
Chapter 2
Existence results for pullback attractors

In this chapter we develop the existence theory for pullback attractors in a way
that recovers well known results for the global attractors of autonomous systems as
a particular case (see, for example, Babin and Vishik 1992; Chepyzhov and Vishik
2002; Cholewa and Dlotko 2000; Chueshov 1999; Hale 1988; Ladyzhenskaya 1991;
Robinson 2001; Temam 1988).

We give a number of existence results of different ‘flavours’: they all require
some boundedness and compactness properties of the process, but the way that
these are combined varies, and which theorem is more suitable will depend on
the application. We give a brief summary here of the corresponding autonomous
statements, which are somewhat simpler. Much of the work in this chapter is in
finding the appropriate non-autonomous generalisations, which often require some
uniformity assumptions that are not immediately obvious.

We say that T (·) is a bounded semigroup if
⋃

t≥0 T (t)B is bounded for every
bounded B, and that D is an attracting set for T (·) if limt→∞ dist(T (t)B,D) = 0 for
all bounded subsets B of X .

Theorem 2.1. Let T (·) be a bounded semigroup on a Banach space X. The
following statements are equivalent:

(a) T (·) has a global attractor A ;
(b) T (·) has a compact attracting set K;
(c) T (·) has a bounded attracting set and is asymptotically compact;
(d) T (·) is asymptotically compact and there is a bounded set that attracts points.

A sufficient condition for the validity of the statements (a)− (d) is that

(e) T (·) has a bounded attracting set and is flattening.

If X is uniformly convex, then (e) is equivalent to each of the statements (a)− (d).

The characterisation in (b) is proved in Theorem 2.12. While the most elegant,
the existence of a compact attracting set is usually hard to check, and the result
is often used in a weakened form: there is a global attractor if there is a compact
absorbing set, i.e. a compact set K such that for any bounded B
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24 2 Existence results for pullback attractors

T (t)B ⊂ K for all t ≥ t(B)

for some t(B). In this formulation, Theorem 2.12 is easily applicable to ordinary
differential equations (we treat two such examples after the statement of the
theorem), and in certain relatively straightforward partial differential equation
(PDE) applications (e.g. the two-dimensional Navier–Stokes equations in the space
L2; see Chap. 11).

However, the requirement of the existence of a compact absorbing set is very
strong, and there are simple examples that have global attractors but no compact
absorbing set (e.g. the equation ẋ = −x in any infinite-dimensional space has
{0} as the global attractor). For this reason, the characterisation in (c), whose
non-autonomous counterpart can be found in Theorem 2.23, is probably the most
generally applicable. A semigroup is asymptotically compact if for every sequence
tk → ∞ and {xk} ∈ B, with B bounded, T (tk)xk has a convergent subsequence. For
example, we use the equivalent non-autonomous result in Chap. 15 to treat a damped
wave equation; it can also be used for equations on unbounded domains for which
the semigroup is not compact.

The ‘point dissipativity’ of (d), i.e. the requirement to attract only individual
trajectories, is particularly suited for the analysis of autonomous gradient semi-
groups, for which this type of dissipativity property is almost automatic. We treat
such systems, which play a major role in many of our subsequent considerations, in
Sect. 2.5.1.

The ‘flattening’ property in (e) is one way to ensure asymptotic compactness.
This property requires that for every bounded set B ⊂ X and every ε > 0 there exists
a T (B,ε) and a finite-dimensional subspace Xε of X such that

⋃

t≥T

Pε T (t)B is bounded

and

‖(I−Pε)

(
⋃

t≥T

T (t)B

)

‖X < ε,

where Pε : X → Xε . The nice thing about this formulation, whose non-autonomous
statement is given in Theorem 2.27, is that one need only make estimates in the
phase space X . We use this idea to prove the existence of a pullback attractor for the
2D Navier–Stokes equation in H1 in Chap. 11.

We build our attractors from omega-limit sets, which we now introduce.

2.1 Omega-limit sets

We start by generalising the notion of an ω-limit set to deal with processes, choosing
to define our non-autonomous limit sets using the pullback procedure. Eventually
we will build our pullback attractor as a union of ω-limit sets.
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Throughout this section, S(·, ·) is a process on a metric space (X ,d).

Definition 2.2. The pullback ω-limit set at time t of a subset B of X is defined by

ω(B, t) :=
⋂

σ≤t

⋃

s≤σ
S(t,s)B

or, equivalently,

ω(B, t) =
{

y ∈ X : there are sequences {sk} ≤ t, sk →−∞ as k → ∞,

and {xk} in B, such that y = lim
k→∞

S(t,sk)xk

}
.

(2.1)

Note that we have used here, and will use throughout the book, the shorthand
notation ‘a sequence {xk} ∈ X’ for ‘a sequence {xk}∞

k=1 with xk ∈ X for all k ∈ N’;
and for sequences of real numbers we will often write ‘{sk} ≤ t’ to mean ‘{sk}∞

k=1
with sk ∈R and sk ≤ t for all k ∈N’. Similarly, we will write ‘a sequence {tk}→ ∞’
to mean ‘a sequence {tk}∞

k=1 with tk ∈R and tk → ∞ as k → ∞’.
Clearly, if T (·) is a semigroup and ST (·, ·) is the corresponding process, then

ω(B, t) is independent of t and coincides with the definition of the ω-limit set for
semigroups (Hale 1988; Temam 1988):

ω(B) =
⋂

s≥0

⋃

r≥s

T (r)B.

The following lemma will be used many times throughout the book.

Lemma 2.3. Suppose that K is a compact subset of X and that {xn} ∈ X is a
sequence with dist(xn,K)→ 0 as n → ∞. Then {xn} has a convergent subsequence
whose limit lies in K.

Proof. Given k ∈N, take xnk such that dist(xnk ,K)< 1/k. Then, there exists yk ∈ K
with d(xnk ,yk) < 1/k. Now, by the compactness of K, there exists a subsequence
(which we relabel) yk such that limk→∞ yk = y0 ∈ K. The result now follows since
d(xnk ,y0)≤ d(xnk ,yk)+ d(yk,y0). �	

We now want to find conditions under which ω(B, t) is non-empty and invariant
and pullback attracts B at time t. We can deal quickly with the question of invariance:

Lemma 2.4. Let S(·, ·) be a process in a metric space X.

(i) For any B ⊂ X, ω(B,s) is positively invariant: S(t,s)ω(B,s)⊆ ω(B, t), t ≥ s.
(ii) If ω(B,s) is compact and pullback attracts B at time s, then S(t,s)ω(B,s) =

ω(B, t) for all t ≥ s.
(iii) If ω(B, t) is compact and pullback attracts C at time t, where C is a connected

set that contains B, then ω(B, t) is connected.



26 2 Existence results for pullback attractors

Proof. (i) If ω(B, t) = ∅, then there is nothing to show. If ω(B,s) �= ∅, then
from the continuity of S(t,s) and from (2.1) one immediately sees that
S(t,s)ω(B,s)⊆ ω(B, t).

(ii) If ω(B,s) is compact and pullback attracts B, then ω(B, t) ⊆ S(t,s)ω(B,s).
Indeed, for x ∈ ω(B, t) there are sequences {σk} ≤ t with σk → −∞, and
{xk} ∈ B such that S(t,σk)xk → x as k → ∞. Since σk → −∞, there exists a
k0 ∈ N such that σk ≤ s for all k ≥ k0. Hence S(t,s)S(s,σk)xk = S(t,σk)xk →
x for k ≥ k0. Since ω(B,s) is compact and pullback attracts B at time s,
dist(S(s,σk)xk,ω(B,s)) → 0 as k → ∞. It is then easy to see that {S(s,σk)xk}
has a subsequence that converges to some y ∈ ω(B,s). It follows from the
continuity of S(t,s) that S(t,s)y = x. Hence ω(B, t) = S(t,s)ω(B,s).

(iii) Finally, we prove the assertion about the connectedness of ω(B, t). Suppose
that ω(B, t) is disconnected; then ω(B, t) is the disjoint union of two non-empty
compact sets ω1,ω2 (which are therefore separated by a positive distance 2δ ).
Since ω(B, t) attracts C and B ⊆ C, it follows that ω(B, t) = ω(C, t), and
there exists s0 < 0 such that S(t,s)C ⊂ Oδ (ω(C, t)) for all s ≤ s0. From the
connectedness of C, there exists i ∈ {1,2} such that S(t,s)C

⋂
Oδ (ωi) = ∅

for all s ≤ s0 [for any c ∈ C, {S(t,s)c : s ≤ s0} may not intersect Oδ (ω1) and
Oδ (ω2) without leaving both]. This contradicts the fact that both ω1 and ω2

are non-empty. �	
We note that the proof of connectedness in part (iii) implies that the pullback

attractor must be connected if it exists.

Corollary 2.5. If A(t) is compact and pullback attracts C at time t, where C is a
connected set that contains A(t), then A(t) is connected. In particular, if X is a
Banach space, or a metric space in which balls are connected, then the pullback
attractor is connected if it exits.

Lemma 2.4 can be recast in the language of semigroups (cf. Lemma 3.1.1 in Hale
1988):

Corollary 2.6. Let T (·) be a semigroup in a metric space X.

