
Chapter 2

Basic Continuum Kinematics

The theme of this chapter was statedwith exuberance and in an idealistic deterministic

extreme by Marquis Pierre-Simon de Laplace (1759–1827): “Thus, we must con-

sider the present state of the universe as the effect of its previous state and as the

cause of those states to follow. An intelligent being which, for a given point in time,

knows all the forces acting upon the universe and the positions of the objects of

which it is composed, supplied with facilities large enough to submit these data to

numerical analysis, would include in the same formula the movements of the largest

bodies of the universe and those of the lightest atom. Nothing would be uncertain for

it, and the past and future would be known to it.”1

2.1 The Deformable Material Model, the Continuum

In the deformable material model all types of motion are permitted, but the

deformational motions are usually the major concern. Consider the image O of an

object in Euclidean space. The object is in a configuration O(0) at t ¼ 0 and in a

configuration O(t) at time t (Fig. 2.1). The mathematical representation of the

motion of a three-dimensional deformable continuum gives a complete history of

the motion of each point P on the object O(0), P � O(0); in words, P � O(0)
means all points P contained in (�) the image of the object, O, at t ¼ 0. In order to

identify each point P in the object O(0) and to follow the movement of that point in

subsequent configurations of the object O(t), each point on an object is given a

reference location in a particular coordinate system, called the reference coordinate

system. The selection of the reference configuration is the choice of the modeler;

here the reference configuration is taken as the configuration of the object at time

t ¼ 0. To distinguish between the reference location of a point on an object and a

location of the same point at a later time, the terminology of “particle” and “place”

1 Translated by John H. Van Drie (http://www.johnvandrie.com).
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of a particle is introduced. Each point P � O(0) in the continuum model of

the object is labeled by its position in the reference configuration (Fig. 2.2).

This procedure assigns a location to each point in the object and such points are

called particles. A position vector of a point in a given coordinate system is a vector

from the origin of coordinates to that point. In this case the reference configuration

is a three-dimensional Cartesian coordinate system with base vectors ea, a ¼ I, II,

III, and coordinates Xa; the position of the particle is described by the vector

X ¼ Xaea:

As a simplifying convention, instead of saying the vector X describes the

position of a particle, we define it to be the particle. Thus the notation X has

replaced the notation P and one can speak of all X � O(0) as a complete represen-

tation of the object in the reference configuration.
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Fig. 2.1 Representation of the motion of an object in Euclidean 2D space
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Fig. 2.2 Details of the representation in Euclidean 2D space
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If the motion of one particle X of an object can be represented, then the motion

of all the particles of the object,X � O(0), can be represented. A second coordinate

system with axes xi, i ¼ 1, 2, 3, and base vectors ei, i ¼ 1, 2, 3, is introduced to

represent the present position of the object O(t); this also represents the present

positions of the particles. The triplet (x1, x2, x3), denoted in the shorthand direct

notation by x, represents the place at time t of the particle X. The motion of the

particle X is then given by

x1 ¼ w1ðXI;XII;XIII; tÞ; x2 ¼ w2ðXI;XII;XIII; tÞ; x3 ¼ w3 ¼ ðXI;XII;XIII; tÞ
(2.1)

which is a set of three scalar-valued functions whose arguments are the particle X

and time t and whose values are the components of the place x at time t of the
particle X. Since X can be any particle in the object, X � O(0), the motion (2.1)

describes the motion of the entire object x � O(t) and (2.1) is thus referred to as the
motion of the object O. In the direct shorthand or vector notation (2.1) is written

x ¼ wðX; tÞ for all X � Oð0Þ: (2.2)

This is called the material description of motion because the material particles X

are the independent variables. Generally the form of the motion, (2.1) or (2.2), is

unknown in a problem, and the prime kinematic assumption for all continuum

models is that such a description of the motion of an object is possible.

However, if the motion is known, then all the kinematic variables of interest

concerning the motion of the object can be calculated from it; this includes

velocities, accelerations, displacements, strains, rates of deformation, etc. The

present, past, and future configurations of the object are all known. The philosophi-

cal concept embedded in the representation (2.2) of a motion is that of determinism.

The determinism of the eighteenth century in physical theory was modified by

humbler notions of “uncertainty” in the nineteenth century and by the discovery of

extreme sensitivity to starting or initial conditions known by the misnomer “chaos”

in the twentieth century. The quote of the Marquis Pierre-Simon de Laplace

(1759–1827) at the beginning of the chapter captures the idea of determinism

underlying the representation (2.2).

A translational rigid object motion is a special case of (2.2) represented by,

x ¼ Xþ hðtÞ for all X � Oð0Þ; (2.3)

where h(t) is a time-dependent vector. A rotational rigid object motion is a special

case of (2.2) represented by

x ¼ QðtÞX; QðtÞQðtÞT ¼ 1 for all X � Oð0Þ; (2.4)

where Q(t) is a time-dependent orthogonal transformation. It follows that a general

rigid object motion is a special case of (2.2) represented by

2.1 The Deformable Material Model, the Continuum 27



x ¼ QðtÞXþ hðtÞ; QðtÞQðtÞT ¼ 1 for all X � Oð0Þ: (2.5)

A motion of the form (2.2) is said to be a planar motion if the particles always

remain in the same plane. In this case (2.2) becomes

x1 ¼ w1ðXI;XII; tÞ; x2 ¼ w2ðXI;XII; tÞ; x3 ¼ XIII: (2.6)

Another subset of the motion is a deformation of an object from one configura-

tion to another, say from the configuration at t ¼ 0 to the configuration at t ¼ t*. In
this case the motion (2.2) becomes a deformation

x ¼ CðXÞ for all X � Oð0Þ; (2.7)

where

CðXÞ ¼ wðX; t�Þ for all X � Oð0Þ: (2.8)

A 3D motion picture or 3D video of the motion of an object may be represented

by a subset of the motion (2.2) because a discrete number of images (frames) per

second are employed,

x ¼ wðX; n=zÞ for all X � Oð0Þ; n ¼ 0; 1; 2; . . . ; (2.9)

where z is the number of images (frames) per second.

Example 2.1.1
Consider the special case of a planar motion given by

x1 ¼ AðtÞXI þ CðtÞXII þ EðtÞ; x2 ¼ DðtÞXI þ BðtÞXII þ FðtÞ; x3 ¼ XIII;

(2.10)

where A(t), B(t), C(t), D(t), E(t), F(t) are arbitrary functions of time. Further

specialize this motion by the selections

AðtÞ ¼ 1þ t; CðtÞ ¼ t; EðtÞ ¼ 3t; BðtÞ ¼ 1þ t; DðtÞ ¼ t; FðtÞ ¼ 2t;

(2.11)

for A(t), B(t), C(t), D(t), E(t), and F(t). With these selections the motion becomes

x1 ¼ ð1þ tÞXI þ tXII þ 3t; x2 ¼ tXI þ ð1þ tÞXII þ 2t; x3 ¼ XIII: (2.12)

The problem is to find the positions of the unit square whose corners are at the

material points (XI, XII) ¼ (0, 0), (XI, XII) ¼ (1, 0), (XI, XII) ¼ (1, 1), (XI, XII) ¼
(0, 1) at times t ¼ 1 and t ¼ 2.

Solution: For convenience let the spatial (x1, x2, x3) and material (XI, XII, XIII)

coordinate systems coincide and then consider the effect of the motion (2.12) on the
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unit square whose corners are at the material points (XI, XII) ¼ (0, 0), (XI, XII) ¼
(1, 0), (XI, XII) ¼ (1, 1), (XI, XII) ¼ (0, 1). At t ¼ 0 the motion (2.12) specifies that

x1 ¼ XI, x2 ¼ XII, and x3 ¼ XIII so that t ¼ 0 has been taken as the reference

configuration. The square at t ¼ 0 is illustrated in Fig. 2.3. At t ¼ 1 the motion

(2.12) specifies the places x of the particles X as follows:

x1 ¼ 2XI þ XII þ 3; x2 ¼ XI þ 2XII þ 2; x3 ¼ XIII:

Thus the particles at the four corners of the unit square have the following new

places x at t ¼ 1:

ð3; 2Þ ¼ wð0; 0Þ; ð5; 3Þ ¼ wð1; 0Þ; ð6; 5Þ ¼ wð1; 1Þ; ð4; 4Þ ¼ wð0; 1Þ:
A sketch of the deformed and translated unit square at t ¼ 1 is shown in Fig. 2.3.

