Chapter 2
Speech Processing Background

In this chapter, we review some of the building blocks of speech processing systems.
We then discuss the specifics of speaker verification, speaker identification, and
speech recognition. We will reuse these constructions when designing privacy-
preserving algorithms for these tasks in the reminder of the thesis.

Almost all speech processing techniques follow a two-step process of signal
parameterization followed by classification. This is shown in Fig.2.1.

2.1 Tools and Techniques

2.1.1 Signal Parameterization

Signal parameterization is a key step in any speech processing task. As the audio
sample in the original form is not suitable for statistical modeling, we represent it
using features.

The most commonly used parametrization for speech is Mel-frequency cepstral
coefficients (MFCC) (Davis and Mermelstein 1980). In this representation, we seg-
ment the speech sample into 25 ms windows, and take the Fourier transform of each
window. This is followed by de-correlating the spectrum using a cosine transform,
then taking the most significant coefficients.

If x is a frame vector of the speech samples, F is the Fourier transform in matrix
form, M is the set of Mel filters represented as a matrix, and D is a DCT matrix,
MFCC feature vectors can be computed as

MFCC(x) = Dlog(M((Fx) - conjugate(Fx))).
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Fig. 2.1 Work flow of a speech processing system

2.1.2 Gaussian Mixture Models

Gaussian mixture models (GMMs) are commonly used generative models for den-
sity estimation in speech and language processing. The probability of the model
generating an example is given by a mixture of Gaussian distributions (Fig.2.2).

A GMM A comprises of M multivariate Gaussians each with a mean and
covariance matrix. If the mean vector and covariance matrix of the jth Gaussian
are respectively u; and X, for an observation x, we have

P(x|0) =D wih (uj. Z)),
j

where w; are the mixture coefficients that sum to one. The above mentioned
parameters can be computed using the expectation-maximization (EM) algorithm.

2.1.3 Hidden Markov Models

A hidden Markov model (HMM) (Fig.2.3), can be thought of as an example of a
Markov model in which the state is not directly visible but the output of each state
can be observed. The outputs are also referred to as observations. Since observations
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Fig. 2.2 An example of a GMM with three Gaussian components
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Fig. 2.3 An example of a 5-state HMM
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depend on the hidden state, an observation reveals information about the underlying

state.

Each HMM is defined as a triple M = (A, B, IT), in which

e A = (a;;) is the state transition matrix. Thus, a;; = Pr{g;+1 = Sjlg; = Si}, 1 <

i, j < N, where {51, S, ..

., Sy} is the set of states and g, is the state at time 7.

e B = (bj(vy)) is the matrix containing the probabilities of the observations. Thus,
bj(vp) =Pr{x, = wlg, = S;},1 < j<N,1 <k <M, where v, € V which is
the set of observation symbols, and x; is the observation at time ¢.
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e [1 = (my, m, ..., wy) is the initial state probability vector, that is, m; = Pr{q; =
Sit,i=1,2,...,N.

Depending on the set of observation symbols, we can classify HMMs into those
with discrete outputs and those with continuous outputs. In speech processing appli-
cations, we consider HMMs with continuous outputs where each of the observation
probabilities of each state is modeled using a GMM. Such a model is typically used
to model the sequential audio data frames representing the utterance of one sound
unit, such as a phoneme or a word.

For a given sequence of observations Xy, X3, ..., Xy andanHMM A = (A, B, I),
one problem of interest is to efficiently compute the probability P (X1, X2, ..., XT|A).
A dynamic programming solution to this problem is the forward algorithm.

2.2 Speaker Identification and Verification

In speaker verification, a system tries to ascertain if a user is who he or she claims
to be. Speaker verification systems can be text dependent, where the speaker utters
a specific pass phrase and the system verifies it by comparing the utterance with
the version recorded initially by the user. Alternatively, speaker verification can
be text independent, where the speaker is allowed to say anything and the system
only determines if the given voice sample is close to the speaker’s voice. Speaker
identification is a related problem in which we identify if a speech sample is spoken
by any one of the speakers from our pre-defined set of speakers. The techniques
employed in the two problems are very similar, enrollment data from each of the
speakers are used to build statistical or discriminative models for the speaker which
are employed to recognize the class of a new audio recording.

