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1 Introduction
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linear nonautonomous parabolic equation:
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where D C RY, s >0, a;j, a;, b;, and c( are appropriate functions on [0,00) X D, and
B is a boundary operator of either the Dirichlet or Neumann or Robin type, that is,
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where dy is an appropriate function on [0,e0) x dD. Let a = ((aij)};_y, (@),
(bi)f\’: 1> €0,do) with dy = 0 in the Dirichlet or Neumann boundary condition case.
To indicate the dependence of (1)4(2) on a, we may write (1)+(2) as (1),+(2),.

Among others, (1)+(2) arise from linearization of nonautonomous nonlinear
parabolic equations at a global solution (i.e., a solution which exists for all # > 0) as
well as from linearization of autonomous nonlinear parabolic equations at a global
time dependent solution.

Concerning the linearization of a nonlinear problem at a global solution, it is of
great importance to study the dynamical behavior of solutions of (1) + (2) as s — o
and t — s — oo, where s represents the initial time. This paper is focused on the
study of the least upper bound of exponential growth rates of solutions of (1) + (2)
as s — oo and r — s — oo, which is equivalent to the study of so called principal
spectrum of (1) + (2) introduced in this paper.

Observe that (1)+(2) is called forward nonautonomous because, first, we are
mainly interested in the properties of solutions as s — oo, t —s — oo, and a;}, a;,
b;, cp, and dy are not necessarily defined for r < 0, and, second, the set of forward
limiting equations can contain elements depending on time.

Principal spectrum for nonautonomous parabolic equations defined for all € R
is well studied in several works (see [9-12, 14-18, 21], and references therein)
and has also found great applications (see [8, 13, 19, 22, 27], etc.). Principal
spectrum for such nonautonomous parabolic equations reflects the growth rates of
solutions as t — s — oo, where s represents the initial time.
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As the focus for forward nonautonomous parabolic equations is on the study
of the behavior of solutions as s — e and r — s — oo, the principal spectral
theory developed for nonautonomous parabolic equations defined for all r € R
cannot be applied to forward nonautonomous ones directly. The objective of this
paper is to establish some principal spectral theory for forward nonautonomous
parabolic equations, and discuss its applications to nonlinear parabolic equations
of Kolmogorov type.

In order to do so, we first in Sect. 2 introduce the assumptions and the notion of
weak solutions of (1)+(2) and present some basic properties of weak solutions.

In Sect. 3, we give the definition of principal spectrum of (1)+(2) and establish
some fundamental properties. Let U,(z,s)uy denote the weak solution of (1)+(2)
with initial condition u(s) = U,(s,s)uo = up € Lo(D) (s > 0). Roughly speaking, the
principal spectrum of (1)+(2) is the complement in R of all the A € R satisfying
either of the following conditions:

e Therearen >0,M > 1,and T > 0 such that

[|Ua(t,5)|| < MeP=ME=) fors > 5> T;
* Thereare n >0, M € (0,1], and T > 0 such that

(|Ua(t,s)|| > MM forr > s> T

(see Definition 3.2). Among others, it is proved in Sect. 3 that

* The principal spectrum of (1)+(2) is a compact interval [Amin(a), Amax (a)] (see
Theorem 3.1).

In||Ua(t,5)|| plnHUa(t,S)ll

o Amin(a) = liminf . and  Amax(a) = lirsnjg . (see
t—s—ro0 PLIRAV

Theorem 3.2).

In Sect. 4, we investigate the relation of the principal spectrum of (1)+(2) and the
principal spectrum, denoted by [Anmin (@), Amax (a)], of its forward limiting equations,
and show that if some extension of (1)+(2) together with its limiting equations
admits a so-called exponential separation, then

* [Amin(@), Amax(@)] = [Amin(@), Amax (@)] (see Theorem 4.3);
* Amin(a) = liminf M and Amax(a) = lim supM
P I=s Phimav I=s
nonzero nonnegative uy € L, (D) (see Theorem 4.3);

e If, moreover, (1)+(2) is asymptotically uniquely ergodic, which includes the
asymptotically periodic as a special case, then [Amin(a), Amax(a)] is a singleton,
i.e., Amin(@) = Amax(a), and in the asymptotically periodic case, Amax(a) equals
the principal eigenvalue of the forward limiting periodic parabolic equation (see
Corollary 4.5).

for any
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In Sect.5, we establish more properties of the principal spectrum [Ayin(a),
Amax (@)] of (1)+(2), including

* Amin(a) and Amax(a) continuously depend on a in the norm topology (see
Theorem 5.1);

* When g;;, a; and b; depend only on x, the principal spectrum of (1)+(2) is greater
than or equal to that of its time-averaged equations (see Theorem 5.3).

The properties mentioned above provide some important tools for the principal
spectrum analysis as well as its computation.

We remark that the theories and techniques developed in this paper would have
applications to the study of long time behavior in various forward nonautonomous
nonlinear equations arising from biology and chemistry. In particular, they would
have applications to the extensions of the existing dynamical theories for asymptot-
ically periodic systems (see [28-31], etc.) to asymptotically uniquely ergodic ones,
which include asymptotically periodic and almost periodic systems as special cases.
In the last section (i.e., Sect. 6), we discuss applications of the principal spectrum
theory for forward nonautonomous parabolic equations to the asymptotic dynamics
of nonlinear parabolic equations of Kolmogorov type. In particular, we provide
sufficient conditions for the uniform persistence (see Theorem 6.1).

Throughout the paper D C R" is a bounded domain (an open and connected
subset).

The norm in L,(D) is denoted by ||-||. Also, the norm in the Banach space
L(Ly(D),Ly(D)) of bounded linear operators from L, (D) into L,(D) is denoted
by [|-[].

For the meaning of some symbols, like CKt%/+B(E| x E,), or D(E), etc., the
reader is referred to the authors’ monograph [18].

2 Assumptions and Weak Solutions
In this section, we state the assumptions, introduce the definition of weak solutions,
and present some basic properties of weak solutions.

2.1 Assumptions

Consider (1)+(2). Our first assumption is on the regularity of the domain D.

(A1) (Boundary regularity) For Dirichlet boundary conditions, D is a bounded
domain. For Neumann or Robin boundary conditions, D is a bounded domain with
Lipschitz boundary.
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If (A1) holds, D is always considered with the N-dimensional Lebesgue measure,
whereas, in the case of Robin boundary conditions, dD is considered with the
(N—1)-dimensional Hausdorff measure, which is equivalent to the surface measure.

The second assumption regards boundedness of the coefficients of the equations
(and of the boundary conditions):

(A2) (Boundedness) a = ((aij)};_, (@)}, (bi)i,co,do) belongs 10 Le([0,00) x

D,RNZHN“) X Leo([0,00) X dD,R) (in the Dirichlet or Neumann case dy is set to
be constantly equal to zero).

We may write a = (Cl,‘j,ai,b,‘,C(),d()) fora = ((Cl,‘j)?{izl, (Cl,‘)?/:l, (b,')f»vzl, Co, d()) if
no confusion occurs.

The next assumption is about the uniform ellipticity.

(A3) (Uniform ellipticity) There exists oy > O such that there holds

2 a;jj(t,x §,§j>oc02§2 for a.e. (t,x) € [0,00) x Dand all & € RV,
i,j=1

aij(t,x) = aji(t,x) forae. (t,x) €[0,00)xD, i,j=1,2,...,N. 4

Sometimes we will use the forward limit equations to study the principal
spectrum of (1)+(2). For any ¢ > 0 we define the time-translate a - t of a by

a-t.= ((al/ t)lj 1)( ){’V:la(bi't)fvzlvco'tvdo't)a

where a;; -1(7,x) := a;j(T+1,x) for T € [—1,00), x € D, etc.

For a given sequence (#,) C [0,e0) with #, — T* (T* < e0) and @ = ((dij)f'\,]j:p
(di)fvzl’ (l;i){‘vzl’ Co, d~0) € Leo((—T",00) x DvRN2+2N+l) X Loo((=T*,0) x D, R),
we say that a -1, converges to d in the weak-* topology if forany T > —T*, a-t, — a
in the weak-* topology of Le.([T, ) x D, RN**2VH1) x I ([T,e0) x 9D, R).

Recall that the Banach space L..(R x D,RM*2V+1) 5 [ (R x 9D, R) is the
dual of L (R x D, RV *2V+1) x I, (R x 9D, R). We denote the duality pairing by

<'7 '>L1 Lo+
We fix a countable dense subset {gj,g2,...} of the unit ball in L;(R x D,

RN*+2N+1) 5 (R x 9D, R) such that for each k € N there exists K = K(k) > 0
with the property that g, (¢,-) =0 fora.e.t € R\ [-K,K].
For any @1, d® € L. (R x D,RV+2V+1) x [ (R x 9D, R) put

|
da Z‘Z_ g, (@t —a®))y, ol ©)

For any @ € Le (R x D, RN *2V11) x (R x 9D, R), @ = (dij, d, b, &, dp). and
any ¢ € R we define the time-translate a -t of a by
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a-t:= ((alj t)z/ 17( )ﬁl,(l;i-t)f\lzl,fo-t,Jo-l),

where d;; - 1(7,x) :=a;j(t+1,x) fort € R, x € D, etc.

We may extend a to functions belonging to Lo (R x D,RN*2¥+1) 5 [ (R x
dD,R) to study the forward limits of a. A function @ € Le.(R x D, RN'F2N+1)
Le(R X OD,R), a = ((aij)};—y, (@)L, (bi)iLy, €0, do), is called an extension of a if
aij(t,x) = ajj(t,x), a(t,x) = ai(t,x), bi(t,x) = b;(t,x), and o (,x) = co(t,x) for a.e.
(t,x) € ]0,00) X D, and dy(t,x) = dy(t,x) for a.e. (t,x) € [0,00) x ID.

The lemma below will be instrumental in showing that the forward limits of a do
not depend on the extension of a to a function in Le.(R x D, RV *2V+1) x I (R x
ID,R).

Lemma2.1. Ler aV = (a}),al"” B!V, & dy") and a® = (@) ,a” b{.c,
d_éz)) be extensions of a € Le([0,00) X D RN2+2N+1) X Lo ([0,00) x dD,R). Then,
for any t, — e, one has d(a M .z,,a®. t,,) — 0. In particular, aV) - 1, converges in
the weak-* topology to d (€ Le(R X D,RN FINEDY ¢ Lo (R x 9D, R)) if and only if
a? ., converges in the weak-* topology to a.

