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1 Introduction

In this chapter we overview our recent work on mathematical models for the regula-
tion of the primary immune response to viral infections and immunodominance. The
primary immune response to a viral infection can be very rapid, yet transient. Prior
to such a response, potentially reactive T cells wait in lymph nodes until stimulated.
Upon stimulation, these cells proliferate for a limited duration and then undergo
apoptosis or enter dormancy as memory cells. The mechanisms that trigger the
contraction of the T cell population are not well understood. Immunodominance
refers to the phenomenon in which simultaneous T cell responses against multiple
target epitopes organize themselves into distinct and reproducible hierarchies. In
many cases, eliminating the response to the most dominant epitope allows responses
to subdominant epitopes to expand more fully. Likewise, if the two most dominant
epitopes are removed, then the third most dominant response may expand. The
mechanisms that drive immunodominance are also not well understood.

In order to understand the processes that control the T cells expansion and
contraction, Mercado et al. demonstrated experimentally that the kinetics of CD8+
T cell expansion and contraction are determined within the first day of infection
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[20]. In another study of CD8+ T cell expansion, Kaech et al. showed that upon
antigenic stimulation, naive CD8+ T cells divide at least 7-10 times and differentiate
into functional effector and memory cells even if antigen is removed [13]. An
alternative experimental approach by van Stipdonk et al. also focused on CD8+ T
cell stimulation [31]. They showed that naive CD8+ T cells become activated after
only 2h of exposure to mature antigen-presenting cells (APCs). After activation,
these T cells divided and differentiated into effector and eventually memory cells
without a need for further antigenic stimulation. In a subsequent paper, they
observed that naive CD8+ T cells that have been stimulated for 20h were able
to carry out extensive proliferation and cytotoxic activity, characteristic of a fully
developed immune response [30]. They proposed that the fate of a T cell response
is governed by a “cell-instrinsic developmental program” that is set even before the
first cell division takes place.

A couple of mathematical models of the T cell proliferation program have been
developed in parallel to these experiments. Antia et al. devised a mathematical
model to investigate whether the program is completely specified by the initial
encounter with antigen or whether it can be subsequently modified by the amount
of antigen present [1]. Their results favor the second paradigm in which the
T cell population briefly expands in response to the amount of antigen present
before committing to a fixed program. Wodarz and Thomsen [32] developed a
mathematical model to find the optimal fixed program that could respond effectively
to a wide variety of infections. They concluded that the 7-10 divisions observed
experimentally represented such an optimum.

All together the experimental and mathematical modeling papers propose a
general paradigm for T cell expansion, which can be stated as follows: upon
stimulation, T cells enter a minimal developmental program of about 7-10 divisions
that is followed by a period of antigen-dependent proliferation that terminates after
a certain time or after a certain number of cell divisions.

While the precise mechanisms of immunodominance are not well understood,
the majority of experimental and theoretical works agree on some form of T cell
competition [4, 11, 14, 15, 22, 23]. The two most prevailing theories on the matter
are that either T cells passively compete for a limited resource, most likely access
to APCs, or that T cells actively suppress the development of other T cells.

Our approach to deriving a mathematical model of immunodominance is based
on extending the adaptive regulation model to consider the case of multiple,
simultaneous T cell responses. This point of view implies that immunodominance
may occur as a natural result of the iTreg-mediated contraction of the T cell response
proposed in [17].

Several mathematical models for immunodominance have been developed in the
literature. Here we mention several key works and refer to [16] for a more complete
overview of these works and their results. De Boer and Perelson show that for
each target epitope only the T cell clone with the highest affinity will survive long-
term T cell competition [7, 8]. Nowak develops a mathematical model and predicts
that for an antigenically homogeneous virus population, the immune response will
ultimately be directed against only one epitope, a situation known as complete
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immunodominance [21]. De Boer et al. formulate a mathematical model to analyze
experimental measurements of the CD8+ T cell response to lymphocytic chori-
omeningitis virus [10]. The response consists of one immunodominant response
and one subdominant response against different epitopes. De Boer et al. propose
that differences in growth rate and recruitment times of different T cell populations
can account for immunodominance. Antia et al. also formulate a model in which
multiple epitope-specific T cell populations undergo a brief period of expansion in
response to antigen, followed by a period of antigen-independent proliferation and
contraction [1]. Handel and Antia develop a mathematical model to explain the shift
in the immunodominance hierarchy between the primary and secondary responses
to influenza A [12]. Scherer et al. present an alternative mathematical model in
which the down-modulation of antigen-presentation leads to long-term coexistence
of T cell responses [25]. A related work by Scherer et al. is an agent-based model
to understand whether T cells compete for nonspecific stimuli, such as access to the
surface of APCs, or for specific stimuli, such as MHC:epitope complexes [27].

Our main goal in developing mathematical models for the primary immune
response and immunodominance is to identify at least some of the main mechanisms
by which the primary immune response is regulated and by which immun-
odominance emerges. After carefully studying other approaches, we developed
mathematical models that are based on the following basic principles:

1. The primary immune response should be adaptively controlled. This adaptive
process can work in combination with any proliferation preprograms.

2. The adaptive control is conducted by regulatory cells. The number of regulatory
cells cannot be directly proportional to the total number of effector cells as the
body has no way of keeping track of this number. Instead, the process should
depend only on the dynamics of individual cells.

3. Immunodominance is a by-product of adaptive regulation. Adaptive regulatory
cells, which are created in an epitope-specific way, can then regulate the system
in a nonspecific fashion.

When it comes to adaptive regulation, our main observation in [17] was that the
preprogram paradigm as is, is inconsistent with the experimental data of Badovinac
et al. [2], which showed that a 10,000-fold difference in antigen-specific naive T
cell concentrations only led to a 13-fold higher peak in the effector response. Any
mechanism that relies only on a preprogrammed cell division must scale linearly
with the precursor frequencies. This led us to derive a mathematical model that is
based on adaptive regulatory T cells (iTregs). Our hypothesis is that T cell responses
are adaptively regulated in a process that results from the dynamics of immune cells
that interact based on relatively simple rules. Following the same line of thought, our
model of immunodominance from [16] is based on considering immunodominance
as a by-product of the regulated T cell contraction. It is sufficient to add a single rule
to the model of adaptive regulation to explain immunodominance.

