Chapter 2
Tag Estimation in RFID Systems

2.1 System Model

This section introduces the tag estimation problem and the the energy issue in this
problem. The communication model between RFID readers and tags is explained.

2.1.1 Tag Estimation Problem

A tag estimation problem is the problem to design efficient algorithms to estimate
the number of RFID tags in a deployment area without actually reading the ID of
each tag. Let N be the actual number of tags and N be the estimate. The estimation
accuracy is specified by a confidence interval with two parameters: a probability
value o and an error bound f3, both in the range of (0,1). The requirement is that
the probability for N/N to fall in the interval [I — 3, 1 + ] should be at least c, i.e.,

Prob{(1—B)N <N < (1+B)N} > a.

Our goal is to reduce the energy overhead incurred to the tags during the estimation
process that achieves the above accuracy.

2.1.2 Energy Issue

We consider RFID systems using active tags. Tagged goods (such as apparel) may
stack in piles, and there may be obstacles, such as racks filled with merchandize,
between a tag and the reader. We expect active tags are designed to transmit with
significant power that is high enough to ensure reliable information delivery in such
a demanding environment. Hence, energy cost due to the tags’ transmissions is the
main concern in our algorithm design; it increases at least in the square of the
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maximum distance to be covered by the RFID system. Energy consumption that
powers a tag’s circuit for computing and receiving information is not affected by
long distance and obstacles. We consider RFID systems where power consumption
by tags is dominated by transmission events due to long distances that the systems
need to cover. Energy consumed by the RFID reader is less of a concern. We assume
the reader transmits at sufficiently high power.

2.1.3 Communication Protocol

The following communication protocol is used between a reader and tags. The
reader first synchronizes the clocks of the tags and then performs a sequence
of pollings. Clock synchronization only needs to happen at the beginning of the
protocol execution. RFID systems operate in low-rate wireless channels. If an
operation takes a short period of time, clock drift should not be a major issue in
a low-rate channel.

In each polling, the reader sends out a request, which is followed by a slotted time
frame during which the tags respond. The polling request from the reader carries a
contention probability 0 < p < 1 and a frame size f. Each tag will participate in
the current polling with probability p. If it decides to participate, it will pick a slot
uniformly at random from the frame, and transmit a bit string (called response) in
that slot. The format of the response depends on the application. If the tag decides to
not participate, it will keep silent. In our solutions, p will be set in the order of 1/N.

If we know a lower bound N, of N, the contention probability can be
implemented efficiently to conserve energy. For example, a company’s inventory of
certain goods may be in the thousands and never before reduced below a certain
number, or the company has a policy on the minimum inventory, or the RFID
estimation becomes unnecessary when the number of tags is below a threshold.
In these cases, we will have a lower bound N,;,;,,, which can be much smaller than
N. If we know such a value of N,;,, we can implement a contention probability
p without requiring all tags to participate in the contention process. Since only
a small number of tags actually participate in contention, energy cost is reduced.
The implementation is described as follows: At the beginning of a polling, each tag
makes a probabilistic decision: It goes to a standby mode for the current polling with
probability 1 — 1 /N, and wakes up until the next polling starts, or it stays awake
to receive the polling request with probability 1/N,;, and then decides to respond
with probability min{p X Ny, 1}. For example, if N = 10,000 and N,,;, = 1,000,
then only 10 tags stay awake in each polling.

In the above communication protocol, the reader’s request may include an
optional prefix and only tags that satisfy the prefix will participate in the polling.
For example, suppose all tags deployed in one section of a warehouse carry the 96-
bit GEN2 IDs that begin with “000” in the Serial Number field. In order to estimate
the number of tags in this section, the request carries a predicate testing whether the
first three bits of a tag’s Serial Number is “000”.
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2.1.4 Empty/Singleton/Collision Slots

A slot is said to be empty if no tag responds (transmits) in the slot. It is called a
singleton slot if exactly one tag responds. It is a collision slot if more than one
tag responds. A singleton or collision slot is also called a non-empty slot. The
Philips I-Code system [12] requires a slot length of 10 bits in order to distinguish
singleton slots from collision slots. On the contrary, one bit is enough if we only
need to distinguish empty slots from non-empty slots — ‘0’ means empty and ‘1’
means non-empty. Hence, the response will be much shorter (or consume much less
energy) if an algorithm only needs to know empty/non-empty slots, instead of all
three types of slots as required by [7].

