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Before we start thinking about the evolutionary
origins of diabetes and related disorders, I need
to briefly sketch what is currently known and
well accepted about diabetes. This chapter tries
to compile a textbook picture of diabetes [1-3]
only to serve as a background. Readers who have
studied physiology or medicine may skip this
chapter straightaway since it does not contain any
new argument. It may be necessary and useful for
readers who need a fair amount of background
information about diabetes before appreciating
the paradoxes and puzzles associated with it.

As a student and then as a teacher, I always
found textbooks very boring. Since this chapter is
an extract of textbooks, it would sound boring
too. There is a class of readers that can cope with
it. But if I were to be the reader, I would have
given up reading the book midway in Chap. 2. To
avoid this disaster I would suggest an alternative
reading plan. The background textbook informa-
tion in this chapter is needed in order to under-
stand the questions raised and the stepwise
arguments made in further chapters. But it is not
necessary to read it right away. So for impatient
readers like me, I would suggest skipping this
chapter at whichever point it gets boring but
returning to it as and when a reference to the
basic textbook information is needed. Science
becomes lively when one goes beyond textbooks.
This can be achieved during lively discussions in
a classroom, and that is the approach from the
next chapter which I can assure is very different
from this chapter.

So here begins the textbook stuff.

Diabetes is among the most widely known and
also among the least understood of all disorders.
It should also be listed among the earliest known
disorders in the history of medicine. We find a
description of some of the signs and symptoms of
diabetes in ancient Egyptian and Indian litera-
ture. Polyuria or frequent and copious urination
was among the first symptoms that we find
recorded in Egyptian literature over 1500 BC.
Indian medicine had noted that the urine of dia-
betics tasted sweet and would attract ants. By the
middle of the eighteenth century, it was shown
that the sugar levels in the blood of diabetics were
raised substantially. A major contribution in our
understanding of diabetes came from Claude
Bernard who discovered a number of fundamen-
tal principles in physiology such as storage of
energy by the liver in the form of glycogen. He
demonstrated that damage to medulla oblongata
caused severe hyperglycemia and therefore
thought that brain was the main center for regula-
tion of blood glucose [2, 4]. However, by the turn
of the nineteenth century, it was shown that the
removal of pancreas leads to diabetes. Soon the
islets of Langerhans were described, and some sol-
uble substance produced from there was sus-
pected to regulate blood sugar. The name “insulin”
was first used for this magic molecule in 1909,
and by 1921, insulin was purified by Banting,
Best, Collip, and Macleod. Almost simultane-
ously glucagon, the counter signal in glucose
regulation, was being discovered. Glucagon was
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Table 2.1 Factors affecting insulin secretion

Stimulators
Glucose
Mannose
Amino acids

Intestinal hormones [gastric inhibiting peptide, glucagon-like peptide,

gastrin, secretin, cholecystokinin (CCK)]
B-Keto-acids

Acetylcholine

Glucagon

Cyclic adenosine monophosphate (cAMP)
B-Adrenergic stimulators

Theophylline

Sulfanyl ureas

named in 1923. By then Claude Bernard’s dem-
onstration of brain damage affecting glucose
regulation was almost completely forgotten, and
glucose levels were thought to be maintained by
the balancing actions of insulin and glucagon.
Insulin, which is believed to be central to dia-
betes, is a peptide hormone secreted by {3 cells of
pancreas in response to blood glucose levels,
amino acids, and nervous stimulation. It is central
to regulating carbohydrate and fat metabolism in
the body. Normal insulin secretion responses are
essential for maintaining normal body functions.
Insulin has a wide variety of effects on different
tissues of the body. In the adipose tissue it
increases glucose uptake, fatty acid synthesis,
glycerol phosphate synthesis, triglyceride depo-
sition, activation of lipoprotein lipase, and inhibi-
tion of hormone-sensitive lipase. In muscles it
increases glucose uptake, glycogen synthesis, K*
uptake, amino acid uptake, and protein synthesis.
Therefore insulin action is important in muscle
building and muscle strength. Insulin has an
osteoblastic, i.e., bone-forming, function and
thereby contributes to bone strength too. In the
liver it decreases gluconeogenesis and ketogene-
sis and facilitates glycogen synthesis, glycolysis,
protein synthesis, and lipid synthesis. More gen-
erally in the body, insulin is primarily a growth
hormone promoting cell growth and protein syn-
thesis. The growth-promoting function of insulin
is synergistic with another hormone, the pituitary
growth hormone (GH). Insulin has also been
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Inhibitors

Somatostatin

2-Deoxyglucose

Mannoheptulose

o-Adrenergic stimulators (epinephrine)

Galanin
Diazoxide
K* depletion
Alloxan
Insulin

shown to be important in the cognitive functions
of the brain. Insulin acts as the signaling mole-
cule simultaneously regulating different func-
tions of the body in different ways [3]. Therefore
it is logical to expect that when there is some or
the other type of problem in insulin function, not
only blood sugar is affected but a large number of
functions of the body are.