(i) For any B ⊂ X, T (t)ω(B)⊆ ω(B).
(ii) If ω(B) is compact and attracts B, then T (t)ω(B) = ω(B) for all t ≥ 0.

(iii) If ω(B) is compact and attracts C, where C is a connected set that contains B,
then ω(B) is connected.

We now look for conditions under which we can guarantee that ω(B, t) pullback
attracts B. Our first result shows that ω(B, t) pullback attracts B whenever B is
pullback attracted at time t by any compact set.

Note that, from Lemma 2.4 (ii), S(t,s)ω(B,s) = ω(B, t) for all t ≥ s whenever
ω(B,s) is compact and pullback attracts B. For completeness we include this
invariance property in the statements of Lemmas 2.7 and 2.10, but this comes ‘for
free’ from Lemma 2.4.

Lemma 2.7. Let S(·, ·) be a process in a metric space X. Suppose that B is a non-
empty bounded subset of X that is pullback attracted by some compact set K at time
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t. Then ω(B, t) is non-empty and compact and pullback attracts B at time t, and
S(τ, t)ω(B, t) = ω(B,τ) for all τ ≥ t.

Proof. First observe that for any sequence {xn} ∈ B and any sequence {sn}→−∞,
it follows from the fact that K attracts B that dist(S(t,sn)xn,K) → 0. Lemma 2.3
now implies that {S(t,sn)xn} has a convergent subsequence, and by definition the
limit of this subsequence must be an element of ω(B, t), which shows that ω(B, t)
is non-empty.

We prove that ω(B, t) pullback attracts B at time t by contradiction. Assume that
there exists an ε > 0, a sequence {sn}→−∞, and a sequence {xn} ∈ B such that

dist(S(t,sn)xn,ω(B, t))> ε for all n ∈ N. (2.2)

But we have just shown that there must be a subsequence of {S(t,sn)xn} that
converges to an element of ω(B, t), contradicting (2.2).

Finally, ω(B, t) is compact since ω(B, t) ⊂ K and ω(B, t) is closed (from its
definition). �	

This result will be of most interest when there is a compact family K(·) such
that K(t) pullback attracts B for each t ∈ R. The following concept is useful
in applications to obtain the pullback attraction for ω-limit sets (and hence the
existence of pullback attractors) without having to find such a compact pullback
attracting family K(·) explicitly.

Definition 2.8. A process S(·, ·) in a metric space X is said to be pullback
asymptotically compact if, for each t ∈ R, each sequence {sk} ≤ t with sk → −∞
as k → ∞, and each bounded sequence {xk} ∈ X the sequence {S(t,sk)xk} has a
convergent subsequence.

If T (·) is a semigroup, then the corresponding process ST (·, ·) is pullback
asymptotically compact if and only if for each bounded sequence {xk} ∈ X and
sequence {tk} ≥ 0 with tk →+∞ as k → ∞, the sequence {T (tk)xk} has a convergent
subsequence. In this case, the semigroup T (·) is said to be1 asymptotically compact.

Armed with Lemma 2.7, it is simple to show that a process with a family of
compact pullback attracting sets is asymptotically compact, so in particular any
process with a pullback attractor must be pullback asymptotically compact.

Lemma 2.9. If S(·, ·) has a family of compact pullback attracting sets K(·), then it
is pullback asymptotically compact.

Proof. Take sequences {sk} ≤ t with sk → −∞ and {xk} ∈ X contained in a
bounded set B; then, since dist(S(t,s)B,K(t))→ 0 as s →−∞ and K(t) is compact,
Lemma 2.3 guarantees that {S(t,sk)xk} has a convergent subsequence. �	

1Note that this is the classical definition of asymptotic compactness for a semigroup (e.g.
Ladyzhenskaya 1991; Temam 1988), which is stronger (it implies boundedness) than the one in
Hale (1988) or Raugel (2002) in which one also must assume that {T (tk)xk} is bounded.
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Rather than investigate the converse directly, we pursue conditions ensuring that
ω(B, t) pullback attracts B at time t, as in Lemma 2.7.

Lemma 2.10. Let S(·, ·) be a pullback asymptotically compact process and suppose
that B is a non-empty bounded subset of X. Then, for each t ∈ R, ω(B, t) is non-
empty and compact and pullback attracts B at time t and S(τ, t)ω(B, t) = ω(B,τ)
for all τ ≥ t.

Proof. Note first that there exists a time s0 such that

∪s≤s0S(t,s)B is bounded.

If not, there would exist a sequence {sk} → −∞ and a sequence {xk} ∈ B such
that {S(t,sk)xk} is unbounded, which would contradict the asymptotic compactness.
Now for any sequences {xk} ∈ B and {sk} ≤ s0, with sk →−∞ as k → ∞, it follows
from the fact that S(·, ·) is pullback asymptotically compact that there exists a
subsequence of {S(t,sk)xk} that converges to some y ∈ X . Then y ∈ ω(B, t) and
ω(B, t) is non-empty. That ω(B, t) pullback attracts B follows exactly as in the proof
of Lemma 2.7.

To finish, we show that ω(B, t) is compact. Given a sequence {yk} ∈ ω(B, t),
there are xk ∈ B and {sk} ≤ min(s0,−k), such that d(S(t,sk)xk,yk) ≤ 1

k . Since
{S(t,sk)xk} has a subsequence that converges to an element y of ω(B, t), it follows
that {yk} has a subsequence that converges to y ∈ ω(B, t), and hence ω(B, t) is
compact. �	

The autonomous version of this result is pleasingly simple.

Corollary 2.11. If T (·) is an asymptotically compact semigroup and B is a non-
empty bounded subset of X, then ω(B) is non-empty, compact, and invariant and
attracts B.

2.2 First result: from the existence of a compact
attracting set

Our first result on the existence of pullback attractors is a generalisation of the
analogous one for autonomous dynamical systems (Temam 1988; Hale 1988; Babin
and Vishik 1992; Robinson 2001); the closest result to the form here is given by
Crauel (2001) (see also results in Hale 1988). It shows that the existence of a
pullback attractor is equivalent to the existence of a family of compact pullback
attracting sets: given such a family one can obtain the additional invariance property
via a suitable construction in terms of ω-limit sets.

Theorem 2.12. If S(·, ·) is a process in a metric space X, then the following
statements are equivalent:
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• S(·, ·) has a pullback attractor A (·).
• There exists a family of compact sets K(·) that pullback attracts bounded subsets

of X under S(·, ·).
In either case

A (t) =
⋃

{ω(B, t) : B ⊂ X , B bounded }, (2.3)

and A (·) is minimal in the sense that, if there exists another family of closed
bounded sets ˆA (·) that pullback attracts bounded subsets of X under S(·, ·), then
A (t)⊆ ˆA (t) for all t ∈ R.

Proof. If S(·, ·) has a pullback attractor A (·), then each A (t) is compact and
pullback attracts bounded subsets of X at time t.

To prove the converse, we proceed as follows. First note that, as an immediate
consequence of the characterisation in (2.1), ω(B, t)⊆ K(t), for all B ⊂ X bounded
and all t ∈ R. It follows from Lemma 2.7 that ω(B, t) attracts B, and then, from
Lemma 2.4 (ii), that ω(B, t) is invariant. Thus, if we define A (t) by (2.3), then we
produce a compact set that pullback attracts all bounded subsets of X .

The invariance of A (·) follows from the invariance of each ω-limit set ω(B, ·).
Indeed, given x0 ∈ A (s), there exist xn ∈ ω(Bn,s) with xn → x0 as n → +∞. Then
S(t,s)xn = yn ∈ ω(Bn, t) and, by the continuity of S(t,s), S(t,s)xn = yn → S(t,s)x0,
which implies that S(t,s)x0 ∈ A (t), and so S(t,s)A (s)⊆ A (t). Now, choose some
y0 ∈ A (t). Then there exist yn ∈ ω(Bn, t) with yn → y0 as n →+∞. But then, again
by the invariance of the family ω(Bn, ·), there exist xn ∈ ω(Bn,s) with S(t,s)xn =
yn. But since xn ∈ ω(Bn,s) ⊆ A (s), and A (s) is compact, there is a subsequence
xn j that converges to some x0 ∈ A (s), for which S(t,s)x0 = lim j→∞ S(t,sn j)xn j =
lim j→∞ yn j = y0. It follows that S(t,s)A (s)⊇ A (t), and so A (·) is invariant.

The minimality property follows simply from the observation that if ˆA (t) is
closed and bounded and pullback attracts bounded sets at time t, then ω(B, t) ⊆

ˆA (t) for all bounded subsets B of X , and hence A (t)⊆ ˆA (t). �	
The following corollary for semigroups allows for a simpler characterisation of

the global attractor than is available in the non-autonomous case.

Corollary 2.13. Let T (·) be a semigroup in a metric space X. Then T (·) has a
global attractor A if and only if there exists a compact set K that attracts bounded
subsets of X under T (·), and in this case A = ω(K).

