
Spectral Theory for Forward Nonautonomous
Parabolic Equations and Applications
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Abstract We introduce the concept of the principal spectrum for linear forward
nonautonomous parabolic partial differential equations. The principal spectrum is
a nonempty compact interval. Fundamental properties of the principal spectrum
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1 Introduction

The current paper is devoted to the study of principal spectrum of the following
linear nonautonomous parabolic equation:
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58 J. Mierczyński and W. Shen
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bi(t,x)
∂u
∂xi

+ c0(t,x)u, t > s, x ∈ D, (1)

endowed with the boundary condition

B(t)u = 0, t > s, x ∈ ∂D, (2)

where D⊂ R
N , s≥ 0, ai j, ai, bi, and c0 are appropriate functions on [0,∞)×D, and

B is a boundary operator of either the Dirichlet or Neumann or Robin type, that is,

B(t)u =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u (Dirichlet)
N

∑
i=1

( N

∑
j=1

ai j(t,x)∂ ju+ ai(t,x)u
)

νi (Neumann)

N

∑
i=1

( N

∑
j=1

ai j(t,x)∂ ju+ ai(t,x)u
)

νi + d0(t,x)u, (Robin)

(3)

where d0 is an appropriate function on [0,∞)× ∂D. Let a = ((ai j)
N
i, j=1,(ai)

N
i=1,

(bi)
N
i=1, c0,d0) with d0 ≡ 0 in the Dirichlet or Neumann boundary condition case.

To indicate the dependence of (1)+(2) on a, we may write (1)+(2) as (1)a+(2)a.
Among others, (1)+(2) arise from linearization of nonautonomous nonlinear

parabolic equations at a global solution (i.e., a solution which exists for all t ≥ 0) as
well as from linearization of autonomous nonlinear parabolic equations at a global
time dependent solution.

Concerning the linearization of a nonlinear problem at a global solution, it is of
great importance to study the dynamical behavior of solutions of (1) + (2) as s→∞
and t − s→ ∞, where s represents the initial time. This paper is focused on the
study of the least upper bound of exponential growth rates of solutions of (1) + (2)
as s→ ∞ and t − s→ ∞, which is equivalent to the study of so called principal
spectrum of (1) + (2) introduced in this paper.

Observe that (1)+(2) is called forward nonautonomous because, first, we are
mainly interested in the properties of solutions as s→ ∞, t − s→ ∞, and ai j, ai,
bi, c0, and d0 are not necessarily defined for t < 0, and, second, the set of forward
limiting equations can contain elements depending on time.

Principal spectrum for nonautonomous parabolic equations defined for all t ∈ R

is well studied in several works (see [9–12, 14–18, 21], and references therein)
and has also found great applications (see [8, 13, 19, 22, 27], etc.). Principal
spectrum for such nonautonomous parabolic equations reflects the growth rates of
solutions as t− s→ ∞, where s represents the initial time.
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As the focus for forward nonautonomous parabolic equations is on the study
of the behavior of solutions as s → ∞ and t − s → ∞, the principal spectral
theory developed for nonautonomous parabolic equations defined for all t ∈ R

cannot be applied to forward nonautonomous ones directly. The objective of this
paper is to establish some principal spectral theory for forward nonautonomous
parabolic equations, and discuss its applications to nonlinear parabolic equations
of Kolmogorov type.

In order to do so, we first in Sect. 2 introduce the assumptions and the notion of
weak solutions of (1)+(2) and present some basic properties of weak solutions.

In Sect. 3, we give the definition of principal spectrum of (1)+(2) and establish
some fundamental properties. Let Ua(t,s)u0 denote the weak solution of (1)+(2)
with initial condition u(s) =Ua(s,s)u0 = u0 ∈ L2(D) (s≥ 0). Roughly speaking, the
principal spectrum of (1)+(2) is the complement in R of all the λ ∈ R satisfying
either of the following conditions:

• There are η > 0, M ≥ 1, and T > 0 such that

‖Ua(t,s)‖ ≤Me(λ−η)(t−s) for t > s≥ T ;

• There are η > 0, M ∈ (0,1], and T > 0 such that

‖Ua(t,s)‖ ≥Me(λ+η)(t−s) for t > s≥ T

(see Definition 3.2). Among others, it is proved in Sect. 3 that

• The principal spectrum of (1)+(2) is a compact interval [λmin(a),λmax(a)] (see
Theorem 3.1).

• λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

and λmax(a) = limsup
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

(see

Theorem 3.2).

In Sect. 4, we investigate the relation of the principal spectrum of (1)+(2) and the
principal spectrum, denoted by [λ̃min(a), λ̃max(a)], of its forward limiting equations,
and show that if some extension of (1)+(2) together with its limiting equations
admits a so-called exponential separation, then

• [λmin(a),λmax(a)] = [λ̃min(a), λ̃max(a)] (see Theorem 4.3);

• λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

and λmax(a) = limsup
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

for any

nonzero nonnegative u0 ∈ L2(D) (see Theorem 4.3);
• If, moreover, (1)+(2) is asymptotically uniquely ergodic, which includes the

asymptotically periodic as a special case, then [λmin(a),λmax(a)] is a singleton,
i.e., λmin(a) = λmax(a), and in the asymptotically periodic case, λmax(a) equals
the principal eigenvalue of the forward limiting periodic parabolic equation (see
Corollary 4.5).



60 J. Mierczyński and W. Shen

In Sect. 5, we establish more properties of the principal spectrum [λmin(a),
λmax(a)] of (1)+(2), including

• λmin(a) and λmax(a) continuously depend on a in the norm topology (see
Theorem 5.1);

• When ai j, ai and bi depend only on x, the principal spectrum of (1)+(2) is greater
than or equal to that of its time-averaged equations (see Theorem 5.3).

The properties mentioned above provide some important tools for the principal
spectrum analysis as well as its computation.

We remark that the theories and techniques developed in this paper would have
applications to the study of long time behavior in various forward nonautonomous
nonlinear equations arising from biology and chemistry. In particular, they would
have applications to the extensions of the existing dynamical theories for asymptot-
ically periodic systems (see [28–31], etc.) to asymptotically uniquely ergodic ones,
which include asymptotically periodic and almost periodic systems as special cases.
In the last section (i.e., Sect. 6), we discuss applications of the principal spectrum
theory for forward nonautonomous parabolic equations to the asymptotic dynamics
of nonlinear parabolic equations of Kolmogorov type. In particular, we provide
sufficient conditions for the uniform persistence (see Theorem 6.1).

Throughout the paper D ⊂ R
N is a bounded domain (an open and connected

subset).
The norm in L2(D) is denoted by ‖·‖. Also, the norm in the Banach space

L(L2(D),L2(D)) of bounded linear operators from L2(D) into L2(D) is denoted
by ‖·‖.

For the meaning of some symbols, like Ck+α ,l+β (E1×E2), or D(E), etc., the
reader is referred to the authors’ monograph [18].

2 Assumptions and Weak Solutions

In this section, we state the assumptions, introduce the definition of weak solutions,
and present some basic properties of weak solutions.

2.1 Assumptions

Consider (1)+(2). Our first assumption is on the regularity of the domain D.

(A1) (Boundary regularity) For Dirichlet boundary conditions, D is a bounded
domain. For Neumann or Robin boundary conditions, D is a bounded domain with
Lipschitz boundary.
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If (A1) holds, D is always considered with the N-dimensional Lebesgue measure,
whereas, in the case of Robin boundary conditions, ∂D is considered with the
(N−1)-dimensional Hausdorff measure, which is equivalent to the surface measure.

The second assumption regards boundedness of the coefficients of the equations
(and of the boundary conditions):

(A2) (Boundedness) a = ((ai j)
N
i, j=1,(ai)

N
i=1,(bi)

N
i=1,c0,d0) belongs to L∞([0,∞)×

D,RN2+2N+1)×L∞([0,∞)× ∂D,R) (in the Dirichlet or Neumann case d0 is set to
be constantly equal to zero).

We may write a = (ai j,ai,bi,c0,d0) for a = ((ai j)
N
i, j=1,(ai)

N
i=1, (bi)

N
i=1, c0, d0) if

no confusion occurs.

The next assumption is about the uniform ellipticity.

(A3) (Uniform ellipticity) There exists α0 > 0 such that there holds

N

∑
i, j=1

ai j(t,x)ξi ξ j ≥ α0

N

∑
i=1

ξ 2
i for a.e. (t,x) ∈ [0,∞)×D and all ξ ∈R

N ,

ai j(t,x) = a ji(t,x) for a.e. (t,x) ∈ [0,∞)×D, i, j = 1,2, . . . ,N. (4)

Sometimes we will use the forward limit equations to study the principal
spectrum of (1)+(2). For any t ≥ 0 we define the time-translate a · t of a by

a · t := ((ai j · t)N
i, j=1,(ai · t)N

i=1,(bi · t)N
i=1,c0 · t,d0 · t),

where ai j · t(τ,x) := ai j(τ + t,x) for τ ∈ [−t,∞), x ∈ D, etc.
For a given sequence (tn) ⊂ [0,∞) with tn → T ∗ (T ∗ ≤ ∞) and ã = ((ãi j)

N
i, j=1,

(ãi)
N
i=1, (b̃i)

N
i=1, c̃0, d̃0) ∈ L∞((−T ∗,∞)×D,RN2+2N+1)× L∞((−T ∗,∞)× ∂D,R),

we say that a · tn converges to ã in the weak-* topology if for any T >−T ∗, a · tn→ ã
in the weak-* topology of L∞([T,∞)×D,RN2+2N+1)×L∞([T,∞)× ∂D,R).

Recall that the Banach space L∞(R× D,RN2+2N+1)× L∞(R× ∂D,R) is the
dual of L1(R×D,RN2+2N+1)×L1(R× ∂D,R). We denote the duality pairing by
〈·, ·〉L1,L∞ .

We fix a countable dense subset {g1,g2, . . .} of the unit ball in L1(R× D,

R
N2+2N+1)× L1(R× ∂D,R) such that for each k ∈ N there exists K = K(k) > 0

with the property that gk(t, ·) = 0 for a.e. t ∈ R\ [−K,K].
For any ã(1), ã(2) ∈ L∞(R×D,RN2+2N+1)×L∞(R× ∂D,R) put

d(ã(1), ã(2)) :=
∞

∑
k=1

1
2k |〈gk,(ã

(1)− ã(2))〉L1,L∞ |. (5)

For any ã ∈ L∞(R×D,RN2+2N+1)×L∞(R× ∂D,R), ã = (ãi j, ãi, b̃i, c̃0, d̃0), and
any t ∈ R we define the time-translate ã · t of ã by
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ã · t := ((ãi j · t)N
i, j=1,(ãi · t)N

i=1,(b̃i · t)N
i=1, c̃0 · t, d̃0 · t),

where ãi j · t(τ,x) := ãi j(τ + t,x) for τ ∈ R, x ∈ D, etc.

We may extend a to functions belonging to L∞(R×D,RN2+2N+1)× L∞(R×
∂D,R) to study the forward limits of a. A function ā ∈ L∞(R×D,RN2+2N+1)×
L∞(R×∂D,R), ā = ((āi j)

N
i, j=1,(āi)

N
i=1, (b̄i)

N
i=1, c̄0, d̄0), is called an extension of a if

āi j(t,x) = ai j(t,x), āi(t,x) = ai(t,x), b̄i(t,x) = bi(t,x), and c̄0(t,x) = c0(t,x) for a.e.
(t,x) ∈ [0,∞)×D, and d̄0(t,x) = d0(t,x) for a.e. (t,x) ∈ [0,∞)× ∂D.

The lemma below will be instrumental in showing that the forward limits of a do
not depend on the extension of a to a function in L∞(R×D,RN2+2N+1)×L∞(R×
∂D,R).

Lemma 2.1. Let ā(1) = (ā(1)i j , ā(1)i , b̄(1)i , c̄(1)0 , d̄(1)
0 ) and ā(2) = (ā(2)i j , ā(2)i , b̄(2)i , c̄(2)0 ,

d̄(2)
0 ) be extensions of a ∈ L∞([0,∞)×D,RN2+2N+1)× L∞([0,∞)× ∂D,R). Then,

for any tn→ ∞, one has d(ā(1) · tn, ā(2) · tn)→ 0. In particular, ā(1) · tn converges in

the weak-* topology to ã (∈ L∞(R×D,RN2+2N+1)×L∞(R× ∂D,R)) if and only if
ā(2) · tn converges in the weak-* topology to ã.

