Chapter 2
Basic Continuum Kinematics

The theme of this chapter was stated with exuberance and in an idealistic deterministic
extreme by Marquis Pierre-Simon de Laplace (1759-1827): “Thus, we must con-
sider the present state of the universe as the effect of its previous state and as the
cause of those states to follow. An intelligent being which, for a given point in time,
knows all the forces acting upon the universe and the positions of the objects of
which it is composed, supplied with facilities large enough to submit these data to
numerical analysis, would include in the same formula the movements of the largest
bodies of the universe and those of the lightest atom. Nothing would be uncertain for
it, and the past and future would be known to it.”!

2.1 The Deformable Material Model, the Continuum

In the deformable material model all types of motion are permitted, but the
deformational motions are usually the major concern. Consider the image O of an
object in Euclidean space. The object is in a configuration O(0) at # = 0 and in a
configuration O(¢) at time ¢ (Fig. 2.1). The mathematical representation of the
motion of a three-dimensional deformable continuum gives a complete history of
the motion of each point P on the object O(0), P C O(0); in words, P C O(0)
means all points P contained in (C) the image of the object, O, at ¢t = 0. In order to
identify each point P in the object O(0) and to follow the movement of that point in
subsequent configurations of the object O(f), each point on an object is given a
reference location in a particular coordinate system, called the reference coordinate
system. The selection of the reference configuration is the choice of the modeler;
here the reference configuration is taken as the configuration of the object at time
t = 0. To distinguish between the reference location of a point on an object and a
location of the same point at a later time, the terminology of “particle” and “place”
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Configuration at t = 0

o)

Configuration at time t >
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Fig. 2.1 Representation of the motion of an object in Euclidean 2D space

(X1, X, X3)
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Fig. 2.2 Details of the representation in Euclidean 2D space

of a particle is introduced. Each point P C O(0) in the continuum model of
the object is labeled by its position in the reference configuration (Fig. 2.2).
This procedure assigns a location to each point in the object and such points are
called particles. A position vector of a point in a given coordinate system is a vector
from the origin of coordinates to that point. In this case the reference configuration
is a three-dimensional Cartesian coordinate system with base vectors e,, « = I, II,
III, and coordinates X,; the position of the particle is described by the vector

X =X,e,.

As a simplifying convention, instead of saying the vector X describes the
position of a particle, we define it to be the particle. Thus the notation X has
replaced the notation P and one can speak of all X C O(0) as a complete represen-
tation of the object in the reference configuration.
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If the motion of one particle X of an object can be represented, then the motion
of all the particles of the object, X C 0(0), can be represented. A second coordinate
system with axes x;, i = 1, 2, 3, and base vectors e;, i = 1, 2, 3, is introduced to
represent the present position of the object O(¢); this also represents the present
positions of the particles. The triplet (x;, x,, x3), denoted in the shorthand direct
notation by X, represents the place at time ¢ of the particle X. The motion of the
particle X is then given by

x1 = 1 (Xe, X, X, 1), X2 = (X, X, Xun, ), x3 = 13 = (X1, Xu, X, 1)
@2.1)

which is a set of three scalar-valued functions whose arguments are the particle X
and time ¢ and whose values are the components of the place x at time ¢ of the
particle X. Since X can be any particle in the object, X C O(0), the motion (2.1)
describes the motion of the entire object x C O(¢) and (2.1) is thus referred to as the
motion of the object O. In the direct shorthand or vector notation (2.1) is written

x=y(X, 1) forall X C 0(0). (2.2)

This is called the material description of motion because the material particles X
are the independent variables. Generally the form of the motion, (2.1) or (2.2), is
unknown in a problem, and the prime kinematic assumption for all continuum
models is that such a description of the motion of an object is possible.

However, if the motion is known, then all the kinematic variables of interest
concerning the motion of the object can be calculated from it; this includes
velocities, accelerations, displacements, strains, rates of deformation, etc. The
present, past, and future configurations of the object are all known. The philosophi-
cal concept embedded in the representation (2.2) of a motion is that of determinism.
The determinism of the eighteenth century in physical theory was modified by
humbler notions of “uncertainty” in the nineteenth century and by the discovery of
extreme sensitivity to starting or initial conditions known by the misnomer “chaos”
in the twentieth century. The quote of the Marquis Pierre-Simon de Laplace
(1759-1827) at the beginning of the chapter captures the idea of determinism
underlying the representation (2.2).

A translational rigid object motion is a special case of (2.2) represented by,

x=X+h(z) forall X C 0(0), (2.3)

where h(?) is a time-dependent vector. A rotational rigid object motion is a special
case of (2.2) represented by

x=Q(X, Q(NQr)" =1 forall X c 0(0), (2.4)

where Q(?) is a time-dependent orthogonal transformation. It follows that a general
rigid object motion is a special case of (2.2) represented by
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x=Q(NX+h(r), Q)Q(NT =1 forall X c 0(0). (2.5)

A motion of the form (2.2) is said to be a planar motion if the particles always
remain in the same plane. In this case (2.2) becomes

x1 = (XX, 1), x2 = X, Xu,t),x = X (2.6)

Another subset of the motion is a deformation of an object from one configura-
tion to another, say from the configuration at t = 0 to the configuration at t = #*. In
this case the motion (2.2) becomes a deformation

x =¥(X) forall X C 0(0), 2.7)
where
Y(X)=y(X, t) forall X C 0(0). (2.8)

A 3D motion picture or 3D video of the motion of an object may be represented
by a subset of the motion (2.2) because a discrete number of images (frames) per
second are employed,

x=y(X, n/{) forall XCO0O(0),n=0,1,2,..., (2.9)

where { is the number of images (frames) per second.
Example 2.1.1
Consider the special case of a planar motion given by

X1 = A(I)XI -+ C(Z)XH + E(f), Xy = D([)XI + B(I)XH + F(l), X3 = X1117
(2.10)

where A(t), B(t), C(t), D(t), E(t), F(t) are arbitrary functions of time. Further
specialize this motion by the selections

A(t)=1+t, C(t)=t, E()=3t, B(t)=1+1t, D) =1t F() =2t
(2.11)

for A(z), B(t), C(t), D(t), E(t), and F(f). With these selections the motion becomes
X = (1 +I)X1+[X11+3t, Xy = X1 + (1 +I)X1[+2l, x3 = Xq1. (2.12)

The problem is to find the positions of the unit square whose corners are at the
material points (Xy, Xn) = (0, 0), (X1, Xn) = (1, 0), (X1, Xn) = (1, 1), (X1, Xn) =
0, 1) attimest = 1and r = 2.