At t ¼ 2 the motion (2.12) specifies the places x of the particles X as follows:

x1 ¼ 3XI þ 2XII þ 6; x2 ¼ 2XI þ 3XII þ 4; x3 ¼ XIII:

Thus the particles at the four corners of the unit square have the following new

places at t ¼ 2:

ð6; 4Þ ¼ wð0; 0Þ; ð9; 6Þ ¼ wð1; 0Þ; ð11; 9Þ ¼ wð1; 1Þ; ð8; 7Þ ¼ wð0; 1Þ:

A sketch of the deformed and translated unit square at t ¼ 2 is shown in Fig. 2.3.
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Fig. 2.3 The movement of a square at t ¼ 0 due to the motion (2.12)
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Example 2.1.2
An experimental technique in widespread use in the measurement of the planar

homogeneous motion of a deformable object is to place three markers (dots or

beads) in triangular pattern (so that the markers are not collinear) on the deformable

object before a motion. The initial locations of the three markers are recorded

relative to a fixed laboratory frame of reference as ðXð1Þ
I ,X

ð1Þ
II Þ, ðXð2Þ

I ,X
ð2Þ
II Þ, and ðXð3Þ

I ,

X
ð3Þ
II Þ, Fig. 2.4. If the process is automated a camera is used to follow the motion of

the three markers with time and to digitize the data in real time. The instantaneous

locations of the three markers at a time t is recorded relative to a fixed laboratory

frame of reference as ðxð1Þ1 ðtÞ, xð1Þ2 ðtÞÞ, ðxð2Þ1 ðtÞ, xð2Þ2 ðtÞÞ and ðxð3Þ1 ðtÞ, xð3Þ2 ðtÞÞ, Fig. 2.4.
From these data the experimentalist calculates the time-dependent coefficients A(t),
B(t), C(t), D(t), E(t), and F(t) of the homogeneous planar motion (2.10). Determine

the formulas used in the calculation of the time-dependent coefficients A(t), B(t),

C(t), D(t), E(t), and F(t) from the data ðXð1Þ
I , X

ð1Þ
II Þ, ðXð2Þ

I , X
ð2Þ
II Þ, ðXð3Þ

I , X
ð3Þ
II Þ, (xð1Þ1 ðtÞ,

x
ð1Þ
2 ðtÞÞ, (xð2Þ1 ðtÞ, xð2Þ2 ðtÞÞ, and ðxð3Þ1 ðtÞ, xð3Þ2 ðtÞÞ.
Solution: The data on the motion of each marker provide two equations that may be

used for the determination of the time-dependent coefficients. Since there are three

markers, a total of six equations is obtained. Three markers are used because it is

known that six equations will be needed to solve the linear system of equations for

the six unknowns, A(t), B(t), C(t),D(t), E(t), and F(t). Using the notation for the data
and the representation of the homogeneous planar motion (2.10), these six

equations are as follows:

x
ð1Þ
1 ðtÞ ¼ AðtÞXð1Þ

I þ CðtÞXð1Þ
II þ EðtÞ; x

ð1Þ
2 ðtÞ ¼ DðtÞXð1Þ

I þ BðtÞXð1Þ
II þ FðtÞ;

x
ð2Þ
1 ðtÞ ¼ AðtÞXð2Þ

I þ CðtÞXð2Þ
II þ EðtÞ; x

ð2Þ
2 ðtÞ ¼ DðtÞXð2Þ

I þ BðtÞXð2Þ
II þ FðtÞ;

x
ð3Þ
1 ðtÞ ¼ AðtÞXð3Þ

I þ CðtÞXð3Þ
II þ EðtÞ; x

ð3Þ
2 ðtÞ ¼ DðtÞXð3Þ

I þ BðtÞXð3Þ
II þ FðtÞ:

X(2)

X(3)

X(1) x(1)

x(2)

x(3)

DEFORMATION
OR MOTION

Fig. 2.4 The experimental measurement of a planar homogeneous motion. The reference frame is

the laboratory reference frame. The three initial positions (X(1), X(2), X(3)) of the markers are

indicated as well as their positions (x(1), x(2), x(3)) at time t. In many experiments the markers are

attached to a specimen of soft tissue that is undergoing a planar homogeneous motion in order to

quantify the motion
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The solution to these six equations is

AðtÞ ¼ X
ð1Þ
II x

ð2Þ
1 ðtÞ � X

ð1Þ
II x

ð3Þ
1 ðtÞ � X

ð2Þ
II x

ð1Þ
1 ðtÞ þ X

ð2Þ
II x

ð3Þ
1 ðtÞ þ X

ð3Þ
II x

ð1Þ
1 ðtÞ � X

ð3Þ
II x

ð2Þ
1 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

;

BðtÞ ¼ X
ð2Þ
I x

ð1Þ
2 ðtÞ � X

ð3Þ
I x

ð1Þ
2 ðtÞ � X

ð1Þ
I x

ð2Þ
2 ðtÞ þ X

ð3Þ
I x

ð2Þ
2 ðtÞ þ X

ð1Þ
I x

ð3Þ
2 ðtÞ � X

ð2Þ
I x

ð3Þ
2 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

;

CðtÞ ¼ �X
ð1Þ
I x

ð2Þ
1 ðtÞ þ X

ð2Þ
I x

ð1Þ
1 ðtÞ þ X

ð1Þ
I x

ð3Þ
1 ðtÞ � X

ð2Þ
I x

ð3Þ
1 ðtÞ � X

ð3Þ
I x

ð1Þ
1 ðtÞ þ X

ð3Þ
I x

ð2Þ
1 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

;

DðtÞ ¼ X
ð1Þ
II x

ð2Þ
2 ðtÞ � X

ð2Þ
II x

ð1Þ
2 ðtÞ � X

ð1Þ
II x

ð3Þ
2 ðtÞ þ X

ð2Þ
II x

ð3Þ
2 ðtÞ þ X

ð3Þ
II x

ð1Þ
2 ðtÞ � X

ð3Þ
II x

ð2Þ
2 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

;

EðtÞ ¼ X
ð1Þ
II X

ð2Þ
I x

ð3Þ
1 ðtÞ � X

ð1Þ
II X

ð3Þ
I x

ð2Þ
1 ðtÞ � X

ð1Þ
I X

ð2Þ
II x

ð3Þ
1 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

þ X
ð2Þ
II X

ð3Þ
I x

ð1Þ
1 ðtÞ þ X

ð2Þ
II X

ð3Þ
I x

ð2Þ
1 ðtÞ � X

ð2Þ
I X

ð3Þ
II x

ð1Þ
1 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

;

FðtÞ ¼ �X
ð1Þ
II X

ð3Þ
I x

ð2Þ
2 ðtÞ þ X

ð2Þ
II X

ð3Þ
I x

ð1Þ
2 ðtÞ þ X

ð2Þ
I X

ð1Þ
II x

ð3Þ
2 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

þ �X
ð2Þ
II X

ð1Þ
I x

ð3Þ
2 ðtÞ � X

ð3Þ
II X

ð2Þ
I x

ð1Þ
2 ðtÞ þ X

ð1Þ
I X

ð3Þ
II x

ð2Þ
2 ðtÞ

X
ð1Þ
II X

ð2Þ
I � X

ð1Þ
II X

ð3Þ
I � X

ð2Þ
II X

ð1Þ
I þ X

ð2Þ
II X

ð3Þ
I þ X

ð3Þ
II X

ð1Þ
I � X

ð3Þ
II X

ð2Þ
I

:

Example 2.1.3
Consider again the experimental technique described in Example 2.1.2, but in this

case a deformation rather than a motion, Fig. 2.4. Suppose that the initial locations

of the markers are recorded relative to the fixed laboratory frame of reference as

ðXð1Þ
I , X

ð1Þ
II Þ ¼ (0, 0), ðXð2Þ

I , X
ð2Þ
II Þ ¼ (1, 0), and ðXð3Þ

I , X
ð3Þ
II Þ ¼ (0, 1). The deformed

locations of the three markers relative to the same fixed laboratory frame of

reference are ðxð1Þ1 , x
ð1Þ
2 Þ ¼ (1, 2), ðxð2Þ1 , x

ð2Þ
2 Þ ¼ (2, 3.25), and ðxð3Þ1 , x

ð3Þ
2 Þ ¼ (2.5,

3.75). From these data the constant coefficients A, B, C, D, E, and F of the

homogeneous planar deformation (2.10) are determined.