The model in [16] represents an “extended” model that divides T cells into helper
(CD4)+ and killer (CD8+) subpopulations and considers interactions among helper
T cells, killer T cells, and iTregs. This model has the advantage of presenting a more
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encompassing view of immune interactions; however, its complexity obfuscates the
key feedback loop that drives the expansion and contraction of a primary T cell
response and the development of immunodominance.

To gain insight into regulatory mechanisms, we will begin by presenting a
simplified model that elucidates the key feedback loop, while still capturing the
qualitative behavior of the extended model from [16]. The primary simplification is
that the helper and killer subpopulations are considered as a collective population
of effector T cells, since the expansion and contraction of helper and killer T cells
occur roughly in parallel [9]. In this manner, the simplified model focuses on the
negative feedback between the effector and regulatory T cell populations. Using
the simplified model, we will discuss insights that are difficult to obtain using the
extended model.

The structure of this chapter is as follows. In Sect. 2 we present our mathematical
models of adaptive regulatory T cell-mediated contraction. First, in Sect.2.1 we
present the simplified model of adaptive regulation, a model that does not separate
helper and killer T cells. This model is taken from [17]. The model is extended to
include helper T cells in Sect. 2.2. Mathematical models of immunodominance are
described in Sect. 3. The models of immunodominance are based on the models of
adaptive regulation and follow the same pattern of presentation: we start in Sect. 3.1
with the basic model of immunodominance that does not include helper T cells. This
model is the original model we proposed, a model that has not yet been published.
We then continue in Sect.3.2 with the extended model that includes helper T
cells. This model was published in [16]. Numerical results are given in Sect. 4. We
show some results for the adaptive regulation model, results that demonstrate the
robustness of the system to small perturbations in the precursor frequencies. We then
continue in Sect. 4.2 with simulations of both immunodominance models, focusing
on results that were obtained with the simple model. A discussion and concluding
remarks are provided in Sect. 5.

2 Mathematical Model of Adaptive Regulatory
T cell-Mediated Contraction

In this section we overview our models for adaptive regulatory T cell-mediated
contraction. We start in Sect.2.1 with the basic adaptive regulation model we
introduced in [17]. This model is based on the hypothesis that primary response
may be governed by a feedback control system involving adaptive regulatory cells
(iTregs) rather than by intrinsic, intracellular feedback mechanisms.

In Sect.2.2 we extend the adaptive regulation model of Sect.2.1 to a more
comprehensive model that includes helper T cells and positive growth signals. While
this model better adheres to the biology when compared with the basic model in
Sect. 2.1, the basic principle that enables that contraction of the immune response
remains the same: adaptive regulatory cells provide the required negative feedback
to generate the desired contraction.
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Fig. 1 Diagram of the iTreg model. (1) Immature APCs pick up antigen at the site of infection at a
time-dependent rate a(t). These APCs mature and migrate to the lymph node. (2) Mature antigen-
bearing APCs present antigen to naive T cells causing them to activate and enter the minimal
developmental program of m divisions. (3) Effector cells that have completed the minimal program
continue to divide upon further interaction with mature APCs. (4) Effector cells differentiate into
iTregs at rate r. (5) The iTregs suppress effector cells. Although not indicated, each cell in the
diagram has a natural death rate

In both models, the number of regulatory cells is dynamically controlled. A
certain ratio of the effector cells are converted into regulatory cells. Such a process
is postulated to be controlled on the level of the individual cell possibly even in a
probabilistic way. There is no need for a central control of the number of regulatory
cells that depends on the total number of effector cells. Such a mechanism would be
biologically irrelevant. The precise means by which some of the effector cells turn
into regulatory cells is irrelevant for the present work. It is possible that asymmetric
differentiation is involved, or perhaps effector cells actually change their trait. In any
event, all that matters is that a certain fraction of the effector cells will eventually
turn into regulatory cells, due to a local process on the level of the individual cell.

2.1 Mathematical Model of Adaptive Regulation:
Feedback Loop

We start with the simple model for monoclonal T cell responses taken from [17].
This model can be summarized in five steps (illustrated in Fig. 1):

1. APCs mature, present relevant target antigen, and migrate from the site of
infection to the draining lymph node.
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2. In the lymph node, APCs activate naive T cells that enter a minimal developmen-
tal program of m cell divisions.

3. T cells that have completed the minimal developmental program become effector
cells that keep dividing in an antigen-dependent manner as long as they are not
suppressed by iTregs.

4. Effector cells differentiate into iTregs at a constant rate.

5. The iTregs suppress effector cells upon interaction.

For convenience, we group the entire T cell population into one unit consisting
of both CD4+ and CD8+ T cells. This assumption simplifies the model and focuses
on the feedback loop between effector cells and iTregs. This simplification does not
capture the heterogeneous roles of CD4+ and CD8+ T cells in driving and regulating
the overall T cell response. In particular, CD4+ T cells are the primary secreters
of the cytokine interleukin-2 (IL-2), which drives T cell proliferation. In addition,
nonregulatory CD4+ T cells are the major, if not only, source of iTregs generated
in the periphery [24]. On the other hand, CD8+ T cells proliferate more rapidly and
extensively than CD4+ T cells and also exhibit cytotoxic activity [9]. To capture
these differences, we develop a more extensive model that includes separate CD4+
and CD8+ subpopulations in Sect. 2.2.

In addition, we assume that iTregs do not undergo further proliferation after
differentiating from effector T cells. As with the previous assumption, this sim-
plification also allows the model to focus on the feedback loop between effector
cells and iTregs without incorporating an additional positive stimulation of iTreg
via APCs. We also remove this simplification in the extended model of Sect. 2.2.