Solution: For convenience let the spatial (x;, x, x3) and material (X1, X1, Xmr)
coordinate systems coincide and then consider the effect of the motion (2.12) on the
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Fig. 2.3 The movement of a square at = 0 due to the motion (2.12)

unit square whose corners are at the material points (X7, X1) = (0, 0), (X1, X)) =
(1,0), Xy, X)) = (1, D), (X, X)) = (0, 1). At = 0 the motion (2.12) specifies that
x; = X1, X, = Xy, and x3 = Xppp so that £ = 0 has been taken as the reference
configuration. The square at r = 0 is illustrated in Fig. 2.3. At r = 1 the motion
(2.12) specifies the places x of the particles X as follows:

X1 =2X1+Xn+3, x=Xi+2Xg+2, x3=Xm.

Thus the particles at the four corners of the unit square have the following new
places x at t = 1:

(37 2) :X(Oa 0)7 (57 3) :X(lv O)v (67 5) :X(L 1)7 (4’ 4) :/C(Oa 1)

A sketch of the deformed and translated unit square at ¢ = 1 is shown in Fig. 2.3.
At t = 2 the motion (2.12) specifies the places x of the particles X as follows:

X1 =3X1+2Xn+6, x2=2X1+3Xp+4, x3=Xm.

Thus the particles at the four corners of the unit square have the following new
places at t = 2:

(634) - X(Ov 0)7 (976) - X(lao)a (1179) = X(lﬂ 1); (837) = X(Oa 1)

A sketch of the deformed and translated unit square at ¢ = 2 is shown in Fig. 2.3.



30 2 Basic Continuum Kinematics

—-

DEFORMATION
OR MOTION

Fig. 2.4 The experimental measurement of a planar homogeneous motion. The reference frame is
the laboratory reference frame. The three initial positions (X", X®, X®) of the markers are
indicated as well as their positions xP, x@, x®) at time ¢. In many experiments the markers are
attached to a specimen of soft tissue that is undergoing a planar homogeneous motion in order to
quantify the motion

Example 2.1.2

An experimental technique in widespread use in the measurement of the planar
homogeneous motion of a deformable object is to place three markers (dots or
beads) in triangular pattern (so that the markers are not collinear) on the deformable
object before a motion. The initial locations of the three markers are recorded

relative to a fixed laboratory frame of reference as (XI(I),XI(ID), (XI(2>,XI(I2 )), and (XI(%),
XI(I3 )), Fig. 2.4. If the process is automated a camera is used to follow the motion of
the three markers with time and to digitize the data in real time. The instantaneous
locations of the three markers at a time ¢ is recorded relative to a fixed laboratory
frame of reference as (x(ll)(t), x(zl)(t)), ()cg2> (1), xgz)(t)) and (x§3)(t), x?)(t)), Fig. 2.4.
From these data the experimentalist calculates the time-dependent coefficients A(f),
B(1), C(1), D(1), E(t), and F(¢) of the homogeneous planar motion (2.10). Determine
the formulas used in the calculation of the time-dependent coefficients A(¢), B(?),
C(), D(0), E(1), and F(z) from the data (X\"), x\)), (x\?, x?), (I, x$), oV (1),
1 2 2 3 3
2 (0), @7 (1), 257 (1), and (47 (0, 7 (1))

Solution: The data on the motion of each marker provide two equations that may be
used for the determination of the time-dependent coefficients. Since there are three
markers, a total of six equations is obtained. Three markers are used because it is
known that six equations will be needed to solve the linear system of equations for
the six unknowns, A(), B(t), C(t), D(¢), E(t), and F(¢). Using the notation for the data
and the representation of the homogeneous planar motion (2.10), these six
equations are as follows:

1)

2)

+cxP +E@0, £V =pe)x" +B0OXY + F(r),
+cOX? +E@), P =D0x? +BOXP + F),
+ C(t)X( 4 E(r), xf)(t) = D(I)XI(3) + B(t)XI(I3> + F(1).

(1) = Ax|
A2 (1) = A(0x|
17 (1) = A)x;
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The solution to these six equations is

1 3) 2 3) (2
A1) = 11 Xl (’)_ )< (1) = X; ()+XI(I)X§>()+XII xl (f) I(I)x(l)([)
Do 1 2ol DIE 3ol N2
P“)—XQ§>—X9ﬂ)+x$ﬂ)+xpﬂ)—Xy§>

)

(t) 3) (1 (t) — (1> (2 )( ) +X(3) (2 )( 1) +X(1) (3>(I) —Xl(z)x(;)(t)

B(t)_
Qﬂ”-x§§> X@( +X?ﬂn+xmﬂ> xIx?
(1 2) (3 3) (1 3) (2
e = X0 X700 3707 (1) = X700 — X7 ) + X7 (0
2 1)v(3 2 2)v(3 3) (1 3)v(2 ’
XX X~ XA+ XX+ KA~ XX
1) _(C 2) (3 3 3) (2
Dy = X ) = X (1) — Xy 1)+ X7 1) + X3 0) — X7 )
Xw<m Xwﬂﬂ_xﬁg>+xﬁﬁ$+xmﬂw XD x?
1)(2) (3 1)y(2) (3
B — xUx@ 0 7y — xWxO 2 () — xWx 2,0

1
xUx® —xWx®) _ x@x 0 | xCIxG) 4 xGxh _ xG)y@
2)+-(3) (1 D+(3) (2 D+-(3) (1
XX (0 + x50 X (0 - xPx g (o)

+

32 2 2)+(1) (3
m&><m+%wﬁyo+%&”“m
XQ“>7XU¢37XJ¢U+XU ) 1 xOxM _ xBx@
XX (1) - xPxP A (1) + xxFE ()

+ 1 1 2 1 2 3 3 1 3 2)°
A A ) X

F(t) =

Example 2.1.3

Consider again the experimental technique described in Example 2.1.2, but in this
case a deformation rather than a motion, Fig. 2.4. Suppose that the initial locations
of the markers are recorded relative to the fixed laboratory frame of reference as
xW, xy = 0,0), x*, x?) = (1,0), and (x¥), X)) = (0, 1). The deformed
locations of the three markers relative t0 the same fixed laboratory frame of
reference are (xgl), x2 ) 1, 2), (x1 , x2 ) (2, 3.25), and (xg ), x2 ) (2.5,
3.75). From these data the constant coefficients A, B, C, D, E, and F of the
homogeneous planar deformation (2.10) are determined.