Proof. It is an immediate corollary of Theorem 2.12 that

A =
⋃

{ω(B) : B ⊂ X , B bounded }

is the global attractor for T (·). It is immediate from this that A ⊇ ω(K), while,
since K attracts bounded subsets of X , we must have ω(B)⊆ ω(K) for all bounded
subsets B of X , which completes the proof. �	
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We note that in many applications one can prove something stronger than the
existence of a compact pullback attracting set (the main hypothesis of Theo-
rem 2.12), namely the existence of a compact pullback absorbing set.

Definition 2.14. A set B ⊂ X pullback absorbs bounded sets at time t ∈ R if, for
each bounded subset D of X , there exists T = T (t,D)≤ t such that

S(t,s)D ⊆ B, for all s ≤ T.

A family B(·) pullback absorbs bounded sets if B(t) pullback absorbs bounded sets
at time t, for each t ∈R.

If a set pullback absorbs bounded sets at time t, then clearly it pullback attracts
bounded sets at time t.

In the context of ordinary differential equations (ODEs), for which the phase
space is finite-dimensional, the existence of a bounded absorbing set is equivalent
to the existence of a compact absorbing set, and Theorem 2.12 is relatively
straightforward to apply. In the following section we use this result to study an
example of a saddle-node bifurcation in a non-autonomous scalar ODE. In Chap. 9
we apply the result to investigate the behaviour of a non-autonomous coupled
Lotka–Volterra system. We use Theorem 2.12 to prove the existence of a pullback
attracting set, which we are then able to reduce to a single point, thereby identifying
a dynamically significant global solution of the system; in both cases the fact that
the system is order preserving plays a key role. We also apply Theorem 2.12 to the
two-dimensional Navier–Stokes equations in Sect. 11.3.

We continue to develop the abstract theory of existence results for pullback
attractors in Sect. 2.3.

2.2.1 Example: a saddle-node bifurcation

As an example we consider, after Langa et al. (2002), a non-autonomous version of
the simple ODE

ẋ = a− bx2, b > 0,

which models a saddle-node bifurcation. For a < 0 all trajectories tend to −∞; for
a= 0 positive solutions tend to zero and negative solutions blow up to −∞ in a finite
time; and for a > 0 there is a unique attracting solution

√
a/b for compact subsets

in (−√a/b,+∞), while −√a/b is unstable. We denote the solution operator for
this autonomous equation by Ta,b(t).

Here we consider
ẋ = a− b(t)x2, x(s) = x0, (2.4)

where a ∈ R and b : R→ R is continuous with b(t)≥ 0 for all t ∈ R and
∫ 0

−∞
b(t)dt =

∫ ∞

0
b(t)dt =+∞. (2.5)
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We will see that this non-autonomous equation behaves in a similar way to its
autonomous counterpart. Since we will analyse the equation by considering a
process on a closed subset of R, even in this remarkably simple case we make use
of the possibility of defining pullback attractors in metric spaces as well as linear
spaces.

First, note that if a < 0, then ẋ ≤ a, and S(t,s)x0 →−∞ for every x0 ∈R, both as
t →+∞ (‘forwards’) and as s →−∞ (‘pullback’); while if a = 0, then the equation
can be solved explicitly to yield

S(t,s)xs =
xs

1+ xs
∫ t

s b(r)dr
.

Using (2.5) it follows that if xs > 0, then S(t,s)xs → 0 as t → +∞ or s → −∞,
whereas if xs < 0, then the solution ‘blows up’ to −∞ in a finite time (either forwards
or pullback).

The behaviour for a > 0 is more interesting. We assume that b(t) is bounded
above and below, i.e. that there exists b0 and b1 with 0 < b0 ≤ b1 such that

b0 ≤ b(t)≤ b1.

The equation is then simple to analyse since the solution of (2.4) is bounded above
and below by those of the autonomous equations

ẋ = a− b0x2 and ẋ = a− b1x2,

respectively [both with x(s) = x0], i.e.

Ta,b1(t − s)x0 ≤ S(t,s)x0 ≤ Ta,b0(t − s)x0.

Note that the interval [−√a/b1,+∞) is positively invariant for the three systems
(the non-autonomous equation and the ‘bounding’ autonomous equations).

We consider the process S(·, ·) restricted to [−√a/b1,+∞), which is a complete
metric space when we use the usual distance on R. For any bounded set B ⊂
[−√a/b1,+∞) there exists a τ0(B) such that

S(t,s)B ⊂
[

1
2

√
a/b1,2

√
a/b0

]

t − s ≥ τ0(B); (2.6)

in particular, there is a closed bounded (and hence compact) pullback absorbing set.
We can now apply Theorem 2.12 to deduce the existence of a pullback attractor
A(t) for (2.4) in [−√a/b1,+∞). Since the attractor is a connected subset of R

(Corollary 2.5), it must in fact be an interval,

A(t) = [a−(t),a+(t)]⊂ Ia = [
√

a/b1,
√

a/b0];
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since the phase space is one-dimensional, the process is order preserving, and so
a±(·) are global solutions of (2.4). We now show that in fact a−(t) = a+(t) for all t.
To do this, consider the difference z(t) = a+(t)−a−(t), which satisfies the equation

ż =−b(t)(a2
+(t)− a2

−(t)) =−b(t)[a+(t)+ a−(t)]z ≤−
√

a/b1

2
b(t)z.

Integrating we obtain

z(t)≤ z(s)exp

(

−
√

a/b1

2

∫ t

s
b(r)dr

)

;

letting s →−∞ and using (2.5) shows that z(t) = 0, i.e. that a+(t) = a−(t). So the
pullback attractor consists of a single (positive) global solution a(t). Note that in this
example the global solution a(t) is also forwards attracting; using (2.6) any solution
x(·) is eventually bounded below by 1

2

√
a/b1, and the preceding argument can be

repeated [replacing a−(·) and a+(·) by x(·) and a(·), appropriately ordered] to show
that |x(t)− a(t)| → 0 as t →+∞.

The paper by Langa et al. (2002) considers the less straightforward situation in
which 0 < b(t) ≤ b and b(t)→ 0, while preserving the integral condition (2.5). In
this case the pullback attractor is still a pullback attracting positive global solution,
but this global solution is now unbounded (it tends to +∞ as |t| → ±∞), and there
is also a negative global solution that, while important for the dynamics, is not
contained in the pullback attractor (nor is its unstable set), cf. Lemma 1.16.

2.3 Second result: from the existence of a bounded
attracting set

In the proof of Theorem 2.12 we appealed to Lemma 2.7 to guarantee attracting
properties of ω-limit sets. But we have already seen that there is a parallel result to
Lemma 2.7, namely Lemma 2.10, that uses the notion of asymptotic compactness
rather than assuming the existence of a compact attracting family. It is no surprise,
therefore, that we can replace one assumption with the other in our attractor theorem
(Theorem 2.12) to give a more easily applicable result.

Before this, we give a sufficient condition for a process to be pullback asymptot-
ically compact that can often be verified in applications.
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Definition 2.15. A process S(·, ·) is said to be pullback bounded if for each bounded
set B and every t ∈ R the ‘pullback orbit’ of B at time t ∈R,

γp(B, t) :=
⋃

s≤t

S(t,s)B,

is bounded.

Note that if T (·) is a semigroup, then the corresponding process ST (·, ·) is
pullback bounded if and only if γ+(B) =

⋃
t≥0 T (t)B is bounded for each bounded

subset B of X . In this case, we say that the semigroup T (·) is bounded.

Definition 2.16. A process S(·, ·) is called pullback eventually compact if it is
pullback bounded (Definition 2.15) and there exists a τ ≥ 0 such that, if B is a
bounded subset of X and t ∈R, then S(t, t − τ)B is compact.

Lemma 2.17. Let S(·, ·) be a process in a metric space X. If S(·, ·) is pullback
eventually compact, then S(·, ·) is pullback asymptotically compact.

Proof. Let {x j} ∈X be a bounded sequence, and {s j}≤ t such that s j →−∞. If B=
γp({x j}, t − τ), then B is bounded, and therefore S(t, t − τ)B is relatively compact
and contains {S(t,s j)x j}. It follows that {S(t,s j)x j} is relatively compact. �	

A semigroup T (·) is eventually compact if it is bounded and there exists a t0 > 0
such that T (t0)B is compact for each bounded subset B of X .

Corollary 2.18. Let T (·) be an eventually compact semigroup in a metric space X.
Then T (·) is asymptotically compact.

We now add an assumption of ‘dissipativity’ to asymptotic compactness in
order to regain attracting properties of our ω-limit sets and to recover the pullback
attractor once more.

Definition 2.19. We say that a process S(·, ·) is pullback bounded dissipative if
there exists a family B(·) of bounded sets such that B(t) pullback attracts bounded
sets at time t, for each t ∈ R.

If T (·) is a semigroup and ST (·, ·) the corresponding process, then ST (·, ·) is
pullback bounded dissipative if and only if T (·) is bounded dissipative, i.e. there
exists a bounded set B that attracts all bounded subsets of X under T (·).
Theorem 2.20. If S(·, ·) is pullback asymptotically compact, then for each t ∈ R

the set A (t) given by (2.3) is closed and invariant and pullback attracts bounded
subsets of X at time t. Furthermore, the family A (·) is minimal among families C(·)
such that for each t ∈R the set C(t) is closed and pullback attracts bounded subsets
of X at time t. If in addition S(·, ·) is pullback bounded dissipative, then A (t) is also
bounded for each t ∈ R.