The T cell dynamics in the model are based on the concept of antigen-
independent T cell proliferation and contraction. Various experiments have shown
that the during a primary CD8+ T cell response, T cell kinetics are determined
early on (after approximately 24 h of stimulation) [20], T cell expansion and
differentiation are antigen-independent after initial exposure (approximately 20 h
of stimulation) [30], and T cells divide at least 7-10 times after stimulation even
if antigen is removed [13]. Similar results have been found for CD4+ T cells
[33]. These results along with other related studies have led to the notion of
antigen-independent T cell program. The main principle is that following initial
stimulation, the primary T cell response is governed by an independent program
that is insensitive to the nature and duration of subsequent antigen stimulation.
The implication is that T cells somehow regulate themselves during a primary
response without feedback from the antigen source. Since in this chapter we only
consider immunodominance during a primary T cell response, we model T cell
dynamics from the perspective of an antigen-independent, self-regulating process.
Other examples of mathematical models of antigen-independent primary T cell
response dynamics can be found in Antia et al. and Wodarz et al. [1,32].

The mathematical model corresponding to Fig. 1 is formulated as the following
system of delayed differential equations (DDEs):

Ao(t) = sx — doAo(t) — a(r)Ao(1), 1)
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Ai(1) = a(t)Ao(t) — diA (1), 2

KO(1) = s — 80K (1) — kAL (1)K (1), 3

K(t) =2"kA (1 — 0)K°(t — &) — kA (1)K (1) + 2kA (1 — p)K (1 — p) @
— (81 +r)K(t) — kR(1)K(1),

R(t) = rK(t) — §1R(1). )

Here, Ay is the concentration of APCs at the site of infection, A; is the concentration
of APCs that have matured, started to present target antigen, and migrated to the
lymph node, K is the concentration of naive T cells in the lymph node, K is the
concentration of effector cells, and R is the concentration of iTregs.

Equation (1) pertains to APCs waiting at the site of infection. These cells
are supplied at a constant rate s, and die at a proportional rate dy. Without
stimulation, the population remains at its equilibrium level, s,/do. The time-
dependent coefficient a(t) is the rate of APC stimulation from antigen at the site
of infection. Equation (2) pertains to APCs that have matured, started to present
relevant antigen, and migrated to the lymph node. The first term of the equation
corresponds to the rate at which these APCs enter the lymph node. The second term
is the natural death rate of this population.

Equation (3) pertains to naive T cells. This population is replenished at a constant
rate sx and dies at a proportional rate &y. Without stimulation, the population
remains at its equilibrium level, sx /8. The third term in this equation is the rate
of stimulation of naive T cells by mature APCs. The bilinear form of this term
follows the law of mass action where k is the proportionality constant (or kinetic
coefficient).

Equation (4) pertains to effector cells. The first term gives the rate at which
activated naive T cells enter the effector state after finishing the minimal devel-
opmental program. This term is similar to the last term of Eq. (3), except that it
has an additional coefficient of 2" and it depends on cell concentrations at time
t — 0. The coefficient 2™ accounts for the increase in population of naive T cells
after m divisions, and the time delay o is the duration of the minimal developmental
program. The second term is the rate at which effector cells are stimulated by mature
APCs for further division, and the third term is the rate in which cells reenter the
effector population after having divided once. The fourth term is the rate that effector
cells exit the population through death at rate d; or differentiation into iTregs at
rate r. The final term is the rate that effector cells are suppressed by iTregs. We
assume that the rate of iTreg—effector interactions follows the same mass action law
as APC-T cell interactions.

Equation (5) pertains to iTregs. The first term is the rate at which effector cells
differentiate into iTregs, and the second term is the rate at which iTregs die. We
assume that iTregs have the same death rate as effector cells.

The parameter estimates used for this model are taken from [17] and are
summarized in Table 1. For the function a(t), representing the rate of antigen
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Table 1 Estimates for model parameters

Parameter Description Estimate

Ao(0) Initial concentration of immature APCs 10

K°(0) Initial concentration of naive T cells 0.04

dy Death/turnover rate of immature APCs 0.03

dy Death/turnover rate of mature APCs 0.8

& Death/turnover rate of naive T cells 0.03

)] Death/turnover rate of effector T cells 0.4

S Supply rate of immature APCs dpAp(0) =0.3

Sk Supply rate of naive T cells SKk°(0) = 0.0012
k Kinetic coefficient 20

m # of divisions in minimal developmental program 7

n Maximum number of antigen-dependent divisions 3to 10

p Duration of one T cell division 1/3

c Duration of minimal developmental program I1+(m—1)p=3
a(t) Rate of APC stimulation Eq. (6)

b Duration of antigen availability 10

c Level of APC stimulation 1

r Rate of differentiation of effector cells into iTregs 0.01

Concentrations are in units of k/uL, and time is measured in days

stimulation, we assume that it starts at 0, remains positive for some time, and
eventually returns to 0. To generate a smooth function for a(t), we let

and set

e 17 if x>0,

P0=10 Titx<o
o(t)p(b—1)
AT

(6)

where b,c > 0. The variable 7 is defined such that mature APCs begin appearing in
the lymph node at r = 0, although the infection may have begun slightly earlier. We
estimate that the duration of antigen availability, b, is about 10 days. Furthermore,
we estimate that the level of APC stimulation, c, is around 1. (See Fig. 2 for graphs
of a(t) forb=3and b =10 when ¢ = 1.)

2.2 Extended Model of Adaptive Regulation: Helper and Killer

T Cells

The mathematical model presented in this section is an extension of the model
in Sect.2.1. The main extension of the model is to separate the nonregulatory
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Fig. 2 Graphs of the antigen function a(¢) given by Eq. (6) for b =3 and b = 10 when ¢ = 1.
The function a(r) represents the time-dependent rate that immature APCs pick up antigen and are
stimulated

T cell population into CD4+ and CD8+ T cells. CD4+ T cells are the primary
producers of positive growth signal, particularly IL-2, and CD8+ T cells are the
main proliferators. Furthermore, iTregs differentiate from effector CD4+ cells and
suppress both effector CD4+ and CD8+ cells [24]. The extended model can be
summarized in six steps (illustrated in Fig. 3):

1.