Solution: The solution for the motion coefficients A(¢), B(t), C(t), D(¢), E(t), and F(¢)
obtained in Example 2.1.2 may be used in the solution to this problem. One simply
assigns the time-dependent positions in the formulas for A(¢), B(¢), C(¢), D(¢), E(?),

and F(7) to be fixed rather than time dependent by setting (x<11>(t) xél)(t)) = (x(ll),
x(zl)), (x(lz) (t),x(22>(t)) = (x(12>,xé2)), and (x(13)(t),x§3>(t)) (x?),xé )) The coefficients
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are no longer functions of time so they are denoted by A, B, C, D, E, and F. They are

evaluated by substituting the initial and final locations of the set of particles, (X fl),

Xy') = 0.0, x7.x17) = (1,0). (. %) = (0. D, and ("x3") = (1,2, (x7
x(zz)) = (2,3.25), (x(13),x§3)) = (2.5, 3.75), respectively, into the last set of equations
in Example 2.1.2. The values obtained are A = 1, B = 1.75, C = 1.5, D = 1.25,
E =1, and F = 2 and they are obtained by substituting the values for the relevant
points given in the statement of the problem above into the last set of equations in
Example 2.1.2. The planar homogeneous deformation then has the representation

x1 =2X14+ 15X+ 1, x=125X;+ 175Xy + 2, x3 = X,

which is a particular case of (2.10) To double check this calculation one can check
to see if each marker is mapped correctly from its initial position to its final
position.

There are two coordinate systems with respect to which a gradient may be taken,
either the spatial coordinate system X, (x, x5, x3), or the reference material coordi-
nate system X, (X7, Xy, Xqrp). To distinguish between gradients with respect to these
two systems, the usual gradient symbol V will be used to indicate a gradient with
respect to the spatial coordinate system X, and the gradient symbol Vg with a
subscripted boldface O will indicate a gradient with respect to the material coordi-
nate system X. The (material) deformation gradient tensor F is defined by

F = [Vo® (X, )" forall X C 0(0). (2.13)
The (spatial) inverse deformation gradient tensor F~! is defined by
F'=[Voy;'(xs] forallxcO(r), (2.14)
where

X=y""(x, ) forallx C O(¢) (2.15)

is the inverse of the motion (2.2). The components of F and F~'are

8X 1 6X I 6X it 8x 1 8x2 8x 3

|: 8x,- :| 6)(2 (9)(2 axz -1 |:8X1:| aXH 8XH 8XH

F = = |22 2 2 andFl = = | =2 A an
8Xa 8X1 8XH aX[H Bx,- 8)(?1 a)Q 8x3
Ox; Ox3  Oxs OXm  OXm  OXm
LOX; O0Xy OXy | Ox;  Oxp  Oxz |

(2.16)
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respectively. Using the chain rule for partial derivatives it is easy to verify that F~
is indeed the inverse of F,

FF!=F'F=1. (2.17)

Recall that any motion can be decomposed into a sum of a translational,
rotational, and deformational motion. The deformation gradient tensors remove
the translational motion as may be easily seen because the translational motion is a
separate function of time (cf., e.g., 2.2) that must be independent of the particle X.
Thus only the rotational motion and the deformational motion determine F. If
F =1 there are no rotational or deformational motions. If F = Q(7), Q(#H)Q
(t)T = 1, it follows from (2.4) that the motion is purely rotational and there is no
deformational motion. The deformation gradient F is so named because it is a
measure of the deformational motion as long as F # Q(#). If F = Q(¢), then the
motion is rotational and we replace F by Q(?).

The determinant of the tensor of deformation gradients, J, is the Jacobian of the
transformation from x to X, thus

J=DetF =1/DetF! (2.18)
where it is required that
0<J <00 (2.19)

so that a finite continuum volume always remains a finite continuum volume.

If ¢ represents the position vector of the origin of the coordinate system used for
the configuration at time # relative to the origin of the coordinate system used for the
configuration at ¢ = 0, then the displacement vector u of the particle X is given by
(Fig. 2.2),

u=x—X+ec. (2.20)
The displacement vectors u for all the particles X C O(0) are given by
u(X,7) = x(X,t) — X +¢(r), X C0(0), (2.21)
or by
ux,t) =x— 7 '(x,1) +¢(t), xCO(r). (2.22)

Two gradients of the displacement field u may then be calculated, one with
respect to the spatial coordinate system x denoted by the usual gradient symbol V
and one with respect to the material coordinate system X denoted by the gradient
symbol V g, thus

VoouX,)]" =F(X,/) =1 and [Voux)]"=1-F'(x,1), (223)
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when (2.12) and (2.14) are employed. Often the base vectors of the coordinate
systems X and x are taken to coincide, in which case the position vector ¢ of the
origin of the x system relative to the X system is zero. The selection of the
coordinate system is always the prerogative of the modeler and such selections
are usually made to simplify the analysis of the resulting problem.

Example 2.1.4

Compute the deformation gradient and the inverse deformation gradient for the
motion given by (2.12). Then compute the Jacobian of the motion and both the
spatial and material gradients of the displacement vector.

Solution: The deformation gradients and the inverse deformation gradients for this
motion are obtained from (2.16) to (2.12), thus

14¢ t 0 1+t —t 0
1
F=| ¢+ 14t 0| and F!'= -t 14¢ 0 |,
142t
0 0 1 0 0 142t

a result that can be verified using FF~' = 1 or F'F = 1. It is then easy to show
that J = 1 + 2¢. It also follows from (2.22) that

110 110

t
Voou =1 1 0 md[V@MT:1+% 1 0
000 000

Problems

2.1.1. Sketch the shape and position of the unit square with corners at (0, 0), (1, 0),
(1, 1), and (0, 1) subjected to the motion in (2.10) for the seven special cases,
(a) through (g) below. The shape and position are to be sketched for each of
the indicated values of z.

(a) Translation. A(t) = 1,B(t) = 1, C(t) = 0,D(t) = 0, E(¢) = 2t, F(¢) = 2t
and values of t = 0, 1, 2.

(b) Uniaxial extension. A(t) = 1 + ¢t,B(t) = 1,C(¢t) = 0,D(¢t) = 0, E(¢) = 0,
F(t) = 0 and valuesof r = 0, 1, 2, 3.

(c) Biaxial extension. A(®) =1 +¢ B{) =1+ 2t, Ct) =0, D) =0, E
() =0,F@) = 0and values of t = 0, 1, 2.

(d) Simple shearing (R). A(¥) =1, B(t) =1, C(t) =t, D(t) = 0, E(¥) = 0,
F(t) = 0 and values of t = 0, 1, 2.

(e) Simple shearing (U). A(¥) =1, B(t) = 1, C(t) = 0, D(t) = ¢, E(t) = 0,
F(t) = 0 and values of t = 0, 1, 2.

