mR2/4 0
0 0 mR2/4

⎤

⎦ (2.413)

Substituting (2.412) and (2.413) in (2.405)–(2.407), with 1 ≡ x, 2 ≡ y, 3 ≡ z, yields

Mx = 0 (2.414)

My = 0 (2.415)

Mz = mr2

4
ω cos θ sin θ (2.416)

Therefore, the bearing reaction forces FA and FB are

FA = −FB = −Mz

l
= −mr2

4l
ω cos θ sin θ (2.417)

Example 67 (Steady rotation of a freely rotating rigid body) Consider a situation in
which the resultant applied force and moment on a rigid body are zero:

GF = BF = 0 (2.418)

GM = BM = 0 (2.419)

Based on Newton’s equation,

GF = mGv̇ (2.420)

the velocity of the mass center will be constant in the global coordinate frame. How-
ever, the Euler equation

BM = IB
Gω̇B + B

GωB × BL (2.421)

reduces to

ω̇1 = I2 − I3

I1
ω2ω3 (2.422)

ω̇2 = I3 − I1

I22
ω3ω1 (2.423)

ω̇3 = I1 − I2

I3
ω1ω2 (2.424)
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which show that the angular velocity can be constant if

I1 = I2 = I3 (2.425)

or if two principal moments of inertia, say I1 and I2, are zero and the third angular
velocity, in this case ω3, is initially zero, or if the angular velocity vector is initially
parallel to a principal axis.

2.3.6 � Mass Moment Matrix

Two types of integral arise in rigid body dynamics that depend solely on the geome-
try and mass distribution of the body. The first type defines the center of mass and is
important when the translation motion of the body is considered. The second is the
mass moment, which appears when the rotational motion of the body is considered.
The mass moment is also called moment of inertia, centrifugal moments, or devia-
tion moment. Every rigid body has a 3 × 3 mass moment matrix I , which is denoted
by

I =
⎡

⎣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎦ (2.426)

The diagonal elements Iij , i = j , are called polar mass moments

Ixx = Ix =
∫

B

(
y2 + z2)dm (2.427)

Iyy = Iy =
∫

B

(
z2 + x2)dm (2.428)

Izz = Iz =
∫

B

(
x2 + y2)dm (2.429)

and the off-diagonal elements Iij , i �= j , are called products of inertia

Ixy = Iyx = −
∫

B

xy dm (2.430)

Iyz = Izy = −
∫

B

yzdm (2.431)

Izx = Ixz = −
∫

B

zx dm (2.432)

The elements of I are functions of the mass distribution of the rigid body and may
be defined by

Iij =
∫

B

(
r2
i δmn − ximxjn

)
dm i, j = 1,2,3 (2.433)
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where δij is Kronecker’s delta (2.171),

δmn =
{

1 if m = n

0 if m �= n
(2.434)

The elements of I are calculated in a body coordinate frame attached to the mass
center C of the body. Therefore, I is a frame-dependent quantity and must be written
with a frame indicator such as BI to show the frame in which it is computed:

BI =
∫

B

⎡

⎣
y2 + z2 −xy −zx

−xy z2 + x2 −yz

−zx −yz x2 + y2

⎤

⎦ dm (2.435)

=
∫

B

(
r2I − r rT)dm =

∫

B

−r̃ r̃ dm (2.436)

where r̃ is the associated skew-symmetric matrix of r:

r̃ =
⎡

⎣
0 −r3 r2
r3 0 −r1

−r2 r1 0

⎤

⎦ (2.437)

The moments of inertia can be transformed from a coordinate frame B1 to an-
other coordinate frame B2, both defined at the mass center of the body, according to
the rule of the rotated-axes theorem:

B2I = B2RB1
B1IB2RT

B1
(2.438)

Transformation of the moment of inertia from a central frame B1 located at B2 rC to
another frame B2, which is parallel to B1, is, according to the rule of the parallel-
axes theorem:

B2I = B1I + mr̃C r̃T
C (2.439)

If the local coordinate frame Oxyz is located such that the products of inertia
vanish, the local coordinate frame is the principal coordinate frame and the associ-
ated mass moments are principal mass moments. Principal axes and principal mass
moments can be found by solving the following characteristic equation for I :

∣∣∣∣∣∣

Ixx − I Ixy Ixz

Iyx Iyy − I Iyz

Izx Izy Izz − I

∣∣∣∣∣∣
= 0 (2.440)

det
([Iij ] − I [δij ]

) = 0 (2.441)

Equation (2.441) is a cubic equation in I , so we obtain three eigenvalues,

I1 = Ix I2 = Iy I3 = Iz (2.442)
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Fig. 2.24 Two coordinate
frames with a common origin
at the mass center of a rigid
body

which are the principal mass moments.

Proof Two coordinate frames with a common origin at the mass center of a rigid
body are shown in Fig. 2.24. The angular velocity and angular momentum of a rigid
body transform from the frame B1 to the frame B2 by the vector transformation rule

2ω = 2R2
1ω (2.443)

2L = 2R1
1L (2.444)

However, L and ω are related according to Eq. (2.372)

1L = 1I 1ω (2.445)

and, therefore,
2L = 2R1

1I 2RT
1

2ω = 2I 2ω (2.446)

which shows how to transfer the mass moment from the coordinate frame B1 to a
rotated frame B2

2I = 2R1
1I 2RT

1 (2.447)

Now consider a central frame B1, shown in Fig. 2.25, at 2rC , which rotates about
the origin of a fixed frame B2 such that their axes remain parallel. The angular
velocity and angular momentum of the rigid body transform from frame B1 to frame
B2 by

2ω = 1ω (2.448)
2L = 1L + (rC × mvC) (2.449)

Therefore,

2L = 1L + m2rC × (2ω × 2rC

)

= 1L + (
m2r̃C

2r̃T
C

)2ω

= (1I + m2r̃C
2r̃T

C

)2ω (2.450)
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Fig. 2.25 A central
coordinate frame B1 and a
translated frame B2

which shows how to transfer the mass moment from frame B1 to a parallel frame B2

2I = 1I + mr̃C r̃T
C (2.451)

The parallel-axes theorem is also called the Huygens–Steiner theorem.
Referring to Eq. (2.447) for transformation of the moment of inertia to a rotated

frame, we can always find a frame in which 2I is diagonal. In such a frame, we have

2R1
1I = 2I 2R1 (2.452)

or
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦

⎡

⎣
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎦

=
⎡

⎣
I1 0 0
0 I2 0
0 0 I3

⎤

⎦

⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ (2.453)

which shows that I1, I2, and I3 are eigenvalues of 1I . These eigenvalues can be
found by solving the following characteristic equation for λ:

∣∣∣∣∣∣

Ixx − λ Ixy Ixz

Iyx Iyy − λ Iyz

Izx Izy Izz − λ

∣∣∣∣∣∣
= 0 (2.454)

The eigenvalues I1, I2, and I3 are principal mass moments, and their associated
eigenvectors are principal directions. The coordinate frame made by the eigenvec-
tors is the principal body coordinate frame. In the principal coordinate frame, the
rigid body angular momentum simplifies to

⎡

⎣
L1
L2
L3

⎤

⎦ =
⎡

⎣
I1 0 0
0 I2 0
0 0 I3

⎤

⎦

⎡

⎣
ω1
ω2
ω3

⎤

⎦ (2.455)

�
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Example 68 (Principal moments of inertia) Consider the inertia matrix I

I =
⎡

⎣
10 −2 0
−2 20 −2
0 −2 30

⎤

⎦ (2.456)

We set up the determinant (2.441)
∣∣∣∣∣∣

10 − λ −2 0
−2 20 − λ −2
0 −2 30 − λ

∣∣∣∣∣∣
= 0 (2.457)

which leads to the following characteristic equation:

−λ3 + 60λ2 − 1092λ + 5840 = 0 (2.458)

Three roots of Eq. (2.458) are

I1 = 9.6077 I2 = 20 I3 = 30.392 (2.459)

and, therefore, the principal mass moment matrix is

I =
⎡

⎣
9.6077 0 0

0 20 0
0 0 30.392

⎤

⎦ (2.460)

Example 69 (Principal coordinate frame) Consider the inertia matrix I

I =
⎡

⎣
10 −2 0
−2 20 −2
0 −2 30

⎤

⎦ (2.461)

the direction of a principal axis xi is established by solving

⎡

⎣
Ixx − Ii Ixy Ixz

Iyx Iyy − Ii Iyz

Izx Izy Izz − Ii

⎤

⎦

⎡

⎣
cosαi

cosβi

cosγi

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (2.462)

The direction cosines αi,βi, γi must also satisfy

cos2 αi + cos2 βi + cos2 γi = 1 (2.463)

For the first principal mass moment I1 = 9.6077, we have

⎡

⎣
10 − 9.6 −2 0

−2 20 − 9.6 −2
0 −2 30 − 9.6

⎤

⎦

⎡

⎣
cosα1
cosβ1
cosγ1

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (2.464)
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or

0.3923 cosα1 − 2 cosβ1 + 0 = 0 (2.465)

10.392 cosβ1 − 2 cosα1 − 2 cosγ1 = 0 (2.466)

0 + 20.392 cosγ1 − 2 cosβ1 = 0 (2.467)

and we obtain

α1 = 11.148 deg (2.468)

β1 = 78.902 deg (2.469)

γ1 = 88.917 deg (2.470)

Using I2 = 20 for the second principal axis

⎡

⎣
10 − 20 −2 0

−2 20 − 20 −2
0 −2 30 − 20

⎤

⎦

⎡

⎣
cosα2
cosβ2
cosγ2

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (2.471)

we obtain

α2 = 101.10 deg (2.472)

β2 = 15.793 deg (2.473)

γ2 = 78.902 deg (2.474)

The third principal axis is for I3 = 30.392

⎡

⎣
10 − 30.4 −2 0

−2 20 − 30.4 −2
0 −2 30 − 30.4

⎤

⎦

⎡

⎣
cosα3
cosβ3
cosγ3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ (2.475)

which leads to

α3 = 88.917 deg (2.476)

β3 = 101.10 deg (2.477)

γ3 = 11.139 deg (2.478)

Example 70 (Mass moment of rectangular bar) Consider a homogeneous rectangu-
lar brick with mass m, length l, width w, and height h, as shown in Fig. 2.26.

The local central coordinate frame is attached to the brick at its mass center. The
moments of inertia matrix of the brick can be found by the integral method. We
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Fig. 2.26 A homogeneous
rectangular brick

begin by calculating Ixx :

Ixx =
∫

B

(
y2 + z2)dm =

∫

v

(
y2 + z2)ρ dv = m

lwh

∫

v

(
y2 + z2)dv

= m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2

(
y2 + z2)dx dy dz

= m

12

(
w2 + h2) (2.479)

The mass moments Iyy and Izz can be calculated similarly

Iyy = m

12

(
h2 + l2) (2.480)

Izz = m

12

(
l2 + w2) (2.481)

The coordinate frame is central and, therefore, the products of inertia must be
zero. To show this, we examine Ixy :

Ixy = Iyx = −
∫

B

xy dm =
∫

v

xyρ dv

= m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2
xy dx dy dz = 0 (2.482)

Therefore, the moment of inertia matrix for the rigid rectangular brick in its cen-
tral frame is

I =
⎡

⎢⎣

m
12 (w2 + h2) 0 0

0 m
12 (h2 + l2) 0

0 0 m
12 (l2 + w2)

⎤

⎥⎦ (2.483)

Example 71 (Translation of the inertia matrix) The mass moment matrix of the
brick shown in Fig. 2.27, in the principal frame B(oxyz), is given in Eq. (2.483).
The mass moment matrix in the non-principal frame B ′(ox′y′z′) can be found by
applying the parallel-axes transformation formula (2.451):

B ′
I = BI + mB ′

r̃C
B ′

r̃T
C (2.484)
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Fig. 2.27 A rigid rectangular
brick in the principal and
non-principal frames