Solution: The solution for the motion coefficients A(t), B(t), C(t),D(t), E(t), and F(t)
obtained in Example 2.1.2 may be used in the solution to this problem. One simply

assigns the time-dependent positions in the formulas for A(t), B(t), C(t), D(t), E(t),

and F(t) to be fixed rather than time dependent by setting ðxð1Þ1 ðtÞ, xð1Þ2 ðtÞÞ ¼ ðxð1Þ1 ,

x
ð1Þ
2 Þ, (xð2Þ1 ðtÞ, xð2Þ2 ðtÞÞ ¼ ðxð2Þ1 , x

ð2Þ
2 Þ, and ðxð3Þ1 ðtÞ, xð3Þ2 ðtÞÞ ¼ ðxð3Þ1 , x

ð3Þ
2 Þ. The coefficients
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are no longer functions of time so they are denoted by A, B, C,D, E, and F. They are

evaluated by substituting the initial and final locations of the set of particles, ðXð1Þ
I ,

X
ð1Þ
II Þ ¼ (0, 0), ðXð2Þ

I ,X
ð2Þ
II Þ ¼ (1, 0), ðXð3Þ

I ,X
ð3Þ
II Þ ¼ (0, 1), and ðxð1Þ1 ,x

ð1Þ
2 Þ ¼ (1, 2), ðxð2Þ1 ,

x
ð2Þ
2 Þ ¼ (2, 3.25), ðxð3Þ1 , x

ð3Þ
2 Þ ¼ (2.5, 3.75), respectively, into the last set of equations

in Example 2.1.2. The values obtained are A ¼ 1, B ¼ 1.75, C ¼ 1.5, D ¼ 1.25,

E ¼ 1, and F ¼ 2 and they are obtained by substituting the values for the relevant

points given in the statement of the problem above into the last set of equations in

Example 2.1.2. The planar homogeneous deformation then has the representation

x1 ¼ 2XI þ 1:5XII þ 1; x2 ¼ 1:25XI þ 1:75XII þ 2; x3 ¼ XIII;

which is a particular case of (2.10) To double check this calculation one can check

to see if each marker is mapped correctly from its initial position to its final

position.

There are two coordinate systems with respect to which a gradient may be taken,

either the spatial coordinate system x, (x1, x2, x3), or the reference material coordi-

nate system X, (XI, XII, XIII). To distinguish between gradients with respect to these

two systems, the usual gradient symbol ∇ will be used to indicate a gradient with

respect to the spatial coordinate system x, and the gradient symbol ∇O with a

subscripted boldface O will indicate a gradient with respect to the material coordi-

nate system X. The (material) deformation gradient tensor F is defined by

F ¼ ½rO � wðX; tÞ�T for all X � Oð0Þ: (2.13)

The (spatial) inverse deformation gradient tensor F�1 is defined by

F�1 ¼ ½r � w�1 ðx; tÞ�T for all x � OðtÞ; (2.14)

where

X ¼ w�1 ðx; tÞ for all x � OðtÞ (2.15)

is the inverse of the motion (2.2). The components of F and F�1 are

F ¼ @xi
@Xa

� �
¼

@x1
@XI

@x1
@XII

@x1
@XIII

@x2
@XI

@x2
@XII

@x2
@XIII

@x3
@XI

@x3
@XII

@x3
@XIII

2
666666664

3
777777775
and F�1 ¼ @Xa

@xi

� �
¼

@XI

@x1

@XI

@x2

@XI

@x3

@XII

@x1

@XII

@x2

@XII

@x3

@XIII

@x1

@XIII

@x2

@XIII

@x3

2
666666664

3
777777775

(2.16)
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respectively. Using the chain rule for partial derivatives it is easy to verify that F�1

is indeed the inverse of F,

FF�1 ¼ F�1F ¼ 1: (2.17)

Recall that any motion can be decomposed into a sum of a translational,

rotational, and deformational motion. The deformation gradient tensors remove

the translational motion as may be easily seen because the translational motion is a

separate function of time (cf., e.g., 2.2) that must be independent of the particle X.

Thus only the rotational motion and the deformational motion determine F. If

F ¼ 1 there are no rotational or deformational motions. If F ¼ Q(t), Q(t)Q
(t)T ¼ 1, it follows from (2.4) that the motion is purely rotational and there is no

deformational motion. The deformation gradient F is so named because it is a

measure of the deformational motion as long as F 6¼ Q(t). If F ¼ Q(t), then the

motion is rotational and we replace F by Q(t).
The determinant of the tensor of deformation gradients, J, is the Jacobian of the

transformation from x to X, thus

J � Det F ¼ 1=Det F�1; (2.18)

where it is required that

0< J<1 (2.19)

so that a finite continuum volume always remains a finite continuum volume.

If c represents the position vector of the origin of the coordinate system used for

the configuration at time t relative to the origin of the coordinate system used for the

configuration at t ¼ 0, then the displacement vector u of the particle X is given by

(Fig. 2.2),

u ¼ x� Xþ c: (2.20)

The displacement vectors u for all the particles X � O(0) are given by

uðX; tÞ ¼ wðX; tÞ � Xþ cðtÞ; X � Oð0Þ; (2.21)

or by

uðx; tÞ ¼ x� w�1ðx; tÞ þ cðtÞ; x � OðtÞ: (2.22)

Two gradients of the displacement field u may then be calculated, one with

respect to the spatial coordinate system x denoted by the usual gradient symbol ∇
and one with respect to the material coordinate system X denoted by the gradient

symbol ∇O, thus

½rO � uðX; tÞ�T ¼ FðX; tÞ � 1 and ½r � uðx; tÞ�T ¼ 1� F�1ðx; tÞ; (2.23)
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when (2.12) and (2.14) are employed. Often the base vectors of the coordinate

systems X and x are taken to coincide, in which case the position vector c of the

origin of the x system relative to the X system is zero. The selection of the

coordinate system is always the prerogative of the modeler and such selections

are usually made to simplify the analysis of the resulting problem.

Example 2.1.4
Compute the deformation gradient and the inverse deformation gradient for the

motion given by (2.12). Then compute the Jacobian of the motion and both the

spatial and material gradients of the displacement vector.

Solution: The deformation gradients and the inverse deformation gradients for this

motion are obtained from (2.16) to (2.12), thus

F ¼
1þ t t 0

t 1þ t 0

0 0 1

2
64

3
75 and F�1 ¼ 1

1þ 2t

1þ t �t 0

�t 1þ t 0

0 0 1þ 2t

2
64

3
75;

a result that can be verified using FF�1 ¼ 1 or F�1F ¼ 1. It is then easy to show

that J ¼ 1 þ 2t. It also follows from (2.22) that

½rO � u�T ¼ t

1 1 0

1 1 0

0 0 0

2
64

3
75 and ½r � u�T ¼ t

1þ 2t

1 1 0

1 1 0

0 0 0

2
64

3
75:

Problems

2.1.1. Sketch the shape and position of the unit square with corners at (0, 0), (1, 0),

(1, 1), and (0, 1) subjected to the motion in (2.10) for the seven special cases,

(a) through (g) below. The shape and position are to be sketched for each of

the indicated values of t.