Proof. For ε > 0, take k0 ∈ N such that

∞

∑
k=k0

1
2k

<
ε

2M
,

where M denotes the maximum of the (L∞(R × D,RN2+2N+1) × L∞(R ×
∂D,R))-norms of ā(1) and ā(2). Then we have

∞

∑
k=k0

1
2k |〈gk,(ā

(1) · τ− ā(2) · τ)〉L1,L∞ |< ε

for each τ ∈ R. Let K > 0 be such that gk(t,x) = 0 for a.e. t outside [−K,K], for all
k = 1,2, . . . ,k0− 1. We have

k0−1

∑
k=1

1
2k |〈gk,(ā

(1) · tn− ā(2) · tn)〉L1,L∞ |= 0

for n∈N so large that tn >K. As a result, d(ā(1) ·tn, ā(2) ·tn)< ε for such n. Therefore

d(ā(1) · tn, ā(2) · tn)→ 0 as n→ ∞,

and then ā(1) · tn converges in the weak-* topology to ã (∈ L∞(R×D,RN2+2N+1)×
L∞(R× ∂D,R)) if and only if ā(2) · tn converges in the weak-* topology to ã. �
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For an extension ā of a, the set { ā · t : t ∈ R} is (norm-)bounded, hence has
compact closure in the weak-* topology. We define

Y (ā) := cl{ ā · t : t ∈ R}, (6)

where the closure is taken in the weak-* topology. When not remarked to the
contrary,Y (ā) is considered with the weak-* topology. Y (ā) is a compact metrizable
space, with a metric given by d(·, ·).

For ã ∈ Y (ā) and t ∈ R we write σt ã := ã · t. (Y (ā),{σt}t∈R) is a compact flow
(i.e., σt ã is continuous in t ∈ R and ã ∈ Y (ā), and σ0 = Id, σt+s = σt ◦σs for any
t,s ∈ R).

Let ā be an extension of a. Put

Y0(ā) :=
⋂
s≥0

cl{ ā · t : t ∈ [s,∞)}. (7)

In other words, Y0(ā) equals the ω-limit set of ā for the compact flow
(Y (ā),{σt}t∈R). By standard results in the theory of topological dynamical systems,
Y0(ā) is invariant, nonempty, compact and connected. Also, ã ∈ Y0(ā) if and only if
there is a sequence tn→ ∞ such that ā · tn→ ã as n→ ∞.

In view of Lemma 2.1, Y0(ā) does not depend on the choice of extension ā of a.
We can (and will) thus write Y0(a). Further, ã ∈ Y0(a) if and only if there is a
sequence tn→ ∞ such that a · tn→ ã as n→ ∞.

The next assumption will be instrumental in proving the continuous dependence
of solutions on parameters.

(A4) (Convergence almost everywhere)
In the Dirichlet or Neumann case:

(A4a) For any sequence (tn) ⊂ [0,∞) with tn → T ∗ (T ∗ ≤ ∞) such that a · tn
converges to ã in the weak-* topology we have that ai j · tn→ ãi j, ai · tn→ ãi,
bi · tn→ b̃i pointwise a.e. on [T,∞)×D, for any T >−T ∗,

and

(A4b) for any sequence (ã(n)) ⊂ Y0(a) converging to ã in the weak-* topology we

have that ã(n)i j → ãi j, ã(n)i → ãi, b̃(n)i → b̃i pointwise a.e. on R×D.

In the Robin case:

(A4a) For any sequence (tn) ⊂ [0,∞) with tn → T ∗ (T ∗ ≤ ∞) such that a · tn
converges to ã in the weak-* topology we have that ai j · tn→ ãi j, ai · tn→ ãi,
bi · tn → b̃i pointwise a.e. on [T,∞)×D, and d0 · tn → d̃0 pointwise a.e. on
[T,∞)× ∂D, for any T >−T ∗,

and

(A4b) for any sequence (ã(n)) ⊂ Y0(a) converging to ã in the weak-* topology we

have that ã(n)i j → ãi j, ã(n)i → ãi, b̃(n)i → b̃i pointwise a.e. on R×D, and d̃(n)
0 →

d̃0 pointwise a.e. on R× ∂D.
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To study the continuous dependence of the weak solutions and principal spectrum
of (1)+(2) with respect to its coefficients, we may imbed the extensions of a into a
subset Y of L∞(R×D,RN2+2N+1)×L∞(R× ∂D,R) satisfying

(A2)′ (Boundedness and invariance) Y is a bounded subset of L∞(R × D,

R
N2+2N+1) × L∞(R × ∂D,R) and is closed (hence, compact) in the

weak-* topology of L∞(R×D,RN2+2N+1)× L∞(R× ∂D,R). Moreover, Y
is invariant: For any ã ∈ Y and any t ∈ R there holds ã · t ∈ Y .

(It should be remarked here that, under Assumption (A2)′, (Y,{σt}t∈R),
where σt ã := ã · t, is a compact flow.)

(A3)′ (Uniform ellipticity) There exists α0 > 0 such that for any ã ∈ Y there holds

N

∑
i, j=1

ãi j(t,x)ξi ξ j ≥ α0

N

∑
i=1

ξ 2
i for a.e. (t,x) ∈ R×D and all ξ ∈ R

N ,

ãi j(t,x) = ã ji(t,x) for a.e. (t,x) ∈ R×D, i, j = 1,2, . . . ,N. (8)

At some places, we may assume
(A4)′ (Convergence almost everywhere)

In the Dirichlet or Neumann case:

For any sequence (ã(n)) ⊂ Y converging to ã in the weak-* topology we have that

ã(n)i j → ãi j, ã(n)i → ãi, b̃(n)i → b̃i pointwise a.e. on R×D.

In the Robin case:

For any sequence (ã(n)) ⊂ Y converging to ã in the weak-* topology we have that

ã(n)i j → ãi j , ã(n)i → ãi, b̃(n)i → b̃i pointwise a.e. on R×D, and d̃(n)
0 → d̃0 pointwise

a.e. on R× ∂D.

Observe that for a given a satisfying (A2) and (A3), Y =Y0(a) satisfies (A2)′ and
(A3)′.

For a∈ L∞([0,∞)×D,RN2+2N+1)×L∞([0,∞)×∂D,R) satisfying (A2) and (A3)
we denote by ¯̄a = ( ¯̄ai j, ¯̄ai, ¯̄bi, ¯̄c0,

¯̄d0) the extension of a given by

¯̄ai j(t,x) := α0δi j for t < 0, x ∈ D,

¯̄ai(t,x) := 0 for t < 0, x ∈D,

¯̄bi(t,x) := 0 for t < 0, x ∈D,

¯̄c0(t,x) := 0 for t < 0, x ∈D,

¯̄d0(t,x) := 0 for t < 0, x ∈ ∂D (9)

(δi j denotes the Kronecker delta).
Sometimes, for a fulfilling (A2) and (A3), we pick up some extension ā of a so

that Y = Y (ā) satisfies (A2)′ and (A3)′. We may say that such ā satisfies (A2)′ and
(A3)′. If Y = Y (ā) satisfies (A4)′, we say ā satisfies (A4)′.
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Clearly ¯̄a defined by (9) satisfies (A2)′ and (A3)′.

Lemma 2.2. For a satisfying (A2)–(A4) the extension ¯̄a given by (9) satisfies (A4)′.

Proof. In the following, the expression “ã(n) converges pointwise a.e. to ã” means

that ã(n)i j → ãi j, ã(n)i → ãi, b̃(n)i → b̃i pointwise a.e. on R×D, and d̃(n)
0 → d̃0 pointwise

a.e. on R× ∂D.
Note that the proof reduces to proving the following subcases:

(i) For any real sequence (tn) with lim
n→∞

tn = −∞ we have that ¯̄a · tn converges

pointwise a.e. to (α0δi j,0,0,0,0).
This is straightforward.

(ii) For any real sequence (tn) with lim
n→∞

tn = T ∈ R we have that ¯̄a · tn converges

pointwise a.e. to ¯̄a ·T.
The fact that the corresponding coefficients converge pointwise a.e. on

[T,∞)×D (resp. pointwise a.e. on [T,∞)×∂D) is a consequence of (A4a). The
pointwise convergence a.e. on (−∞,T )×D (resp. on (−∞,T )× ∂D) follows
by the construction of ¯̄a.

(iii) For any real sequence (tn) with lim
n→∞

tn =∞ such that ¯̄a ·tn converges to ã∈Y0(a)

in the weak-* topology we have that ¯̄a · tn converges pointwise a.e. to ã.
This is a consequence of (A4a).

(iv) For any sequence (a(n))⊂Y0(a) convergent to ã∈Y0(a) in the weak-* topology
we have that a(n) converges pointwise a.e. to ã.

This is just (A4b). �
The next result is a consequence of the Ascoli–Arzelà theorem.

Lemma 2.3. Assume that the boundary ∂D of D is of class Cβ , for some β > 0.

(1) If ai j, ai, bi, c0 ∈ Cβ1,β2([0,∞)×D), and d0 ∈ Cβ1,β2([0,∞)× ∂D), where 0 <
β2 ≤ β , then a = (ai j,ai,bi,c0,d0) satisfies (A4).

(2) Assume that Y satisfies (A2)′. If for each ã = (ãi j, ãi, b̃i, c̃0, d̃0) ∈ Y there holds
ãi j, ãi, b̃i, c̃0 ∈ Cβ1,β2(R×D), and d̃0 ∈ Cβ1,β2(R× ∂D), where 0 < β2 ≤ β ,
and the Cβ1,β2(R×D)-norms of ãi j, ãi, b̃i, c̃0 are bounded uniformly in ã ∈ Y
and the Cβ1,β2(R× ∂D)-norms of d̃0 are bounded uniformly in ã ∈ Y , then Y
satisfies (A4)′.

2.2 Weak Solutions: Definition

Throughout this subsection, D satisfies (A1) and Y is a subset of L∞(R ×
D,RN2+2N+1)×L∞(R× ∂D,R) satisfying (A2)′–(A3)′.

Let a satisfy (A2), (A3), and let ā be an extension of a such that Y (ā) ⊂ Y .
In particular, ā satisfies (A2)′ and (A3)′.
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We define V as follows:

V :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W̊ 1
2 (D) (Dirichlet)

W 1
2 (D) (Neumann)

W 1
2,2(D,∂D), (Robin)

(10)

where W̊ 1
2 (D) is the closure ofD(D) in W 1

2 (D) and W 1
2,2(D,∂D) is the completion of

V0 := {v ∈W 1
2 (D)∩C(D̄) : v is C∞ on D and ‖v‖V < ∞}

with respect to the norm ‖v‖V := (‖∇v‖2
2+‖v‖2

2,∂D)
1/2, whereD(D) is the space of

smooth real functions having compact support in D.
If no confusion occurs, we will write 〈u,u∗〉 for the duality between V and V ∗,

where u ∈V and u∗ ∈V ∗.
For s≤ t, let

W =W (s, t;V,V ∗) := {v ∈ L2((s, t),V ) : v̇ ∈ L2((s, t),V
∗)} (11)

equipped with the norm

‖v‖W :=
(∫ t

s
‖v(t)‖2

V dt +
∫ t

s
‖v̇(t)‖2

V∗ dt
) 1

2
,

where v̇ := dv/dt is the time derivative in the sense of distributions taking values in
V ∗ (see [5, Chap. XVIII] for definitions).

For a given ã = (ãi j, ãi, b̃i, c̃0, d̃0) ∈Y , consider

ut =
N

∑
i=1

∂
∂xi

( N

∑
j=1

ãi j(t,x)
∂u
∂x j

+ ãi(t,x)u

)
+

N

∑
i=1

b̃i(t,x)
∂u
∂xi

+ c̃0(t,x)u, x ∈ D,

(12)

endowed with the boundary condition

B̃(t)u = 0, x ∈ ∂D, (13)

where B̃ is a boundary operator of either the Dirichlet or Neumann or Robin
type, that is, B̃(t)u = B(t)u, where B(t)u is as in (3) with a being replaced by ã.
Sometimes we write the nonautonomous problem (12)+(13) as (12)ã+(13)ã.

Denote by Bã = Bã(t, ·, ·) the bilinear form on V associated with ã ∈ Y ,

Bã(t,u,v) :=
∫

D

(
(ãi j(t,x)∂ ju+ ãi(t,x)u)∂iv− (b̃i(t,x)∂iu+ c̃0(t,x)u)v

)
dx, (14)
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(u,v ∈V ) in the Dirichlet and Neumann boundary condition cases, and

Bã(t,u,v) :=
∫

D

(
(ãi j(t,x)∂ ju+ ãi(t,x)u)∂iv− (b̃i(t,x)∂iu+ c̃0(t,x)u)v

)
dx

+

∫
∂D

d̃0(t,x)uvdHN−1, (15)

(u,v ∈ V ) in the Robin boundary condition case, where HN−1 stands for the
(N−1)-dimensional Hausdorff measure, which is, by (A1), equivalent to the surface
measure (we used the summation convention in the above).

Definition 2.1 (Weak solution). (1) Let ã ∈ Y . A function u ∈ L2((s, t),V ) is a
weak solution of (12)ã+(13)ã on [s, t]×D, s < t, with initial condition u(s) = u0

if

−
∫ t

s
〈u(τ),v〉 φ̇ (τ)dτ +

∫ t

s
Bã(τ,u(τ),v)φ(τ)dτ −〈u0,v〉φ(s) = 0 (16)

for all v ∈ V and φ ∈ D([s, t)), where D([s, t)) is the space of all smooth real
functions having compact support in [s, t).

