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  Abstract   Physical activity results in numerous health bene fi ts. Speci fi cally, regular 
exercise reduces the risk of developing cardiovascular disease, metabolic syndrome, 
and cancer. The exercise-induced health bene fi ts are attributed to alterations in hor-
mone levels, growth factors, decreased obesity, and/or decrease in pro-in fl ammatory 
mediators. In addition to these factors, exercise-induced reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) production has drawn a lot of attention 
in recent years. In this regard, during exercise the production of ROS and RNS 
increases in the body. It is now well accepted that physiological levels of ROS/RNS 
produced during exercise play an important role in cells including the control of 
gene expression and regulation of cell signaling pathways. However, high levels of 
ROS/RNS can damage cellular components. For example, excessive ROS and RNS 
can directly damage DNA by causing DNA base modi fi cations leading to carcino-
genesis. Although the production of ROS/RNS increases during muscular contrac-
tions, exercise also promotes the upregulation of several antioxidant enzymes that 
can counteract the increased production of these oxidants. Therefore, exercise can 
have differential effects on carcinogenesis. For example, moderate physical activity 
increases the expression of endogenous antioxidants that may protect against a car-
cinogenic event. In contrast, regular bouts of exhaustive exercise have been shown 
to impair the immune system and could reduce immune-surveillance and increase 
the risk of some cancers. Therefore, identifying the optimal amount of physical 
activity that can lead to cancer-preventive effects is of paramount importance.      
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    2.1   Introduction 

 A plethora of research articles suggest that regular exercise decreases the risk of 
developing different types of cancers (e.g., colon, breast, prostate, endometrial, and 
lung). Despite the large number of studies suggesting a positive correlation between 
physical activity and cancer prevention, other investigators report that this correla-
tion may not be always true  [  16,   55,   64,   67  ] . These disparate results may be attrib-
uted to several factors. For example, physical activity can have different in fl uences 
on carcinogenesis, depending on energy supply and the intensity and frequency of 
exercise. In general, moderate intensity exercise has cancer-preventive potential and 
a myriad of other health bene fi ts. However, a single exhaustive bout of exercise may 
increase the risk for cancer development  [  11,   44  ] . 

 The molecular mechanisms underlying the cancer preventive or cancer promoting 
effects of exercise have not yet been fully investigated. One of the reasons for such 
controversy may be attributed to the levels of exercise-induced reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS) production that can differentially 
affect health. High levels of ROS/RNS can damage cellular components, but physi-
ological levels of ROS/RNS play an important role in cells including the control 
of gene expression and regulation of cell signaling pathways  [  13,   49,   52,   53,   59  ] . 
This chapter will discuss the role that exercise-induced free radical generation plays 
in tumor growth. We will begin this chapter with an overview of the different species 
of ROS and RNS and this section will be followed by a discussion of the sources of 
ROS and RNS. We will then summarize the major cellular antioxidant systems and 
discuss how exercise can affect these systems. We will conclude with a discussion of 
the effect of exercise-induced ROS/RNS on cancer development and progression.  

    2.2   Reactive Oxygen Species and Reactive Nitrogen Species 

 We will begin this chapter by discussing the major species of ROS and RNS. In the 
context of reactive species, a free radical is any atom/molecule that contains one or 
more unpaired electrons  [  21  ] . This unpaired electron makes radicals unstable and 
reactive. In this regard, free radicals can be formed by either losing or gaining an 
electron. The name ROS includes oxygen centered radicals and non-radicals, and 
reactive derivatives of oxygen (e.g., hydrogen peroxide). Similarly, the term RNS 
refers to both nitrogen radicals along with other reactive molecules where the reactive 
center is nitrogen. The following section will summarize the chemical composition 
and properties of the main ROS and RNS. 

 Superoxide is generated as an intermediate in several biochemical reactions 
including the incomplete reduction of oxygen to water during oxidative phosphory-
lation. Also, many in fl ammatory cells can produce signi fi cant amounts of superoxide 
in an effort to protect against invading organisms  [  17  ] . The dismutation of superoxide 
produces hydrogen peroxide. Hydrogen peroxide is a more stable ROS and it is 
permeable to cellular membranes. Despite that hydrogen peroxide is a relatively 
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weak oxidizing agent; at high levels it is cytotoxic, mainly because it can generate 
hydroxyl radicals through the Fenton reaction. Hydroxyl radicals possess a strong 
oxidizing potential and are highly reactive and potentially are the most damaging 
ROS present in biological materials. 