The mass center is at

B ′
rC = 1

2

⎡

⎣
l

w

h

⎤

⎦ (2.485)

and, therefore,

B ′
r̃C = 1

2

⎡

⎣
0 −h w

h 0 −l

−w l 0

⎤

⎦ (2.486)

which provides

B ′
I =

⎡

⎢⎣

1
3h2m + 1

3mw2 − 1
4 lmw − 1

4hlm

− 1
4 lmw 1

3h2m + 1
3 l2m − 1

4hmw

− 1
4hlm − 1

4hmw 1
3 l2m + 1

3mw2

⎤

⎥⎦ (2.487)

Example 72 (Principal rotation matrix) Consider a mass moment matrix in the body
frame B1 as

1I =
⎡

⎣
2/3 −1/2 −1/2

−1/2 5/3 −1/4
−1/2 −1/4 5/3

⎤

⎦ (2.488)

The eigenvalues and eigenvectors of 1I are

I1 = 0.2413

⎡

⎣
2.351

1
1

⎤

⎦ (2.489)

I2 = 1.8421

⎡

⎣
−0.851

1
1

⎤

⎦ (2.490)

I3 = 1.9167

⎡

⎣
0

−1
1

⎤

⎦ (2.491)
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The normalized eigenvector matrix W is the transpose of the required transforma-
tion matrix to make the inertia matrix diagonal

W =
⎡

⎣
| | |

w1 w2 w3
| | |

⎤

⎦ = 2RT
1

=
⎡

⎣
0.856 9 −0.515 6 0.0
0.364 48 0.605 88 −0.707 11
0.364 48 0.605 88 0.707 11

⎤

⎦ (2.492)

We may verify that

2I = 2R1
1I 2RT

1 = WT1IW

=
⎡

⎣
0.2413 −1 × 10−4 0.0

−1 × 10−4 1.842 1 −1 × 10−19

0.0 0.0 1.916 7

⎤

⎦ (2.493)

Example 73 (� (Relative diagonal moments of inertia) By the definitions for the
mass moments (2.427), (2.428), and (2.429) it is seen that the inertia matrix is sym-
metric, and

∫

B

(
x2 + y2 + z2)dm = 1

2
(Ixx + Iyy + Izz) (2.494)

and also

Ixx + Iyy ≥ Izz Iyy + Izz ≥ Ixx Izz + Ixx ≥ Iyy (2.495)

Noting that (y − z)2 ≥ 0, it is evident that (y2 + z2) ≥ 2yz, and therefore

Ixx ≥ 2Iyz (2.496)

and similarly

Iyy ≥ 2Izx Izz ≥ 2Ixy (2.497)

Example 74 � (Coefficients of the characteristic equation) The determinant
(2.454)

∣∣∣∣∣∣

Ixx − λ Ixy Ixz

Iyx Iyy − λ Iyz

Izx Izy Izz − λ

∣∣∣∣∣∣
= 0 (2.498)

for calculating the principal mass moments, leads to a third-degree equation for λ,
called the characteristic equation:

λ3 − a1λ
2 + a2λ − a3 = 0 (2.499)
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The coefficients of the characteristic equation are called the principal invariants
of [I ]. The coefficients of the characteristic equation can directly be found from

a1 = Ixx + Iyy + Izz = tr [I ] (2.500)

a2 = IxxIyy + IyyIzz + IzzIxx − I 2
xy − I 2

yz − I 2
zx

=
∣∣∣∣
Ixx Ixy

Iyx Iyy

∣∣∣∣+
∣∣∣∣
Iyy Iyz

Izy Izz

∣∣∣∣+
∣∣∣∣
Ixx Ixz

Izx Izz

∣∣∣∣

= 1

2

(
a2

1 − tr
[
I 2]) (2.501)

a3 = IxxIyyIzz + IxyIyzIzx + IzyIyxIxz

− (IxxIyzIzy + IyyIzxIxz + IzzIxyIyx)

= IxxIyyIzz + 2IxyIyzIzx − (
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

)

= det [I ] (2.502)

Example 75 � (The principal mass moments are coordinate invariants) The roots
of the inertia characteristic equation are the principal mass moments. They are all
real but not necessarily different. The principal mass moments are extreme. That
is, the principal mass moments determine the smallest and the largest values of Iii .
Since the smallest and largest values of Iii do not depend on the choice of the body
coordinate frame, the solution of the characteristic equation is not dependent of the
coordinate frame.

In other words, if I1, I2, and I3 are the principal mass moments for B1I , the
principal mass moments for B2I are also I1, I2, and I3 when

B2I = B2RB1
B1IB2RT

B1

We conclude that I1, I2, and I3 are coordinate invariants of the matrix [I ], and
therefore any quantity that depends on I1, I2, and I3 is also coordinate invariant.
Because the mass matrix [I ] has rank 3, it has only three independent invariants and
every other invariant can be expressed in terms of I1, I2, and I3.

Since I1, I2, and I3 are the solutions of the characteristic equation of [I ] given in
(2.499), we may write the determinant (2.454) in the form

(λ − I1)(λ − I2)(λ − I3) = 0 (2.503)

The expanded form of this equation is

λ3 − (I1 + I2 + I3)λ
2 + (I1I2 + I2I3 + I3I1)a2λ − I1I2I3 = 0 (2.504)

By comparing (2.504) and (2.499) we conclude that

a1 = Ixx + Iyy + Izz = I1 + I2 + I3 (2.505)
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a2 = IxxIyy + IyyIzz + IzzIxx − I 2
xy − I 2

yz − I 2
zx

= I1I2 + I2I3 + I3I1 (2.506)

a3 = IxxIyyIzz + 2IxyIyzIzx − (
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

)

= I1I2I3 (2.507)

Being able to express the coefficients a1, a2, and a3 as functions of I1, I2, and I3, we
determine the coefficients of the characteristic equation to be coordinate invariant.

Example 76 � (Short notation for the elements of inertia matrix) Taking advantage
of the Kronecker delta δij (2.171) we may write the elements of the mass moment
matrix Iij in short:

Iij =
∫

B

((
x2

1 + x2
2 + x2

3

)
δij − xixj

)
dm (2.508)

Iij =
∫

B

(
r2δij − xixj

)
dm (2.509)

Iij =
∫

B

(
3∑

k=1

xkxkδij − xixj

)
dm (2.510)

where we utilized the following notation:

x1 = x x2 = y x3 = z (2.511)

Example 77 � (Mass moment with respect to a plane, a line, and a point) The
mass moment of a system of particles may be defined with respect to a plane, a line,
or a point as the sum of the products of the mass of the particles into the square of
the perpendicular distance from the particle to the plane, the line, or the point. For
a continuous body, the sum would become a definite integral over the volume of the
body.

The mass moments with respect to the xy-, yz-, and zx-plane are

Iz2 =
∫

B

z2 dm (2.512)

Iy2 =
∫

B

y2 dm (2.513)

Ix2 =
∫

B

x2 dm (2.514)

The moments of inertia with respect to the x, y, and z axes are

Ix =
∫

B

(
y2 + z2)dm (2.515)
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Iy =
∫

B

(
z2 + x2)dm (2.516)

Iz =
∫

B

(
x2 + y2)dm (2.517)

and, therefore,

Ix = Iy2 + Iz2 (2.518)

Iy = Iz2 + Ix2 (2.519)

Iz = Ix2 + Iy2 (2.520)

The moment of inertia with respect to the origin is

Io =
∫

B

(
x2 + y2 + z2)dm = Ix2 + Iy2 + Iz2

= 1

2
(Ix + Iy + Iz) (2.521)

Because the choice of the coordinate frame is arbitrary, the mass moment with re-
spect to a line is the sum of the mass moments with respect to any two mutually
orthogonal planes that pass through the line. The mass moment with respect to a
point has a similar meaning for three mutually orthogonal planes intersecting at the
point.

2.4 Lagrange Method

The Lagrange method in deriving the equations of motion of vibrating systems has
some advantages over Newton–Euler due to its simplicity and generality, specially
for multi DOF systems.

2.4.1 � Lagrange Form of Newton Equation

Newton’s equation of motion can be transformed to

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Fr r = 1,2, . . . , n (2.522)

where

Fr =
n∑

i=1

(
Fix

∂fi

∂q1
+ Fiy

∂gi

∂q2
+ Fiz

∂hi

∂qn

)
(2.523)
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Equation (2.522) is called the Lagrange equation of motion, where K is the kinetic
energy of the n DOF system, qr , r = 1,2, . . . , n are the generalized coordinates of
the system, Fi = [Fix Fiy Fiz]T is the external force acting on the ith particle of the
system, and Fr is the generalized force associated to qr . The functions fi , gi , hi ,
are the relationships of x1, yi , zi , based on the generalized coordinates of the system
xi = fi(qj , t), yi = gi(qj , t), zi = hi(qj , t).

Proof Let mi be the mass of one of the particles of a system and let (xi, yi, zi)

be its Cartesian coordinates in a globally fixed coordinate frame. Assume that the
coordinates of every individual particle are functions of another set of coordinates
q1, q2, q3, . . . , qn, and possibly time t :

xi = fi(q1, q2, q3, . . . , qn, t) (2.524)

yi = gi(q1, q2, q3, . . . , qn, t) (2.525)

zi = hi(q1, q2, q3, . . . , qn, t) (2.526)

If Fxi,Fyi,Fzi are components of the total force acting on the particle mi , then
the Newton equations of motion for the particle would be

Fxi = miẍi (2.527)

Fyi = miÿi (2.528)

Fzi = miz̈i (2.529)

We multiply both sides of these equations by ∂fi/∂qr , ∂gi/∂qr , and ∂hi/∂qr , re-
spectively, and add them up for all the particles to find

n∑

i=1

mi

(
ẍi

∂fi

∂qr

+ ÿi

∂gi

∂qr

+ z̈i

∂hi

∂qr

)
=

n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(2.530)

where n is the total number of particles.
Taking the time derivative of Eq. (2.524),

ẋi = ∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + ∂fi

∂q3
q̇3 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t
(2.531)

we find

∂ẋi

∂q̇r

= ∂

∂q̇r

(
∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t

)
= ∂fi

∂qr

(2.532)

and, therefore,

ẍi

∂fi

∂qr

= ẍi

∂ẋi

∂q̇r

= d

dt

(
ẋi

∂ẋi

∂q̇r

)
− ẋi

d

dt

(
∂ẋi

∂q̇r

)
(2.533)
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However,

ẋi

d

dt

(
∂ẋi

∂q̇r

)
= ẋi

d

dt

(
∂fi

∂qr

)

= ẋi

(
∂2fi

∂q1∂qr

q̇1 + · · · + ∂2fi

∂qn∂qr

q̇n + ∂2fi

∂t∂qr

)

= ẋi

∂

∂qr

(
∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t

)

= ẋi

∂ẋi

∂qr

(2.534)

and we have

ẍi

∂ẋi

∂q̇r

= d

dt

(
ẋi

∂ẋi

∂q̇r

)
− ẋi

∂ẋi

∂qr

(2.535)

which is equal to

ẍi

ẋi

q̇r

= d

dt

[
∂

∂q̇r

(
1

2
ẋ2
i

)]
− ∂

∂qr

(
1

2
ẋ2
i

)
(2.536)

Now substituting (2.533) and (2.536) into the left-hand side of (2.530) yields

n∑

i=1

mi

(
ẍi

∂fi

∂qr

+ ÿi

∂gi

∂qr

+ z̈i

∂hi

∂qr

)

=
n∑

i=1

mi

d

dt

[
∂

∂q̇r

(
1

2
ẋ2
i + 1

2
ẏ2
i + 1

2
ż2
i

)]

−
n∑

i=1

mi

∂

∂qr

(
1

2
ẋ2
i + 1

2
ẏ2
i + 1

2
ż2
i

)

= 1

2

n∑

i=1

mi

d

dt

[
∂

∂q̇r

(
ẋ2
i + ẏ2

i + ż2
i

)]

− 1

2

n∑

i=1

mi

∂

∂qr

(
ẋ2
i + ẏ2

i + ż2
i

)
(2.537)

where

1

2

n∑

i=1

mi

(
ẋ2
i + ẏ2

i + ż2
i

) = K (2.538)
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is the kinetic energy of the system. Therefore, the Newton equations of motion
(2.527), (2.528), and (2.529) are converted to

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

=
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(2.539)