2.2.1 Modeling Speech

We discuss some of the modeling aspects of speaker verification and identification
below. Both speaker identification and verification systems are composed of two
distinct phases, a training phase and a test phase. The training phase consists of
extracting parameters from the speech signal to obtain features and using them to
train a statistical model. We typically use MFCC features of the audio data instead
of the original samples as they are known to provide better accuracy for speech
classification.

Given a speech sample y and a hypothesized speaker s, the speaker verification
task can be formulated as determining if y was produced by S. In the speaker identifi-
cation task, we have a pre-defined set of hypothesized speakers S = {So, S1, ..., Sk}
and we are trying to identify which speaker s € S would have spoken the speech
sample y. Speaker Sy represents the none of the above case where the speech sample
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does not match any of the other K speakers. In this discussion, we consider the
single-speaker case where y is assumed to have spoken by only one speaker, please
refer to Dunn et al. (2000) for work on detection from multi-speaker speech.

Speaker identification is simply finding the speaker s* having the highest proba-
bility of generating the speech sample.

s* = argmax P(y|s).
ses

Speaker verification on the other hand can be modeled as the following hypothesis
test:

Hy: y is spoken by the speaker s

Hi: y is not spoken by the speaker s

We use a likelihood ratio test (LRT) to decide between the two hypothesis.

P(v|H > 0 accept Hy,
0l 0)[ o

P(ylH1) | <6 accept Hy,
where 0 is the decision threshold. The main problem in speaker identification and
verification is effectively modeling the probabilities P (y|s) and P(y|Hy).

Modeling for a given speaker s and the hypothesis Hy is well defined and can be
done using training data for that speaker. On the other hand the alternative hypothesis
H, is open-ended as it represents the entire space of possible speakers except s.
There are exactly the same issues with modeling the “none of the above” speaker S
in speaker identification. The main approach for modeling the alternative hypothesis
is by collecting speech samples from several speakers and training a single model
called the universal background model (UBM) (Carey et al. 1991; Reynolds 1997).
One benefit of this approach in speaker verification is that a single UBM can be used
as the alternate hypothesis for all speakers. There has been work on selection and
composition of the right kind of speakers used to train the UBM and also to use
multiple background models tailored for a specific set of speakers (Matsui and Furui
1995; Rosenberg and Parthasarathy 1996; Heck and Weintraub 1997).

Selection of the right kind of probability model is a very important step in the
implementation of any speech processing task and is closely dependent on the features
used and other application details. For text-independent speaker identification and
verification, GMMs have been used very successfully in the past. For text-dependent
tasks, the additional temporal knowledge can be integrated by using a HMM, but
the use of such complex models have not been shown to provide any significant
advantage over using GMMs (Bimbot et al. 2004).

For a GMM @ with M mixture components, the likelihood function density for
a D-dimensional feature vector X is given by

M
P(x|®) =D wi Pi(x),
i=1
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where w; are the mixture components and P; (x) is the multivariate Gaussian density
parameterized by mean p; and covariance ;. Given a collection of vectors x from the
training data, the GMM parameters are estimated using expectation-maximization
(EM) algorithm.

For recognition, we assume the feature vectors of a speech sample to be indepen-
dent. The model probabilities are scaled by the number of feature vectors to normalize
for the length of the sample. The log-likelihood of a model @ for a sequence of feature
vectors X = {x1,...,xr}is given by

T T
1 1
log P(X|®) = ?logHP(xtVD) == 2 log P(x;|®).

t=1 =1

Basic speaker verification and identification systems use a GMM classifier model
trained over the voice of the speaker. In case of speaker verification, we train a binary
GMM classifier using the audio samples of the speaker as one class and a universal
background model (UBM) as another class (Campbell 2002). The UBM is trained
over the combined speech data of all other users. Due to the sensitive nature of their
use in authentication systems, speaker verification classifiers need to be robust to
false positives. In case of doubt about the authenticity of a user, the system should
choose to reject. In case of speaker identification, we also use the UBM to categorize
a speech sample as not being spoken by anyone from the set of speakers.

In practice, we need a lot of data from one speaker to train an accurate speaker
classification model and such data is difficult to acquire. Towards this, Reynolds
et al. (2000) proposed techniques for maximum a posteriori adaptation to derive
speaker models from the UBM. These adaptation techniques have been extended
by constructing supervectors consisting of concatenated means of the mixture com-
ponents (Kenny and Dumouchel 2004). The supervector formulation has also been
used with support vector machine (SVM) classification methods. Other approaches
for representing speech samples with noise robustness include factor analysis (Dehak
et al. 2011). These methods can be incorporated in our privacy-preserving speaker
verification framework.