Before understanding the altered patterns of
insulin secretion, normal patterns need to be
understood. Glucose is a major stimulus for insu-
lin secretion by pancreatic 3 cells. Insulin pro-
duction is also stimulated by some other nutrients
including amino acids such as arginine. Several
other hormones of the body affect basal or
glucose-stimulated insulin secretion (Table 2.1).
In addition parasympathetic nervous system has
a direct control over insulin secretion, but the
significance of it in normal or pathological condi-
tions is poorly understood. Under normal
conditions out of total insulin secretion in 24 h,
~50% is secreted under basal conditions while
the rest is secreted in response to meals. The
amount of insulin secreted for different types and
timings of food intake in a day such as breakfast,
lunch, and dinner does not differ significantly.
Insulin secretion is not continuous but is oscilla-
tory in nature. Three types of oscillations have
been observed, namely, rapid small amplitude
oscillations, ultradian oscillations consisting of
large amplitude, slow oscillations, and circadian
oscillations in the form of different insulin
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responses at different times of the day. The exact
physiological significance of the oscillations is
not clear, but exogenous insulin is more effective
in reducing plasma glucose levels when adminis-
tered in oscillatory doses than at a constant rate.

The insulin response to glucose or a meal has
two distinct phases. The first is an acute phase
where a brief peak of insulin secretion arises
immediately after feeding, even before absorp-
tion of food begins. The acute phase insulin
response (AIR) is driven by neuronal mecha-
nisms and has sometimes been called cephalic
phase insulin response. The second phase appears
to be predominated by peripheral mechanisms
involving islet stimulation by glucose. The acute
phase response is important for the normal glu-
cose tolerance curve. Absence of acute phase
response increases the area under the curve for
both glucose and insulin. AIR is impaired in dia-
betes from an early stage.

Diabetes and Its Types

Although insulin has a large number of functions,
the definition and diagnosis of diabetes are based
on only one of its functions which is regulation of
peripheral blood glucose levels. Insulin is a sig-
nal molecule, and a signal can function well when
it is given out as well as received normally.
Endocrine signals are like radio broadcasting
where the signal is given globally, but it can be
received only where the specific receiving
mechanisms exist. Such a signal will fail if either
the mechanisms of relaying the signal or the
mechanisms of receiving it are impaired. In type
1 diabetes the former is impaired and in type 2
the latter. Defective secretion of insulin causes
type 1 diabetes, whereas defective mechanisms
of insulin signal reception and downstream action
appear to be the root cause of type 2 diabetes.
Type 1 diabetes (T1D) most commonly results
from autoimmune destruction of insulin-produc-
ing P cells of the pancreas. The subsequent lack
of insulin leads to increased blood glucose and
urine glucose. Although blood and urine glucose are
the presenting signs of T1D, most of the pathology
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of untreated T1D results from deficiency of
insulin rather than raised blood sugar.

Type 2 diabetes mellitus (T2D) is classically
characterized by high blood glucose which is
believed to be a result of a combination of insulin
resistance and relative insulin insufficiency. We
are going to refer to this condition frequently in
this book and will call it as IR-RII throughout.
The reduced response of tissues to insulin signal-
ing is called insulin resistance. When insulin resis-
tance sets in, higher amounts of insulin are needed
to bring about the same function, just as shouting
in louder voice is needed while talking to a hear-
ing impaired. This is what is believed to happen in
the body. Insulin resistance is a measurable char-
acter and is measured by different techniques tab-
ulated in Table 2.2. The different indices capture
somewhat different elements of insulin resistance
but generally are intercorrelated sufficiently well.
Clinically the most frequently used index of insu-
lin resistance is called HOMA-IR which is pro-
portional to the product of fasting insulin and
fasting glucose levels. HOMA-IR reflects muscle
as well liver insulin resistance. The gold standard
of measuring insulin sensitivity is achieved by
using a technique called euglycemic hyperinsu-
linemic clamp. In this technique insulin is infused
continuously to achieve a high and stable plasma
level. Because of high insulin level, plasma glu-
cose drops down. The normal levels of glucose
can be brought back by infusing glucose. At the
stable high insulin level, the amount of glucose
infusion needed to retain normal glucose levels is
a measure of insulin sensitivity. This measure
mainly reflects glucose uptake by muscle by the
insulin-dependent pathways. The clamp technique
is too complex to be used in clinical practice and
is restricted to physiological research.

Insulin resistance is almost always accompa-
nied by higher levels of insulin production such
that the resultant function remains normal. This is
believed to be because of a compensatory rise in
insulin production in response to insulin resis-
tance. High insulin resistance accompanied by
raised level of insulin such that blood sugar
remains normal is a state that is called insulin-
resistant state which generally precedes T2D by
several years. We will call the hyperinsulinemic
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Fig. 2.1 A typical time course of plasma glucose and insulin levels after oral administration of 75 g glucose (oral
glucose tolerance test OGTT). The nature of the curve reflects in multiple ways the state of glucose homeostasis in the
body (Glucose is shown by blue line on primary Y axis, insulin in red on secondary Y axis)

insulin-resistant state as HIIR in which glucose
levels are normal. Not all HIIR individuals
develop T2D, but many do. This is believed to
happen when the 3 cells are unable to compensate
insulin resistance resulting into a relative insulin
deficiency. This is said to be because of fatigue or
exhaustion of the insulin-producing 3 cells of the
pancreatic islets. At this stage the total insulin
production of a diabetic may be higher than that
of a nondiabetic and non-insulin-resistant indi-
vidual, but blood sugars are raised owing to even
higher levels of insulin resistance. Thus it is a
combined effect of insulin resistance and relative
insulin insufficiency (IR-RII) that is believed to
lead to diabetes. T2D is the predominant form of
diabetes worldwide, constituting about 90% of
cases globally. The diabetes epidemic is increas-
ing in both developed as well as developing coun-
tries. Globally the number of people with diabetes
is expected to rise to above 300 million in 2015
[6], but this is an underestimate because, for each
diagnosed case, there is thought to be one undiag-
nosed case in First World countries and eight in
the Third World. Type 2 diabetes has become the
world’s most important public health problem
[6]. The focus of this book is on T2D, although
while talking about pathophysiology of diabetic
complications, where there is much overlap

between T1D and T2D, we will include T1D in
the discussions. In some of the older literature,
T2D has been often referred to as “mild” diabetes.
In the past 40 years, the status of T2D has changed
from being considered as a mild disorder of the
elderly to one of the major causes of morbidity
and mortality increasingly affecting the middle
aged and even youth. It is important to note that
the rise in prevalence is seen in all six inhabited
continents of the globe [7, 8].