Proof. Observe that the hypotheses of Lemma 2.10 are satisfied, and so ω(B, t) is
non-empty, compact, and invariant and pullback attracts B at time t for any bounded
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subset B of X . Hence, if A (t) is defined by (2.3), i.e.

A (t) =
⋃

{ω(B, t) : B ⊂ X , B bounded },

A (·) is closed and invariant and pullback attracts bounded subsets of X . If C(t) is
closed and pullback attracts bounded sets at time t, it is clear that ω(B, t) ⊆ C(t)
for each bounded subset B of X , and consequently A (t) ⊆ C(t). Now, if S(·, ·) is
pullback bounded dissipative, for each t ∈R there is a bounded set B(t) that pullback
bounded attracts bounded subsets of X . Hence ω(D, t) ⊂ B(t) for each bounded
subset D of X and A (t)⊂ B(t), which shows that A (t) is bounded. �	

Note that this result does not give any compactness of the set A (t). This is
only a restriction in an infinite-dimensional setting, as A (t) is actually bounded
and closed. However, in the semigroup case we do not have such a restriction, and
the corresponding result appears much stronger.

Corollary 2.21. If T (·) is bounded dissipative and asymptotically compact, then it
has a global attractor A .

Proof. To show that A is compact, take {xn} ∈ A . Since A is invariant, xn =
T (n)yn with yn ∈ A . Since {yn} is bounded, it follows from the asymptotic
compactness of T (·) that {T (n)yn}= {xn} has a convergent subsequence. �	

Obtaining the equivalent result for processes requires a stronger hypothesis that
imposes some uniformity in the ‘dissipativity’ of S(·, ·).
Definition 2.22. We say that a process S(·, ·) is strongly pullback bounded dissi-
pative if for each t ∈ R there is a bounded subset B(t) of X that pullback attracts
bounded subsets of X at time τ for each τ ≤ t; that is, given a bounded subset D of
X and τ ≤ t, lims→−∞ dist(S(τ,s)D,B(t)) = 0.

Note that the family B(·) given in this definition does not need to have a bounded
union. Nevertheless, we can choose it in such a way that, for each t ∈ R,

⋃
s≤t B(s)

is bounded.
The following theorem gives a sufficient condition for the existence of a compact

pullback attractor A (·) that is bounded in the past, i.e.

⋃

s≤t

A (s)

is bounded for each t ∈R. Note that it is desirable that the pullback attractor belong
to this class of sets since it would then be contained in the class of sets that it itself
attracts (see Sect. 2.6 for more on such self-consistent basins of attraction).

Theorem 2.23. If a process S(·, ·) is strongly pullback bounded dissipative and
pullback asymptotically compact and B(·) is a family of bounded subsets of X such
that, for each t ∈ R, B(t) pullback attracts bounded subsets of X at time τ for each
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τ ≤ t, then S(·, ·) has a compact pullback attractor A (·) such that A (t) =ω(B(t), t)
and

⋃
s≤t A (s) is bounded for each t ∈ R.

Proof. We only need to check that A (t) as defined by (2.3) is compact. For each
fixed τ ≤ t, since B(t) pullback attracts all bounded sets at time τ , it follows that
ω(D,τ)⊆ B(t) for every bounded D ⊂ X . Since ω(D, ·) is invariant,

ω(D, t) = S(t,τ)ω(D,τ)⊆ S(t,τ)B(t) for all τ ≤ t.

It follows that
ω(D, t)⊆

⋂

σ≤t

⋃

τ≤σ
S(t,τ)B(t) = ω(B(t), t).

Since this holds for every bounded set D, it follows that A (t) ⊂ ω(B(t), t), and
consequently A (t) is compact. Since clearly ω(B(t), t) ⊂ A (t), it in fact follows
that A (t) = ω(B(t), t).

We have already shown that A (τ)⊆ B(t) for all τ ≤ t, so A (·) is bounded in the
past, as claimed. �	

Note that if a process has a pullback attractor that is bounded in the past, then
it must be strongly pullback bounded dissipative [setting B(t) = ∪s≤tA (s)]; and
we have already seen (Lemma 2.9) that any process with a pullback attractor must
be pullback asymptotically compact. So the conditions in Theorem 2.23 are in fact
necessary and sufficient for the existence of a pullback attractor that is bounded in
the past.

This method will be applied in Chap. 15 to the dissipative damped wave equation

utt +β (t)ut = Δu+ f (u).

2.4 Third result: from the pullback flattening property

We now turn to another approach, due to Ma et al. (2002) for autonomous
systems and extended by Y. Wang et al. (2006) to the non-autonomous case, which
makes a different kind of compactness assumption that is easier to check in some
applications. Referred to as ‘Condition (C)’ by Ma et al., the term ‘flattening’ was
coined by Kloeden and Langa (2007) in a paper that extended the autonomous
theory to treat random dynamical systems. Note that the results here are restricted
to Banach spaces (and are at their most natural in Hilbert spaces).

Definition 2.24. A process S(·, ·) on a Banach space X is said to be pullback
flattening if, given t ∈ R, for every bounded set B in X and ε > 0 there exists a
T0 = T0(B,ε, t)∈R and a finite-dimensional subspace Xε of X along with a mapping
Pε : X → Xε such that ⋃

s≤T0

Pε S(t,s)B is bounded
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and ∥
∥
∥
∥
∥
(I −Pε)

(
⋃

s≤T0

S(t,s)B

)∥
∥
∥
∥
∥

X

< ε, (2.7)

where (2.7) is understood in the sense that ‖(I −Pε)S(t,s)x0‖X < ε for all x0 ∈ B
and s ≤ T0.

A semigroup T (·) is flattening if the corresponding process ST (·, ·) is pullback
flattening (of course, the autonomous definition was in fact introduced first; see Ma
et al. 2002).

We now show that the pullback flattening property implies that S(·, ·) is pullback
asymptotically compact, which is an essential ingredient for the existence of a
pullback attractor (Theorems 2.20 and 2.23). We will also show that if X is a
uniformly convex Banach space, then the converse to this implication also holds.
In particular, this shows that in any uniformly convex Banach space, any process
with a pullback attractor must be pullback flattening.

Recall that a Banach space X is uniformly convex if for each ε > 0 there exists a
δ > 0 such that, given x,y ∈ X ,

‖x‖X ,‖y‖X ≤ 1, ‖x− y‖> ε ⇒ ‖x+ y‖
2

< 1− δ ;

for instance, Hilbert spaces, Lp spaces for p ∈ (1,∞), and Sobolev spaces W s,p for
p ∈ (1,∞) are uniformly convex; see, for example, Brézis (1983), Sect. III.7.

The key property of such spaces that we will use is that if U is a finite-
dimensional subspace, then for every x ∈ X there exists a unique closest point in
U , which can be used to define a mapping P : X →U (of course, in a Hilbert space
this is simply the orthogonal projection onto U , which is linear). Given x ∈ X , that
such a point exists is clear; its uniqueness follows since if â �= a′ and

‖x− â‖= ‖x− a′‖= d := inf
u∈U

‖x− u‖,

then d−1‖â− a′‖= ‖d−1(x− â)− d−1(x− a′)‖> 0, whence

d−1‖(x− â)+ (x− a′)‖
2

= d−1

∥
∥
∥
∥x− â+ a′

2

∥
∥
∥
∥< 1,

i.e. ∥
∥
∥
∥x− â+ a′

2

∥
∥
∥
∥< d,

which contradicts the definition of d.
Note that for this canonical projector (which is not necessarily linear in general),

since x = Px+(x−Px) and ‖x−Px‖ ≤ ‖x‖ (as 0 ∈U), it follows that

‖Px‖ ≤ 2‖x‖ (2.8)

(if X is a Hilbert space, then P is linear and ‖Px‖ ≤ ‖x‖).
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Theorem 2.25. Let S(·, ·) be a process on a Banach space X. If S(·, ·) is pullback
flattening, then it is pullback asymptotically compact, and for every bounded B ⊂ X,

⋃

s≤T0

S(t,s)B

is bounded for some T0 = T0(B, t). Conversely, if X is uniformly convex and S(·, ·) is
pullback asymptotically compact, then it is pullback flattening.

Proof. Let B be a bounded subset of X , and fix t ∈ R. The boundedness property
follows trivially from the definition of the pullback flattening property.

To show that S(·, ·) is pullback asymptotically compact, let {sn}≤ t be a sequence
with sn →−∞, and {xn} ∈ B. Since S(·, ·) is pullback flattening, for each k ∈N there
exists a finite-dimensional subspace Xk of X , a bounded projector Pk : X → Xk, and
a Tk such that ⋃

s≤Tk

Pk S(t,s)B is bounded

and ∥
∥
∥
∥
∥
(I −Pk)

(
⋃

s≤Tk

S(t,s)B

)∥
∥
∥
∥
∥

X

< 1/k.

It follows that there exists an nk such that for all n ≥ nk,

{Pk S(t,sn)xn} is a bounded subset of Xk and ‖(I−Pk)S(t,sn)xn‖X < 1/k.