Because of (2.524), (2.525), and (2.526), the kinetic energy is a function of
q1, q2, q3, . . . , qn and time t . The left-hand side of Eq. (2.539) includes the kinetic
energy of the whole system and the right-hand side is a generalized force and shows
the effect of changing coordinates from xi to qj on the external forces. Let us assume
that a particular coordinate qr gets altered to qr + δqr while the other coordinates
q1, q2, q3, . . . , qr−1, qr+1, . . . , qn and time t are unaltered. So, the coordinates of mi

are changed to

xi + ∂fi

∂qr

δqr (2.540)

yi + ∂gi

∂qr

δqr (2.541)

zi + ∂hi

∂qr

δqr (2.542)

Such a displacement is called a virtual displacement. The work done in this virtual
displacement by all forces acting on the particles of the system is

δW =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
δqr (2.543)

Because the work done by internal forces appears in opposite pairs, only the work
done by external forces remains in Eq. (2.543). Let us denote the virtual work by

δW = Fr(q1, q2, q3, . . . , qn, t)δqr (2.544)

Then we have

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Fr (2.545)

where

Fr =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(2.546)

Equation (2.545) is the Lagrange form of the equations of motion. This equation
is true for all values of r from 1 to n. We thus have n second-order ordinary dif-
ferential equations, in which q1, q2, q3, . . . , qn are the dependent variables and t is
the independent variable. The generalized coordinates q1, q2, q3, . . . , qn can be any
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Fig. 2.28 A simple
pendulum

measurable parameters to provide the configuration of the system. The number of
equations and the number of dependent variables are equal; therefore, the equations
are theoretically sufficient to determine the motion of all mi . �

Example 78 � (A simple pendulum) A pendulum is shown in Fig. 2.28. Using x

and y for the Cartesian position of m, and using θ = q as the generalized coordinate,
we have

x = f (θ) = l sin θ (2.547)

y = g(θ) = l cos θ (2.548)

K = 1

2
m
(
ẋ2 + ẏ2) = 1

2
ml2θ̇2 (2.549)

and, therefore,

d

dt

(
∂K

∂θ̇

)
− ∂K

∂θ
= d

dt

(
ml2θ̇

) = ml2θ̈ (2.550)

The external force components, acting on m, are

Fx = 0 (2.551)

Fy = mg (2.552)

and, therefore,

Fθ = Fx

∂f

∂θ
+ Fy

∂g

∂θ
= −mgl sin θ (2.553)

Hence, the equation of motion for the pendulum is

ml2θ̈ = −mgl sin θ (2.554)

Example 79 � (A pendulum attached to an oscillating mass) Figure 2.29 illustrates
a vibrating mass with a hanging pendulum. The pendulum can act as a vibration
absorber if designed properly. Starting with coordinate relationships

xM = fM = x (2.555)
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Fig. 2.29 A vibrating mass
with a hanging pendulum

yM = gM = 0 (2.556)

xm = fm = x + l sin θ (2.557)

ym = gm = l cos θ (2.558)

we may find the kinetic energy in terms of the generalized coordinates x and θ :

K = 1

2
M

(
ẋ2
M + ẏ2

M

)+ 1

2
m
(
ẋ2
m + ẏ2

m

)

= 1

2
Mẋ2 + 1

2
m
(
ẋ2 + l2θ̇2 + 2lẋθ̇ cos θ

)
(2.559)

Then the left-hand sides of the Lagrange equations are

d

dt

(
∂K

∂ẋ

)
− ∂K

∂x
= (M + m)ẍ + mlθ̈ cos θ − mlθ̇2 sin θ (2.560)

d

dt

(
∂K

∂θ̇

)
− ∂K

∂θ
= ml2θ̈ + mlẍ cos θ (2.561)

The external forces acting on M and m are

FxM
= −kx (2.562)

FyM
= 0 (2.563)

Fxm = 0 (2.564)

Fym = mg (2.565)

Therefore, the generalized forces are

Fx = FxM

∂fM

∂x
+ FyM

∂gM

∂x
+ Fxm

∂fm

∂x
+ Fym

∂gm

∂x
= −kx (2.566)

Fθ = FxM

∂fM

∂θ
+ FyM

∂gM

∂θ
+ Fxm

∂fm

∂θ
+ Fym

∂gm

∂θ
= −mgl sin θ (2.567)

and finally the equations of motion are
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(M + m)ẍ + mlθ̈ cos θ − mlθ̇2 sin θ = −kx (2.568)

ml2θ̈ + mlẍ cos θ = −mgl sin θ (2.569)

2.4.2 Lagrangean Mechanics

Let us assume that for some forces F = [Fix Fiy Fiz]T there is a function V , called
potential energy, such that the force is derivable from V

F = −∇V (2.570)

Such a force is called a potential or conservative force. Then the Lagrange equation
of motion can be written as

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1,2, . . . , n (2.571)

where

L = K − V (2.572)

is the Lagrangean of the system and Qr is the nonpotential generalized force

Qr =
n∑

i=1

(
Fix

∂fi

∂q1
+ Fiy

∂gi

∂q2
+ Fiz

∂hi

∂qn

)
(2.573)

for which there is no potential function.

Proof Assume that the external forces F = [Fxi Fyi Fzi]T acting on the system are
conservative:

F = −∇V (2.574)

The work done by these forces in an arbitrary virtual displacement δq1, δq2,
δq3, . . . , δqn is

∂W = − ∂V

∂q1
δq1 − ∂V

∂q2
δq2 − · · · ∂V

∂qn

δqn (2.575)

and then the Lagrange equation becomes

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= − ∂V

∂q1
r = 1,2, . . . , n (2.576)

Introducing the Lagrangean function L = K −V converts the Lagrange equation of
a conservative system to

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= 0 r = 1,2, . . . , n (2.577)
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Fig. 2.30 An undamped
three DOF system

If a force is not conservative, then the virtual work done by the force is

δW =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
δqr

= Qr δqr (2.578)

and the equation of motion would be

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1,2, . . . , n (2.579)

where Qr is the nonpotential generalized force doing work in a virtual displacement
of the r th generalized coordinate qr .

The Lagrangean L is also called the kinetic potential. �

Example 80 (An undamped three DOF system) Figure 2.30 illustrates an undamped
three DOF linear vibrating system. The kinetic and potential energies of the system
are

K = 1

2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 + 1

2
m3ẋ

2
3 (2.580)

V = 1

2
k1x

2
1 + 1

2
k2(x1 − x2)

2 + 1

2
k3(x2 − x3)

2 + 1

2
k4x

2
3 (2.581)

Because there is no damping in the system, we may find the Lagrangean L

L = K − V (2.582)

and use Eq. (2.644) with Qr = 0

∂L
∂x1

= −k1x1 − k2(x1 − x2) (2.583)

∂L
∂x2

= k2(x1 − x2) − k3(x2 − x3) (2.584)

∂L
∂x3

= k3(x2 − x3) − k4x3 (2.585)

∂L
∂ẋ1

= m1ẋ1 (2.586)
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Fig. 2.31 A spherical
pendulum

∂L
∂ẋ2

= m2ẋ2 (2.587)

∂L
∂ẋ3

= m3ẋ3 (2.588)

to find the equations of motion:

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (2.589)

m2ẍ2 − k2(x1 − x2) + k3(x2 − x3) = 0 (2.590)

m3ẍ3 − k3(x2 − x3) + k4x3 = 0 (2.591)

These equations can be rewritten in matrix form for simpler calculation:
⎡

⎣
m1 0 0
0 m2 0
0 0 m3

⎤

⎦

⎡

⎣
ẍ1
ẍ2
ẍ3

⎤

⎦

+
⎡

⎣
k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ = 0 (2.592)

Example 81 (Spherical pendulum) A pendulum analogy is utilized in modeling of
many dynamical problems. Figure 2.31 illustrates a spherical pendulum with mass
m and length l. The angles ϕ and θ may be used as describing coordinates of the
system.

The Cartesian coordinates of the mass as a function of the generalized coordi-
nates are

⎡

⎣
X

Y

Z

⎤

⎦ =
⎡

⎣
r cosϕ sin θ

r sin θ sinϕ

−r cos θ

⎤

⎦ (2.593)

and, therefore, the kinetic and potential energies of the pendulum are

K = 1

2
m
(
l2θ̇2 + l2ϕ̇2 sin2 θ

)
(2.594)
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Fig. 2.32 A controlled
compound pendulum

V = −mgl cos θ (2.595)

The kinetic potential function of this system is

L = 1

2
m
(
l2θ̇2 + l2ϕ̇2 sin2 θ

)+ mgl cos θ (2.596)

which leads to the following equations of motion:

θ̈ − ϕ̇2 sin θ cos θ + g

l
sin θ = 0 (2.597)

ϕ̈ sin2 θ + 2ϕ̇θ̇ sin θ cos θ = 0 (2.598)

Example 82 (Controlled compound pendulum) A massive arm is attached to a ceil-
ing at a pin joint O as illustrated in Fig. 2.32. Assume that there is viscous friction
in the joint where an ideal motor can apply a torque Q to move the arm. The rotor
of an ideal motor has no mass moment by assumption.

The kinetic and potential energies of the manipulator are

K = 1

2
I θ̇2 = 1

2

(
IC + ml2)θ̇2 (2.599)

V = −mg cos θ (2.600)

where m is the mass and I is the mass moment of the pendulum about O . The
Lagrangean of the manipulator is

L = K − V = 1

2
I θ̇2 + mg cos θ (2.601)

and, therefore, the equation of motion of the pendulum is

M = d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= I θ̈ + mgl sin θ (2.602)

The generalized force M is the contribution of the motor torque Q and the vis-
cous friction torque −cθ̇ . Hence, the equation of motion of the manipulator is

Q = I θ̈ + cθ̇ + mgl sin θ (2.603)
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Fig. 2.33 A uniform disc,
rolling in a circular path

Example 83 � (A rolling disc in a circular path) Figure 2.33 illustrates a uniform
disc with mass m and radius r . The disc is rolling without slip in a circular path with
radius R. The disc may have a free oscillation around θ = 0.

To find the equation of motion, we employ the Lagrange method. The energies
of the system are

K = 1

2
mv2

C + 1

2
Icω

2

= 1

2
m(R − r)2θ̇2 + 1

2

(
1

2
mr2

)
(ϕ̇ − θ̇ )2 (2.604)

V = −mg(R − r) cos θ (2.605)

When there is no slip, there is a constraint between θ and ϕ:

Rθ = rϕ (2.606)

which can be used to eliminate ϕ from K :

K = 3

4
m(R − r)2θ̇2 (2.607)

Based on the partial derivatives

d

dt

(
∂L
∂θ̇

)
= 3

2
m(R − r)2θ̈ (2.608)

∂L
∂θ

= −mg(R − r) sin θ (2.609)

we find the equation of motion for the oscillating disc:

3

2
(R − r)θ̈ + g sin θ = 0 (2.610)

When the oscillation is very small, we may substitute the oscillating disc with an
equivalent mass–spring system. When θ is very small, this equation is equivalent to
a mass–spring system with me = 3(R − r) and ke = 2g.