(a) Translation. A(t) ¼ 1, B(t) ¼ 1, C(t) ¼ 0, D(t) ¼ 0, E(t) ¼ 2t, F(t) ¼ 2t
and values of t ¼ 0, 1, 2.

(b) Uniaxial extension. A(t) ¼ 1 þ t, B(t) ¼ 1, C(t) ¼ 0,D(t) ¼ 0, E(t) ¼ 0,

F(t) ¼ 0 and values of t ¼ 0, 1, 2, 3.

(c) Biaxial extension. A(t) ¼ 1 þ t, B(t) ¼ 1 þ 2t, C(t) ¼ 0, D(t) ¼ 0, E
(t) ¼ 0, F(t) ¼ 0 and values of t ¼ 0, 1, 2.

(d) Simple shearing (R). A(t) ¼ 1, B(t) ¼ 1, C(t) ¼ t, D(t) ¼ 0, E(t) ¼ 0,

F(t) ¼ 0 and values of t ¼ 0, 1, 2.

(e) Simple shearing (U). A(t) ¼ 1, B(t) ¼ 1, C(t) ¼ 0, D(t) ¼ t, E(t) ¼ 0,

F(t) ¼ 0 and values of t ¼ 0, 1, 2.

(f) Rigid Rotation (cw). A(t) ¼ cos (pt/2), B(t) ¼ cos (pt/2), C(t) ¼ sin(pt/
2), D(t) ¼ �sin(pt/2), E(t) ¼ 0, F(t) ¼ 0 and values of t ¼ 0, 1, 2, 3, 4.
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(g) Rigid rotation (ccw). A(t) ¼ cos (pt/2), B(t) ¼ cos(pt/2), C(t) ¼ �sin(pt/
2), D(t) ¼ sin(pt/2), E(t) ¼ 0, F(t) ¼ 0 and values of t ¼ 0, 1, 2, 3, 4.

2.1.2. Sketch the shape and position of the square with corners at (�1,�1), (1,�1),

(1, 1), and (�1, 1) at times t ¼ 0, 1, 2, 3, 4. The square is subjected to the

motion in (2.10) with the values of A(t), B(t), C(t), D(t), E(t), and F(t) being
those given in 2.1(f), the rigid rotation (clockwise) motion.

2.1.3. For the six motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1

(a) through 2.1.1(f), compute the deformation gradient tensor F, its Jacobian

J, and its inverse F�1. Discuss briefly the significance of each of the tensors

computed. In particular, explain the form or value of the deformation

gradient tensor F in terms of the motion.

2.1.4. Using the planar homogeneous deformation (2.10), with the values of A, B,
C, D, E, and F calculated in Example 2.1.2, show that deformation (2.10)

predicts the final positions of the three markers when the initial marker

locations ðXð1Þ
I , X

ð1Þ
II Þ ¼ (0, 0), ðXð2Þ

I , X
ð2Þ
II Þ ¼ (1, 0), and ðXð3Þ

I , X
ð3Þ
II Þ ¼

(0, 1) are substituted into it.

2.1.5. In Example 2.1.2 an experimental technique in widespread use in the mea-

surement of the planar homogeneous motion of the deformable object was

described and a system of equations was set and solved to determine the

time-dependent parameters appearing in the equations describing the planar

homogeneous motion. Consider the same problem when the problem is not

planar, but three-dimensional. How many markers are necessary in three

dimensions and how must the markers be arranged so that they provide the

information necessary to determine the time-dependent parameters

appearing in the equations describing the three-dimensional homogeneous

motion? Explain the process.

2.2 Rates of Change and the Spatial Representation

of Motion

The velocity v and acceleration a of a particle X are defined by

v ¼ _x ¼ @w
@t

����
X fixed

; a ¼ €x ¼ @2w
@t2

����
X fixed

; (2.24)

where X is held fixed because it is the velocity or acceleration of that particular

particle that is being determined. The spatial description of motion (as opposed

to the material description of motion represented by (2.2)) is obtained by solving

(2.2) for X,
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X ¼ w�1ðx; tÞ for all X � Oð0Þ (2.25)

and substituting the result into the first of the expressions (2.24) for the velocity;

thus v ¼ _x ¼ _wðX; tÞ becomes

v ¼ _x ¼ _wðw�1ðx; tÞ; tÞ ¼ vðx; tÞ (2.26a)

or

vðx; tÞ ¼ vðw1�1ðx; tÞ; w2�1ðx; tÞ; w3�1ðx; tÞ; tÞ; (2.26b)

which emphasizes that the time dependence of the spatial representation of velocity

is both explicit and implicit. This representation of the velocity with the places x as

independent variables is called the spatial representation of motion. A quantity is

said to be in the spatial representation if its independent variables are the places x

and not the particles X. In the material representation the independent variables

are the particles X; compare the material description of motion, (2.2), with (2.26).

The material time derivative is the time derivative following the material particle

X; it is denoted by a superposed dot orD/Dt and it is defined as the partial derivative
with respect to time with X held constant. The material time derivative is easy to

calculate in the material representation. It is more complicated to calculate in

the spatial representation. To determine the acceleration in the spatial representa-

tion we must calculate the material time rate of the spatial representation of velocity

(2.26). The notation D/Dt introduced above is illustrated using the definitions

of (2.24):

a ¼ @2w
@t2

����
X fixed

¼ @v

@t

����
X fixed

� Dv

Dt
: (2.27)

A formula for Dv/Dt is obtained by observing the explicit and implicit time

dependence of the spatial representation of velocity (2.26b) and noting that the time

derivative associated with the implicit dependencies may be obtained using the

chain rule, thus

Dv

Dt
¼ @v

@t

����
x fixed

þ @v

@xi

@xi
@t

����
X fixed

¼ @v

@t

����
x fixed

þ @v

@xi
vi; (2.28)

a result that may be written more simply as

Dv

Dt
¼ @v

@t

����
x fixed

þ v � rv: (2.29)
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The time rate computed by holding the places x fixed is called the local time rate.

In general, the material time rate is related to the local time rate by the following

operator expression that follows from (2.29),

D

Dt
¼ @

@t

����
x fixed

þ v � r; (2.30)

where D/Dt is the material time rate of change, ∂/∂t is the local time rate of change

and v�∇ determines the convective change of the quantity.

The second order tensor formed by taking the spatial gradient of the velocity

field v ¼ v(x, t) is called the tensor of velocity gradients and is denoted by L, thus

L ¼ r� v½ �T ¼ @vi
@xj

� �
¼

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

2
66666664

3
77777775
: (2.31)

L is decomposed into a symmetric partD called the rate-of-deformation tensor, and
a skew symmetric part W called the spin tensor, thus

L ¼ DþW; D ¼ ð1=2ÞðLþ LTÞ; W ¼ ð1=2ÞðL� LTÞ: (2.32)

The three nonzero components of W can be formed into an axial vector (1/2)

(∇ 	 v) which represents the local rotational motion and is called the angular

velocity or one-half the vorticity.

The rate-of-deformation tensor D defined by the second of (2.32) has the

component representation

D ¼ 1

2

@vj
@xi

þ @vi
@xj

� �
¼ 1

2

2
@v1
@x1

@v1
@x2

þ @v2
@x1

@v1
@x3

þ @v3
@x1

@v1
@x2

þ @v2
@x1

2
@v2
@x2

@v2
@x3

þ @v3
@x2

@v1
@x3

þ @v3
@x1

@v2
@x3

þ @v3
@x2

2
@v3
@x3

2
66666664

3
77777775
: (2.33)

The components of D along the diagonal are called normal rates of deformation

and the components off the diagonal are called shear rates of deformation. The

normal rates of deformation, D11, D22, and D33, are measures of instantaneous time

rate of change of the material filament instantaneously coincident with the 1, 2, and

3 axes, respectively, and the shear rates of deformation,D23,D13, andD12, are equal

to one-half the time rate of decrease in an originally right angle between material
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filaments instantaneously situate upon the 2 and 3 axes, the 1 and 3 axes, and the 1

and 2 axes, respectively.