 Another ROS found in cells is hyperchlorite that can be formed by the action of 
myeloperoxidase utilizing hydrogen peroxide. Hyperchlorite is also produced 
by neutrophils and can oxidize biomolecules. Further, when in the acid form 
(i.e., hypochlorous acid), this oxidant can cross cell membranes and promote 
fragmentation and aggregation of proteins  [  21  ] . 

 Nitric oxide is the main RNS and it is synthesized in many cell types from the 
amino acid L-arginine. The synthesis of nitric oxide occurs through three nitric 
oxide synthases (NOS): (1) neuronal NOS; (2) endothelial NOS; and (3) inducible 
NOS. Each of these nitric oxide synthases convert L-arginine into nitric oxide and 
L-citrulline by utilizing NADPH. Nitric oxide is a weak reducing agent, but it can 
react with oxygen to form nitric dioxide or with superoxide to produce peroxynitrite 
 [  20  ] . Peroxynitrite is a strong oxidizing agent that can lead to depletion of thiol 
groups, DNA damage, and nitration of proteins.  

    2.3   Sources of ROS and RNS During Exercise 

 It is now well accepted that whole body exercise results in increased production of 
ROS and RNS that can cause lipid, DNA, and protein oxidation in the blood and other 
cells. The generation of ROS and RNS by skeletal muscle increases during exercise, 
but other potential sites of ROS and RNS exist. Surprisingly, few studies have investi-
gated the predominant tissues responsible for exercise-induced oxidant production. 
This is probably due to limited access to other tissues (other than skeletal muscle) in 
humans and the fact that several organ systems are linked via the increased metabolic 
requirement of contracting skeletal muscles. However, it is feasible that other tissues 
such as the heart, lungs or white blood cells may contribute signi fi cantly to the total 
body generation of ROS and RNS during exercise  [  50  ] . In this regard, investigators 
proposed that common metabolic changes that occur during exercise (e.g., increased 
release of catecholamines) may play a role in the increased ROS generation  [  9  ] . 
Further, in situations that exercise results in signi fi cant muscle damage, in fl ammatory 
processes may play an important role in radical production. The following paragraphs 
discuss the main sites of ROS and RNS generation by focusing in skeletal muscle. 

 Mitochondria have been considered the main source of intracellular ROS in 
muscle  fi bers and early reports suggested that 2–5 % of the total oxygen consumed 
by mitochondria may undergo one electron reduction to produce superoxide  [  6  ] . 
However, recent evidence suggests that only about 0.15 % of mitochondrial oxygen 
utilized is converted to superoxide  [  60  ] . Further, mitochondria produce more ROS 
in the basal state of respiration (state 4) compared to the active state of respiration 
(state 3)  [  2,   49,   50  ] . Therefore, it appears that mitochondria are not the primary 
source of free radical production in contracting skeletal muscles. 
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 In addition to mitochondria production of ROS, muscle cells contain numerous 
sites that are capable of producing ROS. For example, NAD(P)H oxidase enzymes 
associated with the sarcoplasmic reticulum which also release superoxide to the 
intracellular space. Further, reports indicate that NAD(P)H oxidase complex is also 
expressed in the sarcolemma and thus it can also release superoxide into the 
extracellular space  [  29  ] . In addition to NAD(P)H oxidases, there are other plasma 
membrane redox systems that are capable of transferring electrons from intracellu-
lar reductants to extracellular electron acceptors  [  56  ] . For example, external NADH 
oxidase proteins can reduce protein thiols and oxygen in vivo  [  10  ] . 

 Phospholipase A 
2
  is another enzyme that produces ROS. Speci fi cally, phospho-

lipase A 
2
  cleaves membrane phospholipids to release arachidonic acid which is a 

substrate for ROS-generating enzyme systems such as the lipoxygenases  [  70  ] . Also, 
activation of phospholipase A 

2
  can stimulate NAD(P)H oxidases and increased 

phospholipase A 
2
  activity has been reported to stimulate ROS generation in muscle 

mitochondria and cytosol  [  19  ] . 
 Furthermore, numerous studies suggest xanthine oxidase can also promote 

superoxide generation in skeletal muscle  [  18  ] . Although rat skeletal muscles 
contain signi fi cant levels of xanthine oxidase  [  32  ] , human skeletal muscle cells 
 per se  appear to possess low amounts of xanthine dehydrogenase or oxidase  [  22  ] . 
Clearly, additional research is required to determine the role that xanthine oxidase 
plays in exercise-induced ROS production in humans. 