2.

APCs mature, present relevant target antigen, and migrate from the site of
infection to the draining lymph node.

In the lymph node, APCs activate naive CD4+ and CD8+ T cells that enter a
minimal developmental program of m; or m; cell divisions, respectively.

. Effector CD4+ and CD8+ T cells both secrete positive growth signal at different

rates.

. CD4+ and CD8+ T cells that have completed the minimal developmental

program become effector cells that keep dividing as long as they are not
suppressed by iTregs.

e CD4+ T cells proliferate in response to interactions with APCs (It is assumed
that CD4+ T cells produce enough IL-2 to stimulate their own growth in
an autocrine loop. Hence, we do not explicitly model the secretion and
consumption of IL-2 by CD4+ T cells.).

* CD8+ T cells proliferate after consuming free positive growth signal.

. During the immune response, some effector CD4+ T cells differentiate into

iTregs.

. The iTregs suppress effector CD4+ and CD8+ T cells and proliferate after

consuming free positive growth signal.

The mathematical model corresponding to Fig. 3 is formulated as the following

system of DDE:s:
Ao(t) = sa —doAo(t) —a(t)Ao(t), @)
Ay(1) = a(t)Ao(1) — d1A1 (1), ®)

HO(t) = sy — 8oH (1) — kA, (1) H (1), )
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Fig. 3 Diagram of the extended adaptive iTreg model. (1) Immature APCs pick up antigen at the
site of infection at a time-dependent rate a(r). These APCs mature and migrate to the lymph node.
(2) Mature antigen-bearing APCs present antigen to naive CD4+ and CD8+ T cells causing them
to activate and enter the minimal developmental program of m; and m; divisions, respectively. (3)
Effector CD4+ and CD8+ T secrete positive growth signals at different rates. (4) CD4+ and CD8+
T cells that completed the minimal program become effector cells and continue to divide. CD4+
T cells proliferate upon further interaction with mature APCs. CD8+ T cells and iTregs proliferate
after consuming positive growth signal. (5) Effector CD4+ T cells differentiate into iTregs at a
constant rate. (6) The iTregs suppress effector CD4+ and CD8+ T cells. Although not indicated,
each cell in the diagram has a natural death rate

H(t) =2™kA(t — 01)H (t — 01) — kA1 (1)H (1) 4 2kA  (t — p1 ) H (t — p1) (10)
— (6n +r)H(t) —kR(1)H 1),
KO(1) = sx — &K (1) — kA (1)K (1), (11)
K(1) = 2™kA|(t — 02)K°(t — 02) — kP(1)K (t) + 2kP(t — p2)K(t — p2) 1)
— 8kK(1) — kR(1)K(1),
P(t) = riH(t) 4 rK(t) — 8pP(t) — kP(1)K (t) — kP(t)R(1), (13)
R(t) = rH(t) — kP(t)R(t) + 2kP(t — p1)R(t — p1) — SuR(1). (14)

As in Sect. 2.1, Ay is the concentration of APCs at the site of infection and A is
the concentration of APCs that have matured, started to present target antigen, and
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migrated to the lymph node. The variable H” is the concentration of naive CD4+
killer T cells, H is the concentration of effector CD4+ cells, K is the concentration
of naive CD8+ (killer) T cells, K is the concentration of effector CD8+ cells, and R
is the concentration of iTregs. In addition, P is the concentration of positive growth
signal (e.g., IL-2).

Equations (7) and (8) are identical to Egs. (1) and (2) in Sect. 2.1. Equations (9)
and (11) pertain to naive CD4+ and CD8+ T cells, respectively. The CD4+ and
CDS8+ populations are replenished at constant rates sy and sk, respectively, and die at
a proportional rate &y. The third terms in Egs. (9) and (11) are the rates of stimulation
of naive CD4+ and CD8+ T cells by mature APCs. The bilinear form of this term
follows the law of mass action where k is the proportionality constant (or kinetic
coefficient). We assume that all cell—cell or cell-signal interactions follow the same
law of mass action.

Equation (10) pertains to effector CD4+ cells. The first term gives the rate at
which activated naive CD4+ T cells enter the effector state after finishing the
minimal developmental program of m; cell divisions. The time delay oj is the
duration of the minimal developmental program. The second term is the rate at
which effector CD4+ cells are stimulated by mature APCs for further division, and
the third term is the rate in which cells reenter the effector CD4+ population after
having divided once. The time delay p; is the duration of one CD4+ cell division.
The fourth term is the rate at which effector CD4+ cells exit the population through
death at rate Oy or differentiation into iTregs at rate r. The final term is the rate at
which effector CD4+ cells are suppressed by iTregs.

Equation (12) pertains to effector CD8+ cells. The first term gives the rate at
which activated naive CD8+ T cells enter the effector state after finishing the
minimal developmental program of m, cell divisions. The time delay o, is the
duration of the minimal developmental program. The second term is the rate at
which effector CD8+ cells are stimulated by positive growth signal for further
division, and the third term is the rate at which cells reenter the effector CD8+
population after having divided once. The time delay p; is the duration of one CD8+
cell division. The fourth term is the rate at which effector CD8+ cells die at rate .
The final term is the rate at which effector CD8+ cells are suppressed by iTregs.

Equation (13) pertains to positive growth signal. The first two terms are the
rates at which positive growth signal is secreted by effector CD4+ and CD8+ cells,
respectively. The third term is the decay rate of positive growth signal. The fourth
and fifth terms are the rates at which positive growth signal is consumed by effector
CDS8+ cells and iTregs, respectively.