(2) If ā is an extension of a and s ≥ 0, a weak solution u ∈ L2((s, t),V ) of
(12)ā+(13)ā on [s, t]×D with initial condition u(s)= u0 is called a weak solution
of (1)+(2) on [s, t]×D with initial condition u(s) = u0.

Definition 2.2 (Global weak solution). (1) Let ã ∈ Y . A function u ∈
L2,loc((s,∞),V ) is a global weak solution of (12)ã+(13)ã with initial condition
u(s) = u0, s ∈ R, if for each t > s its restriction u|[s,t] is a weak solution of
(12)+(13) on [s, t]×D with initial condition u(s) = u0.

(2) If ā is an extension of a and s ≥ 0, a global solution of (12)ā+(13)ā on [s,∞) is
called a global solution of (1)+(2) on [s,∞).

We remark that the (global) weak solutions of (1)+(2) are independent of the
choices of the extensions of a. Sometimes we will write of (global) weak solutions
of (1)a+(2)a.

2.3 Weak Solutions: Basic Properties

Throughout this subsection, D satisfies (A1) and Y is a subset of L∞(R ×
D,RN2+2N+1)×L∞(R× ∂D,R) satisfying (A2)′–(A4)′.

Let a satisfy (A2)–(A4), and let ā be an extension of a such that Y (ā)⊂ Y .
We recall some basic properties of weak solutions of (12)+(13) ((1)+(2)) from

[18] to be used in later sections. The reader is referred to [18] for various other
important properties.
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Proposition 2.4 (Existence of global solution). For any ã ∈ Y , s ∈ R, and any
u0 ∈ L2(D) there exists a unique global weak solution u(t;s, ã,u0) of (12)ã+(13)ã

with initial condition u(s;s, ã,u0) = u0.

Proof. See [3, Theorem 2.4]. �
As, for s≤ t and ã∈Y fixed, the assignment [L2(D)� u0 �→ u(t;s, ã,u0)∈ L2(D) ]

is linear, we write Uã(t,s)u0 for u(t;s, ã,u0).

Proposition 2.5. (i) For any s≤ t and any ã ∈ Y there holds

Uã(t,s) =Uã·s(t− s,0).

(ii) For any s≤ t1 ≤ t2 and any ã ∈Y there holds

Uã(t2,s) =Uã(t2, t1)◦Uã(t1,s).

As a consequence, for any s≤ t and any ã ∈Y there holds

Uã(s+ t,0) =Uã·s(t,0)◦Uã(s,0).

Proof. See [18, Propositions 2.1.6, 2.1.7 and 2.1.8]. �
We may write Uā(t,s) as Ua(t,s) =Ua·s(t− s,0) if t ≥ s≥ 0.

Proposition 2.6 (L2–L2 estimates). There are constants M > 0 and γ > 0 such that

‖Uã(t,0)‖ ≤Meγt (17)

for ã ∈ Y and t > 0.

Proof. See [18, Proposition 2.2.2]. �
Proposition 2.7 (Compactness). For any given 0 < t1 ≤ t2, if E is a bounded
subset of L2(D) then {Uã(t,0)u0 : ã ∈ Y, t ∈ [t1, t2], u0 ∈ E } is relatively compact
in L2(D).

Proof. See [18, Proposition 2.2.5]. �
For u,v∈ L2(D) we write u≤ v (or v≥ u) if u(x)≤ v(x) for a.e. x∈D. We denote

L2(D)+ := {u ∈ L2(D) : u≥ 0}.
Proposition 2.8 (Monotonicity on initial data). Let ã ∈ Y, t > 0 and u1,u2 ∈
L2(D).

(1) If u1 ≤ u2 then Uã(t,0)u1 ≤Uã(t,0)u2.
(2) If u1 ≤ u2, u1 �= u2, then (Uã(t,0)u1)(x)< (Uã(t,0)u2)(x) for x ∈D.

Proof. See [18, Proposition 2.2.9]. �
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Lemma 2.9. Let ã ∈Y and t > 0. Then ‖Uã(t,0)‖= sup{Uã(t,0)u0 : u0 ∈ L2(D)+,
‖u0‖= 1}.
Proof. See [18, Lemma 3.1.1]. �
Proposition 2.10 (Monotonicity on coefficients). Assume that a(1) and a(2) satisfy
(A2)–(A4).

(1) Assume the Dirichlet boundary condition. Let, for some T ≥ 0, a(1)i j = a(2)i j ,

a(1)i = a(2)i , b(1)i = b(2)i , but c(1)0 ≤ c(2)0 , where equalities and inequalities are
to be understood a.e. on [T,∞)×D. Then

Ua(1)(t,s)u0 ≤Ua(2)(t,s)u0

for any t > s≥ T and any u0 ∈ L2(D)+.

(2) Assume the Neumann or Robin boundary condition. Let, for some T ≥ 0, a(1)i j =

a(2)i j , a(1)i = a(2)i , b(1)i = b(2)i , but c(1)0 ≤ c(2)0 , d(1)
0 ≥ d(2)

0 , where equalities and
inequalities are to be understood a.e. on [T,∞)×D or a.e. on [T,∞)× ∂D.
Then

Ua(1)(t,s)u0 ≤Ua(2)(t,s)u0

for any t > s≥ T and any u0 ∈ L2(D)+.

(3) Let, for some T ≥ 0, a(1)i j = a(2)i j , a(1)i = a(2)i , b(1)i = b(2)i , c(1)0 = c(2)0 , but d(1)
0 ≥ 0,

d(2)
0 = 0, where equalities and inequalities are to be understood a.e. on [T,∞)×

D or a.e. on [T,∞)× ∂D. Then

UR
a(1)

(t,s)u0 ≤UN
a(2)

(t,s)u0

for any t > s≥ T and any u0 ∈ L2(D)+, where UR
a (t,s)u0 and UN

a (t,s)u0 denote
the solutions of (1)a+(2)a with Robin and Neumann boundary conditions,
respectively.

(4) Let, for some T ≥ 0, a(1)i j = a(2)i j , a(1)i = a(2)i , b(1)i = b(2)i , c(1)0 = c(2)0 , but d(2)
0 ≥ 0,

where equalities and inequalities are to be understood a.e. on [T,∞)×D or a.e.
on [T,∞)× ∂D. Then

UD
a(1)

(t,s)u0 ≤UR
a(2)

(t,s)u0

for any t > s ≥ T and any u0 ∈ L2(D)+, where UD
a (t,s)u0 and UR

a (t,s)u0

denote the solutions of (1)a+(2)a with Dirichlet and Robin boundary conditions,
respectively.

Proof. Compare [18, Proposition 2.2.10]. �

Proposition 2.11 (Continuous dependence). For any real sequences (sn)
∞
n=1 with

sn→ ∞ and (tn)∞
n=1 with tn→ t ∈ (0,∞), if

lim
n→∞

a · sn = ã,
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then for any u0 ∈ L2(D), Ua(sn + tn,sn)u0 =Ua·sn(tn,0)u0 converges to Uã(t,0)u0 in
L2(D).

Proof. It follows from the arguments of [18, Theorem 2.4.1]. �
Proposition 2.12 (Continuous dependence). For any sequence (ã(n))∞

n=1⊂Y, any
real sequence (tn)∞

n=1 and any sequence (un)
∞
n=1 ⊂ L2(D), if limn→∞ ã(n) = ã,

limn→∞ tn = t, where t ∈ (0,∞), and limn→∞ un = u0 in L2(D), then Uã(n)(tn,0)un

converges in L2(D) to Uã(t,0)u0.

Proof. It follows from [18, Theorem 2.4.1]. �
We denote by Π(Y ) = {Π(Y )t}t≥0 the topological linear skew-product semiflow

generated by the family (12)ã+(13)ã, ã ∈ Y , on the product bundle L2(D)×Y :

Π(Y )(t;u0, ã) = Π(Y )t(u0, ã) := (Uã(t,0)u0,σt ã) (t ≥ 0, ã ∈Y, u0 ∈ L2(D)).

For Y = Y (ā), we will denote Π(Y ) by Π(ā).

3 Principal Spectrum

In this section, we introduce the definition of the principal spectrum of (1)+(2) and
establish some fundamental properties of it. Throughout the present section, we
assume that D and a satisfy (A1)–(A4). Let ā be an extension of a such that it
satisfies (A2)′–(A4)′.

3.1 Definition

Definition 3.1 (Principal resolvent). A real number λ belongs to the principal
resolvent of (1)a+(2)a or {Ua(t,s)}t≥s≥0, denoted by ρ(a), if either of the following
conditions holds:

• There are η > 0, M ≥ 1, and T > 0 such that

‖Ua(t,s)‖ ≤Me(λ−η)(t−s) for t > s≥ T

(such λ are said to belong to the upper principal resolvent, denoted by ρ+(a)),
• There are η > 0, M ∈ (0,1], and T > 0 such that

‖Ua(t,s)‖ ≥Me(λ+η)(t−s) for t > s≥ T

(such λ are said to belong to the lower principal resolvent, denoted by ρ−(a)).
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Definition 3.2 (Principal spectrum). The principal spectrum of (1)a+(2)a or
{Ua(t,s)}t≥s≥0, denoted by Σ(a), equals the complement in R of the principal
resolvent ρ(a).

3.2 Fundamental Properties

Theorem 3.1. The principal spectrum Σ(a) of (1)a+(2)a is a compact nonempty
interval [λmin(a),λmax(a)].

In the following, [λmin(a),λmax(a)] denotes the principal spectrum Σ(a) of
(1)a+(2)a unless otherwise specified.

Theorem 3.2.

λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

≤ limsup
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

= λmax(a).

Theorem 3.3. Assume that there is T ≥ 0 such that there holds: ai(t,x) = bi(t,x) =
0 for a.e. (t,x) ∈ [T,∞)×D, and c0(t,x) ≤ 0 for a.e. (t,x) ∈ [T,∞)×D. Then
[λmin(a),λmax(a)]⊂ (−∞,0].

Theorem 3.4. In the case of the Dirichlet boundary condition, assume that there is
T ≥ 0 such that there holds: ai(t,x) = bi(t,x) = 0 for a.e. (t,x) ∈ [T,∞)×D, and
c0(t,x)≤ 0 for a.e. (t,x) ∈ [T,∞)×D. Then λmax(a)< 0.

To prove the above theorems, we first prove some lemmas.

Lemma 3.5. (1) For any t0 > 0 there is K1 = K1(t0)≥ 1 such that ‖Ua(s+ t,s)‖ ≤
K1 for all s≥ 0 and all t ∈ [0, t0].

(2) For any t0 > 0 there is K2 = K2(t0) > 0 such that ‖Ua(s+ t,s)‖ ≥ K2 for all
s≥ 0 and all t ∈ [0, t0].

Proof. See [18, Lemma 3.1.2]. �
Lemma 3.6. (1) A real number λ belongs to the upper principal resolvent if and

only if there are δ0 > 0, T > 0, η > 0 and M̃ > 0 such that

‖Ua(t,s)‖ ≤ M̃e(λ−η)(t−s) for t− s≥ δ0 and s≥ T.

(2) A real number λ belongs to the lower principal resolvent if and only if there are
δ0 > 0, T > 0, η > 0 and M̃ > 0 such that

‖Ua(t,s)‖ ≥ M̃e(λ+η)(t−s) for t− s≥ δ0 and s≥ T.

Proof. The “only if” parts follow from Definition 3.1 in a straightforward way.
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To prove the “if” part in (1), it suffices to notice that, by Lemma 3.5(1), there is
K1 = K1(δ0)> 0 such that ‖Ua(t,s)‖ ≤ K1 ≤ (K1 max{1,e−δ0(λ−η)})e(λ−η)(t−s) for
all t > s≥ T with t− s≤ δ0.

To prove the “if” part in (2), it suffices to notice that, by Lemma 3.5(2), there is
K2 = K2(δ0)> 0 such that ‖Ua(t,s)‖ ≥ K2 ≥ (K2 min{1,e−δ0(λ+η)})e(λ+η)(t−s) for
all t > s≥ T with t− s≤ δ0. �
Lemma 3.7. There exist δ1 > 0, M1 > 0 and a real λ such that ‖Ua(t,s)‖ ≥
M1eλ (t−s) for all s≥ 0 and all t− s≥ δ1.

Proof. See [18, Lemma 3.1.4]. �
Proof of Theorem 3.1. We prove first that the upper principal resolvent ρ+(a) is
nonempty. Indeed, by the L2–L2 estimates (Proposition 2.6), there are M > 0 and
γ > 0 such that ‖Ua(t,s)‖ ≤Meγ(t−s) for all t ≥ s≥ 0. Consequently, γ +1∈ ρ+(a).
Further, it follows from the definition that ρ+(a) is a right-unbounded open interval
(λmax(a),∞).

The lower principal resolvent ρ−(a) is nonempty, too, since it contains, by
Lemma 3.7 combined with Lemma 3.6(2), the real number λ −1. Further, it follows
from the definition that ρ−(a) is a left-unbounded open interval (−∞,λmin(a)).