Example 84 � (A double pendulum) Figure 2.34 illustrates a double pendulum.
There are two massless rods with lengths l1 and l2, and two point masses m1 and
m2. The variables θ1 and θ2 can be used as the generalized coordinates to express
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Fig. 2.34 A double
pendulum

the system configuration. To calculate the Lagrangean of the system and find the
equations of motion, we start by defining the global position of the masses:

x1 = l1 sin θ1 (2.611)

y1 = −l1 cos θ1 (2.612)

x2 = l1 sin θ1 + l2 sin θ2 (2.613)

y2 = −l1 cos θ1 − l2 cos θ2 (2.614)

The time derivatives of the coordinates are

ẋ1 = l1θ̇1 cos θ1 (2.615)

ẏ1 = l1θ̇1 sin θ1 (2.616)

ẋ2 = l1θ̇1 cos θ1 + l2θ̇2 cos θ2 (2.617)

ẏ2 = l1θ̇1 sin θ1 + l2θ̇2 sin θ2 (2.618)

and, therefore, the squares of the masses’ velocities are

v2
1 = ẋ2

1 + ẏ2
1 = l2

1 θ̇2
1 (2.619)

v2
2 = ẋ2

2 + ẏ2
2 = l2

1 θ̇2
1 + l2

2 θ̇2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2) (2.620)

The kinetic energy of the pendulum is then equal to

K = 1

2
m1v

2
1 + 1

2
m2v

2
2

= 1

2
m1l

2
1 θ̇2

1 + 1

2
m2

(
l2
1 θ̇2

1 + l2
2 θ̇2

2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)
)

(2.621)
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Fig. 2.35 A chain pendulum

The potential energy of the pendulum is equal to the sum of the potentials of each
mass:

V = m1gy1 + m2gy2

= −m1gl1 cos θ1 − m2g(l1 cos θ1 + l2 cos θ2) (2.622)

The kinetic and potential energies constitute the following Lagrangean:

L = K − V

= 1

2
m1l

2
1 θ̇2

1 + 1

2
m2

(
l2
1 θ̇2

1 + l2
2 θ̇2

2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)
)

+ m1gl1 cos θ1 + m2g(l1 cos θ1 + l2 cos θ2) (2.623)

Employing Lagrange method (2.644) we find the following equations of motion:

d

dt

(
∂L
∂θ̇1

)
− ∂L

∂θ1
= (m1 + m2)l

2
1 θ̈1 + m2l1l2θ̈2 cos(θ1 − θ2)

− m2l1l2θ̇
2
2 sin(θ1 − θ2) + (m1 + m2)l1g sin θ1 = 0 (2.624)

d

dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2
= m2l

2
2 θ̈2 + m2l1l2θ̈1 cos(θ1 − θ2)

+ m2l1l2θ̇
2
1 sin(θ1 − θ2) + m2l2g sin θ2 = 0 (2.625)

Example 85 � (Chain pendulum) Consider an n-chain-pendulum as shown in
Fig. 2.35. Each pendulum has a massless length li with a concentrated point mass
mi , and a generalized angular coordinate θi measured from the vertical direction.

The xi and yi components of the mass mi are

xi =
i∑

j=1

lj sin θj yi = −
i∑

j=1

lj cos θj (2.626)
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We find their time derivatives:

ẋi =
i∑

j=1

lj θ̇j cos θj ẏi =
i∑

j=1

lj θ̇j sin θj (2.627)

and the square of ẋi and ẏi :

ẋ2
i =

(
i∑

j=1

lj θ̇j cos θj

)(
i∑

k=1

lk θ̇k cos θk

)
=

n∑

j=1

n∑

k=1

lj lkθ̇j θ̇k cos θj cos θk (2.628)

ẏ2
i =

(
i∑

j=1

lj θ̇j sin θj

)(
i∑

k=1

lk θ̇k sin θk

)
=

i∑

j=1

i∑

k=1

lj lkθ̇j θ̇k sin θj sin θk (2.629)

to calculate the velocity vi of the mass mi :

v2
i = ẋ2

i + ẏ2
i

=
i∑

j=1

i∑

k=1

lj lkθ̇j θ̇k(cos θj cos θk + sin θj sin θk)

=
i∑

j=1

i∑

k=1

lj lkθ̇j θ̇k cos(θj − θk)

=
i∑

r=1

l2
r θ̇2

r + 2
i∑

j=1

i∑

k=j+1

lj lkθ̇j θ̇k cos(θj − θk) (2.630)

Now, we calculate the kinetic energy, K , of the chain:

K = 1

2

n∑

i=1

miv
2
i

= 1

2

n∑

i=1

mi

(
i∑

r=1

l2
r θ̇2

r + 2
i∑

j=1

i∑

k=j+1

lj lkθ̇j θ̇k cos(θj − θk)

)

= 1

2

n∑

i=1

i∑

r=1

mil
2
r θ̇

2
r +

n∑

i=1

i∑

j=1

i∑

k=j+1

milj lkθ̇j θ̇k cos(θj − θk) (2.631)

The potential energy of the ith pendulum is related to mi ,

Vi = migyi = −mig

i∑

j=1

lj cos θj (2.632)
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and, therefore, the potential energy of the chain is

V =
n∑

i=1

migyi = −
n∑

i=1

i∑

j=1

miglj cos θj (2.633)

To find the equations of motion for the chain, we may use the Lagrangean L

L = K − V (2.634)

and apply the Lagrange equation

d

dt

(
∂L
∂q̇s

)
− ∂L

∂qs

= 0 s = 1,2, . . . , n (2.635)

or

d

dt

(
∂K

∂q̇s

)
− ∂K

∂qs

+ ∂V

∂qs

= 0 s = 1,2, . . . , n (2.636)

Example 86 (Mechanical energy) If a system of masses mi are moving in a poten-
tial force field

Fmi
= −∇iV (2.637)

their Newton equations of motion will be

mi r̈i = −∇iV i = 1,2, . . . , n (2.638)

The inner product of equations of motion with ṙi and adding the equations

n∑

i=1

mi ṙi · r̈i = −
n∑

i=1

ṙi · ∇iV (2.639)

and then integrating over time

1

2

n∑

i=1

mi ṙi · ṙi = −
∫ n∑

i=1

ri · ∇iV (2.640)

shows that

K = −
∫ n∑

i=1

(
∂V

∂xi

xi + ∂V

∂yi

yi + ∂V

∂zi

zi

)
= −V + E (2.641)

where E is the constant of integration. E is called the mechanical energy of the
system and is equal to kinetic plus potential energies:

E = K + V (2.642)
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2.5 Dissipation Function

The Lagrange equation,

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Fr r = 1,2, . . . , n (2.643)

or

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1,2, . . . , n (2.644)

as introduced in Eqs. (2.522) and (2.571) can both be applied to find the equations
of motion of a vibrating system. However, for small and linear vibrations, we may
use a simpler and more practical Lagrange equation, thus:

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

+ ∂D

∂q̇r

+ ∂V

∂qr

= fr r = 1,2, . . . , n (2.645)

where K is the kinetic energy, V is the potential energy, and D is the dissipation
function of the system

K = 1

2
q̇T[m]q̇ = 1

2

n∑

i=1

n∑

j=1

q̇imij q̇j (2.646)

V = 1

2
qT[k]q = 1

2

n∑

i=1

n∑

j=1

qikij qj (2.647)

D = 1

2
q̇T[c]q̇ = 1

2

n∑

i=1

n∑

j=1

q̇icij q̇j (2.648)

and fr is the applied force on the mass mr .

Proof Consider a one DOF mass–spring–damper vibrating system. When viscous
damping is the only type of damping in the system, we may employ a function
known as the Rayleigh dissipation function

D = 1

2
cẋ2 (2.649)

to find the damping force fc by differentiation:

fc = −∂D

∂ẋ
(2.650)

Remembering that the elastic force fk can be found from a potential energy V

fk = −∂V

∂x
(2.651)
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Fig. 2.36 A one DOF forced
mass–spring–damper system

then the generalized force F can be separated to

F = fc + fk + f = −∂D

∂ẋ
− ∂V

∂x
+ f (2.652)

where f is the non-conservative applied force on mass m. Substituting (2.652) in
(2.643)

d

dt

(
∂K

∂ẋ

)
− ∂K

∂x
= −∂D

∂ẋ
− ∂V

∂x
+ f (2.653)

gives us the Lagrange equation for a viscous damped vibrating system.

d

dt

(
∂K

∂ẋ

)
− ∂K

∂x
+ ∂D

∂ẋ
+ ∂V

∂x
= f (2.654)

For vibrating systems with n DOF, the kinetic energy K , potential energy V ,
and dissipating function D are as (2.646)–(2.648). Applying the Lagrange equation
to the n DOF system would result n second-order differential equations (2.645). �

Example 87 (A one DOF forced mass–spring–damper system) Figure 2.36 illus-
trates a single DOF mass–spring–damper system with an external force f applied
on the mass m. The kinetic and potential energies of the system, when it is in motion,
are

K = 1

2
mẋ2 (2.655)

V = 1

2
kx2 (2.656)

and its dissipation function is

D = 1

2
cẋ2 (2.657)
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Substituting (2.655)–(2.657) into the Lagrange equation (2.645) provides us with
the equation of motion:

d

dt
(mẋ) + cẋ + kx = f (2.658)

because

∂K

∂ẋ
= mẋ

∂K

∂x
= 0

∂D

∂ẋ
= cẋ

∂V

∂x
= kx (2.659)

Example 88 (An eccentric excited one DOF system) An eccentric excited one DOF
system is shown in Fig. 3.30 with mass m supported by a suspension made up of
a spring k and a damper c. There is also a mass me at a distance e that is rotating
with an angular velocity ω. We may find the equation of motion by applying the
Lagrange method.

The kinetic energy of the system is

K = 1

2
(m − me)ẋ

2 + 1

2
me(ẋ + eω cosωt)2 + 1

2
me(−eω sinωt)2 (2.660)

because the velocity of the main vibrating mass m− me is ẋ, and the velocity of the
eccentric mass me has two components ẋ + eω cosωt and −eω sinωt . The potential
energy and dissipation function of the system are

V = 1

2
kx2 D = 1

2
cẋ2 (2.661)

Applying the Lagrange equation (2.645),

∂K

∂ẋ
= mẋ + meeω cosωt (2.662)

d

dt

(
∂K

∂ẋ

)
= mẍ − meeω

2 sinωt (2.663)

∂D

∂ẋ
= cẋ (2.664)

∂V

∂x
= kx (2.665)

provides us with the equation of motion

mẍ + cẋ + kx = meeω
2 sinωt (2.666)

which is the same as Eq. (3.267).

Example 89 (An eccentric base excited vibrating system) Figure 2.37 illustrates
a one DOF eccentric base excited vibrating system. A mass m is mounted on an
eccentric excited base by a spring k and a damper c. The base has a mass mb with
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Fig. 2.37 A one DOF
eccentric base excited
vibrating system

an attached unbalance mass me at a distance e. The mass me is rotating with an
angular velocity ω.

We may derive the equation of motion of the system by applying Lagrange
method. The required functions are

K = 1

2
mẋ2 + 1

2
(mb − me)ẏ

2

+ 1

2
me(ẏ − eω cosωt)2 + 1

2
me(eω sinωt)2 (2.667)

V = 1

2
k(x − y)2 (2.668)

D = 1

2
c(ẋ − ẏ)2 (2.669)

Applying the Lagrange method (2.645) provides us with the equations

mẍ + c(ẋ − ẏ) + k(x − y) = 0 (2.670)

mbÿ + meeω
2 sinωt − c(ẋ − ẏ) − k(x − y) = 0 (2.671)

because

∂K

∂ẋ
= mẋ (2.672)

d

dt

(
∂K

∂ẋ

)
= mẍ (2.673)

∂D

∂ẋ
= c(ẋ − ẏ) (2.674)

∂V

∂x
= k(x − y) (2.675)

∂K

∂ẏ
= mbẏ − meeω cosωt (2.676)

d

dt

(
∂K

∂ẏ

)
= mbÿ + meeω

2 sinωt (2.677)
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∂D

∂ẏ
= −c(ẋ − ẏ) (2.678)

∂V

∂y
= −k(x − y) (2.679)

Using z = x − y, we may combine Eqs. (2.670) and (2.671) to find the equation of
relative motion

mmb

mb + m
z̈ + cż + kz = mme

mb + m
eω2 sinωt (2.680)

which is equal to

z̈ + 2ξωn ż + ω2
n z = εeω2 sinωt (2.681)

ε = me

mb
(2.682)

Example 90 � (Generalized forces)
1. Elastic force:
An elastic force is a recoverable force from an elastic body that has changed its

internal energy. An elastic body is a body for which any produced work is stored in
the body in the form of internal energy, and is recoverable. Therefore, the variation
of the internal potential energy of the body, V = V (q, t) would be

δV = −δW =
n∑

i=1

Qiδqi (2.683)

where qi is the generalized coordinate of the particle i of the body, δW is the virtual
work of the generalized elastic force Q:

Qi = − ∂V

∂qi

(2.684)

2. Dissipation force:
A dissipative force between two bodies is proportional to and in opposite direc-

tion of the relative velocity vector v between two bodies:

Qi = −cifi(vi)
vi

vi

(2.685)

The coefficient ci is a constant, fi(vi) is the velocity function of the force, and vi

is the magnitude of the relative velocity:

vi =

√√√√√
3∑

j=1

v2
ij (2.686)
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The virtual work of the dissipation force is