Equation (14) pertains to iTregs. The first term is the rate at which effector
CD4+ cells differentiate into iTregs The second term is the rate at which iTregs
are stimulated by positive growth signal for further division, and the third term is
the rate at which cells reenter the iTreg population after having divided once. The
time delay p; is the duration of one CD4+ cell division. The fourth term is the rate
at which iTregs die. We assume that iTregs have the same division time and death
rate as CD4+ cells.
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Table 2 Estimates for additional parameters used in the extended model

Param. Description Estimate

o Death/turnover rate of effector CD4+ T cells 0.23

Ok Death/turnover rate of effector CD8+ T cells 0.4

H°(0) Initial naive CD4+ T cell concentration see Scenario 2
K°(0) Initial naive CD8+ T cell concentration see Scenario 2
Su Supply rate of naive CD4+ T cells SoH(0)

Sk Supply rate of naive CD8+ T cells SKk°(0)

m # of divisions in minimal CD4+ developmental program 2

my # of divisions in minimal CD8+ developmental program 7

[J% Duration of one T cell division 11/24

Pk Duration of one T cell division 173

on Duration of min developmental program: 1+ (my — 1)py 1.46

Ok Duration of min developmental program: 1+ (mg — 1)pg 3

r| Rate of secretion of positive growth signal by CD4+ cells 100

r Rate of secretion of positive growth signal by CD8+ cells 1

op Decay rate of free positive growth signal 5.5

r Rate of differentiation of effector cells into iTregs 0.02

Other parameters are the same as those used in Table 1 for the simplified model
Concentrations are in units of k/uL, and time is measured in days

In this model, we use the same parameters as in Table 1 for the simplified model,
except for those listed in Table 2. We assume that CD4+ and CD8+ T cells have
halflives of 3 days and 41 h, respectively, yielding death rates of oy = 0.23 and
Ok = 0.4/day [9]. We assume that CD4+ and CD8+ populations have doubling times
of 11 hand 8 h, respectively, yielding cell division rates of pyy = 11 /24 and px = 1/3
day [9]. We do not have good estimates of the secretion rates of positive growth
signal by effector T cells, hence we estimate that CD4+ and CD8+ T cells secrete
growth signal at rates r; = 100 and r, = 1/day, respectively. We assume that free
positive growth signal decays with a halflife of 3 h, yielding an estimate of op =
5.5/day. In this model only effector CD4+ T cells can differentiate into iTregs, so
the new estimate of the iTreg differentiation rate, r, must be higher than the previous
estimate of » = 0.01/day to maintain similar dynamics. Hence, in this model, we set
r = 0.03/day.

3 Mathematical Models of Imnmunodominance

In this section we explain how to expand our model for monoclonal T cell responses
to polyclonal responses. We show that the expanded model automatically recreates
elements of the characteristic behavior associated with immunodominance. In this
way, we demonstrate that immunodominance may occur as a natural result of iTreg-
mediated self-regulation of polyclonal T cell responses.

We begin in Sect.3.1 with deriving a basic immunodominance model
that demonstrated immunodominance as an extension of the basic model of
adaptive regulation. We then continue in Sect.3.2 with an extended model of
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immunodominance. This extended immunodominance model is the model
published in [16]. The basic immunodominance model is new. While the basic
model is less accurate from a biological point of view, it still captures the main
principles on which the extended model is based.

3.1 A Basic Model

We extend the model from Sect.2.1 to polyclonal T cell responses. The model
includes n T cell clones that react to mature antigen-bearing APCs at different rates,
ki. The model is formulated as the following system of DDE:s:

Ag(1) = sa — doAo(t) — a(t)Ao(1), (15)

Ai(t) = a(r)A () diAq (1), (16)

K1) = K (1) — kA (KD (1), (a7

K,(t)=2’"kA1(t— O)K} (1 = &) = ki1 (1)Ki(1) + 2KiAs (1 = p)Ki(t = p) as)
— (81 4 r)Ki(t) — kRuowa (1) Ki(1),

Ri(1) = rK;(t) — 81 R;(1), (19)

where Ry = X R; and i = 1,...,n. As before, Ag is the concentration of immature

APCs at the site of infection, and A; is the concentration of mature antigen-bearing
APCs in the lymph node. The variables Kio, K;, and R; are the concentrations of
naive, effector, and regulatory T cells with specificity #i.

Equations (15) and (16) for the APCs are identical to Egs. (1) and (2).
Equations (17)—(19) are analogous to Egs. (3)—(5), except that each T cell clone
is supplied at a different rate sy;, has its own kinetic coefficient k;, and effector
cells can be suppressed by any regulatory cell, independent of their origin. The
supply rate, si;, of T cell clones is related to the initial concentration of that clonal
population by sg; = dlK?(O). From the estimates in [17], the kinetic coefficient
ki = piko, where ko = 40 and p; is the probability that T cells of the ith clone react
to antigens presented on the APCs. All other parameters are taken from Table 1.

3.2 An Extended Immunodominance Model: Including
the Helper T Cells

Following the basic principle of the model in Sect. 3.1, we extend the mathematical
model of Sect. 2.2 to polyclonal T cell responses. The model includes n clones that
react to mature antigen-bearing APCs at different rates, k;, and is formulated as the
following system of DDEs:

Ao(r) = sx — doAo(t) — a(t)Ao (1), (20)
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Ay(1) = a(t)Ag(t) — diA (1), 21
HY (1) = su; — 8oH} (1) — ki1 (1) H (1), (22)
Hi(t) = 2" kA (t — 01)HY (t — 01) — kiA1 (1) H; (1) 4+ 2kiA, (t — p1)H;(1 — p1)
— (8 + P Hi(t) — KRt (1) H), 23)
KP (1) = si — 80K} (1) — ki1 (K7 (1), (24)
Ki(t) =2™kA (t — 62)K? (t — 63) — kP(1)Ki(t) + 2kP(t — p3)Ki(t — p2)
— 6kKi(t) — kRioa (1)Ki (1), (25)
P(t) = riHiora (t) + r2Kiotal (1) — 8pP(t) — kP(t) Kiota () — kP(t)Reorar (1), (26)
Ri(t) = rH;(t) — kP(t)R;(t) + 2kP(t — p1)R;(t — p1) — SuR;(1). 27

Here Hioia = X H;, Kiotal = XK, and Ry = Y R; fori=1,...,n. Asin Sect.2.2, Ag
is the concentration of APCs at the site of infection and A; is the concentration of
APCs that have matured, started to present target antigen, and migrated to the lymph
node. For each clone i, the variable Hl.0 is the concentration of naive CD4+ (helper)
T cells, H; is the concentration of effector CD4+ cells, K,Q is the concentration of
naive CD8+ (helper) T cells, and K; is the concentration of effector CD8+ cells, and
R, is the concentration of iTregs. Finally, P is the concentration of positive growth
signal.