 The main oxidant that falls under the RNS category is nitric oxide produced by 
NOS. Skeletal muscle normally expresses neuronal NOS and endothelial NOS. 
Neuronal NOS is strongly expressed in fast-twitch muscle  fi bers. In contrast, 
endothelial NOS is localized to muscle mitochondria  [  35  ] . Inducible NOS is also 
expressed in skeletal muscle in some in fl ammatory conditions, but it does not play 
a signi fi cant role in normal muscle  [  61  ] . In this regard, nitric oxide is generated 
continuously by skeletal muscles and this production is increased by contractions. 
Importantly, data show that neuronal NOS is the prime source of the nitric oxide 
released from skeletal muscle during muscular contractions  [  25  ] . 

 In summary, ROS and RNS production increases during exercise and these 
damaging molecules can be generated at various compartments within cells and by 
numerous organelles and enzymes (Fig.  2.1 ). Thus, given the importance of 
maintaining redox homeostasis in cells, it is not surprising that cells contain a 
network of antioxidant defense mechanisms to reduce the potential for oxidative 
damage during periods of increased ROS/RNS. The following section discusses the 
major antioxidants found in cells.   

    2.4   Cellular Antioxidant Defense Systems 

 To prevent oxidative damage to cells, a well-organized system of antioxidants act in 
a synchronized fashion. Cells contain both enzymatic and non-enzymatic antioxi-
dants that are strategically located throughout cellular compartments and work 
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together to regulate ROS and RNS. The primary antioxidant enzymes in cells include 
superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). 
Other antioxidant enzymes such as thioredoxin (TRX), glutaredoxin (GRX), and perox-
iredoxin (PRX) also contribute to cellular protection against oxidation. The location 
and function of these key enzymes is discussed in the following sections. 

 Three isoforms of SOD (SOD1, SOD2, SOD3) exist in cells and each incorpo-
rates a transition metal in the active site to accomplish the catalytic breakdown of 
the superoxide anion. SOD1 is located in the cytosol and the mitochondrial inter-
membrane space and requires copper-zinc as a co-factor. SOD2 uses manganese as 
a cofactor and is located in the mitochondrial matrix, whereas SOD3 incorporates 
copper-zinc as a cofactor and is found in the extracellular space. All three isoforms 
of SOD dismutate superoxide radicals to form hydrogen peroxide and oxygen. 
However, as noted previously, hydrogen peroxide is still considered a ROS and cells 
detoxify hydrogen peroxide by using the enzymes GPX and CAT. 

 Five different isoforms of GPX have been reported in mammals (GPX1-GPX5)  [  12  ] . 
Each of these GPX enzymes catalyze the reduction of hydrogen peroxide or organic 
hydroperoxide to water and alcohol, respectively, using reduced glutathione (GSH). 
To function, GPX requires a supply of GSH to provide electrons and since GSH is 
oxidized by GPX to form oxidized glutathione (GSSG), cells must possess a path 
capable of regenerating GSH. The reduction of GSSG back to GSH is achieved by 
glutathione reductase, a  fl avin containing enzyme whereby NADPH provides the 
reducing power  [  43  ] . CAT also catalyzes the breakdown of hydrogen peroxide into 
water and oxygen. Although CAT and GPX share common substrates, compared to 
GPX, CAT has been reported to have a lower af fi nity for hydrogen peroxide at low 
concentrations  [  58  ] . 

  Fig. 2.1    Diagram showing the main enzymes involved in the production of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) in the cell.  eNOS  endothelial nitric oxide 
synthase,  nNOS  neuronal nitric oxide synthase       
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 Along with the previously discussed primary antioxidant enzymes, cells 
also contain additional enzymes that participate in the maintenance of redox 
balance (e.g., TRX, GRX, PRX). Cells have two TRX isoforms; TRX1 is 
found in the cytosol and TRX2 is found in the mitochondrial compartment  [  5  ] . 
TRX participates in maintaining proteins in their reduced state, and once oxi-
dized, TRX is then reduced by electrons from NADPH using the enzyme thi-
oredoxin reductase  [  27  ] . 