(f) Rigid Rotation (cw). A(f) = cos (nt/2), B(t) = cos (nt/2), C(f) = sin(nt/
2), D(t) = —sin(nt/2), E(t) = 0, F(t) = 0 and values of t = 0, 1, 2, 3, 4.
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(g) Rigid rotation (ccw). A(t) = cos (nt/2), B(t) = cos(nt/2), C(f) = —sin(nt/
2), D(t) = sin(nt/2), E(t) = 0, F(t) = 0 and valuesof r = 0, 1, 2, 3, 4.

2.1.2. Sketch the shape and position of the square with corners at (—1, —1), (1, —1),
(1, 1), and (—1, 1) at times t = 0, 1, 2, 3, 4. The square is subjected to the
motion in (2.10) with the values of A(?), B(¢r), C(¢), D(¢), E(f), and F(¢) being
those given in 2.1(f), the rigid rotation (clockwise) motion.

2.1.3. For the six motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1
(a) through 2.1.1(f), compute the deformation gradient tensor F, its Jacobian
J, and its inverse F~'. Discuss briefly the significance of each of the tensors
computed. In particular, explain the form or value of the deformation
gradient tensor F in terms of the motion.

2.1.4. Using the planar homogeneous deformation (2.10), with the values of A, B,
C, D, E, and F calculated in Example 2.1.2, show that deformation (2.10)
predicts the final positions of the three markers when the initial marker
locations (X\", X)) = (0, 0), ®?, xP) = (1, 0), and (x¥, x{)) =
(0, 1) are substituted into it.

2.1.5. In Example 2.1.2 an experimental technique in widespread use in the mea-
surement of the planar homogeneous motion of the deformable object was
described and a system of equations was set and solved to determine the
time-dependent parameters appearing in the equations describing the planar
homogeneous motion. Consider the same problem when the problem is not
planar, but three-dimensional. How many markers are necessary in three
dimensions and how must the markers be arranged so that they provide the
information necessary to determine the time-dependent parameters
appearing in the equations describing the three-dimensional homogeneous
motion? Explain the process.

2.2 Rates of Change and the Spatial Representation
of Motion

The velocity v and acceleration a of a particle X are defined by

=

. 0%y
V=X =

- ) - 2 )
Ot IX fixed OF X fixed

(2.24)

where X is held fixed because it is the velocity or acceleration of that particular
particle that is being determined. The spatial description of motion (as opposed
to the material description of motion represented by (2.2)) is obtained by solving
(2.2) for X,



36 2 Basic Continuum Kinematics

X =y"'(x, ) forall X C O(0) (2.25)

and substituting the result into the first of the expressions (2.24) for the velocity;
thus v = x = 7(X, ¢) becomes

v=x= (" (x,1),1) = v(x,?) (2.26a)
or

v, 0) = v(r (%0, (%0, 25 (%, 1), 1), (2.26b)

which emphasizes that the time dependence of the spatial representation of velocity
is both explicit and implicit. This representation of the velocity with the places x as
independent variables is called the spatial representation of motion. A quantity is
said to be in the spatial representation if its independent variables are the places x
and not the particles X. In the material representation the independent variables
are the particles X; compare the material description of motion, (2.2), with (2.26).
The material time derivative is the time derivative following the material particle
X; it is denoted by a superposed dot or D/Dt and it is defined as the partial derivative
with respect to time with X held constant. The material time derivative is easy to
calculate in the material representation. It is more complicated to calculate in
the spatial representation. To determine the acceleration in the spatial representa-
tion we must calculate the material time rate of the spatial representation of velocity
(2.26). The notation D/Dt introduced above is illustrated using the definitions
of (2.24):

_Ov
Xfixed Of

Py

T

__Dv

=1 (2.27)
X fixed Dt

A formula for Dv/Dt is obtained by observing the explicit and implicit time
dependence of the spatial representation of velocity (2.26b) and noting that the time
derivative associated with the implicit dependencies may be obtained using the
chain rule, thus

Dv  Ov ov 0x; ov ov
Zr_Zv 4t = +—v;, (2.28)
Dt Ot fvea 0% Of|xfixea  Oflypixea OXi
a result that may be written more simply as
D 0
e 2 (2.29)
Dt Ot|y fixed
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The time rate computed by holding the places x fixed is called the local time rate.
In general, the material time rate is related to the local time rate by the following
operator expression that follows from (2.29),

D 0
s=ol  +vev, (230)

x fixed
where D/Dt is the material time rate of change, 0/0¢ is the local time rate of change
and v-V determines the convective change of the quantity.

The second order tensor formed by taking the spatial gradient of the velocity
field v = v(x, £) is called the tensor of velocity gradients and is denoted by L, thus

(O O On ]
8)61 8)62 8)(3
(9\/,' 8\)2 (9\72 aVQ
il . e e 2.31
[v © V] |:an:| (9x1 8)62 8x3 ( )
Ovs vz Ovs
_8X1 sz 8X3_

L is decomposed into a symmetric part D called the rate-of-deformation tensor, and
a skew symmetric part W called the spin tensor, thus

L=D+W, D=(1/2)(L+L"), W=(1/2)(L-L"). (2.32)

The three nonzero components of W can be formed into an axial vector (1/2)
(V x v) which represents the local rotational motion and is called the angular
velocity or one-half the vorticity.

The rate-of-deformation tensor D defined by the second of (2.32) has the
component representation

8v1 @4_% ovy Lo o3|
le 8)62 8x1 8)63 8){1
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The components of D along the diagonal are called normal rates of deformation
and the components off the diagonal are called shear rates of deformation. The
normal rates of deformation, D, D»,,, and D33, are measures of instantaneous time
rate of change of the material filament instantaneously coincident with the 1, 2, and
3 axes, respectively, and the shear rates of deformation, D53, D3, and D1,, are equal
to one-half the time rate of decrease in an originally right angle between material
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Fig. 2.5 An illustration for the geometric interpretation of the D, component of the rate-of-
deformation tensor D. A vector of infinitesimal length representing the present position of an
infinitesimal material filament coinciding with the x; at time # is denoted by dx;. The instantaneous
time rate of change of the material filament instantaneously coincident with dx, is dv; = Dy dx;.
The expression dv; = Dy,dx; shows dv; as a linear function of dx; at any point x and time ¢. Thus
the geometric interpretation of Dy = (dx; /dx ) is that it is the instantaneous time rate of change of
dx; at time ¢ relative to dx, at time ¢

filaments instantaneously situate upon the 2 and 3 axes, the 1 and 3 axes, and the 1
and 2 axes, respectively.