As ρ−(a)∩ρ+(a) = /0, one has Σ(a) = R\ρ(a) = [λmin(a),λmax(a)]. �
Proof of Theorem 3.2. First, by Definition 3.2, for any sequences (tn)∞

n=1 ⊂ (0,∞),
(sn)

∞
n=1 ⊂ (0,∞), such that sn→ ∞ and tn− sn→ ∞ as n→ ∞ there holds

λmin(a)≤ liminf
n→∞

ln‖Ua(tn,sn)‖
tn− sn

≤ limsup
n→∞

ln‖Ua(tn,sn)‖
tn− sn

≤ λmax(a). (18)

Notice that, since λmin(a) /∈ ρ−(a), it follows from Definition 3.1 that for each
n ∈ N there are n≤ sn,1 < tn,1 with the property that

‖Ua(tn,1,sn,1)‖< 1
n exp((λmin(a)+ 1

n )(tn,1− sn,1)).

We claim that limn→∞(tn,1 − sn,1) = ∞ as n → ∞. Indeed, if not then there is
a bounded subsequence (tnk,1 − snk ,1)

∞
k=1, nk → ∞ as k → ∞. It follows that

‖Ua(tnk,1,snk,1)‖→ 0 as k→ ∞, which contradicts Lemma 3.5(2). Thus we have

limsup
n→∞

ln‖Ua(tn,1,sn,1)‖
tn,1− sn,1

≤ λmin(a). (19)

Notice also that, since λmax(a) /∈ ρ+(a), it follows from Definition 3.1 that for
each n ∈N there are n≤ sn,2 < tn,2 with the property that

‖Ua(tn,2,sn,2)‖ > nexp((λmax(a)− 1
n )(tn,2− sn,2)).

We claim that limn→∞(tn,2 − sn,2) = ∞ as n → ∞. Indeed, if not then there is
a bounded subsequence (tnk,2 − snk ,2)

∞
k=1, nk → ∞ as k → ∞. It follows that

‖Ua(tnk,2,snk,2)‖→ ∞ as k→ ∞, which contradicts Lemma 3.5(1). Thus we have
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liminf
n→∞

ln‖Ua(tn,2,snk,2)‖
tn,2− tnk,2

≥ λmax(a). (20)

The theorem then follows from (18)–(20). �
Proof of Theorem 3.3. Fix u0 ∈ L2(D)+ with ‖u0‖ = 1, and put u(t,x) :=
(Ua(t,T )u0)(x), t ≥ T , x ∈ D. It follows from [18, Proposition 2.1.4] that

‖u(t, ·)‖2−‖u(s, ·)‖2 =−2
∫ t

s
Ba(τ,u(τ, ·),u(τ, ·))dτ

≤−2
∫ t

s

∫
D

( N

∑
i, j=1

ai j(τ,x)∂xi u(τ,x)∂x j u(τ,x)
)

dxdτ ≤ 0

for any T ≤ s < t. Consequently, with the help of Lemma 2.9 we have ‖Ua(t,s)‖ ≤ 1
for any T ≤ s < t. Therefore (0,∞)⊂ ρ+(Y0). �
Proof of Theorem 3.4. It follows by the Poincaré inequality (see [6, Theorem 3 in
Sect. 5.6]) that there is α1 > 0 such that ‖u‖ ≤ α1‖∇u‖ for any u ∈ W̊ 1

2 (D).
Starting as in the proof of Theorem 3.3 we estimate

‖u(t, ·)‖2−‖u(s, ·)‖2 =−2
∫ t

s
Ba(τ,u(τ, ·),u(τ, ·))dτ

≤−2
∫ t

s

∫
D

( N

∑
i, j=1

ai j(τ,x)∂xi u(τ,x)∂x j u(τ,x)
)

dxdτ

by (A2)
≤ −2α0

∫ t

s
‖∇u(τ, ·)‖2 dτ ≤ −2α0

(α1)2

∫ t

s
‖u(τ, ·)‖2 dτ

for T ≤ s < t. An application of the regular Gronwall inequality and Lemma 2.9
gives that

‖Ua(t,s)‖ ≤ e−λ0(t−s)

for any T ≤ s < t, where λ0 := α0/α2
1 > 0. Consequently, [−λ0,∞) ⊂ ρ+(a) and

λmax(a)<−λ0. �

3.3 Monotonicity and Continuity with Respect to Zero Order
Terms

In this subsection, we explore the monotonicity and continuity of the principal
spectrum of (1)+(2) with respect to the zero order terms.

Let a(1), a(2) be such that they satisfy properties (A1)–(A4).
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We assume that there is T ≥ 0 such that the following assumptions are satisfied:

(MC1) a(1)i j (·, ·) = a(2)i j (·, ·), a(1)i (·, ·) = a(2)i (·, ·), b(1)i (·, ·) = b(2)i (·, ·), for a.e. (t,x) ∈
[T,∞)×D.

(MC2) d(2)
0 (·, ·) = d(1)

0 (·, ·) for a.e. (t,x) ∈ [T,∞)× ∂D.
(MC3) One of the following conditions, (a), (b), (c), (d), or (e) holds:

(a) Both (1)a(1) and (1)a(2) are endowed with the Dirichlet boundary conditions,
and

• c(1)0 (·, ·)≤ c(2)0 (·, ·) for a.e. (t,x) ∈ [T,∞)×D,

(b) Both (1)a(1) and (1)a(2) are endowed with the Robin boundary conditions, and

• c(1)0 (·, ·)≤ c(2)0 (·, ·) for a.e. (t,x) ∈ [T,∞)×D,

• d(1)
0 (·, ·)≥ d(2)

0 (·, ·) for a.e. (t,x) ∈ [T,∞)× ∂D.

(c) Both (1)a(1) and (1)a(2) are endowed with the Neumann boundary conditions,
and

• c(1)0 (·, ·)≤ c(2)0 (·, ·) for a.e. (t,x) ∈ [T,∞)×D,

(d) (1)a(1) is endowed with the Dirichlet boundary condition and (1)a(2) is endowed

with the Robin boundary condition, and d(2)
0 (·, ·) ≥ 0

• c(1)0 (·, ·) = c(2)0 (·, ·) for a.e. (t,x) ∈ [T,∞)×D.

(e) (1)a(1) is endowed with the Robin boundary condition and (1)a(2) is endowed

with the Neumann boundary condition, and d(2)
0 (·, ·)≥ 0

• c(1)0 (·, ·) = c(2)0 (·, ·) for a.e. (t,x) ∈ [T,∞)×D.

Theorem 3.8. Assume that (MC1) and (MC3) hold. Then λmin(a(1)) ≤ λmin(a(2))
and λmax(a(1))≤ λmax(a(2)).

Proof. We prove only the first inequality, the proof of the other being similar.
By Theorem 3.2, there are sequences (sn)

∞
n=1, (tn)∞

n=1, with 0 < sn < tn, sn→ ∞
and tn− sn→ ∞ as n→ ∞, such that

lim
n→∞

ln‖Ua(2)(tn,sn)‖
tn− sn

= λmin(a
(2)).

Proposition 2.10 implies that for each u0 ∈ L2(D)+ there holds

‖Ua(1)(tn,sn)u0‖ ≤ ‖Ua(2)(tn,sn)u0‖

for T ≤ sn < tn, which implies, via Lemma 2.9, that ‖Ua(1)(tn,sn)‖ ≤ ‖Ua(2)(tn,sn)‖
for sufficiently large n. By Theorem 3.2,
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λmin(a
(1))≤ liminf

n→∞

ln‖Ua(1)(tn,sn)‖
tn− sn

≤ lim
n→∞

ln‖Ua(2)(tn,sn)‖
tn− sn

= λmin(a
(2)). �

Theorem 3.9. Assume that (MC1) and (MC2) hold. Then |λmin(a(1)) −
λmin(a(2))| ≤ r and |λmax(a(1))−λmax(a(2))| ≤ r, where r := lim

τ→∞
esssup{|c(1)0 (t,x)−

c(2)0 (t,x)| : t ∈ (τ,∞), x ∈ D}.
Proof. For m ∈ N, put a(1)± (r+ 1

m) to be a(1) with c(1)0 replaced by c(1)0 ± (r+ 1
m ).

By using arguments as in the proof of [18, Lemma 4.3.1] we see that

Ua(k)±(r+ 1
m )(t,s) = e±(r+

1
m )(t−s)Ua(k)(t,s) (0≤ s < t)

for k = 1,2. Consequently, by Theorem 3.2,

λext(a
(1)± (r+ 1

m)) = λext(a
(1))± (r+ 1

m),

where λext stands for λmin or λmax.
Observe that for any m ∈ N there is Tm > 0 such that

c(1)0 (t,x)− (r+ 1
m)≤ c(2)0 (t,x)≤ c(1)0 (t,x)+ (r+ 1

m )

for a.e. (t,x) ∈ (Tm,∞)×D.
It then follows from Theorem 3.8 that

λext(a
(1)− (r+ 1

m))≤ λext(a
(2))≤ λext(a

(1) + (r+ 1
m )),

hence

λext(a
(1))− (r+ 1

m)≤ λext(a
(2))≤ λext(a

(1))+ (r+ 1
m).

As m ∈ N is arbitrary, this gives the desired result. �

4 Exponential Separation and Equivalent Definition

In this section, we investigate the relation between the principal spectrum of (1)+(2)
and that of the forward limit equations of (1)+(2). To do so, we employ the so-called
exponential separation theory for general time dependent linear parabolic equations,
which together with principal spectrum theory extends principal eigenvalue and
principal eigenfunction theory for time periodic parabolic equations.
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4.1 Definitions and Characterizations

We first introduce the principal spectrum of (12)a+(13)a over Y0(a) and the
exponential separation of Π(Y ) over Y . We then show that the principal spectrum
of (1)a+(2)a equals that of (12)a+(13)a over Y0(a) provided that Π(ā) admits an
exponential separation on Y (ā).

Throughout the present subsection, Y is a subset of L∞(R×D,RN2+2N+1)×
L∞(R× ∂D,R) satisfying (A2)′–(A4)′.

Let D and a satisfy (A1)–(A4), and let ā be an extension of a such that Y (ā)⊂Y .
In particular, ā satisfies (A2)′–(A4)′.

Definition 4.1. λ ∈ R belongs to the principal resolvent of Y0(a) or the principal
resolvent of (12)a+(13)a over Y0(a), denoted by ρ̃(a), if either of the following
conditions is satisfied:

• There are η > 0 and M ≥ 1 such that

‖Uã(t,0)‖ ≤Me(λ−η)t for t > 0, ã ∈ Y0(a)

(such λ are said to belong to the upper principal resolvent of Y0(a), denoted by
ρ̃+(a)),

• There are η > 0 and M ∈ (0,1] such that

‖Uã(t,0)‖ ≥Me(λ+η)t for t > 0, ã ∈ Y0(a)

(such λ are said to belong to the lower principal resolvent of Y0(a), denoted by
ρ̃−(a)).

Definition 4.2. The principal spectrum of (12)a+(13)a over Y0(a), denoted by Σ̃(a),
equals the complement in R of the principal resolvent of (12)a+(13)a over Y0(a).

Remark 4.1. In the terminology of the monograph [18], the principal resolvent of
Y0(a) (resp. the principal spectrum of Y0(a)) is called the principal resolvent of Π(ā)
over Y0(a) (resp. the principal spectrum of Π(ā) over Y0(a)).

Theorem 4.2. Σ̃(a) is a nonempty interval [λ̃min(a), λ̃max(a)].

Proof. See [18, Theorem 3.1.1]. �
Definition 4.3. Let Y ′ be a closed invariant subset of Y . We say that Π(Y ) admits an
exponential separation with separating exponent γ0 > 0 over Y ′ if there are an invari-
ant one-dimensional subbundle X1 of L2(D)×Y ′ with fibers X1(ã) = span{w(ã)},
‖w(ã)‖ = 1, and an invariant complementary one-codimensional subbundle X2 of
L2(D)×Y ′ with fibers X2(ã) = {v ∈ L2(D) : 〈v,w∗(ã)〉 = 0} having the following
properties:

(i) w(ã) ∈ L2(D)+ for all ã ∈ Y ′,
(ii) X2(ã)∩L2(D)+ = {0} for all ã ∈ Y ′,
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(iii) There is M ≥ 1 such that for any ã ∈ Y ′ and any v ∈ X2(ã) with ‖v‖= 1,

‖Uã(t,0)v‖ ≤Me−γ0t‖Uã(t,0)w(ã)‖ (t > 0).

For more on bundles, etc., see [18, Sect. 3.2].
Let (A5) stand for the following assumption.

(A5) Π(ā) admits an exponential separation over Y (ā), for some extension ā of a.

In the next subsection, we will show that if both D and a are sufficiently smooth,
(A5) is satisfied.

Theorem 4.3. Assume (A5). Then

(i)

λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= liminf
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

= liminf
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

for each nonzero u0 ∈ L2(D)+,
(ii)

λmax(a) = limsup
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= limsup
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

= limsup
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

for each nonzero u0 ∈ L2(D)+.
(iii) Σ(a) = Σ̃(a), i.e., λmin(a) = λ̃min(a) and λmax(a) = λ̃max(a).

Before proving the above theorem, we first recall a lemma from [18].