Since the set {S(t,sn)xn} is bounded and for any k ∈ N can be covered by a
finite number of balls of radius 2

k , its closure is compact and the required pullback
asymptotic compactness follows.

Now we suppose that X is a uniformly convex Banach space and show that
asymptotic compactness implies the pullback flattening property.

Let B be a bounded set in X . From Lemma 2.10, ω(B, t) is non-empty, compact,
and invariant and pullback attracts B at time t. Since ω(B, t) is compact, there exists
an �ε ∈ N, and x1, . . . ,x�ε in ω(B, t) such that

ω(B, t)⊂
�ε⋃

i=1

BX

(
xi,

ε
4

)
,

where BX(x,r) is the ball in X centred at x and of radius r. From the fact that ω(B, t)
pullback attracts B, given ε > 0, there exists an nε ∈N such that

dist(
⋃

s≤t−τ
S(t,s)B,ω(B, t))<

ε
4

for all τ ≥ nε ,
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from which
⋃

s≤t−nε

S(t,s)B ⊂
�ε⋃

i=1

BX

(
xi,

ε
2

)
. (2.9)

Now let Xε := span{x1,x2, . . . ,x�ε}, and let Pε : X → Xε be the map onto the
closest point in Xε . It follows from (2.9) and the fact that ‖Pεx‖ ≤ 2‖x‖ [see (2.8)]
that

Pε

(
⋃

s≤t−τε

S(t,s)B

)

is a bounded subset of X ,

whereas, since xi ∈ Xε and ‖x−Pεx‖= dist(x,Xε) by definition,

∥
∥
∥
∥
∥
(I −Pε)

(
⋃

s≤t−τε

S(t,s)B

)∥
∥
∥
∥
∥
≤ ε

2
< ε,

i.e. S(·, ·) is pullback flattening. �	
Corollary 2.26. Assume that T (·) is a semigroup in a uniformly convex Banach
space X. Then T (·) is flattening if and only if T (·) is bounded and asymptotically
compact.

Now we state the main result of this section whose proof follows immediately
from Theorems 2.23 and 2.25.

Theorem 2.27. Suppose that a process S(·, ·) is pullback flattening and strongly
pullback bounded dissipative. Then it has a pullback attractor A (·). Moreover, if X
is a uniformly convex Banach space and S(·, ·) has a pullback attractor A (·), then
S(·, ·) is pullback flattening.

Corollary 2.28. Suppose that a semigroup T (·) is flattening and bounded dissipa-
tive. Then it has a global attractor A . Moreover, if X is a uniformly convex Banach
space and T (·) has a global attractor A , then T (·) is flattening.

We use this approach in Sect. 11.4 to show that the 2D Navier–Stokes equations
have a pullback attractor in the phase space H1.

2.5 Pullback point dissipativity

In the previous results we proved the existence of compact sets that (pullback) attract
all bounded subsets of X by combining assumptions of bounded dissipativity with
asymptotic compactness assumptions on the process S(·, ·). The aim of this section is
to parallel the results from the autonomous theory that only make the assumptions
of point dissipativity and asymptotic compactness but nevertheless deduce results
about the attraction of bounded subsets (Hale 1988; Raugel 2002).
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The development of a non-autonomous version of these results rounds off
our generalisations of the autonomous theory. It is perhaps the case, however,
that ‘point dissipativity plus asymptotic compactness’ is a more useful criterion
in autonomous than in non-autonomous systems; we consider one particularly
important autonomous application, gradient semigroups, in Sect. 2.5.1.

We begin by defining a new notion of dissipativity; while essentially we ask
that ‘pullback orbits are bounded’, we also require some uniformity, restoring the
autonomous feature that behaviour depends on the time elapsed rather than on both
the initial and final times.

Definition 2.29. Let S(·, ·) be a process in a metric space X . We say that a bounded
set B uniformly strongly pullback attracts points of X at time t if

lim
τ→∞

[

sup
s≤t

dist(S(s,s− τ)x,B(t))
]

= 0.

If there exists a bounded family B(·) such that B(t) uniformly strongly pullback
attracts points of X at time t for each t ∈ R, then we say that S(·, ·) is uniformly
strongly pullback point dissipative.

We make the corresponding definition of uniformly strongly pullback compact
dissipative, replacing x by a compact set K throughout Definition 2.29 and of
uniformly strongly pullback bounded dissipative, replacing x by a bounded set B.

Note that if T (·) is a semigroup and ST (·, ·) is the corresponding process, then
ST (·, ·) is uniformly strongly pullback point dissipative if and only if T (·) is point
dissipative in the sense of Hale (1988).

Definition 2.30. We say that a process S(·, ·) in X is strongly pullback bounded if,
for each t ∈ R and bounded subset B of X ,

⋃
τ≤t γp(B,τ) is bounded, i.e.

⋃

τ≤t

⋃

s≤τ
S(τ,s)B

is bounded.

If T (·) is a semigroup and ST (·, ·) the corresponding process, then ST (·, ·) is
strongly pullback bounded if and only if ST (·, ·) is pullback bounded if and only if
T (·) is a bounded semigroup.

As already remarked, we want to find conditions that ensure that a (uniformly
strongly pullback) point dissipative process is in fact strongly pullback bounded
dissipative. The first step is to find conditions under which we can strengthen
point dissipativity to compact dissipativity. The key property here turns out to be
(essentially) equicontinuity of the family of operators {S(t,s) : t − s = τ}, i.e. those
elements of the process that correspond to the same elapsed time.

Lemma 2.31. Let S(·, ·) be uniformly strongly pullback point dissipative, pullback
asymptotically compact, and strongly pullback bounded. Assume also that for each
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t ∈ R and s > 0, the family {Sτ,τ−s : τ ≤ t} is equicontinuous at each x ∈ X. Then
S(·, ·) is uniformly strongly pullback compact dissipative.

Proof. Fix t ∈R and let B(t) be a bounded subset of X that strongly pullback attracts
points of X at time t: in particular, given any x ∈ X , there exists an nx ∈N such that
for all s ≥ nx

dist(S(r,r− s)x,B(t))< 1/2 for all r ≤ t.

Now one can use the equicontinuity hypothesis to guarantee the existence of an
εx > 0 such that for all s ≥ nx,

dist(S(r,r− s)Bεx(x),B(t))< 1 for all r ≤ t.

Given any compact set K ⊂ X , there is a p ∈ N and {x1, . . . ,xp} ∈ K such that
K ⊂ ∪p

i=1Bεxi
(xi). It follows that with nK = maxi nxi , for all s ≥ nK ,

S(r,r− s)K ⊂
⋃

τ≤t

γp(B(t),τ) =C(t) for all r ≤ t,

where B1(t) := {x ∈ X : d(x,y) ≤ 1 for some y ∈ B(t)} is clearly a bounded subset
of X . Since S(·, ·) is strongly pullback bounded, C(t) is bounded and C(t) ⊃ C(s)
for all s ≤ t. �	

To proceed from compact dissipativity to bounded dissipativity, we need to
strengthen our notion of asymptotic compactness.

Definition 2.32. We say that a process S(·, ·) is strongly pullback asymptotically
compact if, for each t ∈ R, each bounded sequence {xk} ∈ X , and any sequences
{sk},{τk} with sk ≤ τk ≤ t and τk − sk → ∞ as k → ∞, the sequence {S(τk,sk)xk} is
relatively compact.

If T (·) is a semigroup, then the corresponding process ST (·, ·) is strongly
pullback asymptotically compact if and only if ST (·, ·) is pullback asymptotically
compact if and only if T (·) is asymptotically compact.

We are now in a position to boost compact dissipativity to bounded dissipativity,
using this strong definition of asymptotic compactness.

Theorem 2.33. If a process S(·, ·) is uniformly strongly pullback compact dissipa-
tive and strongly pullback asymptotically compact, then S(·, ·) is strongly pullback
bounded dissipative.

Proof. Since S(·, ·) is strongly pullback compact dissipative, there exists a closed
bounded set B(t) that strongly pullback attracts compact subsets of X at time t.

First we prove that, for each bounded subset D of X , ω(D,τ)⊆ B(t) for each τ ≤
t. Indeed, if y ∈ ω(D,τ), then there is a sequence {sk} ≤ τ with sk →−∞ as k → ∞
and a sequence {xk} ⊂ D such that S(τ,sk)xk → y as k → ∞. Taking a sequence {rk}
with τ ≥ rk ≥ sk and min{τ−rk,rk−sk}→∞ as k → ∞ and using the fact that S(·, ·)
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is strongly pullback asymptotically compact, one can find a subsequence (which we
relabel) and a z ∈ X such that zk := S(rk,sk)xk → z as k → ∞.

Choose ε > 0. From the compactness of the set K = {zk : k ∈ N}∪{z}, there is
an nK ∈ N such that dist(S(τ,rk)K,B(t)) < ε whenever τ − rk ≥ nK . Thus, for all
suitably large k,

S(τ,sk)xk = S(τ,rk)[S(rk,sk)xk]⊂ S(τ,rk)K,

and so
dist(S(τ,sk)xk,B(t))< ε

for all k sufficiently large. This implies that ω(D,τ) ⊆ B(t) for each τ ≤ t.
Since ω(D,τ) pullback attracts D at time τ , it follows that B(t) pullback attracts

bounded subsets of X at time τ for each τ ≤ t; i.e. S(·, ·) is strongly pullback bounded
dissipative. �	

We can now deduce the main result of this section.