Proof. For € > 0, take ko € N such that

o 1
2 5%

k=ko

where M denotes the maximum of the (L..(R x D,RNVF2N+1) » [ (R x
dD,R))-norms of @") and @®). Then we have

=

1
> §|<gk= @V-r—a? )| <e
k=ko

for each 7 € R. Let K > 0 be such that g, (¢,x) = 0 for a.e. t outside [—K, K], for all
k=1,2,...,kp— 1. We have

k-1

Z ?|<gka (51(1) “In —a? 'tn)>L1,Lm| =0

=1

forn € N solarge thatt, > K. As aresult, d(Ez(l) -1y, a? -ty) < € for such n. Therefore

d(@V 1,,a% -1,) >0 as n— oo,

and then 1) -1, converges in the weak-* topology t0 @ (€ L (R x D, RN T2V +1)
Lo.(R x dD,R)) if and only if @ -, converges in the weak-* topology to @. [
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For an extension a of a, the set {a-7:¢ € R} is (norm-)bounded, hence has
compact closure in the weak-* topology. We define

Y(a):=cl{a-t:t e R}, (6)

where the closure is taken in the weak-* topology. When not remarked to the
contrary, Y (@) is considered with the weak-* topology. Y (@) is a compact metrizable
space, with a metric given by d(-,-).

Ford € Y(a) and t € R we write 6;d :=a-t. (Y(a),{0: };er) is a compact flow
(i.e., 0yd is continuous in ¢ € R and d € Y(a), and o6y = Id, 01+ = 0; o O for any
t,s € R).

Let a be an extension of a. Put

Yo(@) :=(cl{a-t:1€[s,o)}. @)

s>0

In other words, Yy(a) equals the ®-limit set of a for the compact flow
(Y (a),{ 0t }1er)- By standard results in the theory of topological dynamical systems,
Yy(a) is invariant, nonempty, compact and connected. Also, a € Yy(a) if and only if
there is a sequence t,, — oo such that a-t, — d as n — oo.

In view of Lemma 2.1, ¥y(a) does not depend on the choice of extension a of a.
We can (and will) thus write Yy(a). Further, d € Yy(a) if and only if there is a
sequence f,;, — oo such thata-t, — d as n — oo.

The next assumption will be instrumental in proving the continuous dependence
of solutions on parameters.

(A4) (Convergence almost everywhere)
In the Dirichlet or Neumann case:

(Ada) For any sequence (t,) C [0,00) with t, — T* (T* < o) such that a-t,
converges to d in the weak-* topology we have that a;; -t, — d;j, a; -t, — d;,
b; -ty — bj pointwise a.e. on [T,) x D, for any T > —T*,

and

(A4b) for any sequence (@) C Yy(a) converging to @ in the weak-* topology we

have that a( ") — djj, a (n> — dj, l( — B,- pointwise a.e. on R x D.

In the Robin case:
(Ada) For any sequence (t,) C [0,00) with t, — T* (T* < o) such that a -t,
converges to a in the weak-* topology we have that a;; - tn = dij, aj -ty — dj,

b - t, — b; pointwise a.e. on [T,o0) x D, and dy - t, — do pointwise a.e. on
[T,o0) X D, forany T > —T*,

and

(A4b) for any sequence (a™ )) C Yola) converging to a in the weak-* topology we

have that a( —djj, d () — dj, b — b pointwise a.e. on R x D, and d}@ —

do pomthse a.e. on R x dD.
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To study the continuous dependence of the weak solutions and principal spectrum
of (1)+(2) with respect to its coefficients, we may imbed the extensions of a into a
subset ¥ of Le.(R x D, RV +2N+1) 5 [_(R x 9D, R) satisfying

(A2) (Boundedness and invariance) Y is a bounded subset of L.(R x D,
RNZHNH) X Le(R x dD,R) and is closed (hence, compact) in the
weak-* topology of Le.(R x D,RNerZNH) X Leo(R x dD,R). Moreover, Y
is invariant: Forany a € Y and anyt € R there holdsa-t €Y.

(It should be remarked here that, under Assumption (A2, (Y,{0;}er),
where 0;d := d-t, is a compact flow.)

(A3)" (Uniform ellipticity) There exists oy > 0 such that for any a € Y there holds

Z aij(t,x §,§j>o¢0252 fora.e. (1,x) € Rx Dand all & € RV,
i,j=1 i=1

d,’j(t,x) = dji(t,x) for a.e. (t,x) eRxD, i,j=1,2,...,N. ®)

At some places, we may assume
(A4)" (Convergence almost everywhere)

In the Dirichlet or Neumann case:

For any sequence (a g )) C Y converging to a in the weak-* topology we have that

~(n) ( ) )

—djj, a; ' — dj, b(n — b; pointwise a.e. on R x D.

In the Robin case:

For any sequence (a(”)) C Y converging to a in the weak-* topology we have that

~,(7) — dij, ( " daj, Bl( — b; pointwise a.e. on R x D, and d~( — dy pointwise

a.e. onRan

Observe that for a given a satisfying (A2) and (A3), Y = Yy(a) satisfies (A2)’ and
(A3).
For a € L..([0,%0) X D, I@NZHNH) X L ([0,00) x dD, R) satisfying (A2) and (A3)

we denote by @ = (d;;, a;, bi, ¢, dp) the extension of a given by

aij(t,x) == op&;; forr <0, xeD,

ai(t,x) =0 forr <0, x €D,

Z,’(l‘,x) =0 fort <0, xeD,

Co(t,x) :=0 forr <0, x€D,

=o(t,x) =0 fort <0, x€dD 9)

(8;; denotes the Kronecker delta).

Sometimes, for a fulfilling (A2) and (A3), we pick up some extension a of a so
that Y = Y (a) satisfies (A2)’ and (A3)’. We may say that such a satisfies (A2) and
(A3). If Y =Y (a) satisfies (A4)’, we say a satisfies (A4)'.
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Clearly a defined by (9) satisfies (A2)" and (A3)’.
Lemma 2.2. For a satisfying (A2)—(A4) the extension a given by (9) satisfies (A4

113

Proof. In the following, the expression am converges pointwise a.e. to @’ means
that @, — ayj,a." — ai, b )
a.e.on R x dD.

Note that the proof reduces to proving the following subcases:

— b; pointwise a.e. on R x D, and d}()” — dp pointwise

(i) For any real sequence (t,) with lim t,, = —oo we have that a-t, converges
n—yoo
pointwise a.e. to (0 ;;,0,0,0,0).
This is straightforward.
(ii) For any real sequence (t,) with limt, = T € R we have that a-t, converges
n—yoo

pointwise a.e.toa-T.
The fact that the corresponding coefficients converge pointwise a.e. on
[T, o) x D (resp. pointwise a.e. on [T,e=) X dD) is a consequence of (Ada). The
pointwise convergence a.e. on (—eoo,T) X D (resp. on (—eo, T') X dD) follows
by the construction of 4.
(iii) For any real sequence (t,) with r}gg ty = oo such that a-t, convergesto a € Yo(a)
in the weak-* topology we have that a-t, converges pointwise a.e. 10 Q.
This is a consequence of (A4a).
(iv) Forany sequence (a\") C Yo(a) convergent to a € Yo(a) in the weak-* topology
we have that a\") converges pointwise a.e. to a.
This is just (A4b). ]

The next result is a consequence of the Ascoli—Arzela theorem.
Lemma 2.3. Assume that the boundary oD of D is of class CP, for some B > 0.

(1) If aij, ai, bi, co € CP1P2([0,00) x D), and dy € CP1B2([0,50) x ID), where 0 <
B2 < B, then a = (aij,a;,bi,co,do) satisfies (A4). y y

(2) Assume that Y satisfies (A2). If for each a = (a;j,a;, bi,o,do) € Y there holds
dij, ai, bi, & € CPp: (R x D), and dy € CP1-B (R x dD), where 0 < 3, < j3,
and the CP1-P2 (R x D)-norms of dij, a;, b;, & are bounded uniformly ina €Y
and the CP1-B2 (R x dD)-norms of doy are bounded uniformly in @ € Y, then Y
satisfies (A4)'.

2.2 Weak Solutions: Definition

Throughout this subsection, D satisfies (Al) and Y is a subset of L.(R X
D,RVH2V+L) [ (R x 9D, R) satisfying (A2)'~(A3)".

Let a satisfy (A2), (A3), and let a be an extension of a such that Y(a) C Y.
In particular, a satisfies (A2) and (A3)'.
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We define V as follows:

W, (D) (Dirichlet)
V= { W) (D) (Neumann) (10)
W, ,(D,dD), (Robin)

where W) (D) is the closure of D(D) in W, (D) and W2172 (D, dD) is the completion of
Vo :={ve W (D)NC(D):vis C” onDand ||v|ly < e}

with respect to the norm ||v||y := (||Vv||3 + ||VH%73D)1/2, where D(D) is the space of
smooth real functions having compact support in D.

If no confusion occurs, we will write (u,u*) for the duality between V and V*,
where u € V and u* € V*.

For s <t, let

W=W(s,t;V,V*):={veLy(s,1),V):veELy(s,t),V")} (11)

equipped with the norm

i = ([0l ar+ [ 1503 ar)’,

where v := dv/dt is the time derivative in the sense of distributions taking values in
V* (see [5, Chap. XVIII] for definitions).
For a given @ = (d;,dj, bi,¢o,dp) € Y, consider

) = jzlal] " x; e 5 o 9x; coth, )i, X<
(12)

endowed with the boundary condition

B(t)u=0, xe€dD, (13)

where B is a boundary operator of either the Dirichlet or Neumann or Robin

type, that is, B(t)u = B(t)u, where B(t)u is as in (3) with a being replaced by a.

Sometimes we write the nonautonomous problem (12)+(13) as (12)5+(13);.
Denote by Bz = Bs(t, -, ) the bilinear form on V associated with @ € Y,

Bg(t,u,v) ::/D((d,-j(t,x)aju+di(t,x)u)8iv—(Ei(t,x)&u—l-ﬁo(t,x)u)v)dx, (14)
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(u,v € V) in the Dirichlet and Neumann boundary condition cases, and
Ba(t,u,v) := / ((a@ij(t,x)9ju~+ai(t,x)u) oy — (bi(t,x)du + &o(t,x)u)v) dx
D
+/ do(t,x)uvdHy 1, (15)
aD

(u,v € V) in the Robin boundary condition case, where Hy_; stands for the
(N — 1)-dimensional Hausdorff measure, which is, by (A1), equivalent to the surface
measure (we used the summation convention in the above).

Definition 2.1 (Weak solution). (1) Let d € Y. A function u € Ly((s,t),V) is a
weak solution of (12)z+(13)g on [s,t] X D, s < t, with initial condition u(s) = ug
if

- [wW@mé@ar+ [ Bl e@dr— o) =0 (6)

for all v € V and ¢ € D([s,)), where D(][s,r)) is the space of all smooth real
functions having compact support in [s,?).

(2) If a is an extension of a and s > 0, a weak solution u € Ly((s,t),V) of
(12)7+(13)z on [s,] x D with initial condition u(s) = u is called a weak solution
of (1)+(2) on [s,t] x D with initial condition u(s) = u.

Definition 2.2 (Global weak solution). (1) Let ¢ € Y. A function u €
L) 1oc((8,20),V) is a global weak solution of (12)a+(13)a with initial condition
u(s) = up, s € R, if for each ¢ > s its restriction uj,,) is a weak solution of
(12)+(13) on [s,¢] x D with initial condition u(s) = u.

(2) If ais an extension of a and s > 0, a global solution of (12)5+(13); on [s,e0) is
called a global solution of (1)+(2) on [s,e0).