In order to prolong the lifetime of tags, there are two ways to reduce their
energy consumption: reducing the size of each response and reducing the number
of responses. We will present algorithms that require only the knowledge of
empty/non-empty slots and employ statistical methods to minimize the amount of
transmission needed from the tags.

2.2 Generalized Maximum Likelihood Estimation Algorithm

The first estimator for the number of RFID tags is called the generalized maximum
likelihood estimation (GMLE) algorithm. It fully utilizes the information from all
pollings in order to minimize the number of pollings it needs to meet the accuracy
requirement.

2.2.1 Overview

GMLE uses the polling protocol described in Sect. 2.1.3. The frame size f is fixed
to be one slot. The RFID reader adjusts the contention probability for each polling.
Let p; be the contention probability of the ith polling. GMLE only records whether
the sole slot in each polling is empty or non-empty. Based on this information, it
refines the estimate N until the accuracy requirement is met. Let z; be the slot state
of the ith polling. When at least one tag responds, the slot is non-empty and z; = 1.
When no tag responds, it is empty and z; = 0. The sequence of z;, i > 1, forms the
response vector.

At the ith polling, each tag has a probability p; to transmit and, if any tag
transmits, z; will be one. Hence,

Prob{zi=1}=1—(1—p)N =1 —eNPi, 2.1

where N is the the actual number of tags.
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If the contention probabilities of the pollings are picked too small, the response
vector will contain mostly zeros. If the contention probabilities are picked too large,
the response vector will contain mostly ones. Both cases do not provide sufficient
statistical information for accurate estimation. As will be discussed shortly, our
analysis shows that the optimal contention probability for minimizing the number
of pollings is p; = 1.594/N. The problem is that we do not know N (which is the
quantity we want to estimate).

In order to determine p;, GMLE consists of an initialization phase and an
iterative phase. The former quickly produces a coarse estimation of N. The latter
refines the contention probability and generates the estimation result.

2.2.2 Initialization Phase

We want to pick a small value for the initial contention probability p; at the first
polling. The expected number of responding tags is Np;. If p; is picked too large, a
lot of tags will respond, which is wasteful because one response or many responses
produce the same information — a non-empty slot. Suppose we know an upper
bound N, of N. This information is often available in practice. For example, we
know Npqy is 10,000 if the warehouse is designed to hold no more than 10,000
microwaves (each tagged with a RFID), or the company’s inventory policy requires
that in-store microwaves should not exceed 10,000, or the warehouse only has
10,000 RFID tags in use. Nyq, can be much bigger than N. We pick p; = 1 /Ny
such that the expected number of responding tags is no more than one. If z; =0,
we multiply the contention probability by a constant C(> 1), i.e., po = p; X C for
the second polling. We continue multiplying the contention probability by C after
each polling until a non-empty slot is observed. When that happens (say, at the /th
polling), we have a coarse estimation of N to be 1/p;. Then we move to the next
phase. When C is relatively large, the initialization phase only takes a few pollings
to complete due to the exponential increase of the contention probability.

2.2.3 Iterative Phase

This phase iteratively refines the estimation result after each polling, and terminates
when the specified accuracy requirement is met. Let N; be the estimated number of
tags after the ith polling. To compute N;, the reader performs three tasks at the ith
polling. First, it sets the contention probability as follows before sending out the
polling request:

0]
Niy

pi= g (2.2)



2.2 Generalized Maximum Likelihood Estimation Algorithm 13

where N;_; is the estimate after the previous polling and  is a system parameter,
which will be extensively analyzed in the next subsection. Second, based on the
received z; and the history information, the reader finds the new estimate of N that
maximizes the following likelihood function:
i
Li=[T0-p)"" (1= (1=pp")7, (2.3)
Jj=1

where (1— p;)M1=2)(1 — (1 — p;)")¥ is the probability for the observed state z; of
the jth polling to occur. Namely, we want to find

N; = arg max{L;}
N :

Third, after computing ]V,‘, the reader has to determine if the confidence interval of
the new estimate meets the requirement. In the following, we show how the above
tasks can be achieved.