Theorem 2.34. Let S(·, ·) be a process with the property that, for each t ∈ R

and τ > 0, {S(s,s − τ) : s ≤ t} is equicontinuous at x for each x ∈ X. If S(·, ·)
is uniformly strongly pullback point dissipative, strongly pullback bounded, and
strongly pullback asymptotically compact, then S(·, ·) is strongly pullback bounded
dissipative. Consequently, S(·, ·) has a pullback attractor A (·) that is bounded in
the past.

Corollary 2.35. If T (·) is a bounded semigroup that is point dissipative and
asymptotically compact, then it has a global attractor.

A sufficient condition for a semigroup to be asymptotically compact, involving a
splitting into two components, one compact and one that vanishes asymptotically, is
given in Lemma 3.2.6 of Hale (1988) and Theorem 1.1 of Temam (1988). We now
prove an analogous result for processes, giving a sufficient condition for a process
to be strongly pullback asymptotically compact (Definition 2.32). From here to the
end of this section we assume that X is a Banach space with norm ‖ · ‖.

We start with a preliminary definition.

Definition 2.36. A family of continuous maps {U(t,s) : t ≥ s} (which need not be
a process) is called strongly compact if for each time t and each bounded B⊂X there
exists a TB ≥ 0 and a compact set K ⊂ X such that U(τ,s)B ⊂ K for all s ≤ τ ≤ t
with τ − s ≥ TB.

Theorem 2.37. Let S(·, ·) be a strongly pullback bounded process such that

S(t,s) = T (t,s)+U(t,s),
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where U(·, ·) is strongly compact and there exists a function k : R+×R
+ → R with

k(·,r) non-increasing for each r > 0 and k(σ ,r) → 0 as σ → ∞, such that for all
s ≤ t and x ∈ X with ‖x‖ ≤ r,

‖T (t,s)x‖ ≤ k(t − s,r).

Then the process S(·, ·) is strongly pullback asymptotically compact.

Proof. Given a bounded sequence {xn}⊂ B(0,r), and sequences {sk} and {τk} with
sk ≤ τk ≤ t and τk − sk → ∞ as k → ∞; since U(·, ·) is strongly compact there exists
a compact set K = KB(0,r) such that U(τk,sk)xk ∈ K for all k sufficiently large. By
hypothesis ‖T (τk,sk)xk‖ ≤ k(τk − sk,r), which tends to zero as k → ∞. The strong
pullback asymptotic compactness of S(·, ·) now follows from Lemma 2.3. �	

2.5.1 An abstract application: gradient semigroups

As we have already remarked, the existence of a global attractor for a semigroup
implies that the system is bounded dissipative and asymptotically compact. Thus,
the existence result that requires point dissipativity, asymptotic compactness, and
boundedness of the semigroup provides alternative, rather than weaker, hypotheses
(cf. Raugel 2002). However, it may be that these are easier to check in certain
applications. Indeed, this method is particularly well suited to autonomous gradient
systems, for which point dissipativity is almost automatic. We give an abstract
treatment of such systems here, deriving some results about the structure of the
attractor to which we will return later.

We say that x∗ ∈ X is an equilibrium point for the semigroup T (·) if it is a fixed
point for the map T (t) for each t ≥ 0; that is, T (t)x∗ = x∗ for each t ≥ 0. We denote
by E the set of equilibrium points for T (·).
Definition 2.38. A semigroup T (·) is said to be gradient if there is a continuous
function V : X → R, a Lyapunov function, with the following properties:

(i) t �→V (T (t)x) is non-increasing for each x ∈ X ; and
(ii) If x is such that V (T (t)x) =V (x) for all t ≥ 0, then x ∈ E .

The simplest example of a gradient system is the ODE

ẋ =−∇V (x), x ∈ R
n, (2.10)

where V : Rn →R is C1. Then if x(t) is a solution of (2.10), it follows that

d
dt

V (x(t)) =−|∇V(x(t))|2; (2.11)
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it is clear that V (x(t)) is non-increasing and that if the left-hand side of (2.11) is
zero, then so is ∇V (x(t)), and hence [from (2.10)] x(t) must be constant.

A less trivial example is the scalar reaction–diffusion equation on a bounded
domain Ω ⊂ R

n,
ut −Δu = f (u), u|∂Ω = 0. (2.12)

If one imposes appropriate (dimension-dependent) growth conditions on f , then this
equation generates a semigroup on H1

0 (Ω) and the functional

V (u) =
1
2
‖∇u‖2

L2 −
∫

Ω
F(u(x))dx, with F(s) =

∫ s

0
f (r)dr,

is continuous from H1
0 into R (see Chap. 12) . To see that V (u(t)) is non-increasing

along trajectories, multiply (2.12) by ut and integrate over Ω to obtain

‖ut‖2
L2 +

1
2

d
dt
‖∇u‖2

L2 =
∫

f (u)ut =
d
dt

∫

Ω
F(u(x, t))dx,

i.e.
d
dt

V (u(t)) =−‖ut‖2
L2 .

It is also clear from this equality that if V (u(t)) is constant, then ut = 0, and so u(t)
is also constant.

In a gradient system, the ω-limit set of every (point) initial condition must be
a subset of the set of equilibria. Under certain assumptions the same is true of the
‘backwards’ α-limit sets, which we define as follows.

Definition 2.39. Given x ∈ X , suppose that there exists a backwards-bounded
solution φ : R→ X such that φ(0) = x. Then the α-limit set of x along φ , αφ (x), is
given by

αφ (x)={y ∈ X : there is a sequence {tn}, tn →−∞ as n → ∞, with lim
n→∞

φ(tn) = y}.

We can now prove that global solutions of gradient semigroups are asymptotic
both forwards and backwards to the set of equilibria, in the following sense.

Lemma 2.40. If T (·) is a gradient semigroup, then ω(x) is a subset of E for each
x ∈ X. If x ∈ X and there is a backwards-bounded solution φ : R→ X with φ(0) = x,
then αφ (x) is a subset of E .

Proof. If ω(x) = ∅, then the result is trivial. If ω(x) �= ∅ and y ∈ ω(x), then there
is a sequence {tn} ≥ 0 with tn → ∞ as n → ∞ such that T (tn)x → y as n → ∞. From
the continuity of V ,

V (T (t + tn)x) =V (T (t)[T (tn)x])→V (T (t)y) as n → ∞
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for each t ≥ 0. Since V is non-increasing along solutions,

V (T (tn)x)≥V (T (t + tn)x)≥V (y)

for each t ≥ 0 and n ∈ N. Now one can take the limit as n → ∞; since T (tn)x → y
and V is continuous,

V (y)≥ lim
n→∞

V (T (t + tn)x) =V (T (t)y)≥V (y),

i.e. V (T (t)y) =V (y) for each t ≥ 0. Property (ii) in Definition 2.38 now ensures that
y ∈ E .

Since the case αφ (x) =∅ is trivial, we assume that αφ (x) is non-empty and show
first that V is constant on αφ (x). Since V is continuous, V (φ(t)) is non-increasing,
and for some sequence {tn}→−∞ the sequence {V (φ(tn)} is convergent, it follows
that Vφ := limt→−∞ V (φ(t)) exists.

It is also true that αφ (x) is positively invariant since, if y ∈ αφ (x) is given by
y = limn→∞ φ(tn), then T (t)y = limn→∞ T (t)φ(tn) and

lim
n→∞

T (t)φ(tn) = lim
n→∞

φ(t + tn)

and is therefore another element of αφ (x).
It follows that if y ∈ αφ (x), then V (T (t)y) = Vφ for all t ≥ 0, and hence (using

property (ii) of Definition 2.38 again) y ∈ E . �	
It is tempting to interpret this lemma as guaranteeing that all solutions converge

towards E , but this presupposes that ω(x) attracts x. As we saw in Sect. 2.1, we need
some further conditions on T (·) to guarantee this. Since these also ensure that T (·)
has a global attractor, we combine these results in the following theorem.

Theorem 2.41. Assume that T (·) is a gradient semigroup that is bounded and
asymptotically compact and has a bounded set of equilibria E . Then ω(x) attracts
x for every x ∈ X, and consequently T (·) has a global attractor A . Furthermore, if
E consists of isolated points, then for each x ∈ X there exists an e ∈ E such that

lim
t→∞

T (t)x = e. (2.13)

Recall that T (·) is bounded if for any bounded set B, γ+(B) (the forward orbit of B)
is bounded (see the remark following Definition 2.15).

Proof. For each x ∈ X , γ+(x) is bounded by assumption. Since T (·) is asymptoti-
cally compact, it follows from Corollary 2.11 that ω(x) attracts x. Since ω(x) ⊂ E
for every x ∈ X and E is bounded, T (·) is point dissipative. The semigroup T (·)
therefore satisfies the assumptions of Corollary 2.35, and so has a global attractor.