We remark that the (global) weak solutions of (1)+(2) are independent of the
choices of the extensions of a. Sometimes we will write of (global) weak solutions
of (1)4+(2),.

2.3 Weak Solutions: Basic Properties

Throughout this subsection, D satisfies (Al) and Y is a subset of L.(R X
D, RV 2N+ 5 [ (R x 9D, R) satisfying (A2)'~(A4)’.

Let a satisfy (A2)-(A4), and let a be an extension of a such that Y (a) C Y.

We recall some basic properties of weak solutions of (12)+(13) ((1)+(2)) from
[18] to be used in later sections. The reader is referred to [18] for various other
important properties.
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Proposition 2.4 (Existence of global solution). For any a €Y, s € R, and any
ug € Lr(D) there exists a unique global weak solution u(t;s,d,uo) of (12)+(13)z
with initial condition u(s;s,d,uq) = uo.

Proof. See [3, Theorem 2.4]. O

As, fors <tand d €Y fixed, the assignment [ Ly (D) 3 ug + u(t;s,d,up) € Ly(D)]
is linear, we write Uy (z,s)uq for u(t;s,d,uo).

Proposition 2.5. (i) Foranys <t and any a €Y there holds
Us(t,s) = Uzt —5,0).
(ii) Foranys <t; <ty and any a €Y there holds
Ui(ta,s) = Uz(ta,11) o Ua(ty,5).
As a consequence, for any s <t and any @ €Y there holds
Ua(s+1,0) = Uzs(,0) o Us(s,0).

Proof. See [18, Propositions 2.1.6,2.1.7 and 2.1.8]. O
We may write Uz (2,s) as Uy(t,s) = Ugs(t — 5,0) if £ > 5 > 0.

Proposition 2.6 (L,-L, estimates). There are constants M > 0 and y > 0 such that
[|Ua(2,0)|| < Me" (17)

foraeY andt > 0.
Proof. See [18, Proposition 2.2.2]. O

Proposition 2.7 (Compactness). For any given 0 < t; < tp, if E is a bounded
subset of Ly(D) then {Us(t,0)up:d €Y, t € [t1,12], uo € E} is relatively compact
in Ly(D).

Proof. See [18, Proposition 2.2.5]. O

For u,v € Ly(D) we write u <v (orv > u) if u(x) <v(x) fora.e.x € D. We denote
Ly(D)" :={u€Ly(D):u>0}.

Proposition 2.8 (Monotonicity on initial data). Let ¢ € Y, t > 0 and u;,u; €
Ly (D).

(1) If uy < up then Uz(t,0)u; < Us(t,0)us.
(2) Ifu; <up, uy # uy, then (Uz(t,0)u;)(x) < (Ua(t,0)uz)(x) for x € D.

Proof. See [18, Proposition 2.2.9]. O
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Lemma 2.9. Leta €Y andt > 0. Then ||U;(t,0)|| = sup{ Ua(z,0)uq : up € Lr(D)™,
[luoll =1}

Proof. See [18, Lemma 3.1.1]. O

Proposition 2.10 (Monotonicity on coefficients). Assume that V) and a'® satisfy
(A2)—(A4).

(1) Assume the Dirichlet boundary condition. Let, for some T > 0, al(}) = ag),
al(»l) = al(»z), bl(l) = bl@, but cé)l) < céz), where equalities and inequalities are

to be understood a.e. on [T,) X D. Then
Uy (8,8)uo < Uy (1, 5)uo

foranyt > s>T and any uy € L,(D)™.

(2) Assume the Neumann or Robin boundary condition. Let, for some T > 0, a(!)

ij
az(';?)’ az('l) = al@y b,('l) = b,@y but Cél) < CE)Z), d(()l) > d(()z), where equalities and
inequalities are to be understood a.e. on [T,>) x D or a.e. on [T,e) x dD.

Then

U, ) (t,8)uo < U, (t,8)uo

foranyt > s>T and any uy € L,(D)™.
(3) Let, for some T >0, ag}) = a(z> am = al@, bgl) = b(2> c(1> = c(()z), but d(()l) >0,

ij i i %o
d(()z) =0, where equalities and inequalities are to be understood a.e. on [T, o) x

D or a.e. on [T,) X dD. Then
Uf(l) (t,8)up < U;\(Iz) (¢,8)up

foranyt>s>T and any ug € Ly(D)", where UR(t,5)uo and UN(t, s)ug denote
the solutions of (1)a+(2), with Robin and Neumann boundary conditions,
respectively.

(4) Let, for some T >0, al(;) = ag), agl) = 01(2)’ bgl) = bl@, c(()l) = C(()Z)’ but d(()z) >0,
where equalities and inequalities are to be understood a.e. on [T, o) X D or a.e.

on [T,») x dD. Then
Ugl) (t,8)up < Uf(z) (z,8)uo

for any t > s > T and any ug € Ly(D)", where UP(t,s)uq and UR(t,s)ug
denote the solutions of (1),+(2), with Dirichlet and Robin boundary conditions,
respectively.

Proof. Compare [18, Proposition 2.2.10]. (]

Proposition 2.11 (Continuous dependence). For any real sequences (s );_, With
sp — oo and (ty)5_ witht, —t € (0,00), if

n=1

lima-s,=d,
n—yoo
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then for any ug € Ly(D), Ug(sn+1ty,5n)tto = Ug.s, (tn,0)ug converges to Uz (t,0)ug in
L,(D).

Proof. Tt follows from the arguments of [18, Theorem 2.4.1]. O

Proposition 2.12 (Continuous dependence). For any sequence (a™)=_, C Y, any
real sequence (t,)7_, and any sequence (u,)?_, C Ly(D), if lim, ..a™ = a,
lim,, ety = t, where t € (0,0), and lim, e uty, = ug in Ly(D), then U (t,,0)up
converges in Ly(D) to Uz(t,0)uy.

Proof. It follows from [18, Theorem 2.4.1]. [l

We denote by I1(Y) = {T1(Y), };>0 the topological linear skew-product semiflow
generated by the family (12);+(13);, @ € Y, on the product bundle L, (D) x Y:

TL(Y)(1ug,d) = T1(Y ), (0, @) := (Ua(t,0)u0, 6,d) (t >0, a€ Y, up € Lo(D)).

For Y =Y (a), we will denote I1(Y) by I1(a).

3 Principal Spectrum

In this section, we introduce the definition of the principal spectrum of (1)+(2) and
establish some fundamental properties of it. Throughout the present section, we
assume that D and a satisfy (A1)-(A4). Let a be an extension of a such that it
satisfies (A2)'—(A4)'.

3.1 Definition

Definition 3.1 (Principal resolvent). A real number A belongs to the principal
resolvent of (1),+(2), or {U,(t,s) }+>5>0, denoted by p(a), if either of the following
conditions holds:

e Therearenn >0,M > 1, and T > 0 such that
Ua(t,5)|| < Me*M0=) forr>s5>T

(such A are said to belong to the upper principal resolvent, denoted by p (a)),
e Thereare n >0, M € (0,1], and T > 0 such that

Ua(t,5)|| > Me*ME=) forr>s5>T

(such A are said to belong to the lower principal resolvent, denoted by p_(a)).
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Definition 3.2 (Principal spectrum). The principal spectrum of (1),+(2), or
{Ua(t,8) }s>5>0, denoted by X(a), equals the complement in R of the principal
resolvent p(a).

3.2 Fundamental Properties

Theorem 3.1. The principal spectrum X(a) of (1),+(2), is a compact nonempty
interval [Apin(a), Amax (a)].

In the following, [Amin(a@),Amax(@)] denotes the principal spectrum X(a) of
(1)4+(2), unless otherwise specified.

Theorem 3.2.
In||U,(t In||U,(t
Amin(a) zliminf—n” a(t,9)l glimsup—nH at9l _ Amax (a).
S—yeo t—s s—roo t—s
t—s—oo I

Theorem 3.3. Assume that there is T > 0 such that there holds: a;(t,x) = b;(t,x) =
0 for a.e. (t,x) € [T,) x D, and co(t,x) < 0 for a.e. (t,x) € [T,) x D. Then
[Amin(@); Amax (a)] C (=, 0].

Theorem 3.4. [n the case of the Dirichlet boundary condition, assume that there is
T > 0 such that there holds: ai(t,x) = bi(t,x) = 0 for a.e. (t,x) € [T,>) x D, and
co(t,x) <0 fora.e. (t,x) € [T,o0) X D. Then Amax(a) <O0.

To prove the above theorems, we first prove some lemmas.

Lemma 3.5. (1) Foranyty > 0there is Ky = K| (to) > 1 such that ||Uy(s+1,s)|| <
K, forall s > 0 and allt € [0,1).

(2) For any ty > 0 there is Ko = Kx(tg) > 0 such that ||Uy(s +1,5)|| > Kz for all
s>0and allt € [0,1).

Proof. See [18, Lemma 3.1.2]. O

Lemma 3.6. (1) A real number A belongs to the upper principal resolvent if and
only if there are & >0, T >0, n > 0 and M > 0 such that

|Ua(t,8)|| < MeP=M0) fort—s> 8y ands>T.

(2) A real number A belongs to the lower principal resolvent if and only if there are
8 >0,T>0,1n>0andM > 0 such that

|Ua(t,8)|| > MM fort—s> 8y and s > T.

Proof. The “only if” parts follow from Definition 3.1 in a straightforward way.
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To prove the “if” part in (1), it suffices to notice that, by Lemma 3.5(1), there is
K = K1 (&) > 0 such that ||U,(z,s)|| < Kj < (Kjmax{1,e~%*=1})eA=m=5) for
allt > s> T witht —5 < &.

To prove the “if” part in (2), it suffices to notice that, by Lemma 3.5(2), there is
K> = K»(8y) > 0 such that ||U,(z,s)|| > K> > (K min{1,e~%(A+M7)e(A+m)(=9) for
allt > s> T witht —5 < &. O

Lemma 3.7. There exist 8§ > 0, M; > 0 and a real A such that ||U,(t,s)|| >
M=) forall s > 0and all t —s > .

Proof. See [18, Lemma 3.1.4]. O

Proof of Theorem 3.1. We prove first that the upper principal resolvent p. (a) is
nonempty. Indeed, by the L,—L, estimates (Proposition 2.6), there are M > 0 and
y > 0 such that ||U,(t,s)|| < Me?"=*) forall r > s > 0. Consequently, y+ 1 € p, (a).
Further, it follows from the definition that p; (a) is a right-unbounded open interval
(Amax (@), 2°).

The lower principal resolvent p_(a) is nonempty, too, since it contains, by
Lemma 3.7 combined with Lemma 3.6(2), the real number A — 1. Further, it follows
from the definition that p_(a) is a left-unbounded open interval (—oo, Aiyin(a)).