 The antioxidant enzyme GRX participates in the protection and repair of protein 
and non-protein thiols during oxidative stress  [  5,   26  ] . Speci fi cally, GRX protects 
thiols by the transfer of electrons from NADPH to disul fi de substrates and this cycle 
is connected with glutathione and glutathione reductase  [  5  ] . While both TRX 
and GRX control the redox state of thiol groups, their concurrent presence in cells 
suggests different functions for each protein  [  41  ] . 

 The last enzymatic antioxidant to be discussed is PRX that reduces both hydroper-
oxides and peroxynitrate using electrons provided by physiological thiols. In mam-
mals, cells express six isoforms of PRX (PRX I-VI) that are located throughout the 
cell. Speci fi cally, PRX I, II, and VI are found in the cytosol, PRX III is located in 
the mitochondrion, PRXIV is located in the extracellular space, and PRX V is 
located within both mitochondria and peroxisomes  [  54  ] . 

 In addition to enzymatic antioxidants, several other nonenzymatic antioxidants 
are found in cells (e.g., GSH, uric acid, bilirubin). GSH is the most abundant non-
protein thiol in cells and as an antioxidant, GSH serves a variety of roles. First, GSH 
can directly react with several ROS by donating a hydrogen atom  [  68  ] . Further, 
GSH acts as a substrate for GPX to eliminate hydrogen peroxide and organic 
hydroperoxides  [  43  ] . Furthermore, GSH can reduce vitamin E radicals that are 
formed in chain-breaking reactions with lipid peroxyl radicals and GSH can reduce 
the vitamin C radical derived from the recycling of vitamin E. 

 Uric acid is another important non-enzymatic antioxidant that is produced as a 
by-product of purine metabolism. Data show that uric acid is a useful scavenger of 
peroxyl radicals, hydroxyl radicals, and singlet oxygen  [  1  ] . In this regard, urate can 
protect against oxidative damage by acting as an electron donor. Also, urate can 
chelate iron and copper ions and prevent them from producing hydroxyl radicals via 
the Fenton reaction  [  21  ] . 

 Two additional non-enzymatic antioxidants are  a -lipoic acid and bilirubin. 
 a -lipoic acid is a naturally occurring compound found in a variety of foods. 
Functionally,  a -lipoic acid can provide antioxidant effects by recycling vitamin C 
 [  8  ] . Further, bilirubin is produced as a byproduct of heme metabolism and bilirubin 
possesses antioxidant potential against peroxyl radicals and can also protect cells 
from hydrogen peroxide  [  4,   62,   63  ] . 

 In summary, cells contain several antioxidant systems (both enzymatic and non-
enzymatic). These systems are found in select locations in the cell to counteract 
ROS and RNS production. Also, these systems are interconnected to maximize 
ROS/RNS detoxi fi cation. Figure  2.2  shows the distribution of the main antioxidants 
between blood, cytoplasm, and mitochondria.   
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    2.5   Exercise-Induced Changes in Antioxidant Systems 

 Numerous investigators have studied the effects of exercise on antioxidant systems. 
Despite the plethora of information available, a consensus answer or whether 
exercise increases antioxidant capacity has not been reached. For example, some 
reports indicate that chronic endurance exercise training does not increase SOD 
activity in muscle, but most studies show that regular bouts of endurance exercise 
increases the activity of SOD (for a review see  [  50  ] ). Methodological differences in 
the assay of SOD activity and variations in the intensity and duration of exercise 
training could contribute to the differences reported in the literature. For example, a 
ten-fold difference exists in the relative sensitivity between common methods 
used to assay SOD activity  [  46  ] . It follows that SOD assay techniques with low 
sensitivity would fail to detect small group differences in SOD activity and could 
explain the failure to observe exercise-induced increases in muscle SOD activity in 
some studies. 

 GPX is also inducible in skeletal muscles and it is noteworthy that endurance 
exercise increases both cytosolic and mitochondrial GPX activity  [  31  ] . Identical to 
SOD, the magnitude of the exercise-induced increase in GPX in skeletal muscle is 

  Fig. 2.2    Illustration showing the distribution of the main antioxidants between blood, cytoplasm, 
and mitochondria.  GPX  glutathione peroxidase,  SOD  superoxide dismutase 1,  TRX  thioredoxin, 
 PRX  peroxiredoxin,  GRX  glutaredoxin       
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a function of both the exercise intensity and exercise duration. Indeed, compared to 
low intensity exercise, high intensity exercise produces a greater increase in muscle 
GPX activity  [  48  ] . 