The diagnosis of diabetes rests on the mea-
surement of plasma glucose levels (Fig. 2.1).
Because plasma glucose concentrations range as
a continuum, the criteria are based on estimates
of the threshold for the complications of diabetes.
Reproducibility of the plasma glucose concentra-
tion is an important issue for interpreting the results
of diagnostic tests for diabetes. There is significant
variation in the results of repeated tests in the
adults after 2—-6 weeks interval. Thus it is essen-
tial that any test showing above normal levels be
confirmed by repeated tests. Before overt diabe-
tes appears, alterations in glucose homeostasis
are detectable if a curve of changing glucose lev-
els after meals or glucose intake is monitored.
This can be done using what is called an oral glu-
cose tolerance test. Although oral glucose toler-
ance test (OGTT) is an invaluable tool in research,
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Table 2.3 Diagnostic criteria for stages of type 2 diabetes

2 Diabetes in a Textbook

Normoglycemia
Test (mg/dL) IFG (mg/dL) IGT (mg/dL) Diabetes
FPG <100 100-125 >126 mg/dL
2-h PG <140 140-199 >200 mg/dL
Random plasma glucose >200 mg/dL plus
concentration symptoms of diabetes

FPG fasting plasma glucose, PG plasma glucose, /FG impaired fasting glucose, /GT impaired glucose tolerance

it is not recommended for routine use in diagnosing
diabetes. Levels of glycated hemoglobin A,
(HbA,) are generally not used for diagnosing
diabetes but can be valuable for follow-up.
Hemoglobin along with many other proteins get
glycated very slowly by spontaneously combining
with glucose, and this glycation is directly pro-
portional to the levels of glucose in blood. That
makes HbA a cumulative estimate of glucose,
averaging out the daily fluctuations in glucose
levels. Individuals who deviate from the normal
glucose tolerance curve but are not overtly diabetic
are placed in an intermediate category called
impaired glucose tolerance (IGT). The thresholds
for the definitions are in Table 2.3.

Type 2 diabetes is traditionally thought to have
a strong genetic component. However the increas-
ing incidence of the disorder cannot be of genetic
origin since gene(s) that give rise to a disorder
will not increase in frequency in a species glob-
ally. Even if it does, no allele can increase in fre-
quency dramatically within only a couple of
generations. So genes alone cannot be blamed for
diabetes. The current thinking is that it is an inter-
action between genes and environment that is
responsible for the current epidemic. Genetically
predisposed persons who are exposed to a series
of diabetogenic environmental influences develop
clinical disease [9-11]. Although T2D is believed
to have a strong genetic component, in exception-
ally few cases, some specific genes are demon-
strably involved. The common forms of diabetes
appear to be polygenic in nature and are believed
to be due to combination of genes involved in
predisposing to obesity, insulin resistance, and
abnormal insulin secretion.

The environmental and lifestyle factors
predisposing to diabetes are sedentary lifestyle,
altered diet leading to a positive energy balance,
stressful life, excessive tobacco, and alcohol. In
addition a strange pattern was discovered in the
early 1990s that individuals born small for gesta-
tional age are highly predisposed to diabetes.
This trend is consistently observed across the
globe. Animal experiments have confirmed that
intrauterine growth is crucial in determining the
predisposition to diabetes. Intrauterine growth
retardation (IUGR) leads to altered metabolic
programming which makes a person prone to
obesity and insulin resistance in later life.

Obesity and Muscle Insulin Resistance

The primary effect of insulin on glucose is to
stimulate translocation of glucose transporters to
cell membrane through which glucose enters into
the cells and is then utilized for energy produc-
tion. This happens through an elaborate cell sig-
naling and downstream pathway. It appears that
the number of glucose transporters in skeletal
muscles of an insulin-resistant person is not dif-
ferent, but the ability of insulin to facilitate this
translocation is disrupted. The term insulin resis-
tance indicates an impaired biological response
to either endogenously secreted or exogenously
administered insulin. There is reduced insulin-
mediated glucose transport and metabolism in
skeletal muscles and adipocytes and also impaired
suppression of hepatic glucose output. Insulin
resistance is present in persons predisposed to type
2 diabetes before the onset of hyperglycemia, and
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so it has been concluded that insulin resistance is
the primary abnormality that is responsible for
the development of type 2 diabetes. Insulin resis-
tance is present years before the onset of the dis-
ease, and this is a consistent finding in type 2
diabetes [12, 13]. A substantial amount of data
indicates that insulin resistance plays a major role
in the development of glucose intolerance and
diabetes. Insulin resistance is associated with the
progression to IGT and eventually to type 2 dia-
betes [14]. Prospective studies show that insulin
resistance predicts the onset of disease. Insulin
resistance is present in first-degree relatives of
type 2 diabetics even when they are not obese.
This is in support of having a strong genetic com-
ponent in the etiology of T2D [12, 14, 15]. There
is also a strong influence of environmental fac-
tors on the genetic predisposition to insulin resis-
tance [16, 17]. The generally agreed pathway to
T2D is that obesity leads to insulin resistance in
genetically predisposed individuals which in the
long run leads to T2D.