δW =
n1∑

i=1

Qiδqi (2.687)

Qi = −
n1∑

k=1

ckfk(vk)
∂vk

∂q̇i

(2.688)

where n1 is the total number of dissipation forces. By introducing the dissipation
function D as

D =
n1∑

i=1

∫ vi

0
ckfk(zk)dz (2.689)

we have

Qi = −∂D

∂q̇i

(2.690)

The dissipation power P of the dissipation force Qi is

P =
n∑

i=1

Qiq̇i =
n∑

i=1

q̇i

∂D

∂q̇i

(2.691)

2.6 � Quadratures

If [m] is an n × n square matrix and x is an n × 1 vector, then S is a scalar function
called quadrature and is defined by

S = xT[m]x (2.692)

The derivative of the quadrature S with respect to the vector x is

∂S

∂x
= ([m] + [m]T)x (2.693)

Kinetic energy K , potential energy V , and dissipation function D are quadratures

K = 1

2
ẋT[m]ẋ (2.694)

V = 1

2
xT[k]x (2.695)

D = 1

2
ẋT[c]ẋ (2.696)
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and, therefore,

∂K

∂ ẋ
= 1

2

([m] + [m]T)ẋ (2.697)

∂V

∂x
= 1

2

([k] + [k]T)x (2.698)

∂D

∂ ẋ
= 1

2

([c] + [c]T)ẋ (2.699)

Employing quadrature derivatives and the Lagrange method,

d

dt

∂K

∂ ẋ
+ ∂K

∂x
+ ∂D

∂ ẋ
+ ∂V

∂x
= F (2.700)

δW = FT∂x (2.701)

the equation of motion for a linear n degree-of-freedom vibrating system becomes

[m]ẍ + [c]ẋ + [k]x = F (2.702)

where [m], [c], [k] are symmetric matrices:

[m] = 1

2

([m] + [m]T) (2.703)

[c] = 1

2

([c] + [c]T) (2.704)

[k] = 1

2

([k] + [k]T) (2.705)

Quadratures are also called Hermitian forms.

Proof Let us define a general asymmetric quadrature as

S = xT[a]y =
∑

i

∑

j

xiaij yj (2.706)

If the quadrature is symmetric, then x = y and

S = xT[a]x =
∑

i

∑

j

xiaij xj (2.707)

The vectors x and y may be functions of n generalized coordinates qi and time t :

x = x(q1, q2, . . . , qn, t) (2.708)

y = y(q1, q2, . . . , qn, t) (2.709)

q = [
q1 q2 · · · qn

]T (2.710)
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The derivative of x with respect to q is a square matrix

∂x
∂q

=

⎡

⎢⎢⎢⎢⎣

∂x1
∂q1

∂x2
∂q1

· · · ∂xn

∂q1
∂x1
∂q2

∂x2
∂q2

· · · . . .

. . . · · · . . . · · ·
∂x1
∂qn

· · · · · · ∂xn

∂qn

⎤

⎥⎥⎥⎥⎦
(2.711)

which can also be expressed by

∂x
∂q

=

⎡

⎢⎢⎢⎢⎣

∂x
∂q1
∂x
∂q2

. . .

∂x
∂qn

⎤

⎥⎥⎥⎥⎦
(2.712)

or

∂x
∂q

=
[

∂x1
∂q

∂x2
∂q . . . ∂xn

∂q

]
(2.713)

The derivative of S with respect to an element of qk is

∂S

∂qk

= ∂

∂qk

∑

i

∑

j

xiaij yj

=
∑

i

∑

j

∂xi

∂qk

aij yj +
∑

i

∑

j

xiaij

∂yj

∂qk

=
∑

j

∑

i

∂xi

∂qk

aij yj +
∑

i

∑

j

∂yj

∂qk

aij xi

=
∑

j

∑

i

∂xi

∂qk

aij yj +
∑

j

∑

i

∂yi

∂qk

ajixj (2.714)

and, hence, the derivative of S with respect to q is

∂S

∂q
= ∂x

∂q
[a]y + ∂y

∂q
[a]Tx (2.715)

If S is a symmetric quadrature, then

∂S

∂q
= ∂

∂q

(
xT[a]x) = ∂x

∂q
[a]x + ∂x

∂q
[a]Tx (2.716)
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and if q = x, then the derivative of a symmetric S with respect to x is

∂S

∂x
= ∂

∂x

(
xT[a]x) = ∂x

∂x
[a]x + ∂x

∂x
[a]Tx

= [a]x + [a]Tx = ([a] + [a]T)x (2.717)

If [a] is a symmetric matrix, then

[a] + [a]T = 2[a] (2.718)

however, if [a] is not a symmetric matrix, then [a] = [a] + [a]T is a symmetric
matrix because

aij = aij + aji = aji + aij = aji (2.719)

and, therefore,

[a] = [a]T (2.720)

Kinetic energy K , potential energy V , and dissipation function D can be ex-
pressed by quadratures:

K = 1

2
ẋT[m]ẋ (2.721)

V = 1

2
xT[k]x (2.722)

D = 1

2
ẋT[c]ẋ (2.723)

Substituting K , V , and D in the Lagrange equation provides us with the equations
of motion:

F = d

dt

∂K

∂ ẋ
+ ∂K

∂x
+ ∂D

∂ ẋ
+ ∂V

∂x

= 1

2

d

dt

∂

∂ ẋ

(
ẋT[m]ẋ)+ 1

2

∂

∂ ẋ

(
ẋT[c]ẋ)+ 1

2

∂

∂x

(
xT[k]x)

= 1

2

[
d

dt

(([m] + [m]T)ẋ
)+ ([c] + [c]T)ẋ + ([k] + [k]T)x

]

= 1

2

([m] + [m]T)ẍ + 1

2

([c] + [c]T) ˙x+1

2

([k] + [k]T)x

= [m]ẍ + [c]ẋ + [k]x (2.724)

where

[m] = 1

2

([m] + [m]T) (2.725)
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Fig. 2.38 A quarter car
model with driver

[c] = 1

2

([k] + [k]T) (2.726)

[k] = 1

2

([c] + [c]T) (2.727)

From now on, we assume that every equation of motion is found from the La-
grange method to have symmetric coefficient matrices. Hence, we show the equa-
tions of motion, thus:

[m]ẍ + [c]ẋ + [k]x = F (2.728)

and use [m], [c], [k] as a substitute for [m], [c], [k]:
[m] ≡ [m] (2.729)

[c] ≡ [c] (2.730)

[k] ≡ [k] (2.731)

Symmetric matrices are equal to their transpose:

[m] ≡ [m]T (2.732)

[c] ≡ [c]T (2.733)

[k] ≡ [k]T (2.734)

�

Example 91 � (A quarter car model with driver’s chair) Figure 2.38 illustrates a
quarter car model plus a driver, which is modeled by a mass md over a linear cushion
above the sprung mass ms.
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Assuming

y = 0 (2.735)

we find the free vibration equations of motion. The kinetic energy K of the system
can be expressed by

K = 1

2
muẋ

2
u + 1

2
msẋ

2
s + 1

2
mdẋ

2
d

= 1

2

[
ẋu ẋs ẋd

]
⎡

⎣
mu 0 0
0 ms 0
0 0 md

⎤

⎦

⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦

= 1

2
ẋT[m]ẋ (2.736)

and the potential energy V can be expressed as

V = 1

2
ku(xu)

2 + 1

2
ks(xs − xu)

2 + 1

2
kd(xd − xs)

2

= 1

2

[
xu xs xd

]
⎡

⎣
ku + ks −ks 0
−ks ks + kd −kd

0 −kd kd

⎤

⎦

⎡

⎣
xu
xs
xd

⎤

⎦

= 1

2
xT[k]x (2.737)

Similarly, the dissipation function D can be expressed by

D = 1

2
cu(ẋu)

2 + 1

2
cs(ẋs − ẋu)

2 + 1

2
cd(ẋd − ẋs)

2

= 1

2

[
ẋu ẋs ẋd

]
⎡

⎣
cu + cs −cs 0
−cs cs + cd −cd

0 −cd cd

⎤

⎦

⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦

= 1

2
ẋT[c]ẋ (2.738)

Employing the quadrature derivative method, we may find the derivatives of K , V ,
and D with respect to their variable vectors:

∂K

∂ ẋ
= 1

2

([m] + [m]T)ẋ = 1

2

([k] + [k]T)
⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦

=
⎡

⎣
mu 0 0
0 ms 0
0 0 md

⎤

⎦

⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦ (2.739)
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∂V

∂x
= 1

2

([k] + [k]T)x = 1

2

([k] + [k]T)
⎡

⎣
xu
xs
xd

⎤

⎦

=
⎡

⎣
ku + ks −ks 0
−ks ks + kd −kd

0 −kd kd

⎤

⎦

⎡

⎣
xu
xs
xd

⎤

⎦ (2.740)

∂D

∂ ẋ
= 1

2

([c] + [c]T)ẋ

= 1

2

([c] + [c]T)
⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦

=
⎡

⎣
cu + cs −cs 0
−cs cs + cd −cd

0 −cd cd

⎤

⎦

⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦ (2.741)

Therefore, we find the system’s free vibration equations of motion:

[m]ẍ + [c]ẋ + [k]x = 0 (2.742)

⎡

⎣
mu 0 0
0 ms 0
0 0 md

⎤

⎦

⎡

⎣
ẍu
ẍs
ẍd

⎤

⎦+
⎡

⎣
cu + cs −cs 0
−cs cs + cd −cd

0 −cd cd

⎤

⎦

⎡

⎣
ẋu
ẋs
ẋd

⎤

⎦

+
⎡

⎣
ku + ks −ks 0
−ks ks + kd −kd

0 −kd kd

⎤

⎦

⎡

⎣
xu
xs
xd

⎤

⎦ = 0 (2.743)

Example 92 � (Different [m], [c], and [k] arrangements) Mass, damping, and stiff-
ness matrices [m], [c], [k] for a vibrating system may be arranged in different forms
with the same overall kinetic energy K , potential energy V , and dissipation function
D. For example, the potential energy V for the quarter car model that is shown in
Fig. 2.38 may be expressed by different [k]:

V = 1

2
ku(xu)

2 + 1

2
ks(xs − xu)

2 + 1

2
kd(xd − xs)

2 (2.744)

V = 1

2
xT

⎡

⎣
ku + ks −ks 0
−ks ks + kd −kd

0 −kd kd

⎤

⎦x (2.745)

V = 1

2
xT

⎡

⎣
ku + ks −2ks 0

0 ks + kd −2kd
0 0 kd

⎤

⎦x (2.746)
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V = 1

2
xT

⎡

⎣
ku + ks 0 0
−2ks ks + kd 0

0 −2kd kd

⎤

⎦x (2.747)

The matrices [m], [c], and [k], in K , D, and V , may not be symmetric; however,
the matrices [m], [c], and [k] in ∂K/∂ ẋ, ∂D/∂ ẋ, ∂V/∂x are always symmetric.

When a matrix [a] is diagonal, it is symmetric and

[a] = [a] (2.748)

A diagonal matrix cannot be written in different forms. The matrix [m] in Exam-
ple 91 is diagonal and, hence, K has only one form, (2.736).

Example 93 (Quadratic form and sum of squares) We can write the sum of x2
i in the

quadratic form,

n∑

i=1

x2
i = xTx = xTIx (2.749)

where

xT = [
x1 x2 x3 · · · xn

]
(2.750)

and I is an n × n identity matrix. If we are looking for the sum of squares around a
mean value x0, then

n∑

i=1

(xi − x0)
2 =

n∑

i=1

x2
i − nx2

0 = xTx − 1

n

(
n∑

i=1

xi

)(
n∑

i=1

xi

)

= xT x − 1

n

(
xT 1n

)(
1T
n x

)

= xT
(

I − 1

n
1n1T

n

)
x (2.751)

where

1T
n = [

1 1 · · · 1
]

(2.752)

Example 94 � (Positive definite matrix) A matrix [a] is called positive definite if
xT[a]x > 0 for all x �= 0. A matrix [a] is called positive semidefinite if xT[a]x ≥ 0
for all x.