Equations (20) and (21) are identical to Eqs. (7) and (8). Equations (22), (24),
and (27) describe the dynamics of the naive CD4+ T cells, naive CD8+ T cells,
and regulatory cells, respectively, for each clone i. These equations are identical to
Egs. (9), (11), and (14).

The assumption about the nonspecific suppression of the activated CD4+ and
CDS8+ T cells is encoded into the model in Egs. (23) and (25). The last term in both
equations shows that the suppression of the activated cells is done using the iTregs
that originated from all clones.

Finally, the dynamics of the positive growth signal is proportional to the total
population sizes of the activated CD4+ and CD8+ T cells, as well as the total number
of iTregs in the system.

4 Results

In this section we present results obtained by simulating the mathematical
model from Sects.2 and 3. We start in Sect.4.1 with simulations of the basic
model of adaptive regulation. We focus our attention on demonstrating the
robustness of the model to large variations in precursor frequencies. Additional
simulations of this model can be found in [17]. In Sect.4.2 we present simulations
of the immunodominance models. Most of the simulations are of the basic model
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Fig. 4 Time evolution of immune cell populations. (a) The dynamics of naive, effector, and
regulatory T cells over 20 days. (b) The dynamics of immature and mature APCs

from Sect. 3.1. We provide one example of simulations of the extended model from
Sect. 3.2. Additional simulations of the extended model can be found in [16].

4.1 Adaptive Regulation: Numerical Simulations

We start by numerically solving Egs. (1)—(5). The model parameters are set
according to Table 1. The simulations are done using the DDE solver “dde23” in
MATLAB R2008a. The time evolution of the different cell populations is shown in
Fig.4.

It is evident from Fig. 4 that nearly all available antigen-specific naive T cells
are recruited within a day of antigen presentation, a result corroborated by the
experimental data of [20]. In addition, the effector cell and mature APC populations
peak at day 7.0 and day 2.5. In our model, the variable ¢ corresponds to the time after
antigen presentation begins in the lymph node. This event occurs approximately
one day after infection [3]. Hence, our simulated measurements translate to T cell
and APC peaks at day 8.0 and day 3.5 after infection. These results coincide well
with the experimental measurements that the T cell and APC populations peak at
around day 8 and day 3.2 after infection (see [3, 9]).

Figure 5a displays phase portraits of the iTreg versus the effector population
for initial naive cell concentrations of 0.0004, 0.004, 0.04, 0.4, and 4k/uL. The
five curves correspond to population doublings of 18.4, 15.9, 13.6, 11.3, and
9.1, respectively, showing that every tenfold increase or decrease in precursor
concentrations corresponds to approximately 2.2 fewer or 2.2 additional divisions
that adjust the difference. Thus, larger initial conditions lead to larger T cell
responses, but not at the level of sensitivity exhibited by the two program-based
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Fig. 5 Phase portraits of iTreg versus effector dynamics over 20 days. (a) Five different precursor
frequencies, K° (0) =0.0004, 0.004, 0.04, 0.4, and 4k/uL. The curve for KO (0) = 0.04 corresponds
to Fig.4. (b) T cell dynamics under persistent antigen stimulation, i.e., b = 1,000 days for three
different precursor frequencies, K° (0) = 0.004, 0.04, and 0.4k/uL

models. All phase portraits exhibit similar shapes and return to the resting state in a
timely fashion. The phase portraits represent the dynamics over 20 days as in Fig. 4.

Figure 5b shows similar phase portraits as in Fig. 5a, except that the duration, b,
of antigen presentation is set to 1,000 days so that antigen is chronically presented.
The figure shows that the effector and iTreg populations spiral into a stable fixed
point. The elongated shapes form as a result of the rapid increase in the level of
antigen presentation by mature APCs over the first few days after infection before
decaying to a steady level several days later. The brief burst of mature APC levels in
the lymph node allows the effector concentration to expand rapidly for a brief time
before being attracted to the stable fixed point.

4.2 Immunodominance: Numerical Simulations

We start by showing results that were obtained from simulating the basic im-
munodominance model from Sect. 3.2. We numerically simulate solutions to Egs.
(15)—(19). The numerical solution is obtained using the DDE solver “dde23”
in MATLAB R2008a. We consider several scenarios of multiple T cell clones
responding to the same target at once. Each T cell clone is characterized by its
reactivity to target antigen, p;, and its initial concentration, KI.O (0).

Scenario 1. (Five T cell clones, different reactivities). We consider five T cell
clones that differ only in terms of their reactivities to the target antigen. For
i=1,...,5 we set reactivity #i as p; = 2. The initial concentrations are given
by K°(0) = 0.01 k/uL, Vi. We also consider cases of single knockout (SKO),
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Fig. 6 Basic immunodominance model: time evolution of effector cell clones for Scenario 1. Five
T cell clones are present at the same initial concentration KP(O) = 0.01 k/uL and reactivities p; =
1/2, pa=1/4, p3 =1/8, pa =1/16, and ps = 1/32. All other parameters are taken from Table 1.
(a) Control experiment: clones 1-5 all respond. (b) SKO: clone 1 is removed. Only clones 2-5
respond. (¢) DKO: clones 1 and 2 are removed. Only clones 3-5 respond. (d) TKO: clones 1-3 are
removed. Only clones 4 and 5 respond

double knockout (DKO), and triple knockout (TKO) experiments in which the T
cell responses mediated by one, two, or three immunodominant T cell clones are
removed. The following cases are considered:

(a) Control: No T cells are removed. Clones 1-5 all respond.
(b) SKO: clone 1 is removed. Only clones 2-5 respond.