A number of studies show that the risk of insu-
lin resistance and development of T2D increases
with increase in body weight and particularly
body fat content. It is not clear whether it is the
free fatty acids in circulation or the adipose stores
of the body that are of primary importance in
inducing insulin resistance, but the general role
of fat seems to be agreed upon. A close associa-
tion between obesity and insulin resistance is
seen in all ethnic groups and is found across the
full range of body weights, across all ages, and in
both sexes [18-20]. Absolute amount of body fat
has an effect on insulin sensitivity across a broad
range [21-23]. However central or visceral (intra-
abdominal) adiposity is more strongly linked to
insulin resistance, and accumulation of abdomi-
nal fat has effects on glucose tolerance indepen-
dent of total adiposity [24-28]. The reason why
intra-abdominal fat is more strongly related
to insulin resistance is not clearly known at
the proximate and ultimate level. There are a
number of possible explanations for this strong
association. It is speculated that due to presence
of more number of adrenergic receptors as com-
pared to subcutaneous fat, intra-abdominal fat is
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lipolytically more active [27, 28] generating more
free fatty acids (FFAs) which induce insulin
resistance. Another reason stated is that the
intra-abdominal fat is more resistant to the antili-
polytic effects of insulin [29]. One more hypoth-
esis relies on the presence of high concentrations
of 11B-hydroxysteroid dehydrogenase type 1
(11BHSD1) that enhances conversion of inactive
cortisone to active cortisol, leading to increased
local cortisol production, which might be respon-
sible for increased lipolysis. All these hypotheses
appear to count on increased FFA production as
the proximate cause of insulin resistance. A pos-
sible internal contradiction here is that if abdomi-
nal fat undergoes rapid lipolysis, it is difficult to
account for greater accumulation of fat in the
abdomen. Also obese persons have actually been
shown to have lower rates of fat oxidation.
Increased FFA level is related to insulin resis-
tance in skeletal muscle. The mechanism by
which FFAs reduce glucose transport has
remained elusive. But it is shown that elevated
free fatty acids (FFAs) predict the progression
from IGT to diabetes [30, 31] implying some role
for FFAs.

In contrast very low levels of lipids in the body
or absence of adipose tissue, a condition called
lipoatrophy, has a strong association with insulin
resistance. So although fat is said to be responsi-
ble for inducing insulin resistance, the absence of
fat also induces insulin resistance.

Alternatively  intramuscular  triglycerides
(IMTG) rather than FFAs are implicated in insu-
lin resistance. A strong correlation between
IMTG concentration and insulin resistance has
been demonstrated by evaluating IMTG with
biopsy [32]. IMTG may accumulate if the rate of
FFA uptake into the muscles and rate of their oxi-
dation mismatch. Again although insulin-stimu-
lated glucose uptake and the amount of IMTG are
shown to be inversely related in nonexercising
individuals, the mechanism by which IMTGs
induce insulin resistance is not clearly known.
Furthermore increased IMTG content is not
invariably linked to insulin resistance because
long-term exercise training is linked with
increased IMTG [33], and chronic exercise

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442



443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

24

increases insulin sensitivity as well as IMTG and
the capacity for fatty acid oxidation [34-37].

A yet another possibility is that of a central
role of malonyl CoA levels. Glucose uptake even
in insulin-resistant muscle is higher at the ele-
vated levels of blood glucose as seen in T2D [38,
39]. The resulting high glycolytic activity can
generate acetyl CoA which is converted to malo-
nyl CoA. The accumulation of malonyl CoA
inhibits the carnitine palmitoyltransferase (CPT
I) which resides on outer mitochondrial mem-
brane, inhibiting uptake of acyl CoA [40]. The
resulting buildup of acyl CoA and diacylglycer-
ols is proposed to activate one or more protein
kinases, resulting in insulin resistance [40].
Insulin-sensitizing effect of exercise supports this
hypothesis since exercise lowers intracellular
long-chain acyl CoA levels [41]. However, this
pathway has a built-in negative feedback since
there will be a decreased glucose flux after devel-
oping insulin resistance which will reduce the
pool of acetyl CoA, eventually reducing malony]
CoA. Therefore this pathway may not induce
sustained insulin resistance.

Higher nutrient status is known to activate the
mammalian target of rapamycin (mTOR) path-
way which through the S6 kinase 1 pathway ulti-
mately decreases the levels of available insulin
receptor substrate IRS1 and thereby induces insu-
lin resistance. However insulin signaling itself is
needed for expression of mTOR, and therefore,
mTOR and insulin signaling appear to be in a
negative feedback loop. Negative feedback loops
are generally self-regulated and therefore do not
lead to escalation. Therefore mTOR activation
alone may not be sufficient to explain sustained
insulin resistance.

The upcoming alternative explanation for the
connection between obesity and insulin resis-
tance is that the adipocytes secrete a number of
signal molecules called adipokines which induce
insulin resistance. In this line of thinking, the
focus is shifted from FFAs to the adipose tissue.
A wide variety of compounds that constitute adi-
pokines are known, and their association with
insulin resistance has been demonstrated. TNF-o

2 Diabetes in a Textbook

appears to be the most important adipokine in
this connection, and the pathway leading to insu-
lin resistance appears to involve inflammatory
signals, and yet the precise pathway of induction
of muscle insulin resistance remains to be
completely elucidated. Therefore although there
is a strong correlative evidence for the role of free
fatty acids, triglycerides or adipose tissue and its
secretions in insulin resistance, and a number of
possible pathways are visualized, the exact
molecular events which lead to development of
sustained insulin resistance in obesity are still not
well understood.