(2.4)

2.2.3.1 Compute the value of N;

We compute the new estimate of N that maximizes (2.3). Since the maxima is not
affected by monotone transformations, we use logarithm to turn the right side of the
equation from product to summation:
i
In(L;) = z [N(l —zj)In(1—p;)+z;jIn(1—(1 —pj)N)} )
j=1

To find the maxima, we differentiate both sides:

Il s f_, o (=p) (1 —p))
ON —j_zl[(l—z])ln(l—p/)—z; —(1—p)V } 2.5)

We then set the right hand side to zero and solve the equation for the new estimate
N;. Note that the derivative is a monotone function of N, we can numerically obtain
N; through bisection search.

2.2.3.2 Termination Condition

Using the § —method [2], we show that, when i is large, N; approximately follows
the Gaussian distribution:

(1—(1=p)")
NOVm(M i(1—p)NIn?(1 —Pi)>'
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The variance of N; is

1—(1—p)"

Vi ]V, ~~ .
ar(N:) i(1—p)NIn?(1 - p;)

(2.6)

When N is large and p; is small, we can approximate (1 — p;)N as e VP and In(1 —
pi) as p;. The above variance becomes

N eNri ]
Var(N;) = —— 2.7
ip;
Hence, the confidence interval of N is
N Nipi _ 1
NitZo (| 28)
ip;

where Z is the o percentile for the standard Gaussian distribution. For example,
when o = 95%, Z, = 1.96. Because N is undetermined, we use N; as an approxi-
mation when computing the standard deviation in (2.8).

The termination condition for GMLE is therefore

eNiPi —1

P02
Lp;

where f3 is the error bound. The above inequality can be rewritten as

7\ eNivi — 1
VisZeVer = (2.10)
NipiB
When i is large, the estimation changes little from one polling to the next. Hence,
pi=w/N;_| ~ o/N;. We have

7% (e®—1

i> % (2.11)
Hence, if  is determined, we can theoretically compute the approximate number of
pollings that are required in order to meet the accuracy requirement. For example,
if &« =95%, B =5%, and ® = 1.594 (which is the optimal value to be given
shortly), 2372 pollings will be required. Note that (2.11) is independent with the
actual number of tags, N. Hence, our approach has perfect scalability.

Figure 2.1 shows the simulation result of GMLE when N=10,000, a=95%,
B =5% and ® = 1.594. The simulation setup can be found in Sect. 2.4. The middle
curve is the estimated number of tags, N;, with respect to the number pollings. It
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converges to the true value N represented by the central straight line. The upper and
lower curves represent the 95% confidence interval, which shrinks as the number of
pollings increases.

2.2.4 Determine the Value of ®

We demonstrate the impact of the value @ on two performance metrics: the number
of pollings and the number of tag responses (i.e., the number of tag transmissions).
The former measures the estimation time since each polling takes an equal amount
of time for request/response exchange. The latter measures the energy cost because
each response corresponds to one tag making one transmission in a slot.

2.2.4.1 Number of Pollings

According to (2.11), the number of pollings for meeting the accuracy requirement
is Z2(e® —1)/(w*B?). To find its minimum value, we differentiate it with respect
to  and let the result be zero. Solving the equation, we have @ = 1.594. Hence, the
optimal value of p; that minimizes the number of pollings is

1.594

= 2.12
Di N (2.12)

2.2.4.2 Number of Responses

We count the total number of responses during the estimation process. After a small
number of pollings, the estimation will closely approximate N (see Fig. 2.1). Hence,
the expected number of responses for each polling is Np; = N;_1p; = o. After
72 (e® —1)/(w*B?) pollings are made, the total number of responses is roughly



16

2 Tag Estimation in RFID Systems
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?B? wp?

Simulation results will demonstrate that the approximation in the above count is
reasonably accurate. It is an increasing function with respect to @, which means that
a larger value of @ will lead to a larger number of responses. We give the intuition as
follows: A larger @ means a larger contention probability and thus more collisions.
Two or more responses in a collision slot produce the same amount of information
as one response in a singleton slot (see further explanation in Sect. 2.2.6). In other
words, in order to generate the necessary amount of information for meeting the
accuracy requirement, more responses must be needed if there are more collisions.