(c) DKO: clones 1 and 2 are removed. Only clones 3—5 respond.
(d) TKO: clones 1-3 are removed. Only clones 4 and 5 respond.

Figure 6 shows the numerical simulations obtained in all four cases. As expected,
we see in Fig. 6a that the five T cell clones fall into a hierarchy based on their
reactivities. When the dominant clone is removed (a case shown in Fig. 6b),
the second most reactive clone partially compensates, i.e., whereas the peak of
the response from clone 2 is 44.85 in the control experiment, it rises to 62.39 in
the SKO experiment. Similarly, when the two most dominant clones are removed
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the third most dominant clone partially compensates (see Fig.6¢) and so on,
but the ability of less reactive T cell responses to compensate for more reactive
ones decreases rapidly. In the case of the TKO experiment shown in Fig. 6d,
the immune response from clone 4 is much weaker than the original immune
response generated by clone 1 in the control case shown in Fig. 6a. Our study
of Scenario 1 shows that T cell reactivities play a strong role in determining
immunodominance hierarchies. Furthermore, less reactive T cell clones have
limited ability to compensate for more reactive ones.

The phenomenon of compensation was observed experimentally by van der
Most et at. who showed that loss of epitope-specific responses was almost
inevitably associated with compensatory responses against subdominant epi-
topes. In addition, their experiments showed that noticeable compensation by
a subdominant response depended on the removal of all or most of the more
dominant epitopes, creating room, as it were, for subdominant epitopes to emerge
[29]. In the same manner, our simulations show that a response from clone 2 does
not substantially emerge until clone 1 is removed and that a response from clone
3 does not emerge until clones 1 and 2 are removed, and so on. By extension, a
response against a subdominant epitope is likely not to emerge until all or most
T cell clones, specific for the dominant epitope (or epitopes), are removed. The
degrees of shift in hierarchy become more prominent in the following examples.

Scenario 2. (Four clones, different initial concentrations). We consider four T

cell clones with the same reactivities. These clones differ only in their initial
concentrations. In this case, the reactivities are set as p; = 1/2, i = 1,...,4.
The initial concentrations are taken as: K¥(0) = 0.04 k/uL, K9(0) = 0.01 k/uL,
KY(0) = 2.5 x 1073 k/uL, K2(0) = 6.25 x 10~ k/uL. As before, we consider
SKO, DKO, and TKO experiments. Figure 7 shows the results of the numerical
simulations.

Figure 7a shows that the four T cell clones fall into a hierarchy based on
their initial concentrations. Specifically, the T cell response of clone 1 starts and
remains exactly four times higher than that of clone 2. Likewise, the response
of clone 2 starts and remains exactly four times higher than that of clone 3, and
so on. Since the reactivities p; are identical for all four clones, the equations
determined by Eqgs. (15)—-(19) for each clone are also identical, meaning that
the four T cell responses fall into a linear relation determined by their initial
conditions.

When the dominant clone is removed, the second most frequent clone
compensates effectively, even though it starts with an initial concentration that is
four times less than that of clone 1 (see Fig. 7b). Indeed, the T cell response for
clone 2 more than doubles between the control and SKO experiments. Similarly,
when the two most dominant clones are removed the third most frequent clone
also compensates effectively and so on (see Fig. 6c, d).

Scenario 3. (Two clones, one with a higher reactivity and one with a higher

precursor concentration). In Scenarios 1 and 2, we examined the effects of
varying reactivities and initial concentrations separately. In this case we vary
both parameters and consider two clones. We start by considering a possible
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Fig. 7 Basic immunodominance model: time evolution of effector cell populations for Scenario 2.
Four T cell clones are present with the same reactivity p; = 1/2 and initial concentrations K} (0) =
0.04, K9(0) =0.01, K9(0) = 2.5 x 1073, and K3 (0) = 6.25 x 10~* k/UL. All other parameters are
taken from Table 1. (a) Control experiment: clones 1—4 all respond. (b) SKO: clone 1 is removed.
Only clones 2—4 respond. (¢) DKO: clones 1 and 2 are removed. Only clones 3 and 4 respond.
(d) TKO: clones 1-3 are removed. Only clone 4 responds

primary response in which the more reactive clone starts at a lower concentration
than the less reactive clone. For our hypothetical secondary response, the initial
concentrations are reversed.

1. Reactivity: p; =1/2

Initial concentration: K(0) = 0.004 (primary), 0.04 (secondary) k/uL
2. Reactivity: p = 1/4

Initial concentration: K9 (0) = 0.04 (primary), 0.004 (secondary) k/uL

Figure 8 shows numerical solutions for Scenario 3. In Fig.8a we see that
the clone with the higher initial concentration dominates during the primary
response. Indeed, clone 2 produces a response that is about three times as high as
the response of clone 1. However, by day 10, the population of clone 1 persists
whereas the population of clone 2 has nearly vanished. The more reactive clone,
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Fig. 8 Basic immunodominance model: time evolution of effector cell populations for Scenario
3. (a) Primary response. The less reactive clone is more common. Initial concentrations for the two
clones are K?(0) = 0.004 and K9(0) = 0.04 k/uL. (b) Secondary response. The two clones have
switched places, and now the more reactive clone is more common. Initial concentrations for the
two clones are K?(0) = 0.04 and K?(0) = 0.004 k/uL. All other parameters are taken from Table

clone 1, ends up producing a more long-lived T cell response than clone 2, and
so it follows that this clone might also end up producing a greater number of
memory T cells and hence a stronger secondary response. For now, we leave the
explicit modeling of memory T cell formation for a future work. Nonetheless,
we see from Fig. 8a that iTreg-mediated contraction could give rise to a natural
process of “collective affinity maturation” that enables the memory repertoire to
select for highly reactive clones even when these clones do not produce the most
dominant primary responses.