The rate-of-deformation tensor D represents instantaneous rates of change, that

is to say how much a quantity is changing compared to its present size. Let dx1 be a
vector of infinitesimal length representing the present position of an infinitesimal

material filament coinciding with the x1 at time t, Fig. 2.5. The instantaneous time

rate of change of the material filament instantaneously coincident with dx1 is

dv1 ¼ D11dx1, a result that follows from the entry in the first column and first

row of (2.33). The expression dv1 ¼ D11dx1 shows dv1 as a linear function of dx1 at
any point x and time t. Thus the geometric interpretation ofD11 ¼ (d _x1/dx1) is that it
is the instantaneous time rate of change of dx1 at time t relative to dx1 at time t.
Similar geometric interpretations exist for D22 and D33.

The geometric interpretation of the normal rate of shearing components D11,

D22, and D33 is easily extended to obtain a geometric interpretation of the trace of D

which is also the divergence of the velocity, tr D ¼ ∇�v. If dv represents an

element of volume in the spatial coordinate system, dv ¼ dx1dx2dx3 (Fig. 2.6),

the material time rate of change of dv can be computed using the type of formula

developed in the previous paragraph; d _x1 ¼ D11dx1, d _x2 ¼ D22dx2, and d _x3 ¼
D33dx3, thus

d _v ¼ D

Dt
ðdx1dx2dx3Þ ¼ ðD11 þ D22 þ D33Þdx1dx2dx3 ¼ ðtr DÞdv (2.34)

or, noting from the definition of D that

trD ¼ D11 þ D22 þ D33 ¼ r � v ¼ div v (2.35)

it follows that

trD ¼ r � v ¼ d _v

dv
: (2.36)

dx1

dx1/dt

Fig. 2.5 An illustration for the geometric interpretation of the D11 component of the rate-of-

deformation tensor D. A vector of infinitesimal length representing the present position of an

infinitesimal material filament coinciding with the x1 at time t is denoted by dx1. The instantaneous
time rate of change of the material filament instantaneously coincident with dx1 is dv1 ¼ D11dx1.
The expression dv1 ¼ D11dx1 shows dv1 as a linear function of dx1 at any point x and time t. Thus
the geometric interpretation ofD11 ¼ ðd _x1=dx1Þ is that it is the instantaneous time rate of change of

dx1 at time t relative to dx1 at time t
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Thus the ∇�v or trD have the geometric interpretation as the instantaneous time

rate of change of material volume. Another way of viewing this result is to say that

the divergence of the velocity field is the time rate of change of a material volume

relative to how large it is at the instant (2.35).

The off-diagonal components of the rate-of-deformation tensor, for example

D12, represent rates of shearing. D12 is equal to one-half the time rate of decrease

in an originally right angle between the filaments dx(1) and dx(2), Fig. 2.7. To see

this, note that the dot product of material filaments dx(1) and dx(2) axes may

be written as

dxð1Þ � dxð2Þ ¼ jdxð1Þjjdxð2Þj cos y12;

where y12 is the angle between the two filaments. In the calculation of the material

time derivative of the dot product above, dxð1Þ � dxð2Þ, we will employ the formula

dvi ¼ d _xi ¼ Lijdxj that follows from (2.31). The material time derivative of both

sides of the equation above is then computed;

D

Dt
ðdxð1Þ � dxð2ÞÞ ¼ d _xð1Þ � dxð2Þ þ dxð1Þ � d _xð2Þ

¼ Lijdxjð1Þdx2ð2Þ þ dxið1ÞLijdxjð2Þ ¼ 2Dijdxið1Þdxjð2Þ
¼ jd _xð1Þjjdxð2Þj cos y12 þ jdxð1Þjjd _xð2Þj cos y12
� _y12jdxð1Þjjdxð2Þj sin y12

and, since we are interested in the instant that y12 ¼ p/2, it follows that

dx1

dx1/dt

dx3/dt

dx3

dx2

dx2/dt

Fig. 2.6 Illustration for the geometric interpretation of the trace of the rate-of-deformation tensor

D as the instantaneous time rate of change of volume. The material time rate of change of an

element of volume in the spatial coordinate system, dv ¼ dx1dx2dx3, is shown to be d _v ¼ trDdv
¼ r � udv, thus the ∇�v or trD has the geometric interpretation as the instantaneous time rate of

change of material volume
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2Dijdxið1Þdxjð2Þ ¼ � _y12 dxð1Þj j dxð2Þj j:

Finally, if we take dxð1Þ ¼ dx1e1 and dxð2Þ ¼ dx2e2 it may be concluded that

D12 ¼ �
_y12
2

;

confirming that D12 is equal to one-half the material time rate of decrease in an

originally right angle between dx1 and dx2. The geometric interpretations of D13

and D23 are similar. These geometric interpretations of the components of D as the

instantaneous time rate of change of filaments, angles, and volume are the rationale

for calling D the rate of deformation tensor.

Example 2.2.1
Calculate the velocity and acceleration in the material representation of the motion

(2.12) of Example 2.1.1, then determine the spatial representation. Verify that the

acceleration computed in the spatial representation is the same as the acceleration

computed in the material representation. Calculate the tensor of velocity gradients

L, the rate of deformation tensor D, and the spin tensor W for this motion.

Solution: The velocity and acceleration for this motion are given by (2.24) as

_x1 ¼ XI þ XII þ 3; _x2 ¼ XI þ XII þ 2; _x3 ¼ 0; €x1 ¼ €x2 ¼ €x3 ¼ 0:

In order to find the spatial representation for this motion we must invert the

system of equations (2.12) representing the motion, thus

dx1

dx1/dtdx2

dx2/dt

θ12

Fig. 2.7 An illustration for the geometric interpretation of the rate of shearing strain component

D12 of the rate-of-deformation tensor D. The heavy black lines represent two material filaments of

infinitesimal length that are instantaneously perpendicular. The thin black lines represent the same

two material filaments in the next instant. The instantaneous time rate of change of the angle

between the two material filaments, the rate at which the two filaments are coming together or

separating is _y12. The geometric interpretation of D12 is that it is one half the instantaneous time of

decrease in an originally right angle between dx1 and dx2, D12 ¼ � _y12=2
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XI ¼ 1

1þ 2t
fð1þ tÞx1 � tx2 � t2 � 3tg;

XII ¼ 1

1þ 2t
f�tx1 þ ð1þ tÞx2 þ t2 � 2tg; XIII ¼ x3

then, substituting these expressions into the previous equations for the velocities,

the spatial representation of this motion is obtained:

v1 ¼ 1

1þ 2t
fx1 þ x2 þ 3þ tg; v2 ¼ 1

1þ 2t
fx1 þ x2 þ 2� tg; v3 ¼ 0:

It is known from the first calculation in this example that this motion is one of

zero acceleration, €x1 ¼ €x2 ¼ €x3 ¼ 0 . This may be verified by calculating the

acceleration of the spatial representation of the motion above using the material

time derivative (2.29), thus

a1 ¼ @v1
@t

þ v1
@v1
@x1

þ v2
@v1
@x2

þ v3
@v1
@x3

¼ �2

ð1þ 2tÞ2 fx1 þ x2 þ 3þ tg þ 1

1þ 2t
þ 1

ð1þ 2tÞ2 f2ðx1 þ x2Þ þ 5g ¼ 0;

a2 ¼ @v2
@t

þ v1
@v2
@x1

þ v2
@v2
@x2

þ v3
@v2
@x3

¼ �2

ð1þ 2tÞ2 fx1 þ x2 þ 2� tg � 1

1þ 2t
þ 1

ð1þ 2tÞ2 f2ðx1 þ x2Þ þ 5g ¼ 0:

The tensor of velocity gradients L for the motion (2.12) is obtained by

substituting the spatial representation for the motion obtained above into

(2.31); thus

L ¼ 1

1þ 2t

1 1 0

1 1 0

0 0 0

2
4

3
5:

The rate-of-deformation tensor D for this motion is equal to L. The spin tensor

W is zero for this motion.