The rate-of-deformation tensor D represents instantaneous rates of change, that
is to say how much a quantity is changing compared to its present size. Let dx; be a
vector of infinitesimal length representing the present position of an infinitesimal
material filament coinciding with the x; at time ¢, Fig. 2.5. The instantaneous time
rate of change of the material filament instantaneously coincident with dx; is
dvy = Dq,dx;, a result that follows from the entry in the first column and first
row of (2.33). The expression dv; = D,dx, shows dv, as a linear function of dx; at
any point x and time #. Thus the geometric interpretation of D1; = (dX/dx;) is that it
is the instantaneous time rate of change of dx; at time ¢ relative to dx; at time t.
Similar geometric interpretations exist for D, and Dj;.

The geometric interpretation of the normal rate of shearing components Dy,
D,,, and D33 is easily extended to obtain a geometric interpretation of the trace of D
which is also the divergence of the velocity, tr D = V.v. If dv represents an
element of volume in the spatial coordinate system, dv = dx;dx,dx; (Fig. 2.6),
the material time rate of change of dv can be computed using the type of formula
developed in the previous paragraph; dx; = Dydx,, dx; = Dydx,, and dxz =
D33d)€3, thus

D
dv = Dr (dxidxadxs) = (D11 4+ D + D33)dxidxadxs = (tr D)dvy (2.34)

or, noting from the definition of D that
trD =Dy + Dy +D3;3 =V -v=divv (2.35)
it follows that

trD:V~V:ﬂ. (2.36)
dv
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Fig. 2.6 Illustration for the geometric interpretation of the trace of the rate-of-deformation tensor
D as the instantaneous time rate of change of volume. The material time rate of change of an
element of volume in the spatial coordinate system, dv = dx;dx,dx3, is shown to be dv = trDdv
= V - udv, thus the V-v or trD has the geometric interpretation as the instantaneous time rate of
change of material volume

Thus the Vv or trD have the geometric interpretation as the instantaneous time
rate of change of material volume. Another way of viewing this result is to say that
the divergence of the velocity field is the time rate of change of a material volume
relative to how large it is at the instant (2.35).

The off-diagonal components of the rate-of-deformation tensor, for example
D,, represent rates of shearing. D1, is equal to one-half the time rate of decrease
in an originally right angle between the filaments dx(1) and dx(2), Fig. 2.7. To see
this, note that the dot product of material filaments dx(1) and dx(2) axes may
be written as

dx(1) - dx(2) = |dx(1)[|dx(2)] cos 01,

where 0, is the angle between the two filaments. In the calculation of the material
time derivative of the dot product above, dx(1) - dx(2), we will employ the formula
dv; = dX; = Ljdx; that follows from (2.31). The material time derivative of both
sides of the equation above is then computed;

g (dx(1) - dx(2)) = dx(1) - dx(2) + dx(1) - dx(2)

= Lijdx;(1)dx»(2) + dx;(1)L;jdx;(2) = 2Ddx;(1)dx;(2)
= |dx(1)||dx(2)| cos 01> + [dx(1)||dx(2)| cos 012
— 015]dx(1)||dx(2)] sin 0},

and, since we are interested in the instant that 0,, = /2, it follows that
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Fig. 2.7 An illustration for the geometric interpretation of the rate of shearing strain component
D, of the rate-of-deformation tensor D. The heavy black lines represent two material filaments of
infinitesimal length that are instantaneously perpendicular. The thin black lines represent the same
two material filaments in the next instant. The instantaneous time rate of change of the angle
between the two material filaments, the rate at which the two filaments are coming together or

separating is 01. The geometric interpretation of D5 is that it is one half the instantaneous time of
decrease in an originally right angle between dx; and dx,, D1, = —012/2

2D;idxi(1)dx;(2) = —012]dx(1)] [dx(2)].

Finally, if we take dx(1) = dx;e; and dx(2) = dx,e; it may be concluded that

Dy = - %7
confirming that Dy, is equal to one-half the material time rate of decrease in an
originally right angle between dx; and dx,. The geometric interpretations of D3
and D,; are similar. These geometric interpretations of the components of D as the
instantaneous time rate of change of filaments, angles, and volume are the rationale
for calling D the rate of deformation tensor.

Example 2.2.1

Calculate the velocity and acceleration in the material representation of the motion
(2.12) of Example 2.1.1, then determine the spatial representation. Verify that the
acceleration computed in the spatial representation is the same as the acceleration
computed in the material representation. Calculate the tensor of velocity gradients
L, the rate of deformation tensor D, and the spin tensor W for this motion.

Solution: The velocity and acceleration for this motion are given by (2.24) as
X=Xi+Xn+3, H=Xi+Xp+2, =0, ¥=X=i=0.

In order to find the spatial representation for this motion we must invert the
system of equations (2.12) representing the motion, thus
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1
X;=—{(14+0x; —txy —# =3¢
1 1—|—2t{( +1)x1 — 1 1

1
X = 1+—2{ o+ (1400 +£ -2}, Xm=x

then, substituting these expressions into the previous equations for the velocities,
the spatial representation of this motion is obtained:

n=——{x+xn+3+1}, v=—"{x+x2+2—-1}, vi=0.

1 1
1+ 2t 1+ 2¢

It is known from the first calculation in this example that this motion is one of
zero acceleration, X; = X, = ¥3 = 0. This may be verified by calculating the
acceleration of the spatial representation of the motion above using the material

time derivative (2.29), thus

a*%Jr vy . 8\)1Jr ovy

o T oy P o

—_72{)(-1—)6-1-3-1—[}-1— L 1 {2(x1 +x2) +5} =0
(12?7 U2 (1220 ’
0 v, 0 0

i =2 v Sy T2 gy 2

ot Vox, Oxy v * O3
1 n 1
1+2t (1+421)

-2
m{xl+xz+2 }

5 {2(x1 +x) +5}=0.

The tensor of velocity gradients L for the motion (2.12) is obtained by
substituting the spatial representation for the motion obtained above into
(2.31); thus

1 1 10
L= 1 10
0 0O

1+ 2¢

The rate-of-deformation tensor D for this motion is equal to L. The spin tensor
W is zero for this motion.

Problems

2.2.1. For the first six motions of the form (2.10) given in Problem 2.1.1, namely
2.1.1(a) through 2.1.1(f), determine the velocity and acceleration in the
material (Lagrangian) representation, the velocity and acceleration in the
spatial (Eulerian) representation, and the three tensors L, D, and W. Discuss
briefly how these algebraic calculations relate to the geometry of the motion.
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2.2.2. The motion of a continuum is given by: x; = X;+ Xyt + Xmit?,
X =Xu + Xt + Xi?,  x3 = X + Xit + Xuf*.
(a) Find the inversion of this motion.
(b) Determine the velocity and the acceleration in the material

representation.

(c) Find the velocity in the spatial (Eulerian) representation for this motion.
(d) Find the three tensors L, D, and W for this motion.
(e) Find the tensor of deformation gradients F for this motion.