As p_(a)Npi(a) =0, one has X(a) =R\ p(a) = [Amin(@), Amax(@)]. O

Proof of Theorem 3.2. First, by Definition 3.2, for any sequences (#,);_; C (0,°0),
($n)ir_y C (0,00), such that s, — e and #, — 5, — oo as n — e there holds

I [Uaftnso)l _ 0 U]

In—Sn n—soo n— Sn

Amin(a) < liniinf < Amax(@). (18)
Nn—ro0
Notice that, since Ayin(a) ¢ p—(a), it follows from Definition 3.1 that for each
n € N there are n < s,, 1 < t,,,1 with the property that

1Ua(tn.1,50.1)]] < %eXp(()"min(a) + %)(tn,l —Sn1))-

We claim that lim, e (fy,1 — $,,1) = e as n — eo. Indeed, if not then there is
a bounded subsequence (f,,,1 — Sp.1)51> Mk — ° as k — co. It follows that
|Ua(tn,,1,5m,,1)|| = O as k — eo, which contradicts Lemma 3.5(2). Thus we have

In||U,(t
1lmsup n|| a( }Ll?sﬂ,l)H

n—yoo In1 —Sn1

< Amin(a). (19)

Notice also that, since Amax(a) ¢ p+(a), it follows from Definition 3.1 that for
each n € N there are n < 5,5 < 1,2 with the property that

[Ua(tn2:50,2) | > nexp ((Amax(a) — %)(%2 —Sn2))-

We claim that lim, e (fy2 — $,2) = o as n — eo. Indeed, if not then there is
a bounded subsequence (f,, 2 — Sy 2)5 1> Mk — ° as k — co. It follows that
|Ua(tn,2,5n,,2)|| — o as k — eo, which contradicts Lemma 3.5(1). Thus we have
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liminf > Amax(a). (20)
R—beo In2 =1y 2
The theorem then follows from (18)—(20). O

Proof of Theorem 3.3. Fix ug € Ly(D)* with |lug|| = 1, and put u(t,x) :=
(Uy(t,T)up)(x), t > T, x € D. It follows from [18, Proposition 2.1.4] that

lee(e, )17 = [lueCs, ) ||* = —Z/SlBa(T,u(T, ),u(t,-))dt

_2[‘/D( ilaij(*r,x) O u(T,x) axju(‘r,x)) dxdt <0

i,j=

forany T < s < t. Consequently, with the help of Lemma 2.9 we have |U,(¢,s)| < 1
forany T < s < t. Therefore (0,00) C p_(¥). O

Proof of Theorem 3.4. It follows by the Poincaré inequality (see [6, Theorem 3 in
Sect. 5.6]) that there is o > 0 such that ||u|| < oy ||Vu| for any u € W) (D).
Starting as in the proof of Theorem 3.3 we estimate

e, = s, P = =2 [ Bafe(e,), (2, )) e
2// za,,zxax,urx)a u(z,x) ) dxds
i,j=1
by (A2)
< <20 [ |Vale.) v < 58 [ u(r) e

for T < s <t. An application of the regular Gronwall inequality and Lemma 2.9
gives that

|Ua(t.5)]| < e 0l=)

for any T < s < t, where Ao := 0/a? > 0. Consequently, [—2g,) C p-(a) and
Amax(a) < —Ag. O

3.3 Monotonicity and Continuity with Respect to Zero Order
Terms

In this subsection, we explore the monotonicity and continuity of the principal
spectrum of (1)+(2) with respect to the zero order terms.
Let a(!), a® be such that they satisfy properties (A1)—(A4).
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We assume that there is 7 > 0 such that the following assumptions are satisfied:

MCD a () =a () a () =a? (.61 () =57 (), forae. (1.2) €
[T,e0) x D.

MC2) dP () =dS"(-,-) forae. (t,x) € [T, o) x aD.

(MC3) One of the following conditions, (a), (b), (c), (d), or (e) holds:

(a) Both (1)) and (1), are endowed with the Dirichlet boundary conditions,
and

o V() <P () forae. (1,x) € [T,00) x D,

(b) Both (1), and (1),2) are endowed with the Robin boundary conditions, and
o V() <P () forae. (1,x) € [T,00) x D,
« dV(.,)=dP () forae. (t,x) € [T,e0) x ID.

(c) Both (1),a1) and (1), are endowed with the Neumann boundary conditions,
and

o V() <P forae. (1,x) € [T,00) x D,

(d) (1),0) is endowed with the Dirichlet boundary condition and (1) 2) is endowed
with the Robin boundary condition, and d(()z) (,)>0
e V() =cP(,) forae. (1,x) € [T,0) x D.

(e) (1), is endowed with the Robin boundary condition and (1), is endowed
with the Neumann boundary condition, and d(()z) (,)>0
o V() =cP () forae. (t,x) € [T,0) x D.

Theorem 3.8. Assume that MC1) and (MC3) hold. Then lmin(a(l)) < lmin(a@))
and Amax (@V) < Amax(a'®).

Proof. We prove only the first inequality, the proof of the other being similar.
By Theorem 3.2, there are sequences (s, )5, (ta);_;, With 0 < s, < 1,,, 5, — o0
and t, — §,, — o0 as n — oo, such that

Lo 01U, (650

N )

o PR Amin (Cl )

Proposition 2.10 implies that for each ug € Ly(D)* there holds
1U0) (tn 0 )uol| < |Uye2) (1, sn)uo|

for T <'s, < t,, which implies, via Lemma 2.9, that ||U_ ) (tx,5,)|| < [|U, ) (tn,a)||
for sufficiently large n. By Theorem 3.2,
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In||U (2, In||U ) (2,
lmin(a(l))ﬁliminf [Uy01) (s )| < lim 1U,@ (tn;5n) |

n—soo th — S T n—eo Ih —Sn

= Amin(a?). O
Theorem 3.9. Assume that (MCl) and (MC2) hold. Then |/’Lmin(a(1)) _
)l'min(a(z))l S rand |)Lmax (Cl(l)) — Avmax(a(z)” S T, where r:= Il-g;n ess Sup{ |CE)1> ([,X) _
e (t,x)| :1 € (1,%0), x€D.

Proof. Form € N, puta’) + (r+ Lytobe a'V with c(()1> replaced by c(()1> £(r+1).
By using arguments as in the proof of [18, Lemma 4.3.1] we see that

Ua(k)i(rJr%)(t’S) = ei(rﬁL%)(lfS)Ua(k) (t,s) (0 S § < [)
for k = 1,2. Consequently, by Theorem 3.2,
Rexi (@ £ (r+3)) = Aeal@V) £ (r 4 3),

where Aex stands for A, or Amax.
Observe that for any m € N there is 7;, > 0 such that

) - (r+ Ly <ePe,x) < eVt + 4+ 1)

for a.e. (t,x) € (Tn,o°) X D.
It then follows from Theorem 3.8 that

Ko (@) = (14 1)) < Aea(@?) < Aeu(@V + (r+3)),

hence
Aext(@V) = (r+ 1) < Aei(@®) < Aewi(@M) + (r+ 1)

m

As m € N is arbitrary, this gives the desired result. (]

4 Exponential Separation and Equivalent Definition

In this section, we investigate the relation between the principal spectrum of (1)+(2)
and that of the forward limit equations of (1)+(2). To do so, we employ the so-called
exponential separation theory for general time dependent linear parabolic equations,
which together with principal spectrum theory extends principal eigenvalue and
principal eigenfunction theory for time periodic parabolic equations.
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4.1 Definitions and Characterizations

We first introduce the principal spectrum of (12),+(13), over Yy(a) and the
exponential separation of I1(Y) over Y. We then show that the principal spectrum
of (1)4+(2), equals that of (12),+(13), over ¥y(a) provided that I1(a) admits an
exponential separation on Y (a).

Throughout the present subsection, Y is a subset of L..(R x D,RNzJFZNH) X
Lo.(R x dD,R) satisfying (A2)'—(A4)'.

Let D and a satisfy (A1)-(A4), and let @ be an extension of a such that Y (a) C Y.
In particular, a satisfies (A2)—(A4)'.

Definition 4.1. 1 € R belongs to the principal resolvent of Yy(a) or the principal
resolvent of (12),+(13), over Yy(a), denoted by p(a), if either of the following
conditions is satisfied:

e There are 1 > 0 and M > 1 such that
[|Ua(2,0)]| < Me* ™" for t>0, acY(a)

(such A are said to belong to the upper principal resolvent of Yy(a), denoted by

p(a)),
* There are 1 > 0 and M € (0, 1] such that

|Ua(£,0)|| = Me* ™" for >0, ac Yy(a)

(such A are said to belong to the lower principal resolvent of Yy(a), denoted by
p(a)).
Definition 4.2. The principal spectrum of (12),+(13), over Yo(a), denoted by £(a),
equals the complement in R of the principal resolvent of (12),+(13), over Yy(a).

Remark 4.1. In the terminology of the monograph [18], the principal resolvent of
Yo(a) (resp. the principal spectrum of Yy(a)) is called the principal resolvent of T1(a)
over Yy (a) (resp. the principal spectrum of T1(a) over Yy(a)).

Theorem 4.2. £(a) is a nonempty interval [Amin(a), Amax (a)].
Proof. See [18, Theorem 3.1.1]. O

Definition 4.3. Let Y’ be a closed invariant subset of Y. We say that I1(Y) admits an
exponential separation with separating exponent ¥y > 0 over Y if there are an invari-
ant one-dimensional subbundle X; of L, (D) x Y’ with fibers X;(d) = span{w(a)},
|lw(a)|| = 1, and an invariant complementary one-codimensional subbundle X, of
Ly (D) x Y’ with fibers X»(a) = {v € Ly(D) : (v,w*(a)) = 0} having the following
properties:

(i) w(a) € Ly(D)* forallaeY’,
(i) X2(@)NLy(D)T ={0}forallaey’,
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(iii) There is M > 1 such that for any @ € Y’ and any v € X,(a) with ||v| =1,
[Ua(t,0)vl| < Me™™"||Ua(t,0)w(@)]| (> 0).
For more on bundles, etc., see [18, Sect. 3.2].
Let (A5) stand for the following assumption.

(A5) T1(a) admits an exponential separation over Y (@), for some extension a of a.

In the next subsection, we will show that if both D and a are sufficiently smooth,
(AS) is satisfied.

Theorem 4.3. Assume (AS). Then
(i)

In [[Ua(t,s)w(a-s)]| In [[Ua(z, 5)uol|

Jumin(@) = liminf = liminf

f—s—so0 t—s f—s—so0 t—s
1 t
PRaV t—s

Jfor each nonzero ug € Ly(D)™,

(ii)

In||Ua(t,s)w(a-s)|| In [[Ua(#, 5)uol|

Amax(a) = limsup = limsup
s—ro0 r—s s—ro0 r—s
{—5—o0 {—5—o0
In||U,(t,s
— lim sup H ll( ’ )”
s—ro0 t—s
t—§—o0

for each nonzero uy € L(D)*. ;
(iii) X(a) = X(a), i.e., Amin(@) = Amin(@) and Amax(a) = Amax(@).
Before proving the above theorem, we first recall a lemma from [18].