Now, since ω(x) attracts x, we can appeal to Corollary 2.6 to guarantee that ω(x)
is connected. Since ω(x) is a subset of E , if the points of E are isolated, then ω(x)
must be a singleton, from which (2.13) follows. �	
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We can completely describe the structure of an attractor in a gradient system: it is
the unstable set of the set of equilibria. We have already defined the unstable set in
the case of a non-autonomous system (Definition 1.15), but we recall the definition
here and specialise to the autonomous case. If E is an invariant set, then the unstable
set of E , W u(E), is given by

W u(E) := {y ∈ X : there is a global solution φ : R→ X

such that φ(0) = y and lim
t→−∞

dist(φ(t),E) = 0}. (2.14)

Note that if E is a single point e (an equilibrium), then the convergence condition
in (2.14) is simply limt→−∞ φ(t) = e.

This class of gradient systems is essentially the only class of autonomous systems
for which we have a detailed knowledge of the makeup of the attractor (although
we will manage to extend this in Chap. 5). We will need the following simple
topological lemma.

Lemma 2.42. If Xt is compact and connected and Xt ⊆Xs for t ≥ s, thenX=∩t≥0Xt

is connected.

Proof. First we show that dist(Xt ,X)→ 0 as t →∞. If not, then there exists an ε > 0,
tn → ∞, and xn ∈ Xtn such that

dist(xn,X)> ε.

Since Xt1 is compact and xn ∈ Xt1 for every n, it follows that xn → x0, where
dist(x0,X)> ε . But since xn → x0, x0 ∈X, a contradiction.

Now, if X is not connected, then there exist open sets O1,O2 such that O1 ∩
O2 = ∅, X∩Oi �= ∅, and X⊂ O1 ∪O2. In particular, there exists a δ > 0 such that
d(x1,x2)≥ δ if x1 ∈ O1, x2 ∈ O2. If t0 is sufficiently large so that

dist(Xt ,X)< δ/3

then it follows that Xt is disconnected, or that Xt ∩Oi =∅ for i = 1 or i = 2. Both of
these contradict the original assumptions, so X must be connected. �	
Theorem 2.43. If T (·) is a gradient semigroup with a global attractor A and a set
of equilibria E , then A =W u(E ). In particular, if E = {e∗1, . . . ,e

∗
n} is finite, then

A =
n⋃

i=1

W u(e∗i ). (2.15)

Proof. If x ∈ A , then there is a global solution φ : R→ X through x. Since φ(R)⊂
A and A is compact, αφ (x) ⊂ E is not empty and limt→−∞ dist(φ(t),αφ ) = 0. It
follows that A ⊆W u(E ). To prove equality, note that if x ∈ W u(E ), then there is a
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global solution φ : R → X through x and dist(φ(t),E ) → 0 as t → ±∞. It follows
that φ(R) is bounded, and since it is also invariant, it follows that φ(R) ⊂ A and
x = φ(0) ∈ A .

To show that (2.15) holds when E is finite, it suffices to show that αφ (x) is
connected, since then αφ (x) is a singleton, and it follows that through every x ∈ A
there is a global solution φ : R→ X with φ(t)→ e as t →−∞ for some e ∈ E .

To show that αφ (x) is connected, observe that

αφ (x) =
⋂

t≤0

⋃

s≤t

φ(s).

So αφ (x) is the intersection of a nested sequence of compact connected sets and,
hence (by Lemma 2.42), connected. �	

2.5.2 Example: the Chafee–Infante equation

A canonical autonomous example in which we have a very precise idea of the
structure of the global attractor is the Chafee–Infante equation (Chafee and Infante
1974) on a one-dimensional domain [0,π ],

ut − uxx = λ u− u3, u(0, t) = u(π , t) = 0. (2.16)

Since this equation is a particular case of (2.12), it is a gradient system, so we can
understand much of the structure of its attractor if we understand its set of equilibria.

Any equilibrium u of (2.16) must be a solution of the elliptic equation

− uxx = λ u− u3, u(0, t) = u(π , t), (2.17)

and we are able to investigate solutions of this equation by considering solutions of
the two-dimensional ODE

ux = v
vx =−λ u+ u3.

(2.18)

We can analyse this using phase plane ideas, treating x as the time variable. Note
first that

E(u,v) :=
v2

2
+λ u2 − u4

4
is constant along any solution. The phase portrait for (2.18) is shown in Fig. 2.1:
trajectories are closed orbits while 0 ≤ E(u,v)< λ 2/2.
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u

vFig. 2.1 Phase portrait for
(2.18)

To find a solution of (2.18) that satisfies the correct boundary conditions
for (2.17), we need to find trajectories that start with u = 0 (i.e. on the v-axis) at
x = 0 and return to the v-axis when x = π . For a given value of E the velocity in the
u coordinate is

ux = v =

√

2E −λ u2 +
u4

2
;

a solution with this value of E starts with u = 0, v =
√

2E , and moves around
clockwise until it strikes the u axis at u = u0, where

E = λ
u2

0

2
− u4

0

4
.

The ‘time’ x(E) it has taken to reach this point is given by

x(E) =
∫ u0

0

1
√

2E −λ u2 +
u4

2

du.

Properties of the fixed points of (2.18) follow from the following properties of
the integral x(E):

(i) As E → λ 2/4, x(E)→ ∞;
(ii) As E → 0+, x(E)→ π

2
√

λ
; and

(iii) x(E) is a strictly increasing function of E .

In particular, it follows that for E ∈ (0, λ 2

4 )

π
2
√

λ
< x(E)< ∞.

To obtain a solution of (2.17) from a solution of (2.18), we need a solution with
2nx(E) = π for some integer n; we circle around the origin n/2 times, ending up
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λ

E

1 4 99

λ = λ̄

Fig. 2.2 Bifurcation of
equilibria as λ is increased.
For example, at λ = λ̄ there
are seven equilibria

back on the v-axis. To find the number of fixed points of our equation (2.16), we
therefore must find the number of distinct values of E for which 2nx(E) = π .

First, if λ < 1, then π/
√

λ > π , and so the only solution that fulfils our criteria
is the origin. This corresponds to the equilibrium u ≡ 0; we label this φ0.

If 1 < λ < 22, then the values of x(E) are bounded below by π/4 but include the
value π/2; so there are two new fixed points, corresponding to orbits that perform a
half loop, and we call these φ±

1 . Similarly, if 22 < λ < 32, then we also have orbits
that loop around 3/2 times since one of the orbits has x(E) = π/6; we call these φ±

2
and have five equilibria in total.

Continuing in this way provides us with a full description of the fixed points of
the system, illustrated schematically in Fig. 2.2.

Theorem 2.44. If n2 < λ ≤ (n+1)2, then there are 2n+1 equilibria of the Chafee–
Infante equation (2.16); φ±

0 and n pairs φ±
j , j = 1, . . . ,n. The function φ±

j has j zeros
in (0,π).

2.6 Pullback attractors with more general basins
of attraction

We have concentrated so far on sets that pullback attract fixed bounded subsets of
X . A consequence of this is that unless the pullback attractor is bounded in the past,
it does not lie in the class of sets that it is required to attract. This prevents one
deducing the uniqueness of pullback attractors if the requirement of minimality (not
needed in the autonomous case) is dropped.

Moreover, if we only know that a process is pullback dissipative and asymptot-
ically compact, then we can conclude only that a minimal closed attractor exists
(Theorem 2.20), a distinction that is important in infinite-dimensional phase spaces.
To guarantee the compactness of the pullback attractor, we have had to impose
strong pullback dissipativity, which also implies that the pullback attractor must
be bounded in the past (Theorem 2.23). But the pullback attractor can be compact
without being bounded in the past, as one can see from Theorem 2.12, or, with
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more generality, when the pullback attractor is associated to a random differential
equation (Sect. 1.7).

We have already remarked that pullback attraction of fixed bounded sets implies
the pullback attraction of time-dependent families that are bounded in the past. But
in fact it is common in applications that there is a pullback attractor that attracts more
general time-dependent families, and in this section we develop a theory that allows
for these more general basins of attraction. It would have been possible to develop all
the preceding theory in this more general setting, but the greater generality did not
seem to merit the resulting complication of the presentation. Nevertheless, within
this framework we can prove the uniqueness of attractors and their compactness
from the appropriate definitions of pullback dissipative and pullback asymptotic
compact processes (Theorem 2.50).

In what follows we will consider the collection M consisting of all time-
dependent families of non-empty subsets of X ,

D(·) = {D(t) : D(t)⊂ X , D(t) �=∅}t∈R.

If D(·) and D′(·) are elements of M , then we write D′(·)⊆D(·) to mean that D′(t)⊆
D(t) for all t ∈ R.

Definition 2.45. A subset D of M is called inclusion closed if whenever D(·) ∈ D
and D′(·) ∈ M is such that D′(·) ⊆ D(·), then D′(·) ∈ D . We call such a collection
a universe (of sets).

Note that because of the requirement that D must be inclusion closed, the
collection of all constant families D(·) where D(t) = D for all t ∈ R is not an
allowable universe of sets. Instead, the minimal universe that includes these sets
(‘the bounded universe’ DB) consists of all time-dependent families D(·) such that
for some bounded set D, D(t)⊂ D for every t ∈ R.