Lemma 4.4. Assume (A5). Then

(1) λ ∈R belongs to ρ̃+(a) if and only if there are η > 0 and M ≥ 1 such that

‖Uã(t,0)w(ã)‖ ≤Me(λ−η)t for t > 0 and ã ∈ Y0(a),

(2) λ ∈R belongs to ρ̃−(a) if and only if there are η > 0 and M ∈ (0,1) such that

‖Uã(t,0)w(ã)‖ ≥Me(λ+η)t for t > 0 and ã ∈ Y0(a).

Proof. See [18, Lemma 3.2.6]. �
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We remark that the complement of the set of those λ ∈ R for which either of the
conditions in Lemma 4.4 holds is called the dynamical spectrum or the Sacker–Sell
spectrum of Π|X1∩(L2(D)×Y0(a)). The reader is referred to [23–26] for the fundamental
spectral theory for nonautonomous linear evolution equations.

Proof of Theorem 4.3 First of all, by [18, Lemma 3.2.5], we have

liminf
n→∞

ln‖Ua(tn,sn)u0‖
tn− sn

= liminf
n→∞

ln‖Ua(tn,sn)‖
tn− sn

= liminf
n→∞

ln‖Ua(tn,sn)w(ā · sn)‖
tn− sn

≤ limsup
n→∞

ln‖Ua(tn,sn)w(ā · sn)‖
tn− sn

= limsup
n→∞

ln‖Ua(tn,sn)‖
tn− sn

= limsup
n→∞

ln‖Ua(tn,sn)u0‖
tn− sn

(21)

for any (sn)
∞
n=1, (tn)∞

n=1 such that sn → ∞ and tn− sn → ∞, and any nonzero u0 ∈
L2(D)+. By Theorem 3.2, there holds

λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

≤ limsup
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

= λmax(a). (22)

(i) and (ii) then follow from (21) and (22).
Next, we prove (iii). We first prove

λ̃min(a)≤ λmin(a)≤ λmax(a)≤ λ̃max(a). (23)

Fix, for the moment, ε > 0. As λ̃min(a) − ε ∈ ρ̃−(a), it follows from
Lemma 4.4(2) that there is T > 0 such that for any t ≥ T and ã ∈ Y0(a) there
holds

ln‖Uã(t,0)w(ã)‖> (λ̃min(a)− ε)t. (24)

By Proposition 2.12, there is δ > 0 such that for any ã(1), ã(2) ∈ Y (ā) with
d(ã(1), ã(2))< δ there holds

− εT ≤ ln‖Uã(1)(T,0)w(ã
(1))‖− ln‖Uã(2)(T,0)w(ã

(2))‖ ≤ εT. (25)

For the above δ > 0 there is T1 > 0 such that for any s ≥ T1 there is ã ∈ Y0(a)
such that

d(ā · s, ã)< δ .
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It then follows from (24) and (25) that

ln‖Ua(T + s,s)w(ā · s)‖ ≥ (λ̃min(a)− 2ε)T,

and hence

‖Ua(T + s,s)w(ā · s)‖ ≥ e(λ̃min(a)−2ε)T , (26)

for any s≥ T1.
We then have, applying Proposition 2.5,

‖Ua(nT + s,s)w(ā · s)‖
= ‖Ua((n− 1)T + s,T + s)Ua(T + s,s)w(ā · s)‖
≥ ‖Ua((n− 1)T + s,T + s)w(ā · (T + s))‖ · e(λ̃min(a)−2ε)T

≥ ‖Ua((n− 2)T + s,2T + s)w(ā · (2T + s))‖ · e2(λ̃min(a)−2ε)T

≥ . . .

≥ en(λ̃min(a)−2ε)T (27)

for any s≥ T1 and n ∈N.
Therefore for any s≥ T1 and t > 0 with t− s = nT + τ for some n ∈ {0,1,2, . . .}

and 0≤ τ < T there holds

‖Ua(t,s)w(ā · s)‖ = ‖Ua(t,nT + s)Ua(nT + s,s)w(ā · s)‖
≥ ‖Ua(t,nT + s)w(ā · (nT + s))‖ · en(λ̃min(a)−2ε)T

≥ Men(λ̃min(a)−2ε)T , (28)

where M := inf{‖Uã(τ,0)w(ã)‖ : 0≤ τ ≤ T, ã ∈ Y (ā)} > 0. This implies that

liminf
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

≥ λ̃min(a)− 2ε.

Letting ε → 0 we get

liminf
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

≥ λ̃min(a). (29)

Similarly we prove that

limsup
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

≤ λ̃max(a). (30)

(23) then follows from (22), (29), and (30).
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Next, we prove

λmin(a)≤ λ̃min(a)≤ λ̃max(a)≤ λmax(a). (31)

Let λ ∈ ρ+(a). By Definition 3.1, there are η > 0, M ≥ 1 and T > 0 such that

‖Ua(t,s)‖ ≤Me(λ−η)(t−s) for t > s≥ T.

In particular, ‖Ua(t,s)w(ā · s)‖ ≤Me(λ−η)(t−s) for any t > s≥ T .
For each ã ∈ Y0(a) there is (sn)

∞
n=1 ⊂ (0,∞) with sn → ∞ such that ā · sn → ã.

Then by Proposition 2.12, for any t > 0

Ua(t + sn,sn)w(ā · sn)→Uã(t,0)w(ã)

as n→ ∞. Hence

‖Uã(t,0)w(ã)‖ ≤Me(λ−η)t

for any t > 0. It then follows via Lemma 4.4(1) that λ ∈ ρ̃+(a). Consequently,

λ̃max(a)≤ λmax(a). (32)

Let λ ∈ ρ−(a). By Definition 3.1, there are η > 0, M ∈ (0,1) and T > 0 such that

‖Ua(t,s)‖ ≥Me(λ+η)(t−s) for t > s≥ T.

By [18, Lemma 3.2.3], there is M2 ≥ 1 such that ‖Ua(t,s)‖ ≤M2‖Ua(t,s)w(ā · s)‖
for all t > s. Therefore, ‖Ua(t,s)w(ā · s)‖ ≥ M̃e(λ+η)(t−s) for any t > s ≥ T , where
M̃ := M/M2 ∈ (0,1).

For each ã ∈ Y0(a) there is (sn)
∞
n=1 ⊂ (0,∞) with sn → ∞ such that ā · sn → ã.

Then by Proposition 2.12, for any t > 0

Ua(t + sn,sn)w(ā · sn)→Uã(t,0)w(ã)

as n→ ∞. Hence

‖Uã(t,0)w(ã)‖ ≥ M̃e(λ+η)t

for any t > 0. It then follows via Lemma 4.4(2) that λ ∈ ρ̃−(a). Consequently,

λ̃min(a)≥ λmin(a). (33)

(31) follows from (32) and (33).
By (23) and (31), Σ(a) = Σ̃(a), i.e., (iii) holds. �

Corollary 4.5. Assume (A5). If a is asymptotically uniquely ergodic (i.e., Y0(a)
is uniquely ergodic), then λmin(a) = λmax(a). If, furthermore, a is asymptotically
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periodic with period T (i.e., Y0(a) = { ã · t : t ∈ [0,T ]} for some ã), then λ :=
λmin(a)(= λmax(a)) is the principal eigenvalue of the following periodic eigenvalue
problem,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ut +
N

∑
i=1

∂
∂xi

( N

∑
j=1

ãi j(t,x)
∂u
∂x j

+ ãi(t,x)u

)

+
N

∑
i=1

b̃i(t,x)
∂u
∂xi

+ c̃0(t,x)u = λ u, x ∈ D,

B̃(t)u = 0, x ∈ ∂D,

u(t +T,x) = u(t,x).

(34)

Proof. By [18, Corollary 3.2.2], we have λ̃max(a) = λ̃min(a). It then follows from
Theorem 4.3 that λmax(a) = λmin(a). �

4.2 The Classical Case: An Example

In this subsection, we consider the so-called classical case, i.e., both D and
the coefficients of (1)+(2) are sufficiently smooth (see (SM1) and (SM2) in the
following) and show that for such a case (A5) is satisfied.

(SM1) (Boundary regularity) D⊂R
N is a bounded domain, where its boundary ∂D

is an (N− 1)-dimensional manifold of class C3+α for some α > 0.
(SM2) (Smoothness) There is α > 0 such that the functions ai j (= a ji) and

ai belong to C2+α ,3+α([0,∞) × D̄), the functions bi and c0 belong to
C2+α ,1+α([0,∞)× D̄), and the function d0 belongs to C2+α ,3+α([0,∞)×
∂D).

(SM3) (Ellipticity) There exists α0 > 0 such that

N

∑
i, j=1

ai j(t,x)ξi ξ j ≥ α0

N

∑
i=1

ξ 2
i for all x ∈ D̄,ξ ∈ R

N and t ≥ 0.

We extend a to ā by putting āi j(t,x) := ai j(0,x) (i, j = 1,2, . . . ,N), āi(t,x) :=
ai(0,x) (i = 1,2, . . . ,N), b̄i(t,x) := bi(0,x) (i = 1,2, . . . ,N), c̄0(t,x) := c0(0,x), for
all t < 0 and x ∈ D̄, and d̄0(t,x) := d0(0,x) for all t < 0 and x ∈ ∂D.

(SM1) implies the fulfillment of (A1), (SM2) implies the fulfillment of (A2),
and (SM3) is just (A3). By Lemma 2.3(1), (SM1) and (SM2) imply (A4). (SM2)
and (SM3) together with the construction of ā give (A2)′–(A3)′ with Y =Y (ā). The
satisfaction of (A4)′ with Y = Y (ā) follows now from (SM2) via Lemma 2.3(2).

We claim that the problem (1)+(2) satisfies (A5). We have

Y (ā) = α(ā)∪{ ā · t : t ∈ R}∪Y0(a),
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where α(ā) = {(ai j(0, ·),ai(0, ·),bi(0, ·),c0(0, ·),d0(0, ·))}.
Let ã = (ãi j, ãi, b̃i, c̃0, d̃0) ∈Y (ā).

• Assume ã ∈Y0(a), or ã ∈ α(ā). It follows by the Ascoli–Arzelà theorem that the
functions ãi j and ãi belong to C2+α ,3+α(R× D̄), the functions b̃i and c̃0 belong to
C2+α ,1+α(R× D̄) and the function d̃0 belongs to C2+α ,3+α(R× ∂D). Applying
the theory in [1] (see [1, Corollary 15.3]), we have that Uã(·,0)u0 is a classical
solution on [t0,∞), for any t0 > 0 and u0 ∈ L2(D).

• Assume ã = ā · τ for some τ ≥ 0. Then the functions ãi j and ãi belong to
C2+α ,3+α([0,∞)× D̄), the functions b̃i and c̃0 belong to C2+α ,1+α([0,∞)× D̄)
and the function d̃0 belongs to C2+α ,3+α([0,∞)×∂D). Again applying the theory
in [1], we have that Uã(·,0)u0 is a classical solution on [t0,∞), for any t0 > 0 and
u0 ∈ L2(D).

• Assume ã= ā ·τ for some τ < 0. Applying the theory in [1] and the theory in [18],
we have that [ (0,T )×D � (t,x) �→ (Uã(t,0)u0)(x) ] ∈W 1,2

p ((0,T )×D) for any
T > 0 and p > 1, and Uã(t,0)u0 is a strong solution on (t0,T ), for any 0 < t0 < T
and u0 ∈ L2(D).

Then in the Dirichlet case, by [11, Theorem 2.1 and Lemma 3.9], there hold

(HI1) (Harnack type inequality for quotients) For each δ1 > 0 there is C1 =
C1(δ1)> 1 with the property that

sup
x∈D

(Uã(t,0)u
(1)
0 )(x)

(Uã(t,0)u
(2)
0 )(x)

≤C1 inf
x∈D

(Uã(t,0)u
(1)
0 )(x)

(Uã(t,0)u
(2)
0 )(x)

for any ã ∈ Y (ā), t ≥ δ1 and any u(1)0 ,u(2)0 ∈ L2(D)+ with u(2)0 �= 0.
(HI2) (Pointwise Harnack inequality) There is ς ≥ 0 such that for each δ2 > 0 there

is C2 =C2(δ2)> 0 with the property that

(Uã(t,0)u0)(x)≥C2(d(x))
ς‖Uã(t,0)u0‖∞ (35)

for any ã ∈ Y (ā), t ≥ δ2, u0 ∈ L2(D)+ and x ∈ D, where d(x) denotes the
distance of x ∈ D from the boundary ∂D of D.

In the Neumann or Robin cases, [9, Theorem 2.5] states that (HI2) is satisfied
with ς = 0, which implies, via [18, Lemma 3.3.1], the fulfillment of (HI1). The
above reasoning can be repeated for the adjoint equation, hence, by [18, Theorem
3.3.3], the topological linear skew-product semiflow Π(ā) admits an exponential
separation over Y (ā).