Lemma 4.4. Assume (AS). Then
(1) A € R belongs to p(a) if and only if there are 1 > 0 and M > 1 such that

[Ua(t,0)w(@)|| < Me* =" fort >0 and a € Yo(a),
(2) A €R belongs to p_(a) if and only if there are 11 > 0 and M € (0,1) such that
|Ua(t,0)w(@)|| > Me* ™" fort >0 and a € Yy(a).

Proof. See [18, Lemma 3.2.6]. O
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We remark that the complement of the set of those A € R for which either of the
conditions in Lemma 4.4 holds is called the dynamical spectrum or the Sacker—Sell
spectrum of | X,N(L>(D) xYp(a))- The reader is referred to [23-26] for the fundamental
spectral theory for nonautonomous linear evolution equations.

Proof of Theorem 4.3 First of all, by [18, Lemma 3.2.5], we have

. f1n||Ua(t,,,s,,)u0H

limin
n—oe In —Sn
In||U,(t
_ liming " Yalns0)l
n—reo Iy — Sn
:liminfln||Ua(tn,sn)w(d.sn)||
n—reo Ih—Sn
< limsup In ||Uy (20, 50)w(a - sn)|
n—soo In — Sn
In||U,(¢ In||U,(t
:limsup nH a(n75n>H :hmsup n” a(n,sn)MOH (21)
n—yoo In —Sn n—yoo Iy — Sn

=3

for any (s,);"_,, (ta);_; such that s, — oo and 1, — s, — o, and any nonzero ug €
L,(D)". By Theorem 3.2, there holds

1 t 1 t
Awin(@) = liminf YOI i G IG5 @ @2
s e r—s s—yoo r—s
t—§—ro0 f—S5—yo0
(1) and (ii) then follow from (21) and (22).
Next, we prove (iii). We first prove
Anin(@) < Aanin(@) < Amax (@) < Amax(@). (23)

Fix, for the moment, € > 0. As Ayn(a) — & € p_(a), it follows from
Lemma 4.4(2) that there is 7 > 0 such that for any ¢+ > T and @ € Yp(a) there
holds

In || Uz (t,0)w(@)|| > (Amin(a) — €)t. 24)
By Proposition 2.12, there is & > 0 such that for any a('),a® € Y (a) with
d(@",a®) < § there holds
— €T < In|Uy (T,0)w(@")| = In || Uy (T, 0)w(@?)|| < eT. (25
For the above 6 > 0 there is 77 > 0 such that for any s > T} there is @ € Yy(a)
such that
d(a-s,a)<é.
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It then follows from (24) and (25) that
In||Uy(T +5,5)w(@-s)|| > (Amin(a) — 2€)T,
and hence

|U(T +5,5)w(@a-s)|| > ePmint@) 2T, 26)

forany s > 7.
We then have, applying Proposition 2.5,

|Ua(nT +5,5)w(a-s)|
Ul (n = DT +5,T +)UulT +5,5)w(@-5)|
> Ua((n—= 1T +5,T +s)w(@- (T +5))|| - emin(@)-26)
> ||Ua((n—2)T +5,2T +5)w(@- (2T +5))|| - 2 Fnin(@)-2)7
> ...

> ¢(Amin(a)—2€)T (27)

forany s > 7y andn € N.
Therefore for any s > 7} and ¢ > 0 with t —s = nT + 7 for some n € {0,1,2,...}
and 0 < 7 < T there holds

1Ualt,shw(@- )| = |Ualt,nT +5)UalnT +5,5)w(a-s)|

> ||Uat,nT + 5)w(@- (nT +s))|| - Pminla) =207

> Meﬂ(imm(a)*%)T, (28)
where M := inf { ||Uz(7,0)w(a)|| : 0 <t < T, a € Y(a)} > 0. This implies that

In[|Ua(t,s)w(a-s)]|

liminf — > Amin(a) — 2€.
t—S§—ro0
Letting € — 0 we get
.. In||Ug(t,s)w(a-s .
liminf | “(t _)s @-s) > Amin(@). (29)

{—§—o0

Similarly we prove that

limsup In||U, (¢, s)w(a-s)||

§—yoo t—s
—s—ro0

< Amax (). (30)

(23) then follows from (22), (29), and (30).
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Next, we prove
Aanin(@) < Aanin (@) < Amax (@) < Armax (@) (31)
Let A € p4(a). By Definition 3.1, there are 1 > 0, M > 1 and T > 0O such that
(Ua(t,s)|| < MeP=M0=) fors > s> T.

In particular, |U,(,s)w(a-s)|| < Me* M=) forany r > s > T.
For each a € Yy(a) there is (s,);7_ C (0,00) with s, — o such that a@- s, — a.
Then by Proposition 2.12, for any ¢t > 0

Ua(t + Spysp)w(@-sn) — Uz(t,0)w(a)
as n — o, Hence

|Ua(t,0)w(@)|| < Me*—"

for any ¢ > 0. It then follows via Lemma 4.4(1) that A € p, (a). Consequently,
Tonax (@) < Amax (@). (32)
Let A € p_(a). By Definition 3.1, there are n >0, M € (0,1) and T > 0 such that
|Ua(t,s)|| > MePTME) fors > 5> T.

By [18, Lemma 3.2.3], there is M, > 1 such that ||U,(z,s)|| < Ma||U,(2,s)w(a-s)||
for all t > s. Therefore, ||U,(t,s)w(a-s)|| > Me* M=) for any t > s > T, where
M:=M/M, € (0,1).

For each a € Yy(a) there is (s,);_; C (0,00) with s, — o such that a@- s, — a.
Then by Proposition 2.12, for any ¢t > 0

Ua(t + SmSn)W(ﬁ . Sn) — Ud(t,O)W(d)
as n — oo, Hence
|Ua(t,0)w(a)|| > MeA+nr

for any ¢ > 0. It then follows via Lemma 4.4(2) that A € p_(a). Consequently,

lmin(a) > /’Lmin(a)- (33)

(31) follows from (32) and (33).
By (23) and (31), X(a) = £(a), i.e., (iii) holds. O

Corollary 4.5. Assume (AS). If a is asymptotically uniquely ergodic (i.e., Yo(a)
is uniquely ergodic), then Amin(a) = Amax(a). If, furthermore, a is asymptotically
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periodic with period T (i.e., Yo(a) = {a-t:t € [0,T]} for some @), then A :=
Amin(a)(= Amax(@)) is the principal eigenvalue of the following periodic eigenvalue
problem,

—u,+z (Za,,tx ou —|—a,(tx)>

N
213 txg +¢o(t,x)u = Au, x€eD, (34)

= x € 0D,

Proof. By [18, Corollary 3.2.2], we have Apax (a) = imin(a). It then follows from
Theorem 4.3 that Amax (@) = Amin(a). O

4.2 The Classical Case: An Example

In this subsection, we consider the so-called classical case, i.e., both D and
the coefficients of (1)+(2) are sufficiently smooth (see (SM1) and (SM2) in the
following) and show that for such a case (AS) is satisfied.

(SM1) (Boundary regularity) D C R is a bounded domain, where its boundary 9D
is an (N — 1)-dimensional manifold of class C>** for some o > 0.

(SM2) (Smoothness) There is o > 0 such that the functions a;; (= aj;) and
a; belong to C*T%3+%([0,00) x D), the functions b; and co belong to
CH 14210, 0) x D), and the function dy belongs to C***3T%([0,00) x
aD).

(SM3) (Ellipticity) There exists ¢y > 0 such that

2 aij(t,x §,§,>0@2§2f0ra11x6DfERNandt>0

i,j=1 i=1

We extend a to a by putting @;;(¢,x) := a;;(0,x) (i,j = 1,2,...,N), a;(t,x) :=
a;(0,x) (i=1,2,...,N), bi(t,x) := b;(0,x) (i = 1,2,...,N), é(t,x) := co(0,x), for
allt < 0 and x € D, and dp(t,x) := do(0,x) forall t < 0 and x € dD.

(SM1) implies the fulfillment of (A1), (SM2) implies the fulfillment of (A2),
and (SM3) is just (A3). By Lemma 2.3(1), (SM1) and (SM2) imply (A4). (SM2)
and (SM3) together with the construction of a give (A2)'—(A3)' with Y =Y (a). The
satisfaction of (A4)’ with Y = Y (a) follows now from (SM2) via Lemma 2.3(2).

We claim that the problem (1)+(2) satisfies (A5). We have

Y(a)=oa(@)U{a-t:t e R}UYy(a),
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where 0/(a@) = {(a;(0,-),ai(0,-),5:(0,-),¢0(0,-),do(0,-))}.

Letd= (d[j,di,];[,fo,do) €Y(a).

* Assume d € Yp(a), or @ € o.(a). It follows by the Ascoli-Arzela theorem that the
functions @;; and @; belong to C>+*3+%(IR x D), the functions b; and & belong to
C?%1+%(R x D) and the function dy belongs to C>+*3+%(R x dD). Applying
the theory in [1] (see [1, Corollary 15.3]), we have that Uz (-,0)u is a classical
solution on [ty, <), for any 7o > 0 and ug € L (D).

* Assume d@ = a- 7 for some T > 0. Then the functions &;; and &; belong to
C?F%3+2([0,00) x D), the functions b; and & belong to C>+%1+%([0, ) x D)
and the function dy belongs to C>**3+%([0,e0) x dD). Again applying the theory
in [1], we have that Uz(-,0)uy is a classical solution on [fg, ), for any #y > 0 and
ug € Ly (D)

* Assume d=a- 7 for some T < 0. Applying the theory in [1] and the theory in [18],
we have that [(0,7) x D 3 (¢,x) — (Ua(t,0)up)(x)] € Wpl’z((O,T) x D) for any
T >0and p > 1, and Uz (t,0)u is a strong solution on (9, 7), forany 0 <ty < T
and ug € Ly (D)

Then in the Dirichlet case, by [11, Theorem 2.1 and Lemma 3.9], there hold

(HI1) (Harnack type inequality for quotients) For each &, > 0 there is C; =
C1(8)) > 1 with the property that

)scgg (Ud (l, O) ME)2> ) (x) N xeD (Ud (tu O) ME)2> ) ('x)

foranya €Y(a), t > 8 and any u(()l),u(()2> € Ly(D)" with u(()z> #0.
(HI2) (Pointwise Harnack inequality) There is ¢ > O such that for each &, > 0 there
is Cy = C5(8,) > 0 with the property that

(Ua(t,0)uo) (x) = Ca(d(x))*||Ua(t,0)uo |- (35)

forany a € Y(a), t > &, up € Lo(D)* and x € D, where d(x) denotes the
distance of x € D from the boundary dD of D.

In the Neumann or Robin cases, [9, Theorem 2.5] states that (HI2) is satisfied
with ¢ = 0, which implies, via [18, Lemma 3.3.1], the fulfillment of (HI1). The
above reasoning can be repeated for the adjoint equation, hence, by [18, Theorem
3.3.3], the topological linear skew-product semiflow I1(@) admits an exponential
separation over Y (a).