Another simple example is the collection of all families D(·) such that for some
λ > 0

sup
x∈D(t)

‖x‖eλ t → 0 as t →−∞.

In this direction a particularly useful universe is the collection of tempered sets T
consisting of families D(·) such that

t �→ sup
x∈D(t)

‖x‖

grows subexponentially as t → −∞ (see, among others, Flandoli and Schmalfuß
1996; Kloeden and Langa 2007; Marı́n-Rubio and Real 2009; Y. Wang et al. 2006).

We now present a number of definitions that parallel those of Sect. 1.4 but that
are now referred to a given universe D rather than only fixed bounded sets.

Definition 2.46. Let D be a universe of sets. A family of compact sets AD(·) is
said to be the pullback D-attractor for the process S(·, ·) if
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(i) AD(·) is invariant;
(ii) AD(·) pullback attracts every D(·) ∈ D ,

lim
s→−∞

dist(S(t,s)D(s),AD (t)) = 0 for all t ∈ R;

and
(iii) AD(·) is minimal: if there is another family of closed sets C(·), satisfying

property (ii), then AD(t)⊆C(t) for all t ∈R.

Different universes provide different ‘basins of attraction’ and will give rise to
different attractors, reflecting different aspects of the dynamics. Indeed, consider the
example

ẋ = f (t,x) x(τ) = x0 ∈ R,

where f : R2 → R is the function

f (t,x) =

⎧
⎪⎪⎨

⎪⎪⎩

−x, x ∈ [−e−t ,e−t ]

−x− x(x− e−t)et , e−t ≤ |x| ≤ 2e−t

−2x, |x| ≥ 2e−t .

If D contains D(·) = {[−e−t ,e−t ] : t ∈R}, then the pullback D-attractor AD(·) will
satisfy

[−e−t ,e−t ]⊂ AD(t)⊂ [−2e−t ,2e−t ].

On the other hand, if we only wish to attract bounded sets, then the pullback attractor
will be A (·), with A (t) = {0}, for all t ∈ R.

Within this framework it is also natural to try to find the largest possible universe
D for which a pullback D-attractor exists. If we return to the simple scalar equation

ẋ =−αx+ f (t)

(this was (1.10) above), recall that the explicit solution is

x(t) = e−α(t−s)x(s)+
∫ t

s
e−α(t−r) f (r)dr.

We remarked (essentially) that if

∫ 0

−∞
eαr f (r)dr

converges, then

x∗(t) =
∫ t

−∞
e−α(t−r) f (r)dr
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pullback attracts bounded sets of initial conditions. But it is clear that one can in fact
let x(s) grow as s →−∞, provided that eαsx(s)→ 0 as s →−∞, so one could take

{x(·) : eαsx(s)→ 0 as s →−∞}

as the universe D . [One can find similar results in more involved PDE examples:
see Garcı́a-Luengo et al. (2012a,b) and Łukaszewicz 2010, among others.]

Conditions for the existence of D-attractors closely parallel those for pullback
attractors for bounded sets: the following definitions are unsurprising.

Definition 2.47. Let X be a metric space, S(·, ·) a process on X , and D a universe
of sets in X . Given D(·) ∈ D , the pullback ω-limit of D(·) is defined as

ω(D(·), t) :=
⋂

T≤t

⋃

s≤T

S(t,s)D(s).

Definition 2.48. Let X be a metric space, S(·, ·) a process on X , and D a universe
of sets in X . The process S(·, ·) is said to be pullback D-asymptotically compact
if, for each D(·) ∈ D and t ∈ R, for all sequences {sk} ≤ t with sk → −∞ as k →
∞ and {xk} ∈ X with xk ∈ D(sk) for all k ∈ N, then {S(t,sk)xk} has a convergent
subsequence.

The previous existence theorems for pullback attractors can now be written with
respect to a universe D . We give two general results that are the analogues of
Theorems 2.20 and 2.23 (see Caraballo et al. 2006a).

For the existence theorem we will need the following generalisation of
Lemma 2.10; we omit the proof since it follows line by line that of Lemma 2.10
with minimal changes.

Lemma 2.49. Let D be a universe of sets and S(·, ·) a pullback D-asymptotically
compact process. Then for any B(·) ∈ D , ω(B(·), t) is non-empty, compact, and
invariant and pullback attracts B(·) at time t.

The following theorem contains Theorem 2.23 as a particular case if we take D to
be the bounded universe DB (the minimal universe containing all time-independent
bounded sets).

Theorem 2.50. Let D be a universe in X and S(·, ·) a process. Suppose that S(·, ·)
is pullback D-asymptotically compact and that there exists a B(·)∈D that pullback
attracts all families in D . Then ω(B(·)) ∈ D is the unique pullback D-attractor for
S(·, ·) and is also the maximal invariant family in D .

Proof. First we show that ω(B(·), t) pullback attracts every D(·) ∈ D at time t.
Indeed, it is immediate from the definition of ω(D(·), t) and the fact that B(t)
pullback attracts D(·) at time t that ω(D(·), t) ⊆ B(t). It then follows from the
invariance of ω(D(·), ·) and the fact that ω(B(·), t) pullback attracts B(·) at time
t that ω(D(·), t)⊆ ω(B(·), t).
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The minimality is a straightforward consequence of the fact that ω(B(·), t)⊂B(t)
(which implies in particular that ω(B(·), ·) ∈ D) and the invariance of the family
ω(B(·), ·). The maximality follows since for any invariant family C(·) ∈ D ,

lim
s→−∞

dist(S(t,s)C(s),A (t)) = dist(C(t),A (t)) = 0,

so that C(t) ⊆ A (t) for all t ∈ R, and we also obtain the uniqueness of the family
A (·) in the basin D . �	

If we suppose that DB ⊂ D (so that any bounded set D ⊂ X is included in
the universe D), then there is a straightforward relationship between the pullback
attractor for bounded sets, A (·), and the pullback D-attractor, AD(·). Indeed,
thanks to the minimality of A (·),

A (t)⊆ AD(t) for all t ∈ R.

On the other hand, suppose that AD(·) is bounded in the past. In this case, AD(·) is
attracted to A (·), and since it is invariant, it follows that

AD(t)⊆ A (t) for all t ∈ R.

We therefore have the following result (Marı́n-Rubio and Real 2009):

Lemma 2.51. Suppose that D is a universe that contains every bounded subset of
X and that AD(·) is bounded in the past. Then AD(·) = A (·), where A (·) is the
pullback attractor for bounded subsets of X.

Notes

The development of this theory can be found in many papers. The first results on the
existence of pullback attractors can be found in the appendix of the book by Vishik
(1992) and in the paper by Chepyzhov and Vishik (1994), there termed ‘kernel
sections’, and in the paper on random attractors by Crauel et al. (1997). The last
of these provides the first general results on pullback ω-limit sets and the existence
of attractors along the lines of our Theorem 2.12.

The existence result for asymptotically compact processes (Theorem 2.23) comes
from Caraballo et al. (2006a) (written there for a general basin of attraction) and
was generalised further in Caraballo et al. (2010a). An interesting application of
this theoretical result is to treat non-autonomous PDEs in unbounded domains, as in
Caraballo et al. (2006a), Marı́n-Rubio and Real (2007), and B. Wang (2009), or to
the case of non-autonomous hyperbolic PDEs, as in Caraballo et al. (2010b) and Y.
Wang (2008). Theorems 2.25 and 2.27 come from Y. Wang et al. (2006), where the
flattening property (a coinage of Kloeden and Langa 2007) is called ‘condition (C)’,
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following the terminology introduced in the paper of Ma et al. (2002), which treated
the autonomous case. The results in Sect. 2.5 related to pullback point dissipativity
all come from Caraballo et al. (2010a,b).

Some general works on bifurcations for non-autonomous differential equations
using pullback attraction have appeared in Kloeden and Siegmund (2005), Ras-
mussen (2007c), and Langa et al. (2002, 2006).

The results of our Sect. 2.6 on basins of attraction are based on the work of
Marı́n-Rubio and Real (2009). Referring attraction to a universe of sets is a natural
technique when dealing with attractors for random dynamical systems, and it was
used by Crauel and Flandoli (1994) and Flandoli and Schmalfuß (1996); in this
context, a particularly useful universe is the collection of tempered sets T consisting
of families {D(ω)}ω∈Ω such that

t �→ sup
x∈D(θt ω)

‖x‖

grows subexponentially as t →−∞ (see Arnold 1998; Flandoli and Schmalfuß 1996;
Liu 2007, among others). An alternative approach, in which the phase space is
allowed to depend as time, is adopted by Di Plinio et al. (2011, 2012).

Finally, other time-dependent subsets of the phase space that are pullback
attracting have been also introduced in the literature. For instance, exponential
attractors (Langa et al. 2010a; Efendiev et al. 2005; Czaja and Efendiev 2011;
Carvalho and Sonner 2012) and inertial manifolds (Koksch and Siegmund 2002;
Z. Wang et al. 1998) have been generalised to treat non-autonomous problems.
The theory has also been extended to treat multivalued processes, i.e. those coming
from non-autonomous differential equations that are set-valued or for which the
uniqueness of solutions is unknown (Caraballo et al. 2003; Caraballo et al. 2005).
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