The kinetic energy is positive definite, and this means we cannot have K = 0
unless ẋ = 0. The potential energy is positive semidefinite and this means that we
have V ≥ 0 as long as x > 0; however, it is possible to have a especial x0 > 0 at
which V = 0.

A positive definite matrix, such as the mass matrix [m], satisfies Silvester’s crite-
rion, which is that the determinant of [m] and determinant of all the diagonal minors
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must be positive:

Δn =

∣∣∣∣∣∣∣∣∣

m11 m12 · · · m1n

m21 m22 · · · m2n

...
. . .

. . .
...

mn1 mn2 · · · mnn

∣∣∣∣∣∣∣∣∣

> 0

Δn−1 =

∣∣∣∣∣∣∣∣∣

m11 m12 · · · m1,n−1
m21 m22 · · · m2,n−1
...

. . .
. . .

...

mn1 mn2 · · · mn−1,n−1

∣∣∣∣∣∣∣∣∣

> 0

· · ·Δ2 =
∣∣∣∣
m11 m12
m21 m22

∣∣∣∣ > 0 Δ1 = m11 > 0 (2.753)

Example 95 � (Symmetric matrices) Employing the Lagrange method guarantees
that the coefficient matrices of equations of motion of linear vibrating systems are
symmetric. A matrix [A] is symmetric if the columns and rows of [A] are inter-
changeable, so [A] is equal to its transpose:

[A] = [A]T (2.754)

The characteristic equation of a symmetric matrix [A] is a polynomial for which
all the roots are real. Therefore, the eigenvalues of [A] are real and distinct and [A]
is diagonalizable.

Any two eigenvectors that come from distinct eigenvalues of the symmetric ma-
trix [A] are orthogonal.

Example 96 (Linearization of energies) The kinetic energy of a system with n par-
ticles is

K = 1

2

n∑

i=1

mi

(
ẋ2
i + ẏ2

i + ż2
i

) = 1

2

3n∑

i=1

miu̇
2
i (2.755)

Expressing the configuration coordinate ui in terms of generalized coordinates qj ,
we have

u̇i =
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t
s = 1,2, . . . ,N (2.756)
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Therefore, the kinetic energy in terms of generalized coordinates is

K = 1

2

N∑

i=1

mi

(
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t

)2

= 1

2

n∑

j=1

n∑

k=1

ajkq̇j q̇k +
n∑

j=1

bj q̇j + c (2.757)

where

ajk =
N∑

i=1

mi

∂ui

∂qj

∂ui

∂qk

(2.758)

bj =
N∑

i=1

mi

∂ui

∂qj

∂ui

∂t
(2.759)

c = 1

2

N∑

i=1

mi

(
∂ui

∂t

)2

(2.760)

where

(
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t

)2

=
(

n∑

j=1

∂ui

∂qj

q̇j + ∂ui

∂t

)(
n∑

k=1

∂ui

∂qk

q̇k + ∂ui

∂t

)

=
n∑

j=1

n∑

k=1

(
∂ui

∂qj

∂ui

∂qk

)
q̇j q̇k

+ 2
n∑

j=1

∂ui

∂qj

∂ui

∂t
q̇j +

(
∂ui

∂t

)2

(2.761)

Using these expressions, we may show the kinetic energy of the dynamic system:

K = K0 + K1 + K2 (2.762)

where

K0 = 1

2

N∑

i=1

mi

(
∂ui

∂t

)2

(2.763)

K1 =
n∑

j=1

N∑

i=1

mi

∂ui

∂qj

∂ui

∂t
q̇j (2.764)
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K2 = 1

2

n∑

j=1

n∑

k=1

N∑

i=1

mi

∂ui

∂qj

∂ui

∂qk

q̇j q̇k (2.765)

where

akj = ajk =
N∑

i=1

mi

∂ui

∂qk

∂ui

∂qj

=
N∑

i=1

mi

∂u̇i

∂q̇k

∂u̇i

∂q̇j

(2.766)

If the coordinates ui do not depend explicitly on time t , then ∂ui/∂t = 0, and we
have

K = K2 = 1

2

n∑

j=1

n∑

k=1

ajkq̇j q̇k = 1

2

n∑

j=1

n∑

k=1

∂2K(0)

∂qj ∂qi

q̇j q̇k

= 1

2

n∑

j=1

n∑

k=1

mij q̇j q̇k (2.767)

The kinetic energy is a scalar quantity and, because of (2.755), must be positive
definite. The first term of (2.757) is a positive quadratic form. The third term of
(2.757) is also a nonnegative quantity, as indicated by (2.760). The second term of
(2.755) can be negative for some q̇j and t . However, because of (2.755), the sum of
all three terms of (2.757) must be positive:

K = 1

2
q̇T[m]q̇ (2.768)

The generalized coordinate qi represent deviations from equilibrium. The poten-
tial energy V is a continuous function of generalized coordinates qi and, hence, its
expansion is

V (q) = V (0) +
n∑

i=1

∂V (0)

∂qi

qi + 1

2

n∑

j=1

n∑

i=1

∂2V (0)

∂qj ∂qi

qiqj + · · · (2.769)

where ∂V (0)/∂qi and ∂2V (0)/(∂qj ∂qi) are the values of ∂V/∂qi and ∂2V/(∂qj ∂qi)

at q = 0, respectively. By assuming V (0) = 0, and knowing that the first derivative
of V is zero at equilibrium

∂V

∂qi

= 0 i = 1,2,3, . . . , n (2.770)

we have the second-order approximation

V (q) = 1

2

n∑

j=1

n∑

i=1

kij qiqj (2.771)
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kij = ∂2V (0)

∂qj ∂qi

(2.772)

where kij are the elastic coefficients. The second-order approximation of V is zero
only at q = 0. The expression (2.771) can also be written as a quadrature:

V = 1

2
qT[k]q (2.773)

2.7 � Variational Dynamics

Consider a function f of x(t), ẋ(t), and t :

f = f (x, ẋ, t) (2.774)

The unknown variable x(t), which is a function of the independent variable t , is
called a path. Let us assume that the path is connecting the fixed points x0 and xf
during a given time t = tf − t0. So x = x(t) satisfies the boundary conditions

x(t0) = x0 x(tf) = xf (2.775)

The time integral of the function f over x0 ≤ x ≤ xf is J (x) such that its value
depends on the path x(t):

J (x) =
∫ tf

t0

f (x, ẋ, t)dt (2.776)

where J (x) is called an objective function or a functional.
The particular path x(t) that minimizes J (x) must satisfy the following equation:

∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (2.777)

This equation is the Lagrange or Euler–Lagrange differential equation and is in
general of second order.

Proof To show that a path x = x�(t) is a minimizing path for the functional J (x) =∫ tf
t0

f (x, ẋ, t)dt with boundary conditions (2.775), we need to show that

J (x) ≥ J
(
x�)

(2.778)

for all continuous paths x(t). Any path x(t) satisfying the boundary conditions
(2.775) is called an admissible path. To see that x�(t) is the optimal path, we may
examine the integral J for every admissible path. Let us define an admissible path
by superposing another admissible path y(t) onto x�,

x(t) = x� + εy(t) (2.779)
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where

y(t0) = y(tf) = 0 (2.780)

and ε is a small parameter

ε � 1 (2.781)

Substituting x(t) in J of Eq. (2.776) and subtracting from J (x�) provides us with
ΔJ :

ΔJ = J
(
x� + εy(t)

)− J
(
x�)

=
∫ tf

t0

f
(
x� + εy, ẋ� + εẏ, t

)
dt −

∫ tf

t0

f
(
x�, ẋ�, t

)
dt (2.782)

Let us expand f (x� + εy, ẋ� + εẏ, t) about (x�, ẋ�)

f
(
x� + εy, ẋ� + εẏ, t

)

= f
(
x�, ẋ�, t

)+ ε

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)

+ ε2
(

y2 ∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2 ∂2f

∂ẋ2

)
dt + O

(
ε3) (2.783)

and find

ΔJ = εV1 + ε2V2 + O
(
ε3) (2.784)

where

V1 =
∫ tf

t0

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)
dt (2.785)

V2 =
∫ tf

t0

(
y2 ∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2 ∂2f

∂ẋ2

)
(2.786)

The first integral, V1, is called the first variation of J , and the second integral, V2, is
called the second variation of J . All the higher variations are combined and shown
as O(ε3). If x� is the minimizing path, then it is necessary that ΔJ ≥ 0 for every
admissible y(t). If we divide ΔJ by ε and make ε → 0, then we find a necessary
condition for x� to be the optimal path as V1 = 0. This condition is equivalent to

∫ tf

t0

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)
dt = 0 (2.787)

By integrating by parts, we may write

∫ tf

t0

ẏ
∂f

∂ẋ
dt =

(
y

∂f

∂ẋ

)tf

t0

−
∫ tf

t0

y
d

dt

(
∂f

∂ẋ

)
dt (2.788)
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Because of y(t0) = y(tf) = 0, the first term on the right-hand side is zero. Therefore,
the minimization integral condition (2.787) for every admissible y(t) reduces to

∫ tf

t0

y

(
∂f

∂x
− d

dt

∂f

∂ẋ

)
dt = 0 (2.789)

The terms in parentheses are continuous functions of t , evaluated on the optimal path
x�, and they do not involve y(t). Therefore, the only way for the bounded integral
of the parentheses, (

∂f
∂x

− d
dt

∂f
∂ẋ

), multiplied by a nonzero function y(t) from t0 and
tf, to be zero is

∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (2.790)

Equation (2.790) is a necessary condition for x = x�(t) to be a solution of the min-
imization problem (2.776). This differential equation is called the Euler–Lagrange
or Lagrange equation. The second necessary condition to have x = x�(t) as a min-
imizing solution is that the second variation, evaluated on x�(t), must be negative.

�

Example 97 � (Basic lemma) Consider two fixed points x1 and x2(> x1) and g(x)

as a continuous function for x1 ≤ x ≤ x2. If
∫ x2

x1

f (x)g(x)dx = 0 (2.791)

for every choice of the continuous and differentiable function f (x) for which

f (x1) = f (x2) = 0 (2.792)

then

g(x) = 0 (2.793)

identically in x1 ≤ x ≤ x2. This result is called the basic lemma.
To prove the lemma, let us assume that (2.793) does not hold. Therefore, suppose

there is a particular x0 of x in x1 ≤ x0 ≤ x2 for which g(x0) �= 0. At the moment,
let us assume that g(x0) > 0. Because g(x) is continuous, there must be an interval
around x0 such as x10 ≤ x0 ≤ x20 in which g(x) > 0 everywhere. However, (2.791)
cannot then hold for every permissible choice of f (x). A similar contradiction is
reached if we assume g(x0) < 0. Therefore, the lemma is correct.

Example 98 � (Lagrange equation for extremizing J = ∫ 2
1 ẋ2 dt) The Lagrange

equation for extremizing the functional J ,

J =
∫ 2

1
ẋ2 dt (2.794)
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is
∂f

∂x
− d

dt

∂f

∂ẋ
= −ẍ = 0 (2.795)

which shows that the optimal path is

x = C1t + C2 (2.796)

The boundary conditions x(1), x(2) provide C1 and C2. For example, assuming
boundary conditions x(1) = 0, x(2) = 3 provides us with

x = 3t − 3 (2.797)

Example 99 � (Geodesics) The problem of determining the shortest path be-
tween two given points at the same level of a quantitative characteristic is called
the geodesic problem.

An example of a geodesic problem is: What is the shortest arc lying on the surface
of a sphere and connecting two given points? We can generalize the problem as
follows.