For t > 0 we define

K(t) := —Ba(0,w(a-t),w(a-1)),
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that is,
N N
=— aij(t,x)djw(a- ai(t,x)w(a-t) )ow(a-r)dx
0 21/0(21 ()@ 0) +ae,xwia-1) ) awa-1)

+ ./D (ébi(tax)aiw(ﬁ 1)+ co(t,x)w(a- l))w(c'z -t)dx

in the Dirichlet and Neumann boundary condition cases, and
N N
K(t)=—Y, / (2 aij(t,x)djw(a-t)+a(t,x)w(a- t))&iw(c'z -1)dx
i=1/D N j=1

+ ./D (ébi(fax)aiw(ﬁ 1) +co(r,x)w(a- t))w(c'z -t)dx

- / do(t,x)(w(@-1))> dHy_1
oD

in the Robin boundary condition case, where Hy_; stands for the (N — 1)-dimen-
sional Hausdorff measure (which is, under our assumption (SM1), equivalent to the
(N — 1)-dimensional Lebesgue measure).

Observe that the function x: [0,00) — R is well defined and continuous (see [18]
for detail).

Lemma 4.6. Assume (SM1)-(SM3). For 0 < s <t put n(t;s) := |[|Ua(t,s)w(a-s)||.
Then

ni(1:5) = k()N (z:5)
forany 0 <s <t.
Proof. See the proof of [18, Lemma 3.5.3]. O
In view of Lemma 4.6 we have the following extension of Theorem 4.3.

Theorem 4.7. Assume (SM1)~(SM3). For any nonzero uy € Ly(D)™ there holds

In|Ua(t
Ao (@) = lim nf 1 Va9l

P t—s
In||U,(t InllU, (¢ -
:hmmfw — liminf n||Uy(t,s)w(a-s)|
§—ro0 _ S—yo0 PR
=500 t—s5—o0

1 ! 1 !
zliminf—/ K(t)dt < limsup—/ K(t)dt
S—reo t—s Ky §—roo r—s s
I—§—re0 t—§5—00
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In||U,(t,s)w(a-s In||U,(¢,s
=limsup || a(’ ) ( )” :limsup H a(’ )”
s—>o0 t—s S—roo t—s

t—s—o0 t—s—o0
In||U,(¢t,s)u
:hmsupM = Amax (a).
§—roo — S
[—§—ro0

S More Properties of Principal Spectrum

5.1 Continuity with Respect to the Coefficients

In the present subsection we investigate continuous dependence of the principal
spectrum on the whole of the coefficients.

Assume (A1). We let Y be a subset of Lo.(R x D,RV+2V+1) x [ (R x 9D, R)
satisfying (A2)'—~(A4)'.

Throughout the present subsection we make also the following assumption.

(A5) TI(Y) admits an exponential separation overY.

Let dyorm(-,+) denote the metric on L..(R x D,RV+2V+1) 5 I (R x 9D, R)
generated by the norm, and let d(-,-) be given by (5).

For aV,a® € L.([0,00) x D,RN+2N+1) % [_([0,%0) x dD,R) and s > 0, by
43 (@), a®)) we denote the Lu([s, o) x D, RN +2V+1) 5 I ([s,0) x 9D, R)-norm
of the difference of the restrictions of a'!), a®) to [s,e0) x D ([s,0) x dD).

Definition 5.1. We say that a € L.([0,c0) x D, RV *2V+1) x I ([0,c0) x 9D, R) is
Y-admissible if a satisfies (A2)—(A4) and, moreover, Yy(a) C Y.

We remark here that, for a Y-admissible a, it follows from [18, Theorem 3.2.3]
(the uniqueness of exponential separation) that the restrictions to Yy(a) of the
one-dimensional subbundles (resp. one-codimensional subbundles) appearing in the
definition of an exponential separation over Y (a) and over Y are the same.

For the rest of the subsection we fix a Y-admissible a'*).

Theorem 5.1. For each € > 0 there is 11 > 0 such that for any Y -admissible a, if
limsupd?,,(a,a'®)) < 1 then

norm
§—roo

Amin (@) = Amin(@®)| < & and | Amax(a) — Amax (@) < &.

Lemma 5.2. For each € > 0 there is 1 > 0 with the following property. Let 4,d € Y
be such thatrd(a-t,d-t) < for all t € R. Then, for any integer sequences (k)

()5, such that I, — k, — oo as n — e and

n=1’

i I01Ua(l ) wi(a- k)|

n—ee In —kn

:A’,
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one has

10 |Ua (k) W(a k)| 10 |Ua (k) w(i - k)|

— & <limi < < .
A—e< hrllgloglf Lk < hffffp s <A+eg
Proof. It follows from [18, Lemma 4.4.2]. 1

Proof of Theorem 5.1. Fix € > 0, and take a Y-admissible a such that

limsupd’,, (a,a!”)) < n, where n > 0is as in Lemma 5.2.
§—yo0

By Theorem 4.3 and [18, Theorems 3.2.5 and 3.2.6], there exist an ergodic
invariant measure i, for the compact flow (Yo(a(®),{c;}) and a Borel set ¥; C
Yo (a(())) with tmin (Y1) = 1 such that

li

o0

im Vet Ow@I 5 )
t

for any a € Y). Fix some d € Y). Let (1,);7_, be a sequence with lim, .1, = oo
such that g(©) - 1, converges to d. We can extract a subsequence (%, ) such thata-t,,
converges, as kK — oo, to some d.

We claim that d(d-,d-t) < 1 for all t € R. Denote 1y := limsupd’,(a,a'”))
S—>o0

(< 1), and let M, stand for the maximum of the Le.(R x D, RN**2V+1) 5 [ (R x
dD,R)-norms of @ and @) Fix r € R. Take ko € N so large that 1 /2501 < M, (n —
M1)/6. Then we have

oo

1 _ _
> ?|<gkaa'7_a(0)'T>Ll7Lm| <
k=ko

n—m
—_— 36
3 (36)
for all T € R. Take M > 0 such that gi(7,-) = 0 for all T < —M and all k =
1,2,...,ko — 1. Further, take so > 0 such that d3,,(a,a®) < (1 42n;)/3 for all
s > so— M. Finally, let [y € N be such thatz+1,, > so — M forall [ > I.
Then we have

|<gk7d' (t+tﬂl) _d(0> : (t+tn1)>L1,Loo| < (Tl +2771)/3
fork=1,2,...,kp— 1 and all [ > [y, hence
ko—1

1 . )
D ?|<gkaa'(t+tn1)_a(0)'(t+tﬂl)>L17Lm| <
k=1

n+2m 37)
3
for all [ > [y.

Taking (36) and (37) into account we see that d(@- (t +1y,),a® - (t +1,)) <
(21 + 1) /3 for sufficiently large /. By letting / go to infinity we have d(a-1,d-t) <
@2n+m)/3<n.
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By Lemma 5.2,

A’min(d(o)) —¢ S llmmfln ||Ud(n70)W(a n)”

n—eo n
In||Us(n,0)w(d-
Slimsup HH (l(n7 )W(CZ n)H S Afmin(a(()))""g-
n—yoo n

As a consequence of Theorem 4.3 and [18, Theorem 3.1.2 and Lemma 3.2.5], both
liminféln |Us(n,0)w(c-n)|| and limsupﬁln |[Us(n,0)w(ci-n)|| are in X(a). Hence
n—yoo n—so0

we have found A € [Amin(a), Amax (a)] with [A — Amin(a(?))| < €. By interchanging
the roles of a®) and a we obtain that there is A € [Anin(a'®), Amax (a'?))] with |4 —
Amin(a)| < €.

We proceed in the same way with Ap.y, obtaining that the Hausdorff distance
between [Amin(a), Amax (@)] and [Amin(@'?)), Amax (a®)] is not bigger than &, which
is equivalent to the statement of Theorem 5.1. O

5.2 Time Averaging

In the present subsection we assume that a;;(f,x) = a;j(x), ai(t,x) = a;(x), bi(t,x) =
bi(x), and D and a satisfy (SM1)—(SM3).

Let a be the extension of a as in Sect. 4.2. T1(a) admits an exponential separation
over Y (a).

We call @ = (ajj,a;, bi, 6, dy) a time-averaged function of a if

I B
/ co(t,x)dt forallx € D,
Jsy

and

~ In
dp(x) = lim / do(t,x)dt for all x € D,
Sn

n—oo fy — 8y Js

=

for some real sequences (s,)5_, (f2);_ With s, — eo and #, — s, — o0 as n — oo
The time independent equation

Voo & du N ou
U = Z;%(Zlaij(x)a_xj —I—ai(x)u)—i-zib,’(x)g—i-co(x)u, x€D,
i= L= i= i
Bau =0, x€aD,
(38)
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where

<

(Dirichlet)

3

=

Il
M=
—
M=

Il
.
~.

Il
.

a;j(x)dju+a; (X)M) Vi (Neumann)

M=
™=

Il
.
~.

Il
.

aij(x)dju+ ai(x)u) Vi+do(x)u,  (Robin),

is called a time-averaged equation of (1)+(2) if 4 = (a;j,a;, b;, ¢, cfo) is a time-aver-
aged function of a.
The eigenvalue problem associated to (38) reads as

Z (Zau —i—a, )—l—Zb o(x)u = Au, x€D,

Bau =0, x € dD.
(39)

It is well known that (39) has a unique eigenvalue, denoted by Auinc(d), which
is real, simple, has an eigenfunction @pinc(4) 6 L,(D)™ associated to it, and for
any other eigenvalue A of (39), ReA < Aurinc(d) (see [2,4]). We call Apinc(@) the
principal eigenvalue Of (38) and @princ (@) a principal eigenfunction (in the literature,

sometimes, —/'Lprmc is called the principal eigenvalue of (38)).
Let

Y(a) ::{d:aogsn«n with s, — o and f,—s, — oo such that

CO(X) - ,}E}Il, th — Sp

fn ~
/co(t,x)dt forall xeD,

Sn

do(x) = lim /t" do(t,x)dt forall xe 8D} .
n—ety —8Sp Js,

It follows from our assumptions, via the Ascoli-Arzela theorem, that
Y(a) is nonempty, and consists of functions belongmg to C3Ho(D, RV V) x
ClHo (D, RVN+1) x C3+%(9D), with their C3*%(D,RV*+N) x c1+“(D,RN+1) X
C3*T*(9D)-norms uniformly bounded. Moreover, the convergence in the definition
of ¥ () is uniform in x € D (resp. uniform in x € 9D).

Theorem 5.3. (1) Thereisd €Y (a ) such that Ayin(a) > Aprinc(d)
(2) )L'max > ;Lprlnc fOV any a € Y( ) X
(3) Assume moreover that a is asymptotically uniquely ergodic Then Y( )isa

singleton {a}, Amax(a) = Amin(@) > Aprinc(@), and Amin(@) = Aprinc(@) if and
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only if there is a sequence (s,);_, C [0,00) with lim,_,e. s, = o with the property
that the following two conditions are satisfied:

e There are a continuous function co1: D — R and a bounded continuous
Sunction cgp: (—oo,00) — R such that co(t + s,,x) converges, as n — oo, to
co1(x) + coa(t), uniformly on compact subsets of R x D,

o There is a continuous function dy;: dD — R such that dy(t + s,,x) con-
verges, as n — oo, to do (x), uniformly on compact subsets of R X dD.