2.2.4.3 Numerical Results

in Fig. 2.2, we plot the number of pollings and the number of responses with respect
to the value of w. The number of pollings is minimized at ® = 1.594. When @
is smaller than 1.594, its value controls the performance tradeoff between the two
metrics. When we decrease o, the energy cost (i.e., the number of responses) drops
at the expenses of the estimation time (i.e., the number of pollings).

2.2.5 Request-less Pollings

We observe that, after a number of pollings, the value of p; will stay in a very
small range and does not change much. It becomes unnecessary for the RFID reader
to transmit it at each polling. Hence, we can improve GMLE as follows: If the
percentage change in p; during a certain number M; of consecutive pollings is
below a small threshold, the reader will broadcast a polling request, carrying the
latest value of p;, a flag indicating that it will no longer transmit polling requests
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for a certain number M, of slots, and the value of M,. Without receiving further
polling requests, the tags will respond with the same contention probability in the
subsequent M, slots. This is called the request-less pollings. After M, slots, the
reader will recalculate the contention probability, broadcast another polling request,
carrying the new probability value, a flag, and M. This process repeats until the
termination condition in (2.9) is met. With the threshold being 10%, M; = 10,
and M, = 50, simulation results show that the performance difference caused by
request-less pollings is negligibly small even though the contention probability
during request-less pollings may be slightly off the value set by (2.2). Request-less
pollings can also be applied to the algorithm in the next section.

2.2.6 Information Loss due to Collision

GMLE has a frame size of one slot. It obtains only binary information at each
polling. No matter how many tags respond, the information that the reader receives
is always the same, i.e., z; = 1, which implies information loss when two or more
tags decide to transmit at a polling. Let’s compare two scenarios. In one scenario,
only one tag responds at a polling. In the other, two tags respond. These two
scenarios generate the same information but the energy cost of the second scenario
is twice of the first. To address this issue, we present another algorithm that reduces
the probability of collision and, moreover, compensate the impact of collision in its
computation.

2.3 Enhanced Generalized Maximum Likelihood
Estimation Algorithm

The enhanced generalized maximum likelihood estimation (EGMLE) algorithm
also utilizes history information from previous pollings and uses the maximum
likelihood method to estimate the number of tags. However, instead of only
obtaining binary information, it computes the number of responses in each polling.
Because more information can be extracted, it is able to achieve much better energy
efficiency than GMLE.

2.3.1 Overview

EGMLE uses the same polling protocol as GMLE does, except that its frame size
f is larger than one in order to reduce the probability of collision. The result of the
ith polling, x;, is no longer a binary value. Instead, it is an estimate of the number of
tags that respond during the polling.



18 2 Tag Estimation in RFID Systems

EGMLE takes two steps to solve the collision problem. First, it increases the
frame size f such that the tags that decide to respond at a polling are likely to
respond at different slots in the frame. We pick values for p; and f such that the
collision probability is very small. Second, we compensate the remaining impact of
collision in our computation.

EGMLE also consists of an initialization phase and an iterative phase. The
initialization phase of EGMLE is the same as the initialization phase of GMLE,
except that when the RFID reader obtains the first non-zero result x; at the /th polling
with a contention probability p;, it computes a coarse estimation of N as x;/p;. Then
it moves to the next phase below.

2.3.2 Iterative Phase

This phase iteratively refines the estimation after each polling, and terminates when
the specified accuracy requirement is met. The reader performs four tasks during
the ith polling. First, it computes the contention probability before sending out the
polling request.