2.2.3. The motion of a continuum is given by:
x1 = X1+ Xn SiIl(TEl‘)7 xy =X — X1 sin(nt), x3 = X

(a) Determine the deformation gradient F of this deformation.

(b) Determine the instantaneous configuration image of the set of points
(XI)2 + (XH)2 = 1 in the reference configuration.

(c) Describe the geometry of the set of points X)? + Xy)? =1 in the
reference configuration and describe what happens to this set of points
in the motion of the continuum as time ¢ increases.

2.3 Infinitesimal Motions

The term infinitesimal motion is used to describe the case when the deformation,
including rotation, is small. This does not mean that the displacement vector is
small; one can have large displacements but small strain infinitesimal motions.
Large displacements associated with small strain infinitesimal motions occur in
very thin long rods. The criterion for infinitesimal motion is that the square of the
gradients of displacement be small compared to the gradients of displacement
themselves. Thus, for infinitesimal motions, the squares and products of the nine
quantities

Ouy Oy 0wy Duy Oy Oy Dusy Oz Oy (237)
le 78X2,3X3 ’8x1 78)6278)(3 ’8x1 78)(2’8)(3 ’

must be small compared to their own values. This means, for example, {Ou, /0x; }2
is required to be much smaller than Ou, /Ox;; each such square and product of these
nine quantities is so small that it may be neglected compared to the quantity itself.
Using this criterion of smallness, representations of the kinematics variables for
infinitesimal motions will be developed in this section.

If the motion is infinitesimal the deformation gradient tensor F must not deviate
significantly from the unit tensor 1, the magnitude of the deviation being restricted
by the criterion on the deformation gradients stated in the previous paragraph.
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The deformation gradient F may be expressed, using (2.22), in terms of [V o ® u]T,
which is a matrix of components [Ju;/0X,], as

F=1+[Voou]" (2.38)
Since

o 9 o 0
=——=—F 23
BX“ 6Xj 8X, 8x, 4 ( 9)

Vo=F'-V or

it follows from (2.38) and a result obtained in Appendix A, namely that the
transpose of a product of matrices is equal to the product of the transposed matrices
in reverse order, [AB]T = BTAT, that

F=1+[Vou - F. (2.40)

This result may be used as a recursion formula for F. In that role this formula for
F can be substituted into itself once,

F=1+[Vou' +[Veu' - [Veu' F (2.41)
and then again and again,

F=1+[Vou +Veu - [Veu +[Veu' - Veu'  [Veu
+ h.o.t.,
(2.42)

where h.o.t. stands for “higher order terms.” If the terms of second order according
to the criterion (2.37) are neglected, the F is approximated by

Fr1+[Vou' (2.43)
From (2.22) it is known that
F'l=1-[Vau, (2.44)
a formula that is accurate in the approximation because F-F~' = 1 when terms of
second order are neglected.
Two important conclusions may be made from this result. First, for infinitesimal
motions the difference between the use of material and spatial coordinates is

insignificant, thus X and x are equivalent as are the gradient operators Vo
and V. Concerning these operators note from (2.39) that

Vo@u=F".[V®u] (2.45)
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and, substituting for F using (2.42),
Vou=Veu+[Veul[Veu]
thus, to neglect terms of second order,
Vo®uxV®u. (2.46)

For infinitesimal motions, the movement of boundaries due to motion is
neglected because the small movement is equivalent to the difference in the use
of material and spatial coordinates, which is insignificant. Therefore in all the
following considerations of infinitesimal motions the coordinates x will be used
without reference to their material or spatial character, because the result is correct
independent of their character. The second important conclusion is that, for infini-
tesimal motions, F has the representation

F=1+[Vou(x). (2.47)

In the special case when the infinitesimal motion is a rigid object rotation,
F=Qand Q =1 + [V ® u]". The requirement that Q be orthogonal, Q™-Q =
QQ "T=1, QQ "=+ Veouhd+[Vouh'=1+[Vau"
+(Vou +(Veuw'(V ®u) =1, means that

(Vou' +Veou=0, (2.48)

since (V ® u)T~(V ® u) represents terms of the second order terms that are
neglected. Defining the symmetric and skew symmetric parts of V ® uasE and Y,

E=(1/2)(Veu' +Veu), Y=>1/2)((Veouw —=Veu), (249)

it is seen from (2.48) that E must be zero when the infinitesimal motion is a rigid
object rotation. It may also be seen that the orthogonal rotation Q characterizing the
infinitesimal rigid object rotation is given by

Q=1+Y, (2.50)

where Y, defined by (2.49), is skew symmetric, Y = —YT, and YY" is a second
order term, since it is a square of the coefficients (2.37) which are neglected
compared to the values of Y.

Returning to the total infinitesimal motion, the definitions (2.49) of E and Y may
be used to rewrite (2.42) as

F=1+E+Y. 2.51)

It has been established that F represents only the rotational and deformational
motion because the translational portion of the motion, being independent of the
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coordinates, was removed by spatial or material differentiation. It has also been
noted that the special case of F = 1 corresponds to no rotational and no deforma-
tional motion. Further it has been shown (2.50) that Y is associated with pure rigid
object rotation. This means that E must be the tensor representing the deformation.
This is indeed the case, as will be shown below. E is called the infinitesimal strain
tensor and Y is called the infinitesimal rotation tensor. The representation (2.51) for
the tensor of deformation gradients then demonstrates that, for infinitesimal
motions, F — 1 may be decomposed into the sum of two terms, E and Y, which
represent the deformational and rigid rotational characteristics of the infinitesimal
motion, respectively.

The strain tensor E, defined by the first of (2.49), has the component
representation

pOm O Ouy Ouy O ]
(“)xl Ox,  Ox; Ox3 Ox;

Ou;  Ou; 1|0u; Ou Ouy Ouy  Ous

') —_ | =4 = 2—= . 2.52
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The components of E along the diagonal are called normal strains and the
components off the diagonal are called shear strains. The normal strains, E1, Eo,
and FE53, are measures of change in length per unit length along the 1, 2 and 3 axes,
respectively, and the shear strains, E,3, E 13, and E,, are one-half of the changes in
the angle between the 2 and 3 axes, the 1 and 3 axes and the 1 and 2 axes,
respectively.

The geometric interpretation of the components of the strain tensor E stated in
the previous paragraph will be analytically developed here. Let dx; be a vector of
infinitesimal length representing the present position of an infinitesimal material
filament coinciding with the x; at time ¢. The displacement of this material filament
instantaneously coincident with dx, is du; = E|,dx,, a result that follows from the
entry in the first column and first row of (2.52). The expression du; = E;;dx is the
change in length of dx; as a consequence of the strain as illustrated in Fig. 2.8. Thus
the geometric interpretation of £;; = (du;/dx,) is that it is the change in length per
unit length of dx;. Similar geometric interpretations exist for £,; and Es3.