2.2.2 Model Adaptation

In the above discussion, we considered GMM as a representation of speaker models.
In practice, however, we have limited quantity of speech data from individual speak-
ers. Itis empirically observed that GMMs obtained from adapting the UBM to speaker
data from individual speakers significantly outperform the GMMs trained directly
on the speaker data (Bimbot et al. 2004; Reynolds 1997). We present the algorithm
for maximum a posteriori (MAP) adaptation of the UBM.

The MAP adaptation procedure consists of a sample estimate of the speaker
model parameters such as the mixture weights and the means, followed by their
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interpolation with the UBM. Given set of enrollment speech data frames x1, .. ., x7,
we first compute the a posteriori probabilities of the individual Gaussians in the
UBM Ay = {wiU , /LiU , EiU}. For the ith mixture component of the UBM,

wl A (e w5

P(i|x;) = .
oWl sl =)

(2.2)

Similar to the maximization step of EM, the a posteriori probabilities are then used
to compute new weights, mean, and second moment parameter estimates.

1 .
W= D Plil),
t
;o Z, P (i|x;)x;

M= s Pl
;X Pllx)xx]
S TG 2

Finally, the parameters of the adapted model A; = {Ww;, /1], b3 *} are given by a convex
combination of these new parameter estimates and the UBM parameters as follows.

W= w4+ (1 —a)w?,
55 =S+ (1 —ap) [2}] n M,UM,.UT] —asasT (2.4)

The adaptation coefficients o; control the amount of contribution of the enrollment
data relative to the UBM.

2.2.3 Supervectors with LSH

Campbell et al. (2006) extend the adapted GMM algorithm by constructing a super-
vector (SV) for each speech sample. The supervector is obtained by performing
maximum a posteriori (MAP) adaptation of the UBM over a single speech sam-
ple and concatenating the means of the adapted model. Given the adapted model
As = (W], 47, ZA‘I:‘} with M-mixture components, the supervector sv is given by
30 AS - 1)

This supervector is then used as a feature vector instead of the original frame
vectors of the speech sample. The verification is performed using a binary support
vector machine (SVM) classifier for each user trained on supervectors obtained from
enrollment utterances as instances labeled according to one class and impostor data
as instances labeled according to the opposite class. As the classes are usually not
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Fig. 2.4 LSH maps similar points to the same bucket

separable in the original space, (Campbell et al. 2006) also use a kernel mapping
that is shown to achieve higher accuracy. Instead of using SVMs with kernels, we
use k-nearest neighbors trained on supervectors as our classification algorithm. Our
motivation for this are, firstly, k-nearest neighbors also perform classification with
non-linear decision boundaries and are shown to achieve accuracy comparable to
SVMs with kernels (Mariéthoz et al. 2009). Secondly, by using the LSH transfor-
mations we discuss below, we reduce the k-nearest neighbors computation to string
comparison, which can be easily done with privacy without requiring an interactive
protocol.

Locality Sensitive Hashing

Locality sensitive hashing (LSH) (Indyk and Motwani 1998) is a widely used
technique for performing efficient approximate nearest-neighbor search. An LSH
function L(-) proceeds by applying a random transformation to a data vector x by
projecting it to a vector L(x) in a lower dimensional space, which we refer to as the
LSH key or bucket. A set of data points that map to the same key are considered as
approximate nearest neighbors (Fig.2.4).

As a single LSH function does not group the data points into fine-grained clusters,
we use a hash key obtained by concatenating the output of kK LSH functions. This
k-bit LSH function L(x) = L(x) - - - L (x) maps a d-dimensional vector into a k-bit
string. Additionally, we use m different LSH keys that are computed over the same
input to achieve better recall. Two data vectors x and y are said to be neighbors if at
least one of their keys, each of length k, matches exactly. One of the main advantages
of using LSH is its efficiency: by precomputing the keys, the approximate nearest
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neighbor search can be done in time sub-linear to the number of instances in the
dataset.