Pi= (2.14)

Ni-1
where N;_ is the estimate after the previous polling and @ is one by default. As
we will show in the next subsection, performance tradeoff can be made by choosing
other values for .
Second, the reader computes the number of responses x; in the current frame.
Third, based on the received x; and the history information, the reader computes
the new estimate of NV that maximizes the following likelihood function:

i 1 B ((1+&)x;—Np;)?
L= H . WNpj=rj) | (2.15)
j=rt1 L\/2rNpi(1 = pj)
where € is introduced to compensate for collision and the iterative phase begins
from the (/4 1)th polling. The above formula and the value of € will be derived
shortly. The new estimate is

N; = arg max{L;}

. (2.16)

Fourth, after computing N;, the reader determines if the estimate meets the
accuracy requirement. In the following, we give the details of the above tasks.
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2.3.2.1 Compute the number of responses

At the ith polling, the reader measures the number of non-empty slots in the frame,
denoted as x;, which is an integer in the range of [0..f]. Due to possible collision,
the actual number of responses, denoted as x}, can be greater. Let x7 = (1 + €)x;.
The value of € is determined below.

Since each tag independently decides to respond with probability p;, x; follows
a binomial distribution, Bino(N, p;), i.e.,

Prob{x' =k} = (]D pi(1—=p)" . (2.17)

Suppose o takes the default value, 1. When i is large, N;_| approximates N and thus
pi~1/N.If N is sufficiently large, Prob{x} =2} ~0.1839, Prob{x} =3} ~0.0613,
Prob{x} =4} ~0.0153, and the probability decreases exponentially with respect to
k. Prob{x} > 4} is only about 0.0037.

Next, we compute the probability for collision to happen at the ith polling, which
is denoted as Prob;{collision}.

N
Probi{collision} =Y Prob;{collision|x; = k} x Prob{x; = k}
k=2

= 2(1 - P(f,;k)) x Prob{x; =k} + i 1 X Prob{x} =k},
k=2 f k=f+1

where P(f,k) = f!/(f —k)! is the permutation function.

Figure 2.3 shows the collision probability Prob;{collision} with respect to f.
It diminishes quickly as f increases. When f = 10 (which is what we use in the
simulations), Prob;{collision} is just 0.046. With such a small probability, the
chance for more than two tags involved in a collision or more than one collision
at a polling is exceedingly small and thus ignored. Therefore, to approximate x, we
multiply x; by 1.046 to compensate the impact of collision. Namely, € = 0.046.



20 2 Tag Estimation in RFID Systems

2.3.2.2 Compute the value of N;

Recall that the iterative phase starts at the (/ + 1)th polling. After the ith polling, the
reader has collected the values of x;, [ < j <1i. By our previous analysis, we know
that x7 = (1 4+ ¢&)x; and it follows a binomial distribution Bino(N, p;). When N is
large enough, the binomial distribution can be closely approximated by a Gaussian
distribution Norm(u;,c;) with parameters f; = Np; and o; = \/Np;(1—p;).
Namely,

x; ~ (1 +€)xj~Norm(Np;,Np;(1—pj)). (2.18)

Hence, the probability for the measured number of responses, (1 + €)x j, to occur
under this distribution is [22Np;(1 — p;)] "/ ?exp{—[(1+€)x; —Np;]*/[2Np;(1 —
p;)1}. The likelihood function for all measured numbers of responses in the pollings,
(1+¢€)x;j, 1 < j<i,tooccuris

i | (e Np))
L= TI [ Tty } (2.19)
j=i+1 Ly/27Np;(1 = pj)

To find the value 1\7, that maximizes the likelihood function, we first take logarithm
on both sides of (2.19),

d 1 1 —Npj)?
In(L;)= Y [n _ ((+2)x;—Np)) } (2.20)
it 2rNp;(1—p;)  2Npj(1=pj)
We then differentiate both sides,
In(L) 2 {_L (1+¢)? 3—(Np/)}
ON 2T 2N 2N2pj( )
i (1+¢&)* 53— (N i
2T 2N?pi(1— ) 2N

Finally, we set the right side to be zero and numerically compute the value of ;.