The geometric interpretation of the normal strain components E1, E5, and E3; is
easily extended to obtain a geometric interpretation of the trace of the small strain
tensor tr E, or equivalently the divergence of the displacement field V-u, tr E =
V. If dv, = dx,dx,dx; represents an undeformed element of volume (Fig. 2.9),
the deformed volume is given by dv = (dx; + duy)(dx, + du,)(dx; + dus). Using
duy, = Edx,, duy = Eydx, and du; = E;3dx;, the deformed volume is given by
dv = (1 + E;)(1 + Expn)(1 + E33)dv,. Expanding dv = (1 + Ey)(1 + Exp)
(1 + E33)dv, and recognizing that the squares of displacement gradients (2.37)
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dx, dx, + du,

Fig. 2.8 An illustration for the geometric interpretation of the normal strain component Eq;.
The left and right illustrations of this figure represent the undeformed and deformed
configurations, respectively. The heavy black line represents the same material filament in the
two configurations. E;; is equal to the change in length per unit length of the filament between
the two configurations. The original length is dx; and the change in length due to the deformation
is duy, thus E|; = du,/dx;

Fig. 2.9 Anillustration for the geometric interpretation of the trace of the strain tensor, tr E, or the
divergence of the displacement field, V-u, trE = V-u. The left and right illustrations of this figure
represent the undeformed and deformed configurations, respectively. The heavy black lines
represent the same material filaments in the two configurations. The volume element in the
undeformed configuration is dv, = dx;dx,dx; and the deformed volume is given by dv = (dx; +
duy)(dxy + duy)(dxs + dus). It may be shown (see text) that dv = (1 + trE)dv,. Thus the trE
= V-u represents the change in volume per unit volume, (dv — dv,)/dv,

may be neglected, it follows that dv = (1 + trE)dv,. Thus the trE represents the
change in volume per unit volume, (dv — dv,)/dv,.

The off-diagonal components of the strain tensor, for example E,, represent the
shearing strains. E, is equal to one-half the change in angle that was originally a
right angle between the x; and x, axes. To construct this geometric result algebrai-
cally, the unit vectors e, and e, are considered, see Fig. 2.10. After deformation
these vectors are Fe; and Fe,, respectively, or, since F = 1 + E, the deformed
vectors are given by e; + Ee; and e, + Ee,, respectively. The dot product of the
vectors e; + Ee; and e, + Ee, is (e; + Eej)-(e; + Ee,) = e;-e; + e;-Ee, +
e,-Ee; + Ee;-Ee,, but since the unit vectors e; and e, are orthogonal, e;-e; = 0,
and also since Ee;-Ee, is a higher order term because it contains the squares of the
displacement gradients (2.37), this expression reduces to (e; + Ee|)-(e; + Eey) =
e;-Ee, + e,-Ee,. This result is further reduced by noting that e;-Ee, = e,-Ee; = E/,,
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Fig. 2.10 Illustration for the geometric interpretation of the shearing strain E5. The left and right
illustrations of this figure represent the undeformed and deformed configurations, respectively.
The heavy black lines represent the same material filaments in the two configurations. E, is equal
to one-half the change in angle that was originally a right angle between the x; and x, axes, ¢/2 in
this figure

thus it follows that (e; + Ee;)-(e; + Ee,) = 2E1,. Recalling the formula (A61) for
the dot product of two vectors, say u and v, as equal to the magnitude of the first times
the magnitude of the second times the cosine of the angle (say {) between them, u - v
= u;v; = |u| - |v| cos{, it follows that 2E,, = |e; + Ee,| |e; + Ee,| cos (n/2 — ¢),
where the angle (/2 — ¢) is illustrated in Fig. 2.10. The magnitude of |e; + Ee,|
is the square root of (el + Eel)'(el + Eel) = e;-e + el'Eel + el'Eel + Ee1~Ee1,
but since e;-e; = 1 and Ee;-Ee, is a higher order term, this reduces to the square root
of 1 + 2E4,, by a parallel of the arguments used above to obtain the formula for 2F .
At this point a classical approximation is used. This approximation is that 1 + ¢
~ V(1 + 2¢) if summands of the order ¢ may be neglected; the proof of this
approximation follows easily if one squares it. Then, since the square of E;;
is a higher order term, the square root of 1 + 2FE; is given by 1 + Eqq, thus 2E,
=+ Ei)1 + Ep) cos(n/2 — ¢) or 2E;; = (1 + En)l + Exp)sin¢g  or
expanding; 2E, = sin ¢ + (E;; + E») sin ¢ + Eq1E», sin ¢. Finally, since the
angle ¢ is small, sin ¢ is small as are E; and E,,, thus the neglect of higher order
terms gives 2E |, = ¢, and the interpretation of E, as one-half the change in an angle
that was originally a right angle between the x; and x, axes (Fig. 2.10). These geometric
interpretations of the components of E as the change in the length of filaments, the
change in angles and the change in volume deformation between the undeformed
and the deformed configurations are the rationale for calling E the strain tensor.

Example 2.3.1

The deformation gradient and the inverse deformation gradient for the motion given
by (2.12) were computed in Example 2.1.4. Determine the restriction on the motion
given by (2.12) so the motion is infinitesimal. Find the strain tensor E and the
rotation tensor Y for the infinitesimal motion.
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Solution: Comparison of the expressions Vo ® u(X, ) and V ® u(x, f) obtained in
Example 2.1.4 shows that these two expressions coincide only for very small times
t, only if  is much less than ¢. In this case Vo @ u(X, 1) = V ® u(x, 1) and

1 0
Vou=t 1 0
00

O = =

From this expression for V ® u and (2.49), the rotation tensor is determined to
be Y = 0, and the strain tensor E is given by

as long as ¢ is small.
Problem

2.3.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)
through 2.1.1(g), determine the conditions under which the motion remains
infinitesimal and compute the infinitesimal strain and rotation tensors, E and
Y. Discuss briefly the significance of each of the seven strain tensors
computed. In particular, explain the form or value of the strain tensor in
terms of the motion.