Without explicitly modeling memory T cell formation, let us suppose that
between primary and secondary responses, the composition of the T cell repertoire
shifts in favor of the more reactive T cell clone. In particular, suppose that for
the hypothetical secondary response, the initial concentrations are reversed. Then,
Fig. 8b shows that clone 1 clearly dominates the secondary response. Furthermore,
both primary and secondary responses start with the same total initial concentration
of T cells, but a much stronger response from clone 1 causes the combined
secondary response to peak at over twice the height of the combined primary
response.

For simplicity, we generated a hypothetical secondary response by switching the
initial concentrations of the two T cell populations, but there is no reason to assume
that initial concentrations must switch or that the total initial population must stay
the same. In fact, the memory pool generated after a primary response is probably
larger than the original naive T cell pool. Yet even with this simplified view of
collective affinity maturation, we see that simple shifts in the relative distribution
of T cell clones may result in large differences in subsequent responses. Hence,
a mechanism of immunodominance mediated by iTregs may serve as a global,
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Fig. 9 Extended immunodominance model: time evolution of effector cell populations for
Scenario 2. Four T cell clones are present with the same reactivity p; = 1/2 and initial naive
CD8+ concentrations K¥(0) = 0.04, K9(0) = 0.01, K9(0) = 2.5 x 1073, and K9 (0) = 6.25 x 10~*
k/uL. Initial naive CD4+ concentrations are given by H{(0) = 1.5K?(0). Parameters that are not
listed in Table 2 are taken from Table 1. (a) Control experiment: clones 1—4 all respond. (b) SKO:
clone 1 is removed. Only clones 2—4 respond. (¢) DKO: clones 1 and 2 are removed. Only clones
3 and 4 respond. (d) TKO: clones 1-3 are removed. Only clone 4 responds

self-organizing phenomenon among simultaneous T cell responses that serves to
improve the overall quality (rather than just the quantity) of the T cell repertoire.

To compare with the basic model Eqgs. (1) and (2), we simulate Scenario 2 from
Sect. 4 with the extended model Eqgs. (7)—(14). Following Senario 2 of the basic
model, we consider four T cell clones with the same reactivities that only differ
in terms of their initial concentrations. All reactivities are assumed to be identical:
pi=1/2,i=1,...,4, and the initial concentrations of naive CD8+ cells are taken
as: K9(0) = 0.04 k/uL, K9(0) = 0.01 k/uL, K9(0) = 2.5 x 103 k/uL, and K3 (0) =
6.25 x 10~* k/uL. For each clone, the initial concentrations of naive CD4+ cells are
taken to be H?(0) = 1.5K?(0), which is a typical observed proportion of CD4+ and
CD8+ T cells [5].

The results of the simulation are shown in Fig. 9. In Fig. 9a we see that the four
T cell clones fall into a hierarchy based on their initial concentrations. When the
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dominant clone is removed, the second most frequent clone compensates effectively,
even though it starts with an initial concentration that is four times less than that of
clone 1 (see Fig. 9b). In addition, when the two most dominant clones are removed
the third most frequent clone also compensates effectively, and so on (see Fig. 9c, d).

From Figs.9 and 7, we see that the qualitative behavior of immunodominance
seen in the basic model is preserved in the extended model, which explicitly
incorporates separate CD4+ and CD8+ T cell dynamics. The basic model allows
us to focus on the role of negative feedback between effector and regulatory T cells
in producing immunodominance. The extended model captures more biologically
accurate dynamics. However, it requires more comprehensive parameter estimates
and more extensive analysis. The overall characteristics of both models are similar.

5 Conclusion and Discussion

In this chapter we provided an overview of our mathematical models for the
regulation of the primary T cell response and of immunodominance. Our mathe-
matical models were constructed based on a set of basic principles. A robust T cell
contraction was shown to emerge as a result of an adaptive regulatory mechanism.
We also showed that immunodominance may occur as a natural consequence of
iTreg-mediated T cell contraction. For both problems, we provided a basic model
that does not include helper T cells and an extended model that includes the helper
T cells. Our numerical simulations focused on the immunodominance models. The
simulations showed that the qualitative behavior of the simple and of the extended
models is identical.

The main point that we emphasized throughout the chapter is that the modeling
of these biological phenomena should focus on the basic principles that control the
emerging dynamics. While it is desirable that the mathematical models accurately
capture the main biological ingredients, certain simplifications allow us to focus on
the basic principles. A basic model that captures the desirable qualitative features
can be always extended later on to reflect more accurate biology. This was the
methodology we followed when developing these models.

Our models do not take into account the suppression of APCs by iTregs, although
it is a known function of regulatory T cells [6]. Incorporating suppression of APCs
is a direction for a future work and may partly explain why competition is only
observed for epitopes presented on the same APC. In this light, considering spatial
elements is another relevant extension, since regulatory T cells locally suppress cells
in a contact-dependent manner, but no longer inhibit cells that have moved out of
the vicinity [28]. In the context of immunodominance, regulatory (or suppressor) T
cells give rise to highly localized inhibition that operates only in the context of one
or a few common APCs [26]. In their mathematical models, Ledn et al. assume that
regulatory and effector cells need to be activated by APCs that are close in space
and time in order to interact [18, 19]. Indeed, such localization may be necessary to
prevent a regulatory response from shutting down the whole immune system.
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One of the consequences of our work is that immunodominance provides a means
of peripheral positive selection that may be optimal in most circumstances, since it
generates highly adapted responses against specifically targeted antigens (a response
that targets the most reactive clones). Such a pattern must be disadvantageous
against rapidly evolving pathogens such as HIV or cancer that can evade narrow
T cell responses. Hence, our model of iTreg-mediated immunodominance may have
implications for improving therapy via T cell vaccinations. In particular, our model
suggests a possible negative correlation between immunodominance, driven by
contraction, and epitope spread, driven by expansion. In this case, the strength and
timing of the iTreg response may cause a shift in T cell dynamics toward a narrower
or broader response, i.e., toward immunodominance or epitope spread. From these
results, we hypothesize that temporarily suppressing the de novo generation of
iTregs following T cell vaccination may result in a broader T cell response than
normal against multiple target epitopes, which will then make it more likely for the
immune system to eliminate rapidly evolving targets that would otherwise escape
immune detection.
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