Problems

2.2.1. For the first six motions of the form (2.10) given in Problem 2.1.1, namely

2.1.1(a) through 2.1.1(f), determine the velocity and acceleration in the

material (Lagrangian) representation, the velocity and acceleration in the

spatial (Eulerian) representation, and the three tensors L, D, andW. Discuss

briefly how these algebraic calculations relate to the geometry of the motion.
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2.2.2. The motion of a continuum is given by: x1 ¼ XI þ XIItþ XIIIt
2;

x2 ¼ XII þ XIIItþ XIt
2; x3 ¼ XIII þ XItþ XIIt

2:

(a) Find the inversion of this motion.

(b) Determine the velocity and the acceleration in the material

representation.

(c) Find the velocity in the spatial (Eulerian) representation for this motion.

(d) Find the three tensors L, D, and W for this motion.

(e) Find the tensor of deformation gradients F for this motion.

2.2.3. The motion of a continuum is given by:

x1 ¼ XI þ XII sinðptÞ; x2 ¼ XII � XI sinðptÞ; x3 ¼ XIII:

(a) Determine the deformation gradient F of this deformation.

(b) Determine the instantaneous configuration image of the set of points

(XI)
2 þ (XII)

2 ¼ 1 in the reference configuration.

(c) Describe the geometry of the set of points (XI)
2 þ (XII)

2 ¼ 1 in the

reference configuration and describe what happens to this set of points

in the motion of the continuum as time t increases.

2.3 Infinitesimal Motions

The term infinitesimal motion is used to describe the case when the deformation,

including rotation, is small. This does not mean that the displacement vector is

small; one can have large displacements but small strain infinitesimal motions.

Large displacements associated with small strain infinitesimal motions occur in

very thin long rods. The criterion for infinitesimal motion is that the square of the

gradients of displacement be small compared to the gradients of displacement

themselves. Thus, for infinitesimal motions, the squares and products of the nine

quantities

@u1
@x1

;
@u1
@x2

;
@u1
@x3

;
@u2
@x1

;
@u2
@x2

;
@u2
@x3

;
@u3
@x1

;
@u3
@x2

;
@u3
@x3

(2.37)

must be small compared to their own values. This means, for example, f@u2=@x1g2
is required to be much smaller than @u2=@x1; each such square and product of these
nine quantities is so small that it may be neglected compared to the quantity itself.

Using this criterion of smallness, representations of the kinematics variables for

infinitesimal motions will be developed in this section.

If the motion is infinitesimal the deformation gradient tensor F must not deviate

significantly from the unit tensor 1, the magnitude of the deviation being restricted

by the criterion on the deformation gradients stated in the previous paragraph.
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The deformation gradient Fmay be expressed, using (2.22), in terms of [∇O � u]T,

which is a matrix of components ½@ui=@Xa�, as

F ¼ 1þ ½rO � u�T: (2.38)

Since

rO ¼ FT � r or
@

@Xa
¼ @

@xj

@xj
@Xa

¼ @

@xj
Fja (2.39)

it follows from (2.38) and a result obtained in Appendix A, namely that the

transpose of a product of matrices is equal to the product of the transposed matrices

in reverse order, [AB]T ¼ BTAT, that

F ¼ 1þ ½r � u�T � F: (2.40)

This result may be used as a recursion formula for F. In that role this formula for

F can be substituted into itself once,

F ¼ 1þ ½r � u�T þ ½r � u�T � ½r � u�T � F (2.41)

and then again and again,

F ¼ 1þ ½r � u�T þ ½r � u�T � ½r � u�T þ ½r � u�T � ½r � u�T � ½r � u�T
þ h:o:t:;

(2.42)

where h.o.t. stands for “higher order terms.” If the terms of second order according

to the criterion (2.37) are neglected, the F is approximated by

F 
 1þ ½r � u�T: (2.43)

From (2.22) it is known that

F�1 ¼ 1� ½r � u�T; (2.44)

a formula that is accurate in the approximation because F�F�1 ¼ 1 when terms of

second order are neglected.

Two important conclusions may be made from this result. First, for infinitesimal

motions the difference between the use of material and spatial coordinates is

insignificant, thus X and x are equivalent as are the gradient operators ∇O

and ∇. Concerning these operators note from (2.39) that

rO � u ¼ FT � ½r � u� (2.45)
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and, substituting for F using (2.42),

rO � u ¼ r� uþ ½r � u� � ½r � u�

thus, to neglect terms of second order,

rO � u 
 r� u: (2.46)

For infinitesimal motions, the movement of boundaries due to motion is

neglected because the small movement is equivalent to the difference in the use

of material and spatial coordinates, which is insignificant. Therefore in all the

following considerations of infinitesimal motions the coordinates x will be used

without reference to their material or spatial character, because the result is correct

independent of their character. The second important conclusion is that, for infini-

tesimal motions, F has the representation

F ¼ 1þ ½r � uðx; tÞ�T: (2.47)

In the special case when the infinitesimal motion is a rigid object rotation,

F ¼ Q and Q ¼ 1 þ [∇ � u]T. The requirement that Q be orthogonal, QT�Q ¼
Q�Q T ¼ 1, Q�Q T ¼ (1 þ [∇ � u]T)�(1 þ [∇ � u]T)T ¼ 1 þ [∇ � u]T

þ (∇ � u) þ (∇ � u)T�(∇ � u) ¼ 1, means that

ðr � uÞT þr� u ¼ 0; (2.48)

since (∇ � u)T�(∇ � u) represents terms of the second order terms that are

neglected. Defining the symmetric and skew symmetric parts of∇ � u as E andY,

E ¼ ð1=2Þððr � uÞT þr� uÞ; Y ¼ ð1=2Þððr � uÞT �r� uÞ; (2.49)

it is seen from (2.48) that E must be zero when the infinitesimal motion is a rigid

object rotation. It may also be seen that the orthogonal rotationQ characterizing the

infinitesimal rigid object rotation is given by

Q ¼ 1þ Y; (2.50)

where Y, defined by (2.49), is skew symmetric, Y ¼ �YT, and YYT is a second

order term, since it is a square of the coefficients (2.37) which are neglected

compared to the values of Y.

Returning to the total infinitesimal motion, the definitions (2.49) of E and Ymay

be used to rewrite (2.42) as

F ¼ 1þ Eþ Y: (2.51)

It has been established that F represents only the rotational and deformational

motion because the translational portion of the motion, being independent of the
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coordinates, was removed by spatial or material differentiation. It has also been

noted that the special case of F ¼ 1 corresponds to no rotational and no deforma-

tional motion. Further it has been shown (2.50) that Y is associated with pure rigid

object rotation. This means that E must be the tensor representing the deformation.

This is indeed the case, as will be shown below. E is called the infinitesimal strain
tensor andY is called the infinitesimal rotation tensor. The representation (2.51) for
the tensor of deformation gradients then demonstrates that, for infinitesimal

motions, F � 1 may be decomposed into the sum of two terms, E and Y, which

represent the deformational and rigid rotational characteristics of the infinitesimal

motion, respectively.

The strain tensor E, defined by the first of (2.49), has the component

representation

E ¼ 1

2

@uj
@xi

þ @ui
@xj

� �
¼ 1

2

2
@u1
@x1

@u1
@x2

þ @u2
@x1

@u1
@x3

þ @u3
@x1

@u1
@x2

þ @u2
@x1

2
@u2
@x2

@u2
@x3

þ @u3
@x2

@u1
@x3

þ @u3
@x1

@u2
@x3

þ @u3
@x2

2
@u3
@x3

2
66666664

3
77777775
: (2.52)

The components of E along the diagonal are called normal strains and the

components off the diagonal are called shear strains. The normal strains, E11, E22,

and E33, are measures of change in length per unit length along the 1, 2 and 3 axes,

respectively, and the shear strains, E23, E13, and E12, are one-half of the changes in

the angle between the 2 and 3 axes, the 1 and 3 axes and the 1 and 2 axes,

respectively.