There are a number of other possible mecha-
nisms leading to insulin resistance which are not
directly dependent on lipid metabolism. The
brain monoamines such as serotonin and dop-
amine influence insulin sensitivity in a complex
way, but their actual role in clinical insulin resis-
tance is not clearly known. Insulin resistance is
associated with decreased mitochondrial activity.
Decreased mitochondrial activity may be respon-
sible for decreased oxidative metabolism and
eventually insulin resistance. But a reverse causa-
tion is equally possible. Insulin itself is important
in upregulating mitochondrial biogenesis, so in
an insulin-resistant state mitochondrial activity
might be reduced. High-fat diet, although known
to induce insulin resistance, was actually shown
to increase mitochondrial mass in rats. Therefore,
fat-induced insulin resistance is unlikely to work
through decrease in mitochondrial activity [42].
The association of decreased mitochondria and
insulin resistance is either because of reverse
causation or some other causative factor. The
central nervous system also plays a role in regu-
lating hyperinsulinemia and insulin resistance.
There is evidence for complex interactions
between central and peripheral signals modulat-
ing insulin sensitivity and secretion [43—46], but
the nature of these interactions is not yet under-
stood sufficiently well.

In brief, although the concept of insulin resis-
tance is central to type 2 diabetes, the causes and
pathways leading to insulin resistance are not yet
clearly known.
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Liver Insulin Resistance

Insulin’s predominant action on liver is to regu-
late the hepatic glucose output. Liver has the
important job of synthesizing glucose and releas-
ing it into blood in fasting conditions. This is
achieved by mobilizing the glycogen stores in the
liver (glycogenolysis) or by making glucose from
fatty acids or amino acids (gluconeogenesis).
Liver glucose production is important during
fasting since the brain is crucially dependent on
glucose. The fat stores of the body are mobilized
under starvation to release fatty acids. Most other
tissues can directly use fatty acids as fuel but the
brain cannot. Glucose production is therefore
most essential for brain function in fasting condi-
tions. However, the glucose production activity
needs to be under regulation, and insulin works
as a negative regulator of this activity. Impaired
insulin signaling in the liver leads to defective
regulation of liver glucose production. Although
studies have suggested that kidneys can contrib-
ute to some endogenous glucose production, the
defective glucose production in T2D is primarily
in the liver. Role of nervous system and glucose
autoregulation of hepatic glucose production is
also known but is currently considered to be less
important. Insulin decreases endogenous glucose
production by direct and indirect mechanisms. In
its direct action, portal insulin suppresses glucose
production by inhibiting glycogenolysis. Insulin
decreases gluconeogenesis simultaneously by
directly inhibiting the enzymes required for glu-
coneogenesis and also through indirect routes by
reducing the availability of free fatty acids
required for gluconeogenesis and by inhibiting
the secretion of glucagon that stimulates glucose
production [47-51]. In diabetes insulin is not able
to exert an impact on liver, so there is uncon-
trolled hepatic glucose production [52-54] which
leads to raised fasting blood sugar. This is called
liver insulin resistance. When the fasting glucose
level is marginally high, the contribution is
mainly from decline in glucose clearance by
muscle and other tissues. However, higher levels
of fasting glucose are mainly contributed by
hepatic glucose production.
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There is an increasing realization now that insulin

resistance is not restricted to loss of insulin action.

A large number of other alterations in hormonal,

metabolic, and neuronal pathways accompany

insulin resistance. Therefore the expanse of the
meaning of the term “insulin resistance syndrome”
is increasing day by day. Insulin resistance syn-
drome is also called “metabolic syndrome” or

“syndrome X.” Metabolic syndrome is a clinically

defined condition with increasing prevalence in

the modern world. To clinically identify patients
with the metabolic syndrome, the National

Cholesterol Education Program Expert Panel on

Detection, Evaluation, and Treatment of High

Blood Cholesterol in Adults (Adult Treatment

Panel III, ATP III) suggested that individuals hav-

ing three or more of the following criteria are

defined as having the metabolic syndrome:

1. Abdominal obesity: waist circumference
greater than 40 inches in men and 35 inches in
women

2. Hypertriglyceridemia:
mmol/L)

3. Low high-density lipoprotein (HDL) choles-
terol: <40 mg/dL (1.04 mmol/L) in men and
<50 mg/dL (1.29 mmol/L) in women

4. High blood pressure: >130/85 mmHg

5. High fasting plasma glucose: >110 mg/dL
(>6.1 mmol/L)

Although insulin resistance is not included in the

clinical definition of metabolic syndrome, it is

believed to be the main underlying abnormality.

Apart from metabolic syndrome, a series of other

disorders are associated closely with T2D and

insulin resistance syndrome. They include poly-
cystic ovary syndrome (PCOS), some other sex-
ual dysfunctions, osteopenia, osteoporosis, and
certain types of cancers. T2D leads to a variety of
complications, some of which are specific to dia-
betes and others can occur in the absence of dia-
betes, but the incidence is much higher in diabetes

(Table 2.4). It is likely that all the cluster of dis-

eases have a common cause or a cluster of causes.