To prove the above theorem, we first recall a lemma from [18].

Lemma 5.4. Let v(t,x) :=w(a-t)(x) (t > 0, x € D) and

W(x:5,1) = exp (% /St Inw(a- 7)(x) dr)

(0 <s<t,x€D). Then w(x;s,t) satisfies

Noo (X oW . N oW
218_)6 <2 aij(x)a—xj —i—a[(x)w) +l-§1bi(x)3_xi

j=1
1 11 dv 1 ! 1 !
(L [lav (1 b .
< <t—s/s ﬁar(r,x)dr)w+<t_s/s k(t)dt . co(r,x)d1:>w
(40)
forx € D and
B(s,))w=0

for x € dD, where

W (Dirichlet)
N N
R 2 (Z aij(x) W+ a; (x)W) Vi (Neumann)
B(s,t)w:= ¢ i=1 j=1 41
N N
Y (Z a;j(x) 0, W+ ai(x)W) Vi
i=1 j=1
+(ﬁ J! do(r,x)dr)w (Robin).
Proof. See the proof of [18, Lemma 5.2.1]. O

Proof of Theorem 5.3(1) and (2). (1) For given 0 < s < t put

n(t:s) = [[Ua(t, s)w(a-s)|
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and

1 1
W(x;s,t) 1= exp (:/ Inw(a-7)(x) d‘c) , xeD.

By Theorem 4.7, there are sequences (s,);_; and (z,)_, with s, — e and t,, —
Sp — o such that

Inn(s,) 1 /t" k() dt — Amin(a).

In —Sn In —Sn Js

It follows from (SM2) with the help of the Ascoli—Arzela theorem that (after
possibly taking a subsequence and relabeling) }gl; lnixn f;: co(t,x)dr and
fim 7

respectively. Denote these limits by ¢y (x) and do (x). Let a := (aij,ai, b;, EO,JO).
It then follows by arguments similar to those in [18, Theorem 5.2.2(1)] that

)l'min (CZ) > A'princ (fl)

(2) Forany d = (a;j,a;,bi,é0,do) € ¥ (a) there are (s,)7_, and (1), with s, — oo
and t, — §,, — oo such that

ff: do(t,x)dt exist, and the limits are uniform in x € D and in x € 9D,

/%WM&%%@

th — Sn Jsy,

1o
/co(t,x)dt—>60(x) and
Sn

Iy —Sp Js

uniformly in x € D and in x € dD, respectively. By passing (if necessary) to
subsequences and relabeling we can assume that there is A such that

lim
n—ee [y — Sp

f}@mzm

Sn

By arguments similar to those in the proof of (1), Ag > Aprinc(@). It follows from
Theorem 4.7 that Amax (@) > Ag. Then we have Amax (@) > Aprinc(@). O

Before proving Theorem 5.3(3) we formulate and prove the following auxiliary
result.

Lemma 5.5. Assume that a is asymptotically uniquely ergodic. Then

(i) For eachx € D and each é = (a,'j,a,-,b,',éo,cio) € Yy(a) the limits

! 1 1
lim — d d lim — [ & d 42
,j%’mt—s.s co(T,x)dT an Jim — | éo(t,x)dt (42)

exist and are equal, and
(ii) For each x € D and each a = (ajj,a;,b;i,¢o,do) € Yo(a) the limits
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1 t
lim —— / dizde  and  lim — [d(zodr @)
lSjjmt—s f—s—eof —§

exist and are equal.

In particular, it follows that ¥ (a) = {(a;j,ai,bi,¢o,do)}, where ¢q is the common
limit in (42) and c?o is the common limit in (43).

Proof. Let P be the unique ergodic invariant measure for the compact flow
(Yo(a),{0}1er). P is also the unique ergodic invariant measure for the compact
semiflow (Yp(a),{0:}r>0), where ¥p(a) := {a-t:t >0} UYy(a) =cl{a-t:t>0}.

For each x € D (resp. for each x € dD) we define a function é&x]: ¥p(a) — R
(resp. a function dy[x] : ¥o(a) — R) as:

50[X](67) = EO(Oax)v fiEYo(ﬁ),
JO[x] (d) = ~0(07x)a aec YO(C_I)
where @ = (a;;,a;,b;,¢,dp). The functions &|x]: ¥y(a@) — R (resp. do[x]: Yo(a) —

R) are, for each x € D (resp. for each x € dD), continuous.
As (Yo(a),{o:}1>0) is uniquely ergodic, it follows from the results in [20] that
for any continuous g: ¥y(@) — R and any & > 0 there is Ty = T(g,€) > 0 such that

l/tg(d-r)dr—/y()(é)g(-)dl?’(-)‘ <e

tJo

for each ¢ > Ty and each d € ¥y(a). In particular, for any continuous g: ¥p(a@) — R
there holds

lim 1 tg(ﬁ-r)dr: lim 1 tg(d-r)dr:ﬁ g()dP(),

s t—S8Js t=s—eo [ —8 Jg Yo(a)

for each a € Yy(a). By substituting in the above, for a fixed x € D, the function é|[x]
for g we have

lim —— [ eo(t,x)dr= lim —— tco(r,x)d‘r:/ Gl (1) dP(-),

s f—8Js t=s—oof —§ JYy(a)

for each d € Yy(a). Similarly, by substituting, for a fixed x € 9D, the function dj[x]
for g we have

. 1 ! 1 4 -
tfl%w: : d()(T X)dT—lllylllm: C()(T,X)dT— (@ do[x]()d]P(),

for each a € Yy (a). O
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Proof of Theorem 5.3(3). By Theorem [18, Theorem 5.2.2(3)] and Theorem 4.3,
we have

Amax (a) = ;Lmax (Cl) = imin (Cl) = )l'min(a)'

Let ¥ C Yy(a) be a minimal invariant set. By the unique ergodicity of
(Yo(a),{o}), the compact flow (¥;,{c;}) is both minimal and uniquely ergodic.
Letd € Y;. In view of Lemma 5.5 we can apply [18, Theorem 5.2.2(3)] to have that
Amax (a) = A(4) if and only if there are cg;, ¢z, and dp; such that

Eo(t,x)ZC()l(l‘)-f—Coz(x) and cio(t,x):d()l(x).

Note that there is s, — oo such that a-s, — d. Therefore, Amax (a) = A(a) if and only
if there is s, — <o such that

lim C()(t + s,,,x) = (01 (l‘) + Coz(x) and lim do(l‘,x) =dp (x),

n—yo0 n—yo0

where the convergence is uniform on compact subsets of R x D (resp. on compact
subsets of R x dD). O

5.3 Space-Averaging

In the present subsection we assume that a;;(7,x) = a;j(1), ai(t,x) =0, bi(t,x) =0,
and the boundary condition is Neumann. We also assume that D and a satisfy
(SM1)-(SM3).

Let &(t) := ﬁ Jpcolt,x)dx, t > 0. We call d := (a;;,0,0,¢,0) the space-aver-
age of a, and call the problem

< 9 [ du
T oy ij(t)5— ) +¢ >
Uy z&x,- (j_zlau(t)axj)-i-co(t)u, t>5>0,x€D,
N N (44)

Z(Zaij(t)()ju)vizo, t>s20,x€8D

i=1 \j=1

the space-averaged equation of (1)+(2).
The theory presented in Sect. 4.2 applies to (44).
Denote by [Amin(d), Amax ()] the principal spectrum interval of (44).

Theorem 5.6. (1) [Amin(d), Amax(d)] = { A : Tsp <ty with s, — oo and ty, — s, — oo
such that 2 =1y, .. —=— [ &(1)dt }.

Sn

(2) )l'min (Cl) > Afmin (d) and )Lmax (Cl) > Afmax (d)

Proof. (1) Observe that the function u: [0,00) x D — R defined as u(t,x) :=
exp (Jo¢o(T)dt),1>0,x € D, is a solution of (44) satisfying u(0, -) € L,(D) ™\ {0},
and apply Theorem 4.7 to obtain (1).
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To prove (2), we use the following inequality, which was proved as a part of the
proof of [18, Theorem 5.3.1(2)]:

| L In||Uy(t,s)w(a-s)|| 1 1 w(a-t)(x)
t—sJs Co(T)de < t—s +W:/plnw(é-s) X)

dx, 0 <s<t.
45)

It follows from [18, Lemma 5.2.3(2)] that the set {w(a")(x)/w(@?)(x) :
a,a? e y(a), x € D} is bounded and bounded away from zero. Therefore
the limit, as s — co and r — s — oo, of the second term on the right-hand side of (45)
equals zero. Consequently,

oy i Udtswi@-s)]|
Amin () = 1t1srgg1f: /S do(t)dr < hsrgglf p— = Amin(a)

—§—>00 [—S§—ro0

and

1 ! In ||U,(¢ a-
Amax (d) = limsup—/ &o(7)dt < limsup n|lUalt, syw(@-s)| = Amax(a).
s—oo I — 8 Js s—yo0 r—s
[—§—ro0 [—§5—>00
This concludes the proof of (2). ]

6 Applications to Nonlinear Equations of Kolmogorov Type

In this section we study the asymptotic dynamics of nonlinear parabolic equations

of Kolmogorov type. In particular, we provide conditions for (forward) uniform

persistence of the nonlinear Kolmogorov equations by utilizing the principal

spectrum associated to proper forward nonautonomous linear parabolic equations.
Throughout the present section we make the following assumption.

(NA1) D C RY is a bounded domain, where its boundary dD is an (N — 1)-dimen-
sional manifold of class C3*%, for some o > 0.
Further, B will stand for the boundary operator either of the Dirichlet type

Bu=u ondD,
or of the Neumann type
Bu = % on 0D,
av

where v denotes the unit normal vector pointing out of D.
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Let @Qprinc be the unique (nonnegative) principal eigenfunction of the elliptic
boundary value problem

{Au:lu onD, 46)

Bu=0 on dD,

normalized so that sup{ @princ(x) :x € D} = 1. By the elliptic strong maximum
principle and the Hopf boundary point principle, in the Dirichlet case Qprinc(x) >0
for each x € D and (d @Qprinc/dV)(x) < O for each x € dD. In the Neumann case
(Pprinc =1

Let X be a fractional power space of the Laplacian operator A in L,(D) with
the boundary condition Bu = 0 such that X is compactly imbedded into C' (D). We
denote the norm in X by ||-||x.

Denote X := {u € X : u(x) > 0 for all x € D}. The interior X"+ of X*
is nonempty, and is characterized in the following way: In the case of Dirichlet
boundary conditions, X "t = {u € X* : u(x) > 0 forall x € D and (du/dv)(x) <0
for all x € dD}, and in the case of Neumann boundary conditions, X T+ = {ue
X* :u(x) >0 for all x € D} (see [18, Lemma 7.1.8]). In particular, observe that
(Pprinc € X+t

For uy,u; € X we write u; < up (orup > uy) ifup —u; € X 7.