Given two points on the surface of

g(x, y, z) = 0 (2.798)

what is the equation of the shortest arc lying on (2.798) and connecting the points?
Let us express the equation of the surface in parametric form using parameters u

and v:

x = x(u, v) y = (u, v) z = z(u, v) (2.799)

the differential of the arc length may be written as

(ds)2 = (dx)2 + (dy)2 + (dz)2

= P(u, v)(du)2 + 2Q(u,v)dudv + R(u, v)(dv)2 (2.800)

where

P(u, v) =
(

∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

(2.801)

R(u, v) =
(

∂x

∂v

)2

+
(

∂y

∂v

)2

+
(

∂z

∂v

)2

(2.802)

Q(u,v) = ∂x

∂u

∂x

∂v
+ ∂y

∂u

∂y

∂v
+ ∂z

∂u

∂z

∂v
(2.803)

If the curves u = const are orthogonal to the curves v = const, the quantity Q is
zero. If the given fixed points on the surface are (u1, v1) and (u2, v2) with u2 > u1
and we express the arcs and points by

v = v(u) v(u1) = v1 v(u2) = v2 (2.804)
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then the length of the arc is given by

J =
∫ u2

u1

√

P(u, v) + 2Q(u,v)
dv

du
+ R(u, v)

(
dv

du

)2

(2.805)

Our problem, then, is to find the function v(u) that renders the integral (2.805) a
minimum. Employing the Lagrange equation, we find

∂P
∂v

+ 2 dv
du

∂Q
∂v

+ ( dv
du

)2 ∂R
∂v

2
√

P + 2Q dv
du

+ R
( dv

du

)2
− dv

du

(
Q + R dv

du√
P + 2Q dv

du
+ R

( dv
du

)2

)
= 0 (2.806)

In the special case where P , Q, and R are explicitly functions of u alone, this last
result becomes

Q + R dv
du√

P + 2Q dv
du

+ R
( dv

du

)2
= C1 (2.807)

If the curves u = const are orthogonal to the curves v = const, we have

v = C1

∫ √
P du√

R2 − C2
1R

(2.808)

Still supposing that Q = 0 but having P and R as explicit functions of v alone, we
have

u = C1

∫ √
R dv√

P 2 − C2
1P

(2.809)

As a particular case let us consider the geodesic connecting two points on a
sphere with radius r . The most convenient parameters u and v for describing po-
sition on the sphere surface are the colatitude θ and the longitude ϕ:

x = r cos θ sinϕ y = r sin θ sinϕ z = r cosϕ (2.810)

where θ is the angle between the positive z-axis and the line drawn from the sphere
center to the designated point and ϕ is the angle between the (x, z)-plane and the
half plane bounded by the z-axis and containing the designated point. Therefore,

P = r2 sin2 θ R = r Q = 0 (2.811)

ϕ = C1

∫
dv√

r2 sin4 θ − C2
1 sin2 θ

= − sin−1 cot θ√(
r

C1

)2 − 1
+ C2 (2.812)

from which it follows that

r sin θ cosϕ sinC2 − r sin θ sinϕ cosC2 − z√(
r

C1

)2 − 1
= 0 (2.813)
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Fig. 2.39 A curve joining
points P1 and P2 and a
frictionless sliding point

Using (2.810) we find that the sphere geodesic lies on the following plane, which
passes through the center of the sphere:

x sinC2 − y cosC2 − z√(
r

C1

)2 − 1
= 0 (2.814)

Therefore the shortest arc connecting two points on the surface of a sphere is the
intersection of the sphere with the plane containing the given points and the center
of the sphere. Such an arc is called a great-circle arc.

Example 100 � (Brachistochrone problem) We may use the Lagrange equation and
find the frictionless curve joining points P1 and P2, as shown in Fig. 2.39, along
which a particle falling from rest due to gravity travels from the higher to the lower
point in minimum time. This is called the brachistochrone problem.

If v is the velocity of the falling point along the curve, then the time required
to fall an arc length ds is ds/v. Then the objective function to find the curve of
minimum time is

J =
∫ s2

s1

ds

v
(2.815)

However,

ds =
√

1 + y′2 dx y′ = dy

dx
(2.816)

and according to the law of conservation of energy, we have

v = √
2gy (2.817)

Therefore, the objective function simplifies to

J =
∫ x2

x1

√
1 + y′2

2gy
dx (2.818)

Applying the Lagrange equations, we find

y
(
1 + y′2) = 2R (2.819)
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where R is a constant. The optimal curve starting from y(0) = 0 can be expressed
by the two parametric equations

x = R(θ − sin θ) y = R(1 − cos θ) (2.820)

The optimal curve is a cycloid.
The name of the problem is derived from the Greek words “βραχιστoζ ,” mean-

ing “shortest,” and “χρoνoζ ,” meaning “time.” The brachistochrone problem was
originally discussed in 1630 by Galileo Galilei (1564–1642) and was solved in 1696
by Johann and Jacob Bernoulli.

Example 101 � (Lagrange multiplier) Assume f (x) is defined on an open interval
x ∈ (a, b) and has continuous first and second-order derivatives in some neighbor-
hood of x0 ∈ (a, b). The point x0 is a local extremum of f (x) if

df (x0)

dx
= 0 (2.821)

Assume that f (x) = 0, x ∈R
n, and gi(x) = 0, i = 1,2, . . . , j , are functions defined

on an open region R
n and have continuous first- and second-order derivatives in R

n.
The necessary condition that x0 is an extremum of f (x) subject to the constraints
gi(x) = 0 is that there exist j Lagrange multipliers λi , i = 1,2, . . . , j , such that

∇
(
s +

∑
λigi

)
= 0 (2.822)

For example, we can find the minimum of f ,

f = 1 − x2
1 − x2

2 (2.823)

subject to the constraint g

g = x2
1 + x2 − 1 = 0 (2.824)

by finding the gradient of f + λg:

∇(
1 − x2

1 − x2
2 + λ

(
x2

1 + x2 − 1
)) = 0 (2.825)

which leads to

∂f

∂x1
= −2x1 + 2λx1 = 0 (2.826)

∂f

∂x2
= −2x2 + λ = 0 (2.827)

To find the three unknowns x1, x2, and λ, we employ Eqs. (2.826), (2.827), and
(2.824). There are two sets of solutions as follows:

x1 = 0 x2 = 1 λ = 2
x1 = ±1/

√
2 x2 = 1/2 λ = 1

(2.828)
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Fig. 2.40 Dido problem is to
find a planar curve y(x) with
a constant length l to
maximize the enclosed area

Example 102 (Dido problem) Consider a planar curve y(x) with a constant length l

that connects the points (−R,0) and (R,0) as shown in Fig. 2.40. The Dido problem
is to find the y(x) that maximized the enclosed area. The objective function of the
Dido problem is

J =
∫ R

−R

y dx (2.829)

However, the constant length provides us with a constraint equation:

l =
∫ R

−R

ds =
∫ R

−R

√
1 + y′2 dx (2.830)

ds =
√

1 + y′2 dx y′ = dy

dx
(2.831)

Therefore, using the Lagrange multiplier λ, the objective function with constraint
would be

J =
∫ R

−R

(
f
(
y, y′, x

)+ λg
(
y, y′, x

))
dx (2.832)

f = y g =
√

1 + y′2 (2.833)

The Lagrange equation for the constraint objective function (2.832) is

∂f

∂y
− d

dx

∂f

∂y′ + λ

(
∂g

∂y
− d

dx

∂g

∂y′

)
= 0 (2.834)

Equation (2.834) leads to

1

λ
= d

dx

y′
√

1 + y′2 (2.835)

This differential equation must be solved to determine the maximizing curve y(x).
First integration provides us with

λy′
√

1 + y′2 = x + C1 (2.836)
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Solving this equation for y′ yields

y′ = ±(x + C1)√
λ2 − (x + C1)

(2.837)

and a second integration yields

y = ±
√

λ2 − (x + C1) + C2 (2.838)

Satisfying the boundary conditions (−R,0) and (R,0), we have

C1 = C2 = 0 λ = R (2.839)

which indicates that the function y(x) is

x2 + y2 = R2 (2.840)

It is a circle with center at O and radius R.

Example 103 � (Several independent variables) We now derive the differen-
tial equations that must be satisfied by the twice-differentiable functions q1(t),
q2(t), . . . , qn(t) that extremize the integral J :

J =
∫ t2

t1

f (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t)dt (2.841)

The functions q1(t), q2(t), . . . , qn(t) achieve given the values at the fixed limits of
integration t1 and t2, where t1 < t2.

Let us show the optimal functions by q
�
i (t), i = 1,2, . . . , n. We may examine

the integral J for every admissible function. An admissible function may be defined
by

qi(t) = q
�
i + εyi(t) (2.842)

where

yi(t1) = yi(t2) = 0 (2.843)

and ε is a small parameter,

ε � 1 (2.844)

Consider a function f = f (qi, q̇i , t). The variables qi(t) satisfy the boundary con-
ditions

q1(t1) = q1 q(t2) = q2 (2.845)
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Substituting qi(t) in J and subtracting from (2.841) yields

ΔJ = J
(
q

�
i + εyi(t)

)− J
(
q

�
i

)

=
∫ tf

t0

f
(
q

�
i + εyi, q̇

�
i + εẏi , t

)
dt −

∫ tf

t0

f
(
q

�
i , q̇

�
i , t

)
dt (2.846)

Let us expand f (x� + εy, ẋ� + εẏ, t) about (x�, ẋ�):

f
(
q

�
i + εyi, q̇

�
i + εẏi , t

)

= f
(
q

�
i , q̇

�
i , t

)+ ε

(
yi

∂f

∂qi

+ ẏi

∂f

∂q̇i

)

+ ε2
(

y2
i

∂2f

∂q2
i

+ 2yi ẏj

∂2f

∂qi ∂q̇j

+ ẏ2
i

∂2f

∂q̇2
i

)
dt

+ O
(
ε3) (2.847)

and find

ΔJ = εV1 + ε2V2 + O
(
ε3) (2.848)

where

V1 =
∫ tf

t0

(
yi

∂f

∂qi

+ ẏj

∂f

∂q̇j

)
dt (2.849)

V2 =
∫ tf

t0

(
y2
i

∂2f

∂q2
i

+ 2yi ẏj

∂2f

∂qi ∂q̇j

+ ẏ2
i

∂2f

∂q̇2
i

)
(2.850)

If we divide ΔJ by ε and make ε → 0, then we find a necessary condition V1 = 0
for q

�
i to be the optimal path. By integrating V1 by parts, we may write

∫ tf

t0

ẏ1
∂f

∂q̇1
dt =

(
y1

∂f

∂q̇1

)t2

t1

−
∫ t2

t1

y1
d

dt

(
∂f

∂q̇1

)
dt (2.851)

Since y1(t1) = y2(t2) = 0, the first term on the right-hand side is zero and the inte-
gral of V1 reduces to

∫ t2

t1

y1

(
∂f

∂q1
− d

dt

∂f

∂q̇1

)
dt = 0 (2.852)

The terms in parentheses are continuous functions of t evaluated on the optimal path
x�, and they do not involve y1(t). So, the only way for the bounded integral of the
parentheses, (

∂f
∂q1

− d
dt

∂f
∂q̇1

), multiplied by a nonzero function y1(t) to be zero is if
the parentheses are zero. Therefore, the minimization integral condition for every
admissible y1(t) is

∂f

∂q1
− d

dt

∂f

∂q̇1
= 0 (2.853)
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Using a similar treatment of the successive pairs of terms of (2.851), we derive the
following n conditions to minimize (2.841):

∂f

∂qi

− d

dt

∂f

∂q̇i

= 0 i = 1,2, . . . , n (2.854)

Therefore, when a definite integral is given which contains n functions to be deter-
mined by the condition that the integral be stationary, we can vary these functions
independently. So, the Euler–Lagrange equation can be formed for each function
separately. This provides us with n differential equations.