It is believed that the common cause is insulin

resistance.

>150 mg/dL (1.69
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Compensatory Hyperinsulinemia

Insulin resistance is accompanied by high levels
of insulin production by the insulin-producing 3
cells of the islets of Langerhans of the pancreas.
Insulin sensitivity of tissues and insulin secretion
are related in such a way that their multiplication
product is a constant. If insulin sensitivity goes
down, insulin secretion increases in such a way
that the product remains constant. As a result,
even if insulin resistance increases, the levels of
plasma glucose remain well controlled. The
molecular mechanisms by which such a precise
compensation takes place are not known. One pos-
sibility is that when insulin sensitivity decreases,
the blood sugar increases, and increased blood
sugar stimulates higher levels of insulin produc-
tion. The dynamics of such a system can be easily
worked out mathematically, and steady state
solutions show that even if the insulin response is
efficient, the steady state sugar level will be
somewhat raised or remain oscillating. However,
on the contrary, in early stages of insulin resis-
tance, there is slight hypoglycemia instead of
hyperglycemia. It is also known that in insulin-
resistant state, the insulin responsivity is increased
substantially such that normal levels of sugar
elicit a substantially higher insulin response. It
appears therefore that some other unknown
mechanism increases the glucose responsiveness
of B cells to mediate compensatory hyperinsu-
linemia. For any such mechanism to work, there
needs to be some way of sensing the degree of
insulin resistance and computing the requirement
of insulin. No mechanism by which the pancreas
can estimate the level of insulin resistance in
muscle and other tissues is known. Yet there
appears to be an almost universal agreement that
there is precise compensation of insulin resis-
tance by increased insulin secretion. This is per-
haps the most mystic part of our current
understanding of insulin resistance.

The increased insulin secretion in insulin
resistance appears to be mediated by increased [3
cell mass [55] as well as increased expression of
hexokinase which leads to increased secretion of

2 Diabetes in a Textbook

insulin [56]. Beta cell insulin sensitivity varies
substantially in individuals with normal glucose
tolerance but is correlated to obesity [57, 58].

However, at a later stage in the natural history
of insulin resistance, there is progressive degen-
eration of 3 cell mass and function. Beta cell fail-
ure in type 2 diabetes is a progressive process,
which, regardless of the nature of the initial
defect, gradually worsens over time. Chronically
elevated blood glucose levels adversely affect
insulin secretion. There is a well-documented
loss of pancreatic 3 cell mass in type 2 diabetes
that almost certainly contributes to the degree of
hyperglycemia.

Gordon and Susan have described five stages
of B cell failure [59]. (1) Stage 1 is compensation:
Insulin secretion increases to maintain normogly-
cemia in the face of insulin resistance. This stage
is characterized by maintenance of differentiated
function with intact acute glucose-stimulated
insulin secretion (GSIS). (2) Stage 2 occurs when
glucose levels start to rise, reaching 5.0-
6.5 mmol/l; this is a stable state of § cell adapta-
tion with loss of B cell mass and disruption of
function as evidenced by diminished GSIS and 3
cell dedifferentiation. (3) Stage 3 is a transient
unstable period of early decompensation in which
glucose levels rise relatively rapidly to the frank
diabetes of stage 4. (4) Stage 4 is stable decom-
pensation with more severe 3 cell dedifferentia-
tion. (5) Finally, stage 5 is characterized by severe
decompensation representing a profound reduc-
tion in 3 cell mass with progression to ketosis.

Beta cell dysfunction is necessary for the devel-
opment of the disease, but the nature of the pri-
mary f3 cell defect is still elusive. Why and how (3
cells degenerate and become dysfunctional is not
precisely known, but a number of possibilities
exist. One of the earliest and classical interpreta-
tions was that the {3 cells get exhausted after giving
a compensatory hyperinsulinemic response over a
long time. The best piece of evidence for this
hypothesis has been that exogenous insulin slightly
improves [ cell performance. This was interpreted
as a demonstration of giving “rest” to B cells
improving their function. This however fails to
work in the long run, and patients chronically
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Compensatory Hyperinsulinemia

under insulin treatment do not appear to improve
{3 cell function anymore. Therefore 3 cell exhaus-
tion by itself does not appear to explain 3 cell
degeneration. Nevertheless, in a restricted sense, 3
cell exhaustion is a useful concept and refers to
depletion of the readily releasable pool of intracel-
lular insulin following prolonged exposure to a
secretagogue [60, 61]. This is certainly a revers-
ible condition.

High level of glucose is implicated in B cell
dysfunction, an effect commonly called glucotox-
icity. The term glucotoxicity describes the slow
and progressively irreversible effects of chronic
hyperglycemia on pancreatic 3 cell function,
which occur after prolonged exposure to elevated
glucose. Once diabetes is established, chronic
hyperglycemia and hyperlipidemia can exert del-
eterious effects on 3 cell function, respectively
referred to as glucotoxicity and lipotoxicity [62].
Considerable evidence has been reported suggest-
ing that chronic hyperglycemia impairs glucose-
induced insulin secretion and insulin gene
expression [63]. Glucotoxicity is certainly time
course dependent. In the short run higher levels of
glucose stimulate [ cell proliferation and increase
in mass. Only chronic hyperglycemia can result
into deleterious effects on 3 cells. The fact that
these associated [ cell defects are reversible up
until a certain point in time and become irrevers-
ible thereafter suggests a continuum between [3
cell exhaustion and glucotoxicity, the latter
becoming predominant after prolonged exposure
[64, 65]. In addition to inducing functional
changes, chronic hyperglycemia can also decrease
B cell mass by inducing apoptosis [55, 66].