Consider the following nonautonomous partial differential equation of Kol-
mogorov type:

ur = Au+ f(t,x,u)u, x €D, 47

with f: [0,00) x D x [0,%0) — R, endowed with the boundary conditions
Bu=0, x € dD. (48)

We assume the following.

(NA2) For any M > 0 the restrictions to [0,%0) x D x [0,M] of the function f and its
derivatives up to order two belong to C' 1717 (]0,%0) x D x [0,M]).

(NA3) There are P > 0 and a continuous function m: [P,e) — (0,e0) such that
f(t,x,u) < —m(u) for anyt >0, any x € D and any u > P.

By the theory in [7], for each fp > 0 and each uy € X' there is a (clas-
sical) solution u(-;#9,ug) of (47)+(48), defined on [fy,o0), with initial condition
u(tosto,up)(x) = up(x), such that u(t;to,up) € X for all # > £y. By the comparison
principle, there holds u(z;1y,ug) € X * for all t > 1.

Definition 6.1. Equation (47)+(48) is said to be forward uniformly persistent if
there is 7 > 0 such that for any uy € X'\ {0} there is T(up) > 0 with the
property that

u(t;t07u0) > 1 ®princ
forall 7o > 0 and all > T(ug) + 1.

Note that u = 0 is the solution of (47)+(48).
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Consider the linearization of (47)+(48) along 0,

vy =Av+ fo(t,x)v, xeD,
' (t,x) “9)
Bv=0, x € adD,

where fy(t,x) = f(t,x,0). We also have that for each #y > 0 and each vy € X there
is a (classical) solution v(-;#y,vo) of (49), defined on [fy, ), with initial condition
v(fo310,v0)(x) = vo(x), such that v(¢;19,vo) € X for all > 1.

It follows from (NA1) and (NA2) that the assumptions (SM1) through (SM3) are
satisfied for (49), with a = (§;;,0,0, fo,0). Consequently, the theory presented in
Sect. 4.2 applies.

Let [Amin, Amax] stand for the principal spectrum interval of (49). We then have

Theorem 6.1. If Ani, > O then (47)+(48) is forward uniformly persistent.

For any function g: R x D x [0,00) — R and any t € R we write g-7(7,x,u) :=
g(t+t,xu), T€R,x€ D, u>0.

We extend the function f to a function f: R x D x [0,%) — R by putting
f(t,x,u) :== £(0,x,u) fort <0,x € D and u > 0.

Put

Z:=cl{ft:teR} (50)

with the open-compact topology, where the closure is taken in the open-compact

topology. By the Ascoli—Arzela theorem, the set Z is a compact metrizable space.

Further, if g € Zandr € Rthen g1 =: §;g € Z. Hence (Z,{{; },er) is a compact flow.
Put

Zo:=(cl{ft:1€[s,0)}. 51
s>0

Zy, as the o-limit set of a forward orbit in the compact flow (Z,{{ }icr), is
nonempty, compact, connected and invariant.
Put

Zo:={ft:t>0 UZy=cl{f-t:t>0}. (52)
The set Z; is a closed, hence compact, subset of Z. Further, it is forward invariant:
for any g € Zy and any ¢ > 0 there holds g - € Z.

For any g € Zy, consider the following semilinear second order parabolic
equation of Kolmogorov type,

{utzAu—i—g(t,x,u)u, t>0,x€D, (53)

Bu=0, t>0,x€dD.

By the theory in [7], the following holds.
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Proposition 6.2. For each ug € X* and each g € Zy there exists a unique solution
u(-3ug,g) of (53), defined on [0,0), satisfying the initial condition u(0;ug,g) = uo,
such that u(t;ug,g) € X+ for all t > 0. That solution is classical. Further; the
mapping

[[0,00) x X x Zy > (t,ug,8) — u(t;up,g) € X]

Is continuous.

Observe that u(- +to;to,up) = u(-;ug, fo - to) for o > 0.
Let Yy and ¥, be defined as follows,

Yo :={go:3g € Zy such that go(r,x) = g(¢,x,0), t e R, x € D },

and

Yo := {0 : 3g € Zy such that go(z,x) = g(t,x,0), t e R, xe D }.

The sets Yy and ¥ are considered endowed with the open-compact topology. As
the images of the compact sets Zy and Z, respectively, under restriction, they are
compact.

For 1y € R and g¢ € ¥, consider

v =Av+go(t,x)v, t>ty, xE€D,
(54)
Bv=0, t>1ty, x€0D.

By the theory in [7], for any vy € X, fo € R and gy € ¥y, (54) has a unique
(classical) solution v(¢;19,vo,80), defined on [ty, o), with v(t;t0,v0,80) = Vo, such
that v(¢;19,v0,80) € X for all ¢ > 1.

Observe that for any g € Zy, u = 0 is the solution of (53) and (54) with go(t,x) =
g(t,x,0) is the linearization of (53) along u = 0. Put Uy, (t,)vo := v(t30,Vv0,80)-
If go = fo -to and 19 > 0, we write Uy, (2,10) as U (t,1o).

Lemma 6.3. For eacht > 0 there holds

Hu(t;pu(),g) _pUgo(tvo)”()HX

-0 asp—0"
P

uniformly in g € Zy and ug € X " with ||lug||x = 1, where go(t,x) = g(t,x,0).
Proof. Tt follows from [18, Theorem 7.1.5]. O

Lemma 6.4. Assume that Anin > 0. Then there is T > 0 such that
Ugo(Tvo)(Pprinc > 2Qpine  forall go €Y.

Proof. Let [imin, imax] be the principal spectrum of (54) over ¥y. By Theorem 4.3,
Amin = Amin and hence Anin > 0. The lemma then follows from [18, Lemma
7.1.16]. O
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Proof of Theorem 6.1. Let T > 0 be as in Lemma 6.4. As the mapping [Yy 2 go —
Ugy(T,0)@princ € X | is continuous and Yy is compact, the set { Ug(T',0) @princ —
2@princ : 80 € Yo} is compact, too. Further, this set is, by Lemma 6.4, contained
in the open set X **. Therefore & := inf{ || (Ug, (T, 0) @princ — 2@Pprinc) — V|Ix : &0 €
Yo, v € dX ™ } is positive. By linearity,

inf { || (rUg (T',0) @prine — 27 Pprinc) — V||x : g0 € Yo, v € IXTY=rg (55)

for any r > 0.
It follows from Lemma 6.3 that there is rg > 0 such that

(T + 11, r@prine) — rU (T +£,) @prine I < %
forall # > 0 and all » € (0, rg].

We claim that there is 77 > 0 such that for each ¢t > T} one can find g € Zj such
that ||U(T +1,1) @princ — Ugy(T,0) @princ||x < €/3. Indeed, for each g € Z, there
is 6 = 0(g) > 0 such that for any i € Z, if d(g,h) < & then ||Up,(T,0)@princ —
Ugy (T, 0)@princ||x < €/3, where d(-,-) stands for the metric in Z. Since Z; is
compact, there are finitely many g(1>, ce g(”> € Zy such that the union of the open
balls (in Z) with center g(*) and radius 5(g(k>), k=1,...,n, covers Zy. Denote this
union by B. It suffices now to find 77 > 0 such that f -t € B for all r > Tj, and the
existence of such 7} follows from the fact that Z is, by definition, the w-limit set
(in the compact flow (Z,{&})) of f.

Fix for the moment 1 > T, and let g € Zy be such that ||U(T +1,t)@princ —
Uy, (T,0) @princ || x < €0/3. We estimate

([ (T + 131, r@princ) = 2r@prine) — (rUsg, (T, 0) @prine — 2r @princ) || x
= [[u(T + 132, @prine) — rUgy (', 0) Pprine | x
< (T 4151, r@princ) — rU(T +1,1) Qprine || x
+|[rU(T +1,1) @princ — rUgy (T, 0) @Pprinc|| x

réy r&
<24 =
3 + 3

for any r € (0, ro]. It follows from (55) that u(t + T3¢, 7 Qprinc) — 27 @princ € X T, that
is, u(t 4T3, Qprinc) > 27 Qprine, for any r € (0,70 and any t > Tj.

Fix a nonzero uy € X . By the comparison principle for parabolic equations,
u(t;tg,up) > 0, that is, u(r; 19, up) belongs to the open subset X" of X, for any ¢ >
to. Since [Ty, Ty + T x {ug} x Zy is compact, it follows from Proposition 6.2 that the
set {u(t;ug,g):t € [T\ +1,T1+T+1], g€ Zy} (C X" T)is compact. Consequently,
the set {u(t + to3t0,u0) 110 > 0, t € [T} + 1,71 + T + 1]} has compact closure
contained in X . By arguments as in the proof of [18, Theorem 7.1.6], there is
7> 0 such that u(t + o379, u0) > FQprinc forallzo > 0andt € [T+ 1,71 + T + 1].
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Assume 7 > rg. Then for each t € [T} + 1,7y + T + 1] and each typ > 0 we
have u(t + T + fo;t0,up) = u(t + T +to;1 + to,u(t + fo3t0,u0)) > u(t + T + 151 +
to, VO(Pprinc) > 2r0(pprinc. By induction, we have M(l‘ +nT +ty; o, M()) > 2r0(pprinc for
all n=1,2,.... Therefore we can take t(ug) =T, + T + 1.

Assume 7 < ry. Then for each ¢ € [T} + 1,7} + T + 1] and each 7y > 0 such that
u(t +to3t0,10) > rPprinc for some r < ro we have u(t + T +195t0,u0) = u(t +T +
to;t + to,u(t + 10310, u0)) > u(t + T + 1051 + 10, "Pprinc) > 27 Pprinc. Repeating this
procedure sufficiently many times we obtain that u(r 4+ nT + 19510, 1) >> 27 Qprine
as long as 2"’1r~ < ro. After some calculation we conclude that we can take
T(up) = (| R0 | 4 )T+ T4 + 1.

In both cases, n = 2ry. O

We finish the section by giving a sufficient condition for the assumptions in
Theorem 6.1 to hold.

A function fy € C(D) is called a time-averaged function of f; if there are sub-
sequences (s,)5_; and (t,);_;, with 0 < s, <t, foralln =1,2,..., lim,_e 5, = oo,

n=1°
limy, e (f — $5,) — oo, such that

fo(x) = lim !

n—ee fy — Sy

1 " (e, 0)dr

Sn

uniformly for x € D.
Let ¥ := { fo: fo is a time-averaged function of fy }. For a given fy € ¥, denote
by Aprinc(fo) the principal eigenvalue of
Au+ fo(x)u=Au,  x€D, (56)
Bu=0, x € dD.

Theorem 6.5. If Apyinc( fo) > 0for any fo € Y, then (47)+(48) is forward uniformly
persistent.

Proof. Observe that the standing assumptions in Sect. 5.2 hold for (49). By Theo-
rem 5.3(1), there is fy € ¥ such that Ayin > Aprinc (fo). An application of Theorem 6.1
concludes the proof. (]
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