2.3.2.3 Termination Condition

The fisher information' .% (N;) of L; is defined as follows

o [0%n(Ly)
I (N;)=—E {W} . (2.22)

!The fisher information [9] is a way of measuring the amount of information that an observable
random variable x carries about an unknown parameter 6 upon which the likelihood function of 6,
L(0) = f(x;0), depends.
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According to (2.21), we have

Loo(I4e2xg i

I =E| Y N ]
l L Npi(1—pj)  2N?

_ i (Npj)* +Np;j(1=p)) i-l

= (2.23)
S Npi(1-pj) 2N?
i .
Dj i—1
=y P (2.24)
j:%rlN(l —-pj) 2N?

Above, we have applied E((14¢€)x7) = (Np;)*+Np;(1 - p;) in (2.23) because
(1+¢)xj ~Norm(Np;,Np;(1—p;)) and E(x*) = (E(x))* + Var(x).

Following the classical theory for MLE, when i is sufficiently large, the
distribution of N is approximated by

1
N N,——— . (2.25)
0rm< 7 1)>

Hence, the confidence interval is

" [ 1
Ni+Zy- W (2.26)

Note that we use N; as an approximation for N in the computation when necessary
since N is unknown. The termination condition for EGMLE to achieve the required
accurary is

A~

1
Zor- 7 <N;-B. (2.27)

Figure 2.4 shows the simulation result of EGMLE when N = 10,000, ot = 95%,
B = 5%, and @ = 1. The middle curve is the value of 1\71', which converges to the
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value of N represented by the central straight line. The upper and lower curves
represent the 95% confidence interval, which shrinks as the number of pollings
increases. The algorithm terminates after 1081 pollings.

2.3.3 Performance Tradeoff

According to (2.14), the contention probability is proportional to @. We study how
the value of @ controls the tradeoff between the estimation time and the energy
cost, which are measured by the number of pollings and the number of responses,
respectively.

2.3.3.1 Number of Pollings

Since the MLE approach provides statistically consistent estimate, when i is large,
(2.24) can be approximated as follows:

i i il
1_1’/) 2N2

_2Npi+1

=0, (2.28)

where p; < 1. According to (2.27), we have

2
7(¥) > ( Ze ) (2.29)

(2.28) and (2.29) give us the following inequality:
2Npi+1 D> Zo \°
2N? Ni-B)’

i> 272
o+1)B2’

(2.30)

where N; ~ N and [ < i. Hence, the number of pollings it takes to achieve the
accuracy requirement is 272 /[(2® + 1) 8]

The solid line in Fig. 2.5 shows the number of pollings with respect to @ when
o =95% and B = 5%. It is a decreasing function in ®. The reason is that a
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the number of pollings with Number of Pollings ———
respect to @ when o = 95% 25001\ Number of Responses --=---- ]
and 8 = 5%. The dotted line 2000
shows the number of
responses. 1500
1000
500,
0 1 1 1 1
0 1 2 3 4 5

larger @ results in more responses (and thus more information) in each polling.
Consequently, a less number of pollings is needed to achieve a certain accuracy
requirement.

2.3.3.2 Number of Responses

When i is large, the expected number of responses for each polling is Np; ~
Ni_1pi = @. After 272 /[(2w + 1)B?] pollings are made, the total number of
responses is roughly

Z2-(e®—1)  ZZ-(e®—1)
el ot 2.31)

The dotted line in Fig. 2.5 shows the number of responses with respect to @ when
o =95% and B = 5%. It is an increasing function in @, which means that a larger
value of @ will lead to a larger number of responses.

2.4 Simulations

We evaluate the performance of GMLE and EGMLE by simulations. In order
to demonstrate the performance tradeoff between energy cost and estimation
time, we choose two different contention probability parameters for each of the
two algorithms. We use @ = 0.5 and 1.594 for GMLE, i.e., p; = O.S/N,‘A,l and
1.594/1\7,7,1. Note that 1.594 is the optimal value of @ for time efficiency in
GMLE. We denote the corresponding variants of the algorithm as GMLE(0.5) and
GMLE(1.594).