A family of LSH functions is defined for a particular distance metric. A hash func-
tion from this family has the property that data points, that are close to each other
as defined by the distance metric, are mapped to the same key with high probability.
There exist LSH constructions for a variety of distance metrics, including arbitrary
kernels (Kulis and Grauman 2009), but we mainly consider LSH for Euclidean dis-
tance (E2LSH) (Datar et al. 2004) and cosine distance (Charikar 2002) as the LSH
functions for these constructions are simply random vectors. As the LSH functions
are data independent, it is possible to distribute them to multiple parties without the
loss of privacy.

The LSH construction for Euclidean distance with £ random vectors transforms a
d-dimensional vector into a vector of k integers, each of which is a number between
0 and 255. The LSH construction for cosine distance with k random vectors similarly
transforms the given data vector into a binary string of length k.

2.2.4 Reconstructing Data from LSH Keys

Due to the locality sensitive property, each LSH key provides information about
the data point. We consider reconstructing the data point from LSH keys for cosine
distance, but our analysis would hold for other distance metrics. A LSH function
for cosine and Euclidean distances producing a k bit key is based on k random
hyperplanes {ry, ..., rr}. Given a data point, we project it using each of the k random
hyperplanes and determine the key by the side on which the data point lies.

1 ifrlx >0,
Li(x)= 7
0 ifrix<0.

A k bit LSH key provides k bits of entropy. Computing m LSH keys over the same
data point reveals mk bits of information.

An LSH key is defined as the sector between two hyperplanes, this is because
two vectors x and y lying in this space would have little angular distance 0 (x, y),
that corresponds to similarity in terms of cosine distance. By observing multiple keys
computed using different LSH functions, we can further localize the data point by the
space between any two hyperplanes, which may be from different LSH functions.
We show an example of 2-dimensional LSH in Fig.2.5, application of one LSH
function localizes the data point in a wider space, but application of two LSH function
further localizes the space between a hyperplane of the first and the second LSH
function. As we mentioned in the analysis above, the degree of localization depends
on the size of the LSH key, i.e., the number of hyperplanes, and the number of LSH
keys. By observing a large number of LSH keys, we can localize a point to lie on a
hyperplane.
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(@) (b)

Fig. 2.5 Application of one and two LSH functions. a One LSH function (solid lines). b Two LSH
functions (solid and dashed lines)

As we shall see in later chapters, the information revealed about the data point
from the LSH keys causes a problem with respect to privacy. We satisfy the privacy
constraints by obfuscating the LSH key. A simple way of doing that is by applying
a cryptographic hash function H[-]. In this way, we are not able to identify the
hyperplanes that localize the data point and use information from multiple LSH keys
to reconstruct the data point. We are, however, able to compare if two data points fall
in the same localized region, by comparing their hashed keys.

2.3 Speech Recognition

Speech recognition is a type of pattern recognition problem, where the input is a
stream of sampled and digitized speech data and the desired output is the sequence
of words that were spoken. The pattern matching involves combining acoustic and
language models to evaluate features which capture the spectral characteristics of
the incoming speech signal. Most modern speech recognition systems use HMMs as
the underlying model.

We view a speech signal as a sequence of piecewise stationary signals and an
HMM forms a natural representation to output such a sequence of frames. We view
the HMM that models the process underlying the observations as going through
a number of states, in case of speech, the process can be thought of as the vocal
tract of the speaker. We model each state of the HMM using a Gaussian mixture
model (GMM) and correspondingly we can calculate the likelihood for an observed
frame being generated by that model. The parameters of the HMM are trained over
the labeled speech data using the Baum-Welch algorithm. We can use an HMM to
model a phoneme which is the smallest segmental unit of sound which can provide
meaningful distinction between two utterances. Alternatively, we can also use an
HMM to model a complete word by itself or by concatenating the HMMs modeling
the phonemes occurring in the word.
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Fig. 2.6 A trellis showing all possible paths of an HMM while recognizing a sequence of frames

A useful way of visualizing speech recognition of an isolated word using an HMM
is by atrellis shown in Fig. 2.6. Every edge in the graph represents a valid transition in
the HMM over a single time step and every node represents the event of a particular
observation frame being generated from a particular state. The probability of an
HMM generating a complete sequence of frames can be efficiently computed using
the forward algorithm. Similarly, the state sequence having the maximum probability
for an observation sequence can be found using the Viterbi algorithm. In order to
perform isolated word recognition, we train an HMM for each word in the dictionary
as a template. Given a new utterance, we match it to each of the HMMs and choose
the one with the highest probability as the recognized word.
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