Similar to the paradoxically deleterious effects
of chronic hyperglycemia, fatty acids (FA), which
are essential B cell fuels in the normal state,
become toxic when chronically present in exces-
sive levels. Prolonged exposure of pancreatic 3
cells to FA increases basal insulin release but
inhibits glucose-induced insulin secretion [67].
At the molecular level, FAs inhibit insulin gene
expression in the presence of elevated glucose
levels. Finally, excessive FAs induce B cell
death by apoptosis both in vitro and in ZDF rat
islets. Fatty acids are demonstrated to cause 3
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cell apoptosis. Elevated levels of circulating FFA
and lipoproteins in obese ZDF rats are trans-
ported to islets and through a pathway of lipotox-
icity leading to diabetes [55, 68]. This is associated
with an increase in inducible nitric oxide syn-
thase (iNOS), enzyme expression, and nitric
oxide (NO) production, which cause apoptosis.
Chronically elevated FA levels do not harm the 3
cell as long as blood glucose levels are normal
but profoundly affect B cell function in the pres-
ence of concomitant hyperglycemia [55, 68].
These results clearly support the hypothesis that
hyperglycemia is required for lipotoxicity to
occur. They are consistent with the clinical obser-
vation that the majority of hyperlipidemic indi-
viduals are not diabetic. That B cell function is
usually normal in patients with disorders of lipid
metabolism suggests that obesity or dyslipidemia
is not sufficient to cause [ cell dysfunction [62].

There is a hen and egg problem in the gluco-
toxicity—lipotoxicity argument. As long as 3 cells
are healthy and can compensate for insulin resis-
tance, hyperglycemia is unlikely, and if glucotox-
icity is primarily responsible for  cell dysfunction,
then [ cells are unlikely to degenerate. However
if B cell degeneration begins due to some other
cause or glucose levels rise chronically due to
some other cause, then glucotoxicity and lipotox-
icity can exert a snowballing effect. That “some
other cause” could be crucial to the beginning of
diabetes.

Beta cells have been shown to be highly sus-
ceptible to oxidative damage [69, 70], and this is
likely to be a promising hypothesis for progres-
sive B cell degeneration. Beta cell amyloid depo-
sition has been demonstrated to be associated
with obesity and hyperglycemia and appears to be
another promising candidate in explaining islet
degeneration. Amyloid deposition is not naturally
observed in mice. Transgenic mice expressing
human amylin show amyloid deposits under cer-
tain conditions. These conditions are described
by Verchere et al. [71] and other groups [72, 73].
A high-fat diet was the major precipitating factor
in the early Seattle studies [71]. High-fat feeding
led to significant obesity (doubling in weight),
and the transgenic males showed pancreatic islet
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amyloid deposits and an increased incidence of
hyperglycemia when compared with controls. An
interesting finding was that a significant number
of nonhyperglycemic transgenic males also dem-
onstrated amyloid deposits. So the association of
amyloid deposits with hyperglycemia was not
very strong.

Patients with type 2 diabetes also demonstrate
disproportionate levels of circulating proinsulin,
the precursor of insulin and its processing inter-
mediate des-31, 32 proinsulin. These levels are
proportional to the degree of hyperglycemia and
inversely related to the functional measure [74].
Based on the findings of amyloid and dispropor-
tionate hyperproinsulinemia in these two patient
populations, it has been postulated that dispro-
portionate hyperproinsulinemia is a marker for
the presence of amyloid or amyloid fibrils [75]. If
impaired early phase insulin response and greater
proportion of proinsulin are taken as markers of 3
cell dysfunction, then the dysfunction appears to
begin very early in the development of T2D, and
therefore, hyperglycemia is most unlikely to be
responsible for 3 cell dysfunction. In a nutshell
although progressive [ cell dysfunction and
degeneration are essential for the development of
T2D, the precise cause of [ cell dysfunction is
not yet clearly known.

Beyond Hyperglycemia

Although diabetes is mainly defined and diag-
nosed by defective regulation of blood sugar, it is
not the only defect in the body mechanisms.
Diabetes affects many and perhaps every system
of the body. Classical thinking is that once the
control on glucose homeostasis is lost, the raised
levels of glucose along with defective insulin sig-
naling bring about all other pathological changes
in different systems of the body. The main com-
mon system level effects appear to be:

1. A low-grade chronic systemic inflammation.
Obesity leads to an overall upregulation of the
basal levels of many inflammatory markers
and proinflammatory cytokines which alter
the migration of phagocytes important in
innate immunity. The relationship between

2 Diabetes in a Textbook

obesity, insulin resistance, and inflammation
is complex, and it is not clear whether insulin
resistance is a cause or effect of inflammation.
Nevertheless the association is very strong.

2. Dysfunction of the vascular endothelium.
Normal functions of endothelial cells, which
form the inner lining of blood vessels, include
mediation of coagulation, platelet adhesion,
immune function, and control of volume and
electrolyte content of the intravascular and
extravascular spaces. They control the vasodi-
latation and vasoconstriction responses of
blood vessels. The vasodilatation function is
mediated through the nitric oxide pathway. In
diabetes the delicate balance between vasodi-
latation and vasoconstriction regulation mech-
anisms is disturbed.