The geometric interpretation of the components of the strain tensor E stated in

the previous paragraph will be analytically developed here. Let dx1 be a vector of
infinitesimal length representing the present position of an infinitesimal material

filament coinciding with the x1 at time t. The displacement of this material filament

instantaneously coincident with dx1 is du1 ¼ E11dx1, a result that follows from the

entry in the first column and first row of (2.52). The expression du1 ¼ E11dx1 is the
change in length of dx1 as a consequence of the strain as illustrated in Fig. 2.8. Thus
the geometric interpretation of E11 ¼ (du1/dx1) is that it is the change in length per

unit length of dx1. Similar geometric interpretations exist for E22 and E33.

The geometric interpretation of the normal strain components E11, E22 and E33 is

easily extended to obtain a geometric interpretation of the trace of the small strain

tensor tr E, or equivalently the divergence of the displacement field ∇�u, tr E ¼
∇�u. If dvo ¼ dx1dx2dx3 represents an undeformed element of volume (Fig. 2.9),

the deformed volume is given by dv ¼ (dx1 þ du1)(dx2 þ du2)(dx3 þ du3). Using
du1 ¼ E11dx1, du2 ¼ E22dx2 and du3 ¼ E33dx3, the deformed volume is given by

dv ¼ (1 þ E11)(1 þ E22)(1 þ E33)dvo. Expanding dv ¼ (1 þ E11)(1 þ E22)

(1 þ E33)dvo and recognizing that the squares of displacement gradients (2.37)
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may be neglected, it follows that dv ¼ (1 þ trE)dvo. Thus the trE represents the

change in volume per unit volume, (dv � dvo)/dvo.
The off-diagonal components of the strain tensor, for example E12, represent the

shearing strains. E12 is equal to one-half the change in angle that was originally a

right angle between the x1 and x2 axes. To construct this geometric result algebrai-

cally, the unit vectors e1 and e2 are considered, see Fig. 2.10. After deformation

these vectors are Fe1 and Fe2, respectively, or, since F ¼ 1 þ E, the deformed

vectors are given by e1 þ Ee1 and e2 þ Ee2, respectively. The dot product of the

vectors e1 þ Ee1 and e2 þ Ee2 is (e1 þ Ee1)�(e2 þ Ee2) ¼ e1�e2 þ e1�Ee2 þ
e2�Ee1 þ Ee1�Ee2, but since the unit vectors e1 and e2 are orthogonal, e1�e2 ¼ 0,

and also since Ee1�Ee2 is a higher order term because it contains the squares of the

displacement gradients (2.37), this expression reduces to (e1 þ Ee1)�(e2 þ Ee2) ¼
e1�Ee2 þ e2�Ee1. This result is further reduced by noting that e1�Ee2 ¼ e2�Ee1 ¼ E12,

dx1 + du1

dx2 + du2

dx3 + du3

dx1

dx2

dx3

Fig. 2.9 An illustration for the geometric interpretation of the trace of the strain tensor, tr E, or the

divergence of the displacement field,∇�u, trE ¼ ∇�u. The left and right illustrations of this figure
represent the undeformed and deformed configurations, respectively. The heavy black lines
represent the same material filaments in the two configurations. The volume element in the

undeformed configuration is dvo ¼ dx1dx2dx3 and the deformed volume is given by dv ¼ (dx1 þ
du1)(dx2 þ du2)(dx3 þ du3). It may be shown (see text) that dv ¼ (1 þ trE)dvo. Thus the trE

¼ ∇�u represents the change in volume per unit volume, (dv � dvo)/dvo

dx1 dx1 + du1

Fig. 2.8 An illustration for the geometric interpretation of the normal strain component E11.

The left and right illustrations of this figure represent the undeformed and deformed

configurations, respectively. The heavy black line represents the same material filament in the

two configurations. E11 is equal to the change in length per unit length of the filament between

the two configurations. The original length is dx1 and the change in length due to the deformation

is du1, thus E11 ¼ du1/dx1
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thus it follows that (e1 þ Ee1)�(e2 þ Ee2) ¼ 2E12. Recalling the formula (A61) for

the dot product of two vectors, say u and v, as equal to the magnitude of the first times

the magnitude of the second times the cosine of the angle (say z) between them, u � v
¼ uivi ¼ juj � jvj cos z, it follows that 2E12 ¼ je1 þ Ee1j je2 þ Ee2j cos (p/2 � f),
where the angle (p/2 � f) is illustrated in Fig. 2.10. The magnitude of je1 þ Ee1j
is the square root of (e1 þ Ee1)�(e1 þ Ee1) ¼ e1�e1 þ e1�Ee1 þ e1�Ee1 þ Ee1�Ee1,
but since e1�e1 ¼ 1 and Ee1�Ee1 is a higher order term, this reduces to the square root

of 1 þ 2E11, by a parallel of the arguments used above to obtain the formula for 2E12.

At this point a classical approximation is used. This approximation is that 1 þ e

 √(1 þ 2e) if summands of the order e2 may be neglected; the proof of this

approximation follows easily if one squares it. Then, since the square of E11

is a higher order term, the square root of 1 þ 2E11 is given by 1 þ E11, thus 2E12

¼ (1 þ E11)(1 þ E22) cos(p/2 � f) or 2E12 ¼ (1 þ E11)(1 þ E22)sin f or

expanding; 2E12 ¼ sin f þ (E11 þ E22) sin f þ E11E22 sin f. Finally, since the

angle f is small, sin f is small as are E11 and E22, thus the neglect of higher order

terms gives 2E12 ¼ f, and the interpretation of E12 as one-half the change in an angle

thatwas originally a right angle between the x1 and x2 axes (Fig. 2.10).These geometric

interpretations of the components of E as the change in the length of filaments, the

change in angles and the change in volume deformation between the undeformed

and the deformed configurations are the rationale for calling E the strain tensor.

Example 2.3.1
The deformation gradient and the inverse deformation gradient for the motion given

by (2.12) were computed in Example 2.1.4. Determine the restriction on the motion

given by (2.12) so the motion is infinitesimal. Find the strain tensor E and the

rotation tensor Y for the infinitesimal motion.

dx1

dx2

φ dx2 + du2

dx1 + du1

(π/2 - φ)

Fig. 2.10 Illustration for the geometric interpretation of the shearing strain E12. The left and right
illustrations of this figure represent the undeformed and deformed configurations, respectively.

The heavy black lines represent the same material filaments in the two configurations. E12 is equal

to one-half the change in angle that was originally a right angle between the x1 and x2 axes, f/2 in
this figure
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Solution: Comparison of the expressions∇O � u(X, t) and∇ � u(x, t) obtained in
Example 2.1.4 shows that these two expressions coincide only for very small times

t, only if t2 is much less than t. In this case ∇O � u(X, t) ¼ ∇ � u(x, t) and

r� u ¼ t
1 1 0

1 1 0

0 0 0

2
4

3
5:

From this expression for ∇ � u and (2.49), the rotation tensor is determined to

be Y ¼ 0, and the strain tensor E is given by

E ¼ t
1 1 0

1 1 0

0 0 0

2
4

3
5

as long as t is small.

Problem

2.3.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)

through 2.1.1(g), determine the conditions under which the motion remains

infinitesimal and compute the infinitesimal strain and rotation tensors, E and

Y. Discuss briefly the significance of each of the seven strain tensors

computed. In particular, explain the form or value of the strain tensor in

terms of the motion.