For t ≥ 0 we define

κ(t) :=−Bā·t(0,w(ā · t),w(ā · t)),
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that is,

κ(t) =−
N

∑
i=1

∫
D

( N

∑
j=1

ai j(t,x)∂ jw(ā · t)+ ai(t,x)w(ā · t)
)

∂iw(ā · t)dx

+

∫
D

( N

∑
i=1

bi(t,x)∂iw(ā · t)+ c0(t,x)w(ā · t)
)

w(ā · t)dx

in the Dirichlet and Neumann boundary condition cases, and

κ(t) =−
N

∑
i=1

∫
D

( N

∑
j=1

ai j(t,x)∂ jw(ā · t)+ ai(t,x)w(ā · t)
)

∂iw(ā · t)dx

+

∫
D

( N

∑
i=1

bi(t,x)∂iw(ā · t)+ c0(t,x)w(ā · t)
)

w(ā · t)dx

−
∫

∂D
d0(t,x)(w(ā · t))2 dHN−1

in the Robin boundary condition case, where HN−1 stands for the (N− 1)-dimen-
sional Hausdorff measure (which is, under our assumption (SM1), equivalent to the
(N− 1)-dimensional Lebesgue measure).

Observe that the function κ : [0,∞)→R is well defined and continuous (see [18]
for detail).

Lemma 4.6. Assume (SM1)–(SM3). For 0≤ s < t put η(t;s) := ‖Ua(t,s)w(ā · s)‖.
Then

ηt(t;s) = κ(t)η(t;s)

for any 0≤ s < t.

Proof. See the proof of [18, Lemma 3.5.3]. �
In view of Lemma 4.6 we have the following extension of Theorem 4.3.

Theorem 4.7. Assume (SM1)–(SM3). For any nonzero u0 ∈ L2(D)+ there holds

λmin(a) = liminf
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

= liminf
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

= liminf
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= liminf
s→∞

t−s→∞

1
t− s

∫ t

s
κ(τ)dτ ≤ limsup

s→∞
t−s→∞

1
t− s

∫ t

s
κ(τ)dτ
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= limsup
s→∞

t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= limsup
s→∞

t−s→∞

ln‖Ua(t,s)‖
t− s

= limsup
s→∞

t−s→∞

ln‖Ua(t,s)u0‖
t− s

= λmax(a).

5 More Properties of Principal Spectrum

5.1 Continuity with Respect to the Coefficients

In the present subsection we investigate continuous dependence of the principal
spectrum on the whole of the coefficients.

Assume (A1). We let Y be a subset of L∞(R×D,RN2+2N+1)× L∞(R× ∂D,R)
satisfying (A2)′–(A4)′.

Throughout the present subsection we make also the following assumption.

(A5)′ Π(Y ) admits an exponential separation over Y .

Let dnorm(·, ·) denote the metric on L∞(R× D,RN2+2N+1)× L∞(R× ∂D,R)
generated by the norm, and let d(·, ·) be given by (5).

For a(1),a(2) ∈ L∞([0,∞)×D,RN2+2N+1)× L∞([0,∞)× ∂D,R) and s ≥ 0, by
ds

norm(a
(1),a(2)) we denote the L∞([s,∞)×D,RN2+2N+1)×L∞([s,∞)×∂D,R)-norm

of the difference of the restrictions of a(1), a(2) to [s,∞)×D ([s,∞)× ∂D).

Definition 5.1. We say that a ∈ L∞([0,∞)×D,RN2+2N+1)×L∞([0,∞)× ∂D,R) is
Y-admissible if a satisfies (A2)–(A4) and, moreover, Y0(a)⊂ Y .

We remark here that, for a Y -admissible a, it follows from [18, Theorem 3.2.3]
(the uniqueness of exponential separation) that the restrictions to Y0(a) of the
one-dimensional subbundles (resp. one-codimensional subbundles) appearing in the
definition of an exponential separation over Y (ā) and over Y are the same.

For the rest of the subsection we fix a Y -admissible a(0).

Theorem 5.1. For each ε > 0 there is η > 0 such that for any Y -admissible a, if
limsup

s→∞
ds

norm(a,a
(0))< η then

|λmin(a)−λmin(a
(0))| ≤ ε and |λmax(a)−λmax(a

(0))| ≤ ε.

Lemma 5.2. For each ε > 0 there is η > 0 with the following property. Let â, ǎ∈Y
be such that d(â · t, ǎ · t)< η for all t ∈R. Then, for any integer sequences (kn)

∞
n=1,

(ln)∞
n=1, such that ln− kn→ ∞ as n→ ∞ and

lim
n→∞

ln‖Uâ(ln,kn)w(â · kn)‖
ln− kn

= λ ,
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one has

λ − ε ≤ liminf
n→∞

ln‖Uǎ(ln,kn)w(ǎ · kn)‖
ln− kn

≤ limsup
n→∞

ln‖Uǎ(ln,kn)w(ǎ · kn)‖
ln− kn

≤ λ + ε.

Proof. It follows from [18, Lemma 4.4.2]. �
Proof of Theorem 5.1. Fix ε > 0, and take a Y -admissible a such that
limsup

s→∞
ds

norm(a,a
(0))< η , where η > 0 is as in Lemma 5.2.

By Theorem 4.3 and [18, Theorems 3.2.5 and 3.2.6], there exist an ergodic
invariant measure μmin for the compact flow (Y0(a(0)),{σt}) and a Borel set Y1 ⊂
Y0(a(0)) with μmin(Y1) = 1 such that

lim
t→∞

ln‖Uã(t,0)w(ã)‖
t

= λmin(a
(0))

for any ã ∈ Y1. Fix some ã ∈ Y1. Let (tn)∞
n=1 be a sequence with limn→∞ tn = ∞

such that ā(0) · tn converges to ã. We can extract a subsequence (tnk ) such that ā · tnk

converges, as k→ ∞, to some ǎ.
We claim that d(ã · t, ǎ · t) < η for all t ∈ R. Denote η1 := limsup

s→∞
ds

norm(a,a
(0))

(< η), and let M1 stand for the maximum of the L∞(R×D,RN2+2N+1)× L∞(R×
∂D,R)-norms of ā and ā(0). Fix t ∈R. Take k0 ∈N so large that 1/2k0−1 < M1(η−
η1)/6. Then we have

∞

∑
k=k0

1
2k |〈gk, ā · τ− ā(0) · τ〉L1,L∞ |<

η−η1

3
(36)

for all τ ∈ R. Take M > 0 such that gk(τ, ·) = 0 for all τ ≤ −M and all k =
1,2, . . . ,k0− 1. Further, take s0 > 0 such that ds

norm(a,a
(0)) < (η + 2η1)/3 for all

s > s0−M. Finally, let l0 ∈ N be such that t + tnl > s0−M for all l > l0.
Then we have

|〈gk, ā · (t + tnl)− ā(0) · (t + tnl)〉L1,L∞ | ≤ (η + 2η1)/3

for k = 1,2, . . . ,k0− 1 and all l > l0, hence

k0−1

∑
k=1

1
2k |〈gk, ā · (t + tnl )− ā(0) · (t + tnl )〉L1,L∞ |<

η + 2η1

3
(37)

for all l > l0.
Taking (36) and (37) into account we see that d(ā · (t + tnl ), ā

(0) · (t + tnl )) <
(2η +η1)/3 for sufficiently large l. By letting l go to infinity we have d(ã · t, ǎ · t)≤
(2η +η1)/3 < η .
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By Lemma 5.2,

λmin(a
(0))− ε ≤ liminf

n→∞

ln‖Uǎ(n,0)w(ǎ ·n)‖
n

≤ limsup
n→∞

ln‖Uǎ(n,0)w(ǎ ·n)‖
n

≤ λmin(a
(0))+ ε.

As a consequence of Theorem 4.3 and [18, Theorem 3.1.2 and Lemma 3.2.5], both
liminf

n→∞
1
n ln‖Uǎ(n,0)w(ǎ ·n)‖ and limsup

n→∞
1
n ln‖Uǎ(n,0)w(ǎ ·n)‖ are in Σ(a). Hence

we have found λ ∈ [λmin(a),λmax(a)] with |λ −λmin(a(0))| ≤ ε . By interchanging
the rôles of a(0) and a we obtain that there is λ ∈ [λmin(a(0)),λmax(a(0))] with |λ −
λmin(a)| ≤ ε .

We proceed in the same way with λmax, obtaining that the Hausdorff distance
between [λmin(a),λmax(a)] and [λmin(a(0)),λmax(a(0))] is not bigger than ε , which
is equivalent to the statement of Theorem 5.1. �

5.2 Time Averaging

In the present subsection we assume that ai j(t,x)≡ ai j(x), ai(t,x)≡ ai(x), bi(t,x)≡
bi(x), and D and a satisfy (SM1)–(SM3).

Let ā be the extension of a as in Sect. 4.2. Π(ā) admits an exponential separation
over Y (ā).

We call â = (ai j,ai,bi, ĉ0, d̂0) a time-averaged function of a if

ĉ0(x) = lim
n→∞

1
tn− sn

∫ tn

sn

c0(t,x)dt for all x ∈ D̄,

and

d̂0(x) = lim
n→∞

1
tn− sn

∫ tn

sn

d0(t,x)dt for all x ∈ ∂D,

for some real sequences (sn)
∞
n=1, (tn)∞

n=1 with sn→ ∞ and tn− sn→ ∞ as n→ ∞.
The time independent equation

⎧⎪⎪⎨
⎪⎪⎩

ut =
N

∑
i=1

∂
∂xi

( N

∑
j=1

ai j(x)
∂u
∂x j

+ ai(x)u
)
+

N

∑
i=1

bi(x)
∂u
∂xi

+ ĉ0(x)u, x ∈D,

Bâu = 0, x ∈ ∂D,

(38)
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where

Bâu =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u (Dirichlet)

N

∑
i=1

( N

∑
j=1

ai j(x)∂ ju+ ai(x)u
)

νi (Neumann)

N

∑
i=1

( N

∑
j=1

ai j(x)∂ ju+ ai(x)u
)

νi + d̂0(x)u, (Robin),

is called a time-averaged equation of (1)+(2) if â = (ai j,ai,bi, ĉ0, d̂0) is a time-aver-
aged function of a.

The eigenvalue problem associated to (38) reads as

⎧⎪⎪⎨
⎪⎪⎩

N

∑
i=1

∂
∂xi

( N

∑
j=1

ai j(x)
∂u
∂x j

+ ai(x)u
)
+

N

∑
i=1

bi(x)
∂u
∂xi

+ ĉ0(x)u = λ u, x ∈D,

Bâu = 0, x ∈ ∂D.

(39)

It is well known that (39) has a unique eigenvalue, denoted by λprinc(â), which
is real, simple, has an eigenfunction ϕprinc(â) ∈ L2(D)+ associated to it, and for
any other eigenvalue λ of (39), Reλ < λprinc(â) (see [2, 4]). We call λprinc(â) the
principal eigenvalue of (38) and ϕprinc(â) a principal eigenfunction (in the literature,
sometimes,−λprinc(â) is called the principal eigenvalue of (38)).

Let

Ŷ (a) :=

{
â : ∃0≤ sn < tn with sn→ ∞ and tn− sn→ ∞ such that

ĉ0(x) = lim
n→∞

1
tn− sn

∫ tn

sn

c0(t,x)dt for all x ∈ D̄,

d̂0(x) = lim
n→∞

1
tn− sn

∫ tn

sn

d0(t,x)dt for all x ∈ ∂D

}
.

It follows from our assumptions, via the Ascoli–Arzelà theorem, that
Ŷ (a) is nonempty, and consists of functions belonging to C3+α(D̄,RN2+N) ×
C1+α(D̄,RN+1) × C3+α(∂D), with their C3+α(D̄,RN2+N) × C1+α(D̄,RN+1) ×
C3+α(∂D)-norms uniformly bounded. Moreover, the convergence in the definition
of Ŷ (a) is uniform in x ∈ D̄ (resp. uniform in x ∈ ∂D).

Theorem 5.3. (1) There is â ∈ Ŷ (a) such that λmin(a)≥ λprinc(â).
(2) λmax(a)≥ λprinc(â) for any â ∈ Ŷ (a).
(3) Assume moreover that a is asymptotically uniquely ergodic. Then Ŷ (a) is a

singleton {â}, λmax(a) = λmin(a) ≥ λprinc(â), and λmin(a) = λprinc(â) if and
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only if there is a sequence (sn)
∞
n=1⊂ [0,∞) with limn→∞ sn =∞ with the property

that the following two conditions are satisfied:

• There are a continuous function c01 : D̄ → R and a bounded continuous
function c02 : (−∞,∞)→ R such that c0(t + sn,x) converges, as n→ ∞, to
c01(x)+ c02(t), uniformly on compact subsets of R× D̄,

• There is a continuous function d01 : ∂D → R such that d0(t + sn,x) con-
verges, as n→ ∞, to d01(x), uniformly on compact subsets of R× ∂D.

To prove the above theorem, we first recall a lemma from [18].