For EGMLE, Fig. 2.5 shows that the number of pollings and the number of
responses are both monotonic functions with respect to @, which means there is
no optimal @ for either energy efficiency or time efficiency. We choose @ = 0.5 and
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Table 2.1 Number of Responses when ot = 90%, 8 = 9%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 4328 767 S 172 S 225 S 6345L 709L 43428
10000 4148 832 S 180 S 2318 11986 L 899L 8683 S
20000 402S 844 S 186 S 213 S 22895L 977L 17366 S

1.0 for EGMLE, i.e., p; = 0.5/N;_; and 1.0/N;_|. The corresponding variants of the
algorithm is denoted as EGMLE(0.5) and EGMLE(1.0). Section 2.3.2 shows how to
compute the compensation parameter € for EGMLE(1.0), which is 0.046. Following
the same steps, we obtain € = 0.012 for EGMLE(0.5). We compare the algorithms
with the state-of-the-art algorithms in the related work. They are the Unified
Probabilistic Estimator (UPE) [7] and the Enhanced Zero-Based (EZB) estimator
[8]. The original UPE, denoted as UPE-O, is very energy-inefficient because its
contention probability begins from 100% and thus all tags will respond. We modify
it (denoted as UPE-M) to begin from a small initial contention probability 1 /Ny
and keep the remaining part of UPE-O. This section shows the performance of
both UPE-O and UPE-M. We run each simulation 100 times and average the
outcomes.

In the initialization phase of our algorithms, let Ny, = 1,000,000 and C =2. The
frame size in EGMLE(0.5) and EGMLE(1.0) is 10 slots. The parameters for UPE
and EZB are chosen based on the original papers whenever possible. All algorithms
except for UPE need only to identify empty and non-empty slots. To set a non-empty
slot apart from an empty slot, a tag only needs to respond with a short bit string (one
bit) to make the channel busy. UPE has to identify empty, singleton and collision
slots. To set a singleton slot apart from a collision slot, many more bits (10 used by
UPE) are necessary [1]. For example, CRC may be used to detect collision.

The energy cost of an algorithm depends on (1) the number of responses that all
tags transmit before the algorithm terminates and (2) the size of each response. We
use ‘S’ to mean that the response is a short bit string (in the empty/non-empty case),
and ‘L’ to mean a long bit string (in the empty/singleton/collision case).

We do not include the simulation results for LoF [11] because its energy cost
is much higher than others. Its number of responses transmitted by the tags is kN,
where k is the number of frames used in the estimation process.

2.4.1 Number of Responses

The first simulation studies the number of responses in each algorithm with respect
to N, o and B. Table 2.1 shows the number of responses with respect to N when
o =90% and = 9%. GMLE and EGMLE require fewer responses than UPE
and EZB. As predicted, UPE-O is energy-inefficient; UPE-M works much better.
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Table 2.2 Number of Responses when oo = 90%, 8 = 6%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1041S 1855 S 402 S 5238 7144L 1811L 7236 S
10000 1153 S 1924 S 414 S 5198 12645 L 1687L 14472 S
20000 1015 S 1797 S 375 S 503 S 23808 L 1814 L 28944 S

Table 2.3 Number of Responses when oo = 90%, 8 = 3%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 3927S 7341 S 1499 S 2037 S 12664 L 6426 L 27497 S
10000 3760S 7339 S 1489 S 2059 S 18023 L 6581 L 54993 S
20000 3783S 7350 S 1543 S 2002 S 28708 L 6993 L 109987 S

Table 2.4 Number of Responses when oo = 95%, 8 = 9%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 603S 1112 S 258 S 330 S 6715L 1073L 4342 S
10000 669S 1120 S 247 S 304 S 12062L 961 L 8683 S
20000 680S 1197 S 262 S 320 S 23345L 1136 L 17366 S

Table 2.5 Number of Responses when ot = 95%, 8 = 6%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1340S 2515 S 581S 736 S 7712L 2598 L 10130 S
10000 1354 S 25118 596 S 736 S 13477L 2318L 20261 S
20000 1381 S 2630 S 5558 749 S 24631 L 2510L 40521 S

The best algorithm is EGMLE(0.5), whose number of responses is about one fifth
of what UPE-M requires and one ninetieth of what EZB requires when N is 20,000.
Moreover, each response in UPE is much longer.