2.4 The Strain Conditions of Compatibility

Calculating the strain tensor E given the displacement field u is a relatively simple

matter; one just substitutes the displacement field u into the formula (2.49) for the

strain displacement relations, E ¼ (1/2)((∇ � u)T þ ∇ � u). Situations occur in

which it is desired to calculate the displacement field u given the strain tensor E. This

inverse problem is more difficult because the strain displacement relations,E ¼ (1/2)

((∇ � u)T þ ∇ � u), become a system of first order partial differential equations

for the displacement field u. Given the significance of the displacement field u in an

object we generally want to insure that the displacement field u is continuous and

single valued. There are real situations in which the displacement field u might be

discontinuous andmultiple valued, but these situations will be treated as special cases.

In general it is desired that the integral of the strain–displacement relations, the

displacement field u, is continuous and single valued. The conditions of compatibil-

ity insure this. The conditions of compatibility are equations that the strain tensor

must satisfy so that when the strain–displacement relations are integrated, the

resulting displacement field u, is continuous and single valued. The conditions of

compatibility may be written in the direct notation as

48 2 Basic Continuum Kinematics



r	 E	r ¼ 0 (2.53)

or in the index notation as

eijkepmn
@2Ejm

@xk@xn
¼ 0 (2.54)

or in scalar form as the following six equations:

@2E11

@x2@x3
¼ @

@x1
� @E23

@x1
þ @E31

@x2
þ @E12

@x3

� �
; 2

@2E12

@x1@x2
¼ @2E11

@x22
þ @2E22

@x21
;

@2E22

@x3@x1
¼ @

@x2
� @E31

@x2
þ @E12

@x3
þ @E23

@x1

� �
; 2

@2E23

@x2@x3
¼ @2E22

@x23
þ @2E33

@x22
;

@2E33

@x1@x2
¼ @

@x3
� @E12

@x3
þ @E23

@x1
þ @E31

@x2

� �
; 2

@2E31

@x3@x1
¼ @2E33

@x21
þ @2E11

@x23
:

(2.55)

Equations (2.53) and (2.54) are symmetric second rank tensors in three

dimensions and therefore have the six components given by (2.55). It follows that

each of the six scalar equations (2.55) must be satisfied in order to insure compati-

bility. The conditions (2.53) are a direct consequence of the definition of strain, that

is to say that E ¼ (1/2)((∇ � u)T þ ∇ � u) ¼ (1/2)(u � ∇ þ ∇ � u) implies

that r	 E	r ¼ 0. To see that this is true, consider the result of operating on

E ¼ (1/2)(u � ∇ þ ∇ � u) from the left byr	 and from the right by 	r; one

obtains the expression

2ðr 	 E	rÞ ¼ r	 u�r	rþr	r� u	r: (2.56)

The operatorr	r, which occurs in both terms on the right hand side of (2.56)

is called the “curl grad”; the curl of the gradient applied to a function f is zero,

r	rf ¼ 0. In the indicial notation this is easy to see, r	rf ¼ eijkð@f=@xj@xkÞ
ei ¼ 0, because of the symmetry of the indices on the partial derivatives and skew-

symmetry in the components of the alternator (see Appendix A.8). Both terms on the

right hand side of (2.56) contain the operator curl grad,r	r, applied to a function,

hence r	 E	r ¼ 0. It may also be shown that the reverse is true, namely that

r	 E	r ¼ 0 implies that E ¼ (1/2)((∇ � u)T þ ∇ � u). Thus E ¼ (1/2)

((∇ � u)T þ ∇ � u) is a necessary and sufficient condition thatr	 E	r ¼ 0.

In order to both prove and motivate this result consider the two integration paths

from the point Po to the point P0 in an object (Fig. 2.11). If the result of the

integration from the point Po to the point P0 is to be the same along all paths chosen

between these two points, then the value of the integral around any closed path in

the object must be zero. This means that the integrand of the integral must be an

exact differential (see Appendix A.15 Exact differentials). Recall the theorem at the
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start of most texts on ordinary differential equations concerning exact differentials:

If M(x, y) and N(x, y) are continuous functions and have continuous partial

derivatives in a region of the x–y plane, then the expression M(x, y)dx þ N(x, y)dy
is an exact differential if and only if @M=@y ¼ @N=@x throughout the region. This
theorem will be applied to prove that the compatibility relationsr	 E	r ¼ 0 are

both necessary and sufficient conditions for the continuous and single-valued nature

of the displacement field obtained by integration from the strain–displacement

relations. If the displacement vector is known at the point Po then integration of

du from the point Po to the point P0 (Fig. 2.11) will determine u(x0), thus,

uðx0Þ ¼ uo þ
ðP0

Po

du ¼ uo þ
ðP0

Po

ðr � uÞT � dx: (2.57)

Recall from (2.43) and (2.51) that

ðr � uÞT ¼ Eþ Y (2.58)

it follows that

uðx0Þ ¼ uo þ
ðP0

Po

E � dxþ
ðP0

Po

Y � dx: (2.59)

The last integral in the previous result may be rewritten as

ðP0

Po

Y � dx ¼
ðP0

Po

Y � dðx� x0Þ (2.60)

Fig. 2.11 Illustration of two

integration paths from the

point Po to the point P0 in an

object. If the result of the

integration from the point Po

to the point P0 is to be the

same along all paths chosen

between these two points,

then the value of the integral

around any closed path in the

object must be zero. This

means that the integrand of

the integral must be an exact

differential
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and integrated by parts, thus

ðP0

Po

Y � dx ¼ �Yo � ðxo � x0Þ þ
ðP0

Po

dx � r � Y � ðx� x0Þ: (2.61)

Placing the result (2.61) into (2.59) it follows that

uðx0Þ ¼ uo � Yo � ðxo � x0Þ þ
ðP0

Po

dx � ½Eþr� Y � ðx� x0Þ� (2.62)

or, in the indicial notation,

uiðx0Þ ¼ uoi � Yo
ikðxok � x0kÞ þ

ðP0

Po

Eim � @Yik
@xm

ðxk � x0kÞ
� �

dxm: (2.63)

The relationship between the derivatives of the rotation and strain tensors,

@Yik
@xm

¼ @Eim

@xk
� @Emk

@xi
; (2.64)

may easily be verified by substituting the formulas (2.49) relating E and Y to the

displacement gradients. When the relationship (2.64) is substituted into (2.63) it

becomes

uiðx0Þ ¼ uoi � Yo
ikðxok � x0kÞ þ

ðP0

Po

Rim dxm; (2.65)

where

Rim ¼ Eim � @Eim

@xk
� @Emk

@xi

� �
ðxk � x0kÞ: (2.66)

The condition that the integrand in the integral in (2.65) be an exact differential

is then expressed as the condition

@Rim

@xk
¼ @Rik

@xm
: (2.67)

When (2.67) is substituted into (2.66), the result
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0 ¼ @2Emq

@xi@xk
þ @2Eik

@xq@xm
� @2Ekq

@xi@xm
� @2Eim

@xq@xk

� �
ðxq � x0qÞ (2.68)

is satisfied only when the compatibility conditions (2.54), or equivalently (2.54) or

(2.55) orr	 E	r ¼ 0, hold. Thusr	 E	r ¼ 0 is a necessary and sufficient

condition that the integration of the strain–displacement relations will yield a

single-valued and continuous displacement field.

Problems

2.4.1. For the motions of the form (2.10) given in Problem 2.1.1, namely 2.1.1(a)

through 2.1.1(g), determine if the infinitesimal strain tensors,E, calculated in

2.3.1 satisfy the conditions of compatibility.

2.4.2. Is the following strain state possible for an object in which the displacement

field must be continuous and single valued? Justify your answer analytically.

e ¼ c

x3ðx21 þ x22Þ x1x2x3 0

x1x2x3 x3x
2
2 0

0 0 0

2
64

3
75:

2.4.3. Demonstrate the validity of the formula (2.64) by substituting the formulas

relating E and Y to the displacement gradients (2.49) into (2.64) and show

that an identity is obtained. This is more easily done in the indicial notation.

2.4.4. Verify that substitution of the formula (2.67) into (2.66) leads to the result

(2.68). This is much more easily done in the indicial notation.
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