 Whether or not CAT expression in skeletal muscle increases in response to 
chronic exercise is controversial with studies reporting an increase  [  51,   66  ] , decrease 
 [  36,   37,   48  ] , or no change  [  48  ]  following exercise training. The ambiguity of these 
 fi ndings may be due to a variety of factors including issues associated with assaying 
CAT activity. 

 Finally, at present, the effects of regular exercise on the TRX, GRX, and PRX sys-
tems in muscles are not well known. Nevertheless, it is conceivable that exercise-induced 
upregulation of these antioxidant systems occur as an aid in ROS detoxi fi cation. 

 In regards to the effects of exercise on nonenzymatic antioxidants, numerous inves-
tigations demonstrate that skeletal muscle  fi bers adapt to high intensity endurance exer-
cise by increasing the cellular levels of GSH  [  37,   38,   40,   45,   57  ] . This exercise-induced 
increase in GSH within muscle  fi bers is likely due to increased activity of a key enzyme 
(i.e.,  g -glutamylcysteine synthase) involved in GSH synthesis  [  30  ] . 

 However, data are still lacking on the effects of exercise on the other nonenzy-
matic antioxidants discussed previously. For example, although an acute bout of 
exercise may increase  a -lipoic acid levels in muscle, chronic exercise training does 
not appear to change muscle levels of  a -lipoic acid  [  33  ] . Also, the in fl uence of 
exercise training on muscle urate levels is unknown, but it is feasible that urate 
could function as an antioxidant scavenger in muscle  fi bers during exercise  [  23,   24  ] . 
It is established that prolonged and intense exercise increases blood levels of biliru-
bin  [  14,   42  ] . However, it is unclear if exercise training increases bilirubin content in 
human skeletal muscle.  

    2.6   Role of Exercise-Induced ROS and RNS on Tumors 

 Currently, the classic theory of carcinogenesis involves the processes of tumor ini-
tiation, tumor promotion, and tumor progression  [  69  ] . Tumor initiation begins in 
cells with DNA alterations induced from a variety of stimuli. The alterations in 
speci fi c genes modify the cells to replicate at a faster rate compared to normal cells 
 [  55  ] . During the tumor promotion stage there is a fast clonal expansion of the initi-
ated cells. This stage is associated with hyper proliferation, tissue remodeling and 
in fl ammation  [  55  ] . This stage is followed by the tumor progression stage where pre-
neoplastic cells develop into invasive tumors and this stage is characterized by fur-
ther clonal expansion  [  47  ] . During the tumor promotion stage additional changes in 
gene expression and DNA damage occur in the tumor cells. 

 Figure  2.3  summarizes in a simple way the process of how a normal cell can turn 
to a neoplastic cell by going through the three stages described above (i.e., tumor 
initiation, tumor promotion, and tumor progression). The carcinogenesis pathway 
can be interfered with any point during this multistep process. Speci fi cally, the 
tumor initiation events in carcinogenesis can be inhibited by scavenging ROS and 
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RNS, enhancing carcinogen detoxi fi cation, and altering certain DNA repair pro-
cesses  [  28  ] . Some possible ways that can block the promotion and progression 
stages of carcinogenesis include scavenging ROS and RNS, altering the expression 
of genes involved in cell signaling, decreasing in fl ammation, and enhancing immune 
function  [  28,   55  ] .  

 As we brie fl y discussed in the introduction of this chapter, exercise can have a 
positive effect on cancer prevention. Some of the mechanisms by which exercise 
prevents cancer are: enhanced antioxidant defense mechanisms, reduction in body-
weight, decreased reproductive hormone levels, altered growth factor hormones 
(e.g. insulin-like growth factor-1), and a reduction in chronic in fl ammation  [  7  ] . 

 One common feature of the metabolic activation of all pro carcinogens is that 
their ultimate DNA reactive carcinogenic species are electrophilic and several oxi-
dants fall in this category. Speci fi cally, ROS and RNS can directly damage DNA 
that can lead to carcinogenesis by causing DNA base modi fi cations. For example, 
hydroxyl radical can attack DNA to form 8-hydroxyguanine  [  15  ] . That is, hydroxyl 
radicals can react with pyrimidines, purines, chromatin proteins and can cause base 
modi fi cations and genomic instability with the ultimate result of altering gene 
expression. Therefore, exercise-induced increases in ROS and RNS production 
can aid in the cell’s mutation rate and in the development and maintenance of its 
oncogenic phenotype by acting as a secondary messenger in intracellular signaling 
cascades  [  65  ] . 