Lemma 5.4. Let ṽ(t,x) := w(ā · t)(x) (t ≥ 0, x ∈ D̄) and

ŵ(x;s, t) := exp

(
1

t− s

∫ t

s
lnw(ā · τ)(x)dτ

)

(0≤ s < t, x ∈ D). Then ŵ(x;s, t) satisfies

N

∑
i=1

∂
∂xi

(
N

∑
j=1

ai j(x)
∂ ŵ
∂x j

+ ai(x)ŵ

)
+

N

∑
i=1

bi(x)
∂ ŵ
∂xi

≤
(

1
t− s

∫ t

s

1
ṽ

∂ ṽ
∂τ

(τ,x)dτ
)

ŵ+

(
1

t− s

∫ t

s
κ(τ)dτ− 1

t− s

∫ t

s
c0(τ,x)dτ

)
ŵ

(40)

for x ∈ D and

B̂(s, t)ŵ = 0

for x ∈ ∂D, where

B̂(s, t)ŵ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵ (Dirichlet)

N

∑
i=1

( N

∑
j=1

ai j(x)∂x j ŵ+ ai(x)ŵ
)

νi (Neumann)

N

∑
i=1

( N

∑
j=1

ai j(x)∂x j ŵ+ ai(x)ŵ
)

νi

+
(

1
t−s

∫ t
s d0(τ,x)dτ

)
ŵ (Robin).

(41)

Proof. See the proof of [18, Lemma 5.2.1]. �
Proof of Theorem 5.3(1) and (2). (1) For given 0≤ s < t put

η(t;s) := ‖Ua(t,s)w(ā · s)‖
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and

ŵ(x;s, t) := exp

(
1

t− s

∫ t

s
lnw(ā · τ)(x)dτ

)
, x ∈ D̄.

By Theorem 4.7, there are sequences (sn)
∞
n=1 and (tn)∞

n=1 with sn → ∞ and tn−
sn→ ∞ such that

lnη(tn;sn)

tn− sn
=

1
tn− sn

∫ tn

sn

κ(t)dt→ λmin(a).

It follows from (SM2) with the help of the Ascoli–Arzelà theorem that (after
possibly taking a subsequence and relabeling) lim

n→∞
1

tn−sn

∫ tn
sn

c0(t,x)dt and

lim
n→∞

1
tn−sn

∫ tn
sn

d0(t,x)dt exist, and the limits are uniform in x ∈ D̄ and in x ∈ ∂D,

respectively. Denote these limits by ĉ0(x) and d̂0(x). Let â := (ai j,ai,bi, ĉ0, d̂0).
It then follows by arguments similar to those in [18, Theorem 5.2.2(1)] that
λmin(a)≥ λprinc(â).

(2) For any â = (ai j,ai,bi, ĉ0, d̂0) ∈ Ŷ (a) there are (sn)
∞
n=1 and (tn)∞

n=1 with sn→ ∞
and tn− sn→ ∞ such that

1
tn− sn

∫ tn

sn

c0(t,x)dt → ĉ0(x) and
1

tn− sn

∫ tn

sn

d0(t,x)dt→ d̂0(x)

uniformly in x ∈ D̄ and in x ∈ ∂D, respectively. By passing (if necessary) to
subsequences and relabeling we can assume that there is λ0 such that

lim
n→∞

1
tn− sn

∫ tn

sn

κ(t)dt = λ0.

By arguments similar to those in the proof of (1), λ0≥ λprinc(â). It follows from
Theorem 4.7 that λmax(a)≥ λ0. Then we have λmax(a)≥ λprinc(â). �

Before proving Theorem 5.3(3) we formulate and prove the following auxiliary
result.

Lemma 5.5. Assume that a is asymptotically uniquely ergodic. Then

(i) For each x ∈ D̄ and each ã = (ai j,ai,bi, c̃0, d̃0) ∈ Y0(a) the limits

lim
s→∞

t−s→∞

1
t− s

∫ t

s
c0(τ,x)dτ and lim

t−s→∞

1
t− s

∫ t

s
c̃0(τ,x)dτ (42)

exist and are equal, and
(ii) For each x ∈ D̄ and each ã = (ai j,ai,bi, c̃0, d̃0) ∈ Y0(a) the limits
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lim
s→∞

t−s→∞

1
t− s

∫ t

s
d0(τ,x)dτ and lim

t−s→∞

1
t− s

∫ t

s
d̃0(τ,x)dτ (43)

exist and are equal.

In particular, it follows that Ŷ (a) = {(ai j,ai,bi, ĉ0, d̂0)}, where ĉ0 is the common
limit in (42) and d̂0 is the common limit in (43).

Proof. Let P be the unique ergodic invariant measure for the compact flow
(Y0(a),{σt}t∈R). P is also the unique ergodic invariant measure for the compact
semiflow (Ỹ0(ā),{σt}t≥0), where Ỹ0(ā) := { ā · t : t ≥ 0}∪Y0(a) = cl{ ā · t : t ≥ 0}.

For each x ∈ D̄ (resp. for each x ∈ ∂D) we define a function c̃0[x] : Ỹ0(ā)→ R

(resp. a function d̃0[x] : Ỹ0(ā)→R) as:

c̃0[x](ã) := c̃0(0,x), ã ∈ Ỹ0(ā),

d̃0[x](ã) := d̃0(0,x), ã ∈ Ỹ0(ā).

where ã = (ai j,ai,bi, c̃0, d̃0). The functions c̃0[x] : Ỹ0(ā)→ R (resp. d̃0[x] : Ỹ0(ā)→
R) are, for each x ∈ D̄ (resp. for each x ∈ ∂D), continuous.

As (Ỹ0(ā),{σt}t≥0) is uniquely ergodic, it follows from the results in [20] that
for any continuous g : Ỹ0(ā)→ R and any ε > 0 there is T0 = T0(g,ε)> 0 such that

∣∣∣∣1t
∫ t

0
g(ã · τ)dτ−

∫
Ỹ0(ā)

g(·)dP(·)
∣∣∣∣< ε

for each t > T0 and each ã ∈ Ỹ0(a). In particular, for any continuous g : Ỹ0(ā)→ R

there holds

lim
s→∞

t−s→∞

1
t− s

∫ t

s
g(ā · τ)dτ = lim

t−s→∞

1
t− s

∫ t

s
g(ã · τ)dτ =

∫
Ỹ0(ā)

g(·)dP(·),

for each ã ∈ Ỹ0(a). By substituting in the above, for a fixed x ∈ D̄, the function c̃0[x]
for g we have

lim
s→∞

t−s→∞

1
t− s

∫ t

s
c0(τ,x)dτ = lim

t−s→∞

1
t− s

∫ t

s
c̃0(τ,x)dτ =

∫
Ỹ0(ā)

c̃0[x](·)dP(·),

for each ã ∈ Ỹ0(a). Similarly, by substituting, for a fixed x ∈ ∂D, the function d̃0[x]
for g we have

lim
s→∞

t−s→∞

1
t− s

∫ t

s
d0(τ,x)dτ = lim

t−s→∞

1
t− s

∫ t

s
c̃0(τ,x)dτ =

∫
Ỹ0(ā)

d̃0[x](·)dP(·),

for each ã ∈ Ỹ0(a). �
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Proof of Theorem 5.3(3). By Theorem [18, Theorem 5.2.2(3)] and Theorem 4.3,
we have

λmax(a) = λ̃max(a) = λ̃min(a) = λmin(a).

Let Y1 ⊂ Y0(a) be a minimal invariant set. By the unique ergodicity of
(Y0(a),{σt}), the compact flow (Y1,{σt}) is both minimal and uniquely ergodic.
Let ã ∈ Y1. In view of Lemma 5.5 we can apply [18, Theorem 5.2.2(3)] to have that
λ̃max(a) = λ (â) if and only if there are c01, c02, and d01 such that

c̃0(t,x) = c01(t)+ c02(x) and d̃0(t,x) = d01(x).

Note that there is sn→∞ such that a ·sn→ ã. Therefore, λ̃max(a) = λ (â) if and only
if there is sn→ ∞ such that

lim
n→∞

c0(t + sn,x) = c01(t)+ c02(x) and lim
n→∞

d0(t,x) = d01(x),

where the convergence is uniform on compact subsets of R× D̄ (resp. on compact
subsets of R× ∂D). �

5.3 Space-Averaging

In the present subsection we assume that ai j(t,x) ≡ ai j(t), ai(t,x) ≡ 0, bi(t,x)≡ 0,
and the boundary condition is Neumann. We also assume that D and a satisfy
(SM1)–(SM3).

Let č0(t) := 1
|D|
∫

D c0(t,x)dx, t ≥ 0. We call ǎ := (ai j,0,0, č0,0) the space-aver-
age of a, and call the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut =
N

∑
i=1

∂
∂xi

( N

∑
j=1

ai j(t)
∂u
∂x j

)
+ č0(t)u, t > s≥ 0, x ∈ D,

N

∑
i=1

( N

∑
j=1

ai j(t)∂ ju
)

νi = 0, t > s≥ 0, x ∈ ∂D

(44)

the space-averaged equation of (1)+(2).
The theory presented in Sect. 4.2 applies to (44).
Denote by [λmin(ǎ),λmax(ǎ)] the principal spectrum interval of (44).

Theorem 5.6. (1) [λmin(ǎ),λmax(ǎ)] = {λ : ∃sn < tn with sn→∞ and tn− sn→∞
such that λ = limn→∞

1
tn−sn

∫ tn
sn

č0(t)dt }.
(2) λmin(a)≥ λmin(ǎ) and λmax(a)≥ λmax(ǎ).

Proof. (1) Observe that the function u : [0,∞) × D̄ → R defined as u(t,x) :=
exp
(∫ t

0 č0(τ)dτ
)
, t ≥ 0, x∈ D̄, is a solution of (44) satisfying u(0, ·)∈ L2(D)+ \{0},

and apply Theorem 4.7 to obtain (1).
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To prove (2), we use the following inequality, which was proved as a part of the
proof of [18, Theorem 5.3.1(2)]:

1
t− s

∫ t

s
č0(τ)dτ ≤ ln‖Ua(t,s)w(ā · s)‖

t− s
+

1
|D|

1
t− s

∫
D

ln
w(ā · t)(x)
w(ā · s)(x) dx, 0≤ s < t.

(45)

It follows from [18, Lemma 5.2.3(2)] that the set {w(ã(1))(x)/w(ã(2))(x) :
ã(1), ã(2) ∈ Y (ā), x ∈ D} is bounded and bounded away from zero. Therefore
the limit, as s→ ∞ and t− s→ ∞, of the second term on the right-hand side of (45)
equals zero. Consequently,

λmin(ǎ) = liminf
s→∞

t−s→∞

1
t− s

∫ t

s
č0(τ)dτ ≤ liminf

s→∞
t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= λmin(a)

and

λmax(ǎ) = limsup
s→∞

t−s→∞

1
t− s

∫ t

s
č0(τ)dτ ≤ limsup

s→∞
t−s→∞

ln‖Ua(t,s)w(ā · s)‖
t− s

= λmax(a).

This concludes the proof of (2). �

6 Applications to Nonlinear Equations of Kolmogorov Type

In this section we study the asymptotic dynamics of nonlinear parabolic equations
of Kolmogorov type. In particular, we provide conditions for (forward) uniform
persistence of the nonlinear Kolmogorov equations by utilizing the principal
spectrum associated to proper forward nonautonomous linear parabolic equations.

Throughout the present section we make the following assumption.

(NA1) D⊂ R
N is a bounded domain, where its boundary ∂D is an (N− 1)-dimen-

sional manifold of class C3+α , for some α > 0.
Further, B will stand for the boundary operator either of the Dirichlet type

Bu = u on ∂D,

or of the Neumann type

Bu =
∂u
∂ννν

on ∂D,

where ννν denotes the unit normal vector pointing out of D.
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Let ϕprinc be the unique (nonnegative) principal eigenfunction of the elliptic
boundary value problem {

Δu = λ u on D,

Bu = 0 on ∂D,
(46)

normalized so that sup{ϕprinc(x) : x ∈ D̄} = 1. By the elliptic strong maximum
principle and the Hopf boundary point principle, in the Dirichlet case ϕprinc(x) > 0
for each x ∈ D and (∂ϕprinc/∂ννν)(x) < 0 for each x ∈ ∂D. In the Neumann case
ϕprinc ≡ 1.

Let X be a fractional power space of the Laplacian operator Δ in Lp(D) with
the boundary condition Bu = 0 such that X is compactly imbedded into C1(D̄). We
denote the norm in X by ‖·‖X .

Denote X+ := {u ∈ X : u(x) ≥ 0 for all x ∈ D̄}. The interior X++ of X+

is nonempty, and is characterized in the following way: In the case of Dirichlet
boundary conditions, X++ = {u ∈ X+ : u(x)> 0 for all x ∈ D and (∂u/∂ννν)(x)< 0
for all x ∈ ∂D}, and in the case of Neumann boundary conditions, X++ = {u ∈
X+ : u(x) > 0 for all x ∈ D̄} (see [18, Lemma 7.1.8]). In particular, observe that
ϕprinc ∈ X++.

For u1,u2 ∈ X we write u1� u2 (or u2� u1) if u2− u1 ∈ X++.
Consider the following nonautonomous partial differential equation of Kol-

mogorov type:

ut = Δu+ f (t,x,u)u, x ∈ D, (47)

with f : [0,∞)× D̄× [0,∞)→R, endowed with the boundary conditions

Bu = 0, x ∈ ∂D. (48)

We assume the following.