2.8 Key Symbols

a ≡ ẍ acceleration
a, b distance, Fourier series coefficients
a, b,w,h length
a acceleration
A,B weight factor, coefficients for frequency responses
c damping
[c] damping matrix
ce equivalent damping
C mass center
d position vector of the body coordinate frame
df infinitesimal force
dm infinitesimal mass
dm infinitesimal moment
E mechanical energy, Young modulus of elasticity
f = 1/T cyclic frequency [Hz]
f,F, f,F force
FC Coriolis force
g gravitational acceleration
H height
I moment of inertia matrix
I1, I2, I3 principal moment of inertia
k stiffness
ke equivalent stiffness
kij element of row i and column j of a stiffness matrix
[k] stiffness matrix
K kinetic energy
l directional line
L moment of momentum
L= K − V Lagrangean
m mass
me eccentric mass, equivalent mass
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mij element of row i and column j of a mass matrix
mk spring mass
ms sprung mass
[m] mass matrix
n number of coils, number of decibels, number of note
N natural numbers
p pitch of a coil
P power
r frequency ratio
r position vector
t time
t0 initial time
T period
Tn natural period
v ≡ ẋ,v velocity
V potential energy
x, y, z,x displacement
x0 initial displacement
ẋ0 initial velocity
ẋ, ẏ, ż velocity, time derivative of x, y, z

ẍ acceleration
X amplitude of x

z relative displacement

Greek

α,β, γ angle, angle of spring with respect to displacement
δ deflection, angle
δs static deflection
ε mass ratio
θ angular motion coordinate
ω,ω,Ω angular frequency
ϕ,Φ phase angle
λ eigenvalue

2.9 Exercises

1. Equation of motion of vibrating systems.
Determine the equation of motion of the systems in Figs. 2.41(a) and (b) by

(a) using the energy method
(b) using the Newton method
(c) using the Lagrange method
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Fig. 2.41 Two undamped discrete vibrating systems

Fig. 2.42 A friction
coefficient measurement
device

Fig. 2.43 A slab on a
semi-cylinder

2. Friction coefficient measurement.
Figure 2.42 illustrates two rollers that turn in opposite direction with equal

angular speed ω. A slab of size t × w × l and mass m is put on the rollers.
A small disturbance or misplacement will cause the slab to oscillate about the
equilibrium position. If the coefficient of friction between the roller and the slab
is μ, determine
(a) the equation of motion of the slab
(b) the natural frequency of the slab’s oscillation for a given μ

(c) the value of μ for a measured frequency of oscillation ω

3. A slab on a semi-cylinder.
Determine the equation of motion of the slab t × w × l in Figs. 2.43 if

(a) the thickness of the slab is ignorable, t = 0
(b) � the thickness of the slab is not ignorable, t �= 0

4. � Velocity dependent friction.
The device in problem 2 is to measure the friction coefficient between the

slab and the rollers.
Assume the friction force is f = f0 − Cv where v is the relative velocity of

slab and rollers.
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Fig. 2.44 Spring connected
pendulum

(a) Determine the equation of motion of the slab if x and ẋ are assumed small.
(b) Determine the equation of motion of the slab if ẋ is comparable with Rω.
(c) Determine the equation of motion of the slab if one roller is turning with

angular speed of 2ω, assuming ẋ is very small.
5. Moving on x-axis.

The displacement of a particle moving along the x-axis is given by

x = 0.01t4 − t3 + 4.5t2 − 10 t ≥ 0

(a) Determine t1 at which x becomes positive.
(b) For how long does x remain positive after t = t1?
(c) How long does it take for x to become positive for the second time?
(d) When and where does the particle reach its maximum acceleration?
(e) Derive an equation to calculate its acceleration when its speed is given.

6. � Kinetic energy of a rigid link.
Consider a straight and uniform bar as a rigid link of a manipulator. The link

has a mass m. Show that the kinetic energy of the bar can be expressed as

K = 1

6
m(v1 · v1 + v1 · v2 + v2 · v2)

where v1 and v2 are the velocity vectors of the end points of the link.
7. Ideal spring connected pendulum.

Determine the kinetic and potential energies of the pendulum in Fig. 2.44, at
an arbitrary angle θ . The free length of the spring is l = a − b.

8. � General spring connected pendulum.
Determine the potential energy of the pendulum in Fig. 2.44, at an angle θ ,

if:
(a) The free length of the spring is l = a − 1.2b.
(b) The free length of the spring is l = a − 0.8b.

9. � Moving on a cycloid.
A particle is moving on a planar curve with the following parametric expres-

sion:

x = r(ωt − sinωt) y = r(1 − cosωt)
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Fig. 2.45 Spring connected
rectilinear oscillator

Fig. 2.46 Mathematical
model for cushion suspension

(a) Determine the speed of the particle at time t .
(b) Show that the magnitude of acceleration of the particle is constant.
(c) Determine the tangential and normal accelerations of the particle.
(d) Using ds = v dt , determine the length of the path that the particle travels up

to time t .
(e) Check if the magnitude of acceleration of the particle is constant for the

following path:

x = a(ωt − sinωt) y = b(1 − cosωt)

10. � Spring connected rectilinear oscillator.
Determine the kinetic and potential energies of the oscillator shown in

Fig. 2.45. The free length of the spring is a.
(a) Express your answers in terms of the variable angle θ .
(b) Express your answers in terms of the variable distance x.
(c) Determine the equation of motion for large and small θ .
(d) Determine the equation of motion for large and small x.

11. � Cushion mathematical model.
Figure 2.46 illustrates a mathematical model for cushion suspension. Such a

model can be used to analyze the driver’s seat, or a rubbery pad suspension.
(a) Derive the equations of motion for the variables x and z and using y as a

known input function.
(b) Eliminate z and derive a third-order equation for x.

12. � Relative frequency.
Consider a body B that is moving along the x-axis with a constant velocity u

and every T seconds emits small particles which move with a constant velocity
c along the x-axis. If f denotes the frequency and λ the distance between two
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Fig. 2.47 A two DOF
vibrating system

successively emitted particles, then we have

f = 1

T
= c − u

λ

Now suppose that an observer moves along the x-axis with velocity v. Let us
show the number of particles per second that the observer meets by the relative
frequency f ′ and the time between meeting the two successive particles by the
relative period T ′, where

f ′ = c − v

λ

Show that

f ′ ≈ f

(
1 − v − u

c

)

13. Equation of motion of a multiple DOF system.
Figure 2.47 illustrates a two DOF vibrating system.

(a) Determine the K , V , and D functions.
(b) Determine the equations of motion using the Lagrange method.
(c) � Rewrite K , V , and D in quadrature form.
(d) Determine the natural frequencies and mode shapes of the system.

14. Absolute and relative coordinates.
Figure 2.48 illustrates two similar double pendulums. We express the motion

of the left one using absolute coordinates θ1 and θ2, and express the motion of
the right one with absolute coordinate θ1 and relative coordinate θ2.
(a) Determine the equation of motion of the absolute coordinate double pendu-

lum.
(b) Determine the equation of motion of the relative coordinate double pendu-

lum.
(c) Compare their mass and stiffness matrices.

15. Static equilibrium position.
Figure 2.49 illustrates a combination of pendulums and springs.
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Fig. 2.48 Two similar double
pendulums, expressed by
absolute and relative
coordinates

Fig. 2.49 A combination of
pendulums and springs

Fig. 2.50 An elastic
pendulum

(a) Determine the value of equilibrium θ0 and static stretch of spring δ0 if we
assemble the system and let it go slowly.

(b) Determine the equation of motion of the system in terms of x measured
from the shown equilibrium position.

(c) Determine the equation of motion of the system in terms of y.
16. Elastic pendulum.

Figure 2.50 illustrates an elastic pendulum. Such a pendulum has two DOF.
(a) Determine the equations of motion using the energy method.
(b) Determine the equations of motion using the Lagrange method.
(c) Determine the equations of motion using the Newton–Euler method.
(d) Linearize the equations of motion.
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Fig. 2.51 (a) A slender as a
pendulum with variable
density. (b) A simple
pendulum with the same
length

Fig. 2.52 Four connected
pendulums

Fig. 2.53 Two spring
connected heavy discs

17. Variable density.
Figure 2.51(a) illustrates a slender as a pendulum with variable density, and

Fig. 2.51(b) illustrates a simple pendulum with the same length. Determine the
equivalent mass me is the mass density ρ = m/l is
(a) ρ = C1z

(b) ρ = C2(l − z)

(c) ρ = C3(z − l
2 )2

(d) ρ = C4(
l
2 − (z − l

2 ))2

18. Four pendulums are connected as shown in Fig. 2.52.
(a) Determine the kinetic energy K , linearize the equation and find the mass

matrix [m].
(b) Determine the potential energy V , linearize the equation and find the stiff-

ness matrix [k].
(c) Determine the equations of motion using K and V and determine the sym-

metric matrices [m] and [k].
19. Two spring connected heavy discs.

The two spring connected disc system of Fig. 2.53 is linear for small θ1

and θ2. Find the equations of motion by energy and Lagrange methods.
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Fig. 2.54 Two connected
disc system

Fig. 2.55 A pendulum and a
peg

Fig. 2.56 A pendulum on
circular wall

20. Two connected heavy discs.
Determine the equations of motion of the two connected disc system of

Fig. 2.54 by energy and Lagrange methods.
21. � A pendulum and a peg.

Determine the equation of motion of the pendulum in Fig. 2.55 using only
one variable θ or ϕ.

22. � A pendulum on circular wall.
Determine the equation of motion of the pendulum in Fig. 2.56 using the

variable θ .
23. � A wire of the shape y = f (x).

Consider a wire in an arbitrary shape given by y = f (x) as is shown in
Fig. 2.57. Determine the equation of motion of a bid with mass m that is sliding
frictionless on the wire.

24. � A particle in a cone.
A particle of mass m slides without friction inside an upside down conical

shell of semivertical angle α, as is shown in Fig. 2.58.
(a) Use the Euler equation M = d

dt
L to determine the equations of motion of

the particle.
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Fig. 2.57 A wire of the
shape of y = f (x)

Fig. 2.58 A particle of mass
m slides inside a conical shell

Fig. 2.59 A particle on a circular surface

(b) Show that it is possible for the particle to move such that it is at a constant
R with the cone axis.

(c) Determine the angular speed of the particle for a uniform motion of part (b).
25. � A particle on a circular surface.

Draw FBD of the particle in Figs. 2.59(a) and (b) for a = cR, c < 1, and
determine their equation of motion. The spring is linear and applies a tangential
force on m.

26. � Falling on a spring.
A solid mass m falls on a spring as shown in Fig. 2.60(a) or with a spring

as shown Fig. 2.60(b). The spring exerts a stiffness force Fs. Determine the
maximum compression xMax of the springs if:
(a) The restitution coefficient e = 0 and Fs = kx.
(b) The restitution coefficient e = 0 and Fs = kx3.
(c) The restitution coefficient e = 1 and Fs = kx3.

We define a restitution coefficient e by v′
2 − v′

1 = e(v1 − v2),0 ≤ e ≤ 1,
where v1, v2 are the speed of the two particles before impact and v′

1, v′
2 are their

speeds after impact. The case e = 1 indicates an inelastic collision in which the
particles stick to each other after impact, and the case e = 0 is called the plastic
collision in which the energy conserves in impact.
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Fig. 2.60 A solid mass m

falls on or with a spring

Fig. 2.61 Pendulums with
flexible support

Fig. 2.62 Heavy pendulums,
with and without a revolute
joint

27. � Pendulum with flexible support.
Figures 2.61(a) and (b) illustrate two pendulums with flexible supports in

directions of x and y, respectively. Determine the equations of motion for:
(a) A pendulum with a flexible support in the x-direction of Fig. 2.61(a).
(b) A pendulum with a flexible support in the y-direction of Fig. 2.61(b).

28. � Heavy pendulum.
Figure 2.62(a) illustrates a heavy disc with mass m and radius R suspended

by a massless rod of length l. Figure 2.62(b) illustrates another heavy disc with
mass m and radius R that is attached to a massless rod of length l by a friction-
less revolute joint at its center.
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(a) Derive the equations of motion for the pendulums in (a) and (b).
(b) Linearize the equations of motion. Is it possible to compare the periods of

the oscillations?
(c) � Assume that the disc of Fig. 2.62(b) has an angular velocity of ω when

θ = 0. Determine the equation of motion, linearize the equation, and deter-
mine the period of oscillation.



http://www.springer.com/978-1-4614-4159-5


	Chapter 2: Vibration Dynamics
	2.1 Newton-Euler Method
	2.2  Energy
	2.3  Rigid Body Dynamics
	2.3.1  Coordinate Frame Transformation
	2.3.2  Velocity Kinematics
	2.3.3  Acceleration Kinematics
	2.3.4  Translational Dynamics
	2.3.5  Rotational Dynamics
	2.3.6  Mass Moment Matrix

	2.4 Lagrange Method
	2.4.1  Lagrange Form of Newton Equation
	2.4.2 Lagrangean Mechanics

	2.5 Dissipation Function
	2.6  Quadratures
	2.7  Variational Dynamics
	2.8 Key Symbols
	Greek

	2.9 Exercises