GMLE(0.5) has a smaller energy cost than GMLE(1.594). For example, N =
10,000, the ratio between the number of responses by GMLE(1.594) and that by
GMLE(0.5) is 2.01, which is close to the theoretically-computed ratio of 1.90 in
Fig. 2.2. Similarly, EGMLE(0.5) is more energy efficient than EGMLE(1.0). When
N = 10,000, the ratio between the number of responses by GMLE(1.594) and that
by GMLE(0.5)is 1.28, which is also close to the theoretical value of 1.34 in Fig. 2.5.

We vary o from 90% to 95% and to 99%, and vary 3 from 9% to 6% and to 3%.
Tables 2.2 to 2.9 show similar comparison under different values of o and f3 values.
In all cases, the number of responses increases when ¢ increases or 3 decreases, and
except for EZB, the number does not vary much with respect to N, meaning that all
algorithms except for EZB achieve good scalability. The ratio between the numbers
for different algorithms appears to be quite stable under different parameter settings.
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Table 2.6 Number of Responses when oo = 95%, 3 = 3%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 5687 S 10493 S 2181S 2915 S 14678 L 8858 L 39074 S
10000 5673 S 10286 S 2267 S 2924 S 20845 L 9364 L 78148 S
20000 5588 S 10637 S 2217 S 2990 S 32339 L 9683 L 156297 S

Table 2.7 Number of Responses when oo = 99%, 8 = 9%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1040 S 2162 S 4278 453 S 7240L 1726 L 7236 S
10000 1071 S 2135 S 416 S 529 S 12842 L 1906 L 14472 S
20000 1017 S 1916 S 439 S 573 S 23982 L 1819L 28944 S

Table 2.8 Number of Responses when ot = 99%, 8 = 6%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 2527 S 4785 S 965 S 1269 S 9679 L 4311L 17366 S
10000 2527 S 4637 S 973 S 1248 S 15336 L 4130L 34733 S
20000 2440 S 4580 S 991 S 1293 S 26128 L 4044 L 69465 S

Table 2.9 Number of Responses when oo = 99%, 8 = 3%
Total number of responses
N GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 9693 S 18690 S 3818 S 4993 S 21823 L 16705L 65124 S
10000 9606 S 18223 S 3791 S 4998 S 27667 L 15882 L 130247 S
20000 9385 S 17735 S 3847 S 5027 S 38935 L 16471 L 260495 S

2.4.2 Total Number of Bits Transmitted

The second simulation evaluates the energy cost of the algorithms. As mentioned
before, one bit is enough to separate empty/non-empty slot. Hence, the response
of GMLE, EGMLE and EZB is one bit long. A response in UPE-M is 10 bits
long [7]. We compare the total number of bits transmitted by all tags before each
algorithm terminates. We omit the results for UPE-O, which are much worse than
the results of UPE-M. Figure 2.6 shows the simulation results with respect to N
when o = 90%, 8 = 9%,6% and 3%. For example, when ot = 90%, 8 = 3%, and
N =20,000, the ratio between the number of bits transmitted by UPE-M (EZB) and
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that by our best estimator EGMLE(0.5) is 45.32 (71.28). Figures 2.7 and 2.8 show
the comparison under different § values when o = 95% and 99%, respectively.
Their results are similar to Fig. 2.6. It should be noted that the number of bits
transmitted is not an accurate measurement of the energy cost because it ignores
the energy spent to power up the radio and synchronize with the reader. However,
combining the number of bits and the number of transmissions (in the previous
subsection) still gives a good idea on how energy-efficient each algorithm is.
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2.4.3 Estimation Time

The third simulation compares the time it takes for each algorithm to complete the
estimation of N. Based on the specification of the Philips I-Code system [12], after
the required waiting times (e.g., gap between transmissions) are included, it can
be calculated that a RFID reader needs 0.4 ms to detect an empty slot, 0.8 ms
to detect a collision or a singleton slot, and 1 ms to broadcast a polling request.
Hence, GMLE, EGMLE and EZB requires a slot length of 0.4 ms, while UPE-M
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requires a slot length of 0.8 ms. Recall that the contention probability