(NA2) For any M > 0 the restrictions to [0,∞)× D̄× [0,M] of the function f and its
derivatives up to order two belong to C1−,1−,1−([0,∞)× D̄× [0,M]).

(NA3) There are P > 0 and a continuous function m : [P,∞)→ (0,∞) such that
f (t,x,u)≤−m(u) for any t ≥ 0, any x ∈ D̄ and any u≥ P.

By the theory in [7], for each t0 ≥ 0 and each u0 ∈ X+ there is a (clas-
sical) solution u(·;t0,u0) of (47)+(48), defined on [t0,∞), with initial condition
u(t0; t0,u0)(x) = u0(x), such that u(t;t0,u0) ∈ X for all t ≥ t0. By the comparison
principle, there holds u(t;t0,u0) ∈ X+ for all t ≥ t0.

Definition 6.1. Equation (47)+(48) is said to be forward uniformly persistent if
there is η > 0 such that for any u0 ∈ X+ \ {0} there is τ(u0) ≥ 0 with the
property that

u(t;t0,u0)≥ ηϕprinc

for all t0 ≥ 0 and all t ≥ τ(u0)+ t0.

Note that u≡ 0 is the solution of (47)+(48).
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Consider the linearization of (47)+(48) along 0,

⎧⎨
⎩

vt = Δv+ f0(t,x)v, x ∈ D,

Bv = 0, x ∈ ∂D,
(49)

where f0(t,x) = f (t,x,0). We also have that for each t0 ≥ 0 and each v0 ∈ X there
is a (classical) solution v(·;t0,v0) of (49), defined on [t0,∞), with initial condition
v(t0; t0,v0)(x) = v0(x), such that v(t;t0,v0) ∈ X for all t ≥ t0.

It follows from (NA1) and (NA2) that the assumptions (SM1) through (SM3) are
satisfied for (49), with a = (δi j ,0,0, f0,0). Consequently, the theory presented in
Sect. 4.2 applies.

Let [λmin,λmax] stand for the principal spectrum interval of (49). We then have

Theorem 6.1. If λmin > 0 then (47)+(48) is forward uniformly persistent.

For any function g : R× D̄× [0,∞)→ R and any t ∈ R we write g · t(τ,x,u) :=
g(τ + t,x,u), τ ∈R, x ∈ D̄, u≥ 0.

We extend the function f to a function f̄ : R× D̄× [0,∞) → R by putting
f̄ (t,x,u) := f (0,x,u) for t < 0, x ∈ D̄ and u≥ 0.

Put

Z := cl{ f̄ · t : t ∈R} (50)

with the open-compact topology, where the closure is taken in the open-compact
topology. By the Ascoli–Arzelà theorem, the set Z is a compact metrizable space.
Further, if g∈ Z and t ∈R then g ·t =: ζt g∈ Z. Hence (Z,{ζt}t∈R) is a compact flow.

Put

Z0 :=
⋂
s≥0

cl{ f̄ · t : t ∈ [s,∞)}. (51)

Z0, as the ω-limit set of a forward orbit in the compact flow (Z,{ζt}t∈R), is
nonempty, compact, connected and invariant.

Put

Z̃0 := { f̄ · t : t ≥ 0}∪Z0 = cl{ f̄ · t : t ≥ 0}. (52)

The set Z̃0 is a closed, hence compact, subset of Z. Further, it is forward invariant:
for any g ∈ Z̃0 and any t ≥ 0 there holds g · t ∈ Z̃0.

For any g ∈ Z̃0, consider the following semilinear second order parabolic
equation of Kolmogorov type,

{
ut = Δu+ g(t,x,u)u, t > 0, x ∈ D,

Bu = 0, t > 0, x ∈ ∂D.
(53)

By the theory in [7], the following holds.
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Proposition 6.2. For each u0 ∈ X+ and each g ∈ Z̃0 there exists a unique solution
u(·;u0,g) of (53), defined on [0,∞), satisfying the initial condition u(0;u0,g) = u0,
such that u(t;u0,g) ∈ X+ for all t ≥ 0. That solution is classical. Further, the
mapping

[ [0,∞)×X+× Z̃0 � (t,u0,g) �→ u(t;u0,g) ∈ X ]

is continuous.

Observe that u(·+ t0;t0,u0) = u(·;u0, f̄0 · t0) for t0 ≥ 0.
Let Y0 and Ỹ0 be defined as follows,

Y0 := {g0 : ∃g ∈ Z0 such that g0(t,x) = g(t,x,0), t ∈ R, x ∈ D̄},
and

Ỹ0 := {g0 : ∃g ∈ Z̃0 such that g0(t,x) = g(t,x,0), t ∈ R, x ∈ D̄}.
The sets Y0 and Ỹ0 are considered endowed with the open-compact topology. As
the images of the compact sets Z0 and Z̃0, respectively, under restriction, they are
compact.

For t0 ∈R and g0 ∈ Ỹ0 consider

⎧⎨
⎩

vt = Δv+ g0(t,x)v, t > t0, x ∈ D,

Bv = 0, t > t0, x ∈ ∂D.
(54)

By the theory in [7], for any v0 ∈ X , t0 ∈ R and g0 ∈ Ỹ0, (54) has a unique
(classical) solution v(t;t0,v0,g0), defined on [t0,∞), with v(t0; t0,v0,g0) = v0, such
that v(t; t0,v0,g0) ∈ X for all t ≥ t0.

Observe that for any g ∈ Z̃0, u≡ 0 is the solution of (53) and (54) with g0(t,x) =
g(t,x,0) is the linearization of (53) along u ≡ 0. Put Ug0(t, t0)v0 := v(t; t0,v0,g0).
If g0 = f̄0 · t0 and t0 ≥ 0, we write Ug0(t, t0) as U(t, t0).

Lemma 6.3. For each t > 0 there holds

‖u(t;ρu0,g)−ρUg0(t,0)u0‖X

ρ
→ 0 as ρ → 0+

uniformly in g ∈ Z̃0 and u0 ∈ X+ with ‖u0‖X = 1, where g0(t,x) = g(t,x,0).

Proof. It follows from [18, Theorem 7.1.5]. �
Lemma 6.4. Assume that λmin > 0. Then there is T > 0 such that

Ug0(T,0)ϕprinc� 2ϕprinc for all g0 ∈ Y0.

Proof. Let [λ̃min, λ̃max] be the principal spectrum of (54) over Y0. By Theorem 4.3,
λmin = λ̃min and hence λ̃min > 0. The lemma then follows from [18, Lemma
7.1.16]. �
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Proof of Theorem 6.1. Let T > 0 be as in Lemma 6.4. As the mapping [Y0 � g0 �→
Ug0(T,0)ϕprinc ∈ X ] is continuous and Y0 is compact, the set {Ug0(T,0)ϕprinc −
2ϕprinc : g0 ∈ Y0 } is compact, too. Further, this set is, by Lemma 6.4, contained
in the open set X++. Therefore ε0 := inf{‖(Ug0(T,0)ϕprinc− 2ϕprinc)− v‖X : g0 ∈
Y0, v ∈ ∂X+ } is positive. By linearity,

inf{‖(rUg0(T,0)ϕprinc− 2rϕprinc)− v‖X : g0 ∈ Y0, v ∈ ∂X+ }= rε0 (55)

for any r > 0.
It follows from Lemma 6.3 that there is r0 > 0 such that

‖u(T + t;t,rϕprinc)− rU(T + t, t)ϕprinc‖X ≤ rε0

3

for all t ≥ 0 and all r ∈ (0,r0].
We claim that there is T1 ≥ 0 such that for each t ≥ T1 one can find g ∈ Z0 such

that ‖U(T + t, t)ϕprinc −Ug0(T,0)ϕprinc‖X < ε0/3. Indeed, for each g ∈ Z0 there
is δ = δ (g) > 0 such that for any h ∈ Z, if d(g,h) < δ then ‖Uh0(T,0)ϕprinc −
Ug0(T,0)ϕprinc‖X < ε0/3, where d(·, ·) stands for the metric in Z. Since Z0 is
compact, there are finitely many g(1), . . . , g(n) ∈ Z0 such that the union of the open
balls (in Z) with center g(k) and radius δ (g(k)), k = 1, . . . ,n, covers Z0. Denote this
union by B. It suffices now to find T1 ≥ 0 such that f̄ · t ∈ B for all t ≥ T1, and the
existence of such T1 follows from the fact that Z0 is, by definition, the ω-limit set
(in the compact flow (Z,{ζt})) of f̄ .

Fix for the moment t ≥ T1, and let g ∈ Z0 be such that ‖U(T + t, t)ϕprinc −
Ug0(T,0)ϕprinc‖X < ε0/3. We estimate

‖(u(T + t;t,rϕprinc)− 2rϕprinc)− (rUg0(T,0)ϕprinc− 2rϕprinc)‖X

= ‖u(T + t;t,rϕprinc)− rUg0(T,0)ϕprinc‖X

≤ ‖u(T + t;t,rϕprinc)− rU(T + t, t)ϕprinc‖X

+ ‖rU(T + t, t)ϕprinc− rUg0(T,0)ϕprinc‖X

<
rε0

3
+

rε0

3

for any r ∈ (0,r0]. It follows from (55) that u(t +T ; t,rϕprinc)−2rϕprinc ∈ X++, that
is, u(t +T ; t,rϕprinc)� 2rϕprinc, for any r ∈ (0,r0] and any t ≥ T1.

Fix a nonzero u0 ∈ X+. By the comparison principle for parabolic equations,
u(t; t0,u0)� 0, that is, u(t;t0,u0) belongs to the open subset X++ of X , for any t >
t0. Since [T1,T1+T ]×{u0}× Z̃0 is compact, it follows from Proposition 6.2 that the
set {u(t;u0,g) : t ∈ [T1+1,T1+T +1], g∈ Z̃0 } (⊂ X++) is compact. Consequently,
the set {u(t + t0; t0,u0) : t0 ≥ 0, t ∈ [T1 + 1,T1 + T + 1]} has compact closure
contained in X++. By arguments as in the proof of [18, Theorem 7.1.6], there is
r̃ > 0 such that u(t + t0;t0,u0)≥ r̃ϕprinc for all t0 ≥ 0 and t ∈ [T1 + 1,T1 +T + 1].
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Assume r̃ ≥ r0. Then for each t ∈ [T1 + 1,T1 + T + 1] and each t0 ≥ 0 we
have u(t + T + t0;t0,u0) = u(t + T + t0;t + t0,u(t + t0; t0,u0))� u(t + T + t0; t +
t0,r0ϕprinc)� 2r0ϕprinc. By induction, we have u(t +nT + t0; t0,u0)� 2r0ϕprinc for
all n = 1,2, . . . . Therefore we can take τ(u0) = T1 +T + 1.

Assume r̃ < r0. Then for each t ∈ [T1 + 1,T1 +T + 1] and each t0 ≥ 0 such that
u(t + t0; t0,u0) ≥ rϕprinc for some r < r0 we have u(t +T + t0; t0,u0) = u(t +T +
t0;t + t0,u(t + t0; t0,u0)) ≥ u(t + T + t0;t + t0,rϕprinc) � 2rϕprinc. Repeating this
procedure sufficiently many times we obtain that u(t + nT + t0; t0,u0)� 2nrϕprinc

as long as 2n−1r ≤ r0. After some calculation we conclude that we can take
τ(u0) =

(⌊ lnr0−ln r̃
ln2

⌋
+ 2
)
T +T1 + 1.

In both cases, η = 2r0. �
We finish the section by giving a sufficient condition for the assumptions in

Theorem 6.1 to hold.
A function f̂0 ∈ C(D̄) is called a time-averaged function of f0 if there are sub-

sequences (sn)
∞
n=1 and (tn)∞

n=1, with 0 < sn < tn for all n = 1,2, . . . , limn→∞ sn = ∞,
limn→∞(tn− sn)→ ∞, such that

f̂0(x) = lim
n→∞

1
tn− sn

∫ tn

sn

f (t,x,0)dt

uniformly for x ∈ D̄.
Let Ŷ := { f̂0 : f̂0 is a time-averaged function of f0 }. For a given f̂0 ∈ Ŷ , denote

by λprinc( f̂0) the principal eigenvalue of

{
Δu+ f̂0(x)u = λ u, x ∈ D,

Bu = 0, x ∈ ∂D.
(56)

Theorem 6.5. If λprinc( f̂0)> 0 for any f̂0 ∈ Ŷ , then (47)+(48) is forward uniformly
persistent.

Proof. Observe that the standing assumptions in Sect. 5.2 hold for (49). By Theo-
rem 5.3(1), there is f̂0 ∈ Ŷ such that λmin≥ λprinc( f̂0). An application of Theorem 6.1
concludes the proof. �
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[17] J. Mierczyński, W. Shen, Time averaging for nonautonomous/random parabolic equations.
Discrete Contin. Dyn. Syst. Ser. B 9(3/4), 661–699 (2008) MR 2009a:35108
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