3. A generalized oxidative stress. Reactive oxy-
gen species are molecules such as peroxides
that have a highly reactive oxygen moiety.
ROS are formed normally during oxidative
metabolism and have some signaling func-
tions in normal physiology. High levels of
intracellular glucose can increase ROS levels
which can cause oxidative damage to proteins
and other molecules. This has a logical impli-
cation. Since insulin resistance restricts glu-
cose entry in cells, it can protect from oxidative
stress. Insulin resistance has been claimed to
be a mechanism of protection from free radi-
cals [76]. However the body also has insulin-
independent tissues, and these tissues could be
mainly susceptible to oxidative damages.

The major detrimental effects of diabetes are

brought about by a combination of the three and

possibly more pathophysiological processes.

Interestingly although the origin of type 1 and

type 2 diabetes is quite different, the downstream

pathophysiological processes are highly overlap-
ping. The complications accompanying T1D and

T2D are largely overlapping despite some differ-

ences in the proportion of incidence of some of

the complications. The fatal effects of diabetes
are through one or more of these complications.

Since the common grounds on which type 1 and

type 2 diabetes converge is hyperglycemia, it is

thought that hyperglycemia is the driver of all
pathophysiological processes in both types of
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Beyond Hyperglycemia

diabetes. The precise pathways by which raised

blood glucose leads to the complications are not

clearly elucidated, but there are many alternative
possibilities which are not mutually exclusive:

1. Increased AGE formation. Advanced glyca-
tion end products (AGE) are glycated proteins
which are formed at a slow rate nonenzymati-
cally either by reaction of proteins with glu-
cose or with auto-oxidation products of
glucose such as glyoxal or methylglyoxal. The
AGEs appear to initiate a number of patho-
logical processes such as production of reac-
tive oxygen species (ROS), activating the
nuclear factor kappa B (NF«B), altering gene
expression, and initiating inflammatory
changes. The effects of AGEs are mediated
through specific receptors called RAGE.
AGEs decrease elasticity in blood vessels. In
the kidneys AGE formation on glomerular
basement membrane increases its permeabil-
ity to albumin initiating nephropathic changes.
Blockade of RAGE inhibits many of the dia-
betic complications and enhances wound
healing.

2. Increased polyol pathway flux. Aldose
reductase, a low-affinity enzyme, diverts
glucose to the polyol pathway. Under normal
glucose concentrations, negligible quantities
of glucose flux are through this pathway, but
under increased intracellular glucose concen-
trations, there is an increased flux through the
polyol pathway. This is thought to result into
sorbitol-induced osmotic stress and other met-
abolic alterations. Aldose reductase is inacti-
vated by nitric oxide, and decreased nitric
oxide in diabetes is likely to be responsible for
activating the polyol pathway flux.

3. Activation of protein kinase C. Triggered by
metabolic intermediates in the glucose oxida-
tion pathway, certain isoforms of protein kinases
are abnormally activated. These are implicated
mainly in decreased production of NO.

4. Increased hexosamine pathway flux. When
intracellular glucose load increases, a significant
part of it is shunted through the hexosamine
pathway resulting into an increase in Spl
O-linked  N-acetylglucosamine (GIcNAc).
Since O-GlcNAcylation is important in RNA
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polymerase, transcription of a number of genes

can be affected. Of particular relevance is the

inhibition of endothelial nitric oxide synthase

(eNOS), which ultimately results into decreased

NO activity.

Although a large number of different pathways
are triggered by hyperglycemia, they seem to
converge at two points, namely, decrease in NO
production and increase in ROS production. One
perplexing fact however is that all the effects of
hyperglycemia outlined above are reversible and
normalize quickly on normalization of glucose
levels. In spite of this normalization, the clinical
effects of diabetes remain long lasting. In a some-
what mystic phenomenon called hyperglycemic
memory, pathological effects of hyperglycemia
are observed even after normalization of blood
sugar. What causes these effects is not clearly
known, but this phenomenon suggests that there
may be some other pathological processes in
diabetes which are not yet discovered or
appreciated.

Currently the treatment of T2D aims at nor-
malizing blood sugar level as far as possible.
Appropriate diet and lifestyle changes are advo-
cated to all patients with T2D. In addition the
pharmaceutical treatment takes one of the three
lines or a combination of these, the first being use
of insulin-sensitizing drugs, second being efforts
to increase pancreatic insulin secretion, and the
last being infusion of exogenous insulin. None of
the treatments appear to “cure” diabetes. Once
diabetes is confirmed, the patient remains dia-
betic for life. The treatment helps keep the sugar
levels in “control” for some time. A general pat-
tern with any antidiabetic treatment is that ini-
tially it gives dramatic results in that the blood
sugar reduces rapidly and approaches normal.
However with continued treatment in a variable
length of time, the control is gradually lost, and
the treatment becomes ineffective in the long run,
necessitating change in drug or dose. Insulin is
generally the last resort. In long-standing diabet-
ics often high doses of insulin too are unable to
normalize blood sugar. Therefore not only the
treatment is unable to cure diabetes but in a sub-
stantial proportion of patients even unable to keep
sugar levels under control.
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There are two steps involved in being effective

in curing a disorder. One is to understand the basic
biology behind it, and the other is to develop the
right technology to attack the root cause. Where
does the problem lie in the case of diabetes? Has
science failed to detect the root cause of diabetes or
has technology failed to attack it or is the condition
irreversible by nature? If it is irreversible exactly
what part of it is irreversible? If not why have we
failed to reverse it so far? These are the questions
that we need to elaborate sufficiently now.
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