2.4 The Strain Conditions of Compatibility

Calculating the strain tensor E given the displacement field u is a relatively simple
matter; one just substitutes the displacement field u into the formula (2.49) for the
strain displacement relations, E = (1/2)(V ® w)! + V ® u). Situations occur in
which it is desired to calculate the displacement field u given the strain tensor E. This
inverse problem is more difficult because the strain displacement relations, E = (1/2)
(V@ w)' + V ® u), become a system of first order partial differential equations
for the displacement field u. Given the significance of the displacement field u in an
object we generally want to insure that the displacement field u is continuous and
single valued. There are real situations in which the displacement field u might be
discontinuous and multiple valued, but these situations will be treated as special cases.
In general it is desired that the integral of the strain—displacement relations, the
displacement field u, is continuous and single valued. The conditions of compatibil-
ity insure this. The conditions of compatibility are equations that the strain tensor
must satisfy so that when the strain—displacement relations are integrated, the
resulting displacement field u, is continuous and single valued. The conditions of
compatibility may be written in the direct notation as
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VXExV=0 (2.53)
or in the index notation as
O*E
ijk€pmn 5 A — 0 2.54
Cijkep OxyOx,, ( )
or in scalar form as the following six equations:
Ox0x3 O Ox; Oxy  Ox3 |’ Ox10xy  0x3 ox3 7
PEy 0 [ 0Ey  OEn n OE3 OPEy  O0’Eyp  0%Es; 2.55)
Ox30x;  Oxy Ox, Ox3  Ox )’ A 0x3 Ox3 o3

0*Ex3 :i _OEn 3E23+5'E31 5 0%Es :32E33 O*Eq
Ox10xy  Oxz Ox3  Ox;  Oxy |’ Ox30x Ox? 0%

Equations (2.53) and (2.54) are symmetric second rank tensors in three
dimensions and therefore have the six components given by (2.55). It follows that
each of the six scalar equations (2.55) must be satisfied in order to insure compati-
bility. The conditions (2.53) are a direct consequence of the definition of strain, that
is to say that E = (1/2)(V @ u)" + V@ u) = (1/2)u @ V + V ® u) implies
that V x E x V = 0. To see that this is true, consider the result of operating on
E=(1/2)u® V 4+ V ® u) from the left by V x and from the right by x V; one
obtains the expression

2(VXEXxV)=Vxu@VxV+VxVeuxV. (2.56)

The operator V x V, which occurs in both terms on the right hand side of (2.56)
is called the “curl grad”; the curl of the gradient applied to a function f is zero,
V x Vf = 0. In the indicial notation this is easy to see, V x Vf = e;(9f/0x;0xy)
e; = 0, because of the symmetry of the indices on the partial derivatives and skew-
symmetry in the components of the alternator (see Appendix A.8). Both terms on the
right hand side of (2.56) contain the operator curl grad, V x V, applied to a function,
hence V x E x V = 0. It may also be shown that the reverse is true, namely that
V xExV =0 implies that E = (1/2)(V ® )" + V ® u). Thus E = (1/2)
(V @ w)' + V ® u) is a necessary and sufficient condition that V x E x V = 0.

In order to both prove and motivate this result consider the two integration paths
from the point P° to the point P’ in an object (Fig. 2.11). If the result of the
integration from the point P° to the point P’ is to be the same along all paths chosen
between these two points, then the value of the integral around any closed path in
the object must be zero. This means that the integrand of the integral must be an
exact differential (see Appendix A.15 Exact differentials). Recall the theorem at the
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Fig. 2.11 Illustration of two

integration paths from the

point P° to the point P’ in an

object. If the result of the

integration from the point P°

to the point P’ is to be the

same along all paths chosen

between these two points,

then the value of the integral

around any closed path in the Po
object must be zero. This

means that the integrand of

the integral must be an exact

differential P'

start of most texts on ordinary differential equations concerning exact differentials:
If M(x, y) and N(x, y) are continuous functions and have continuous partial
derivatives in a region of the x—y plane, then the expression M(x, y)dx + N(x, y)dy
is an exact differential if and only if OM /0y = ON/Ox throughout the region. This
theorem will be applied to prove that the compatibility relations V x E x V = Oare
both necessary and sufficient conditions for the continuous and single-valued nature
of the displacement field obtained by integration from the strain—displacement
relations. If the displacement vector is known at the point P° then integration of
du from the point P° to the point P’ (Fig. 2.11) will determine u(x’), thus,

P/ P/
u(x') =u’® + J du=u’+ J (Vou)' - dx (2.57)
PO PO

Recall from (2.43) and (2.51) that

(Vou' =E+Y (2.58)
it follows that
P’ P
u(x') =u®+ J E-dx+ J Y - dx. (2.59)
Po Po

The last integral in the previous result may be rewritten as

P/ P/
JY~dx: JY-d(x—x’) (2.60)

Po Po
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and integrated by parts, thus

P/ PI
JY~dx:7Y°~(x°fx/)+de~V®Yo(x7x’). (2.61)
Po Po
Placing the result (2.61) into (2.59) it follows that
P/
ux) =u’ —Y° (x*—x')+ de- E+VRY-(x—x)] (2.62)
PO

or, in the indicial notation,

P

ui(x’) = u? — Yiok(xl(: — X;C) + J |:Eim _
PU

Y,
% (x — X)) | dxy. (2.63)

The relationship between the derivatives of the rotation and strain tensors,

BYik o 8Etm aEmk

Ox,  Oxp Ox; '

(2.64)

may easily be verified by substituting the formulas (2.49) relating E and Y to the
displacement gradients. When the relationship (2.64) is substituted into (2.63) it
becomes
P/
ui(xX') = u =Y (xp —xp) + JR,-,,, dx,,, (2.65)
PO

where

6}( k ax i

—X). (2.66)

OE;, OE,
Rim = Eim - { k}(xk .X/

The condition that the integrand in the integral in (2.65) be an exact differential
is then expressed as the condition

OR;y, . OR;1.
Oxy  Oxy

(2.67)

When (2.67) is substituted into (2.66), the result
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82E”’" O’Ei 82Ekt/ O?Ei /
0= {ax,@xk + X0y OXiOXy 3xqaxk}(xq —x,) (2.68)

is satisfied only when the compatibility conditions (2.54), or equivalently (2.54) or
(2.55)orV X E x V =0, hold. Thus V x E x V = 01is a necessary and sufficient
condition that the integration of the strain—displacement relations will yield a
single-valued and continuous displacement field.

Problems

2.4.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)
through 2.1.1(g), determine if the infinitesimal strain tensors, E, calculated in
2.3.1 satisfy the conditions of compatibility.

2.4.2. Is the following strain state possible for an object in which the displacement
field must be continuous and single valued? Justify your answer analytically.

x(xF+x3) xxxs 0

e=¢ X1X2X3 X3X% 0

0 0 0

2.4.3. Demonstrate the validity of the formula (2.64) by substituting the formulas
relating E and Y to the displacement gradients (2.49) into (2.64) and show
that an identity is obtained. This is more easily done in the indicial notation.

2.4.4. Verify that substitution of the formula (2.67) into (2.66) leads to the result
(2.68). This is much more easily done in the indicial notation.
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