  Fig. 2.3    The three step process in carcinogenesis involves tumor initiation, tumor promotion, and 
tumor progression. Exercise can have anti-carcinogenic properties and any of these stages and the 
bene fi cial effects of exercise are shown in the boxes.  ROS  reactive oxygen species,  RNS  reactive 
nitrogen species (Adapted from Ref.  [  55  ] )       

 



16 A.N. Kavazis and S.K. Powers

 In addition to that, high levels of ROS and RNS have been proposed to be 
involved in cancer metastasis. For example, ROS/RNS can act as signaling mole-
cules in the mitogen-activated protein kinases (MAPKs) and p21 activated kinase 
(PAK). These molecules have been shown to be regulated by ROS and to play a 
critical role in cancer cell metastasis  [  39  ] . Therefore, high levels or ROS/RNS not 
only can promote carcinogenesis, but can also cause metastasis of tumor cells. 

 Also, exercise-induced ROS/RNS can stimulate several other in fl ammatory sig-
nal transduction pathways via activation of redox-sensitive transcription factors 
such as NF- k B which functions as a tumor promoter and has been known to be 
involved in in fl ammation-associated carcinogenesis. NF- k B is a major transcription 
factor regulating cyclooxygenase-2 (COX-2), a rate-limiting enzyme in prostaglan-
din biosynthesis. Abnormal upregulation of COX-2 has been implicated in cancer 
development  [  44  ] . A single bout of maximal exercise can accelerate NF- k B activa-
tion and COX-2 expression in human peripheral blood mononuclear cells  [  34  ] . 
Maximal exercises have been shown to induce the phosphorylation of both IKK and 
I k B which in turn can result in cancer development  [  44  ] . 

 Directly scavenging DNA-reactive intermediates with endogenous antioxidants 
or antioxidant enzymes that can scavenge oxidants can be a likely approach for 
modulating carcinogenesis. The induction of antioxidants represents an important 
cellular defense in response to oxidative and electrophilic insults. For example, 
nuclear transcription factor erythroid 2p45–related factor 2 (Nrf2) regulates the 
induction of several antioxidant genes. In this regard, exercise has been show to 
increase the nuclear localization of Nrf2 and subsequent binding to antioxidant 
response elements  [  3  ] . 

 Therefore, when these  fi ndings are taken together, it is hypothesized that the 
levels of ROS/RNS produced during exercise depend on the activity load. This is 
important since ROS and RNS can differentially regulate redox sensitive transcription 
factors such as Nrf2 (e.g. anti-cancer growth) or NF- k B (e.g. pro cancer growth). In 
this regard, current knowledge suggests that moderate exercise results in low levels 
of ROS/RNS production that induce antioxidant gene expression, which confers toler-
ance to the oxidative stress induced by a carcinogenic insult. In contrast, supramaxi-
mal or prolonged (e.g. hours) exercise to fatigue may impair the immune system 
and result in an increased risk of cancer. However, it is possible that the high level 
of oxidative stress associated with supramaximal or prolonged (e.g. hours) exercise 
to fatigue may lead to induction of greater compensatory systems.  

    2.7   Conclusions 

 Regular exercise can be bene fi cial in preventing carcinogenesis. There are many 
mechanisms that have been proposed to explain this cancer-preventive effect of 
exercise. Some of these factors include alterations in hormone levels, growth fac-
tors, and decreased obesity. Exercise can also reduce pro-in fl ammatory mediators 
and reduce chronic in fl ammation. However, exercise can also cause oxidative stress 
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since during exercise production of ROS/RNS increases. The increased oxidant 
production can alter cellular redox status that can affect a myriad of downstream 
pathways. It is clear that excessive ROS/RNS can cause DNA damage and can 
induce carcinogenesis. Paradoxically, exercise also enhances carcinogen 
detoxi fi cation by modulating antioxidant expression and promoting DNA repair 
processes. Although this relationship between exercise, ROS/RNS, and antioxidant 
expression has been known for many years, the total effect of exercise is not fully 
known. Importantly, physical activity is one of the few modi fi able factors that can 
prevent the development of various malignancies. Therefore, future research should 
focus on trying to identify the optimal load of physical activity that can lead to 
cancer-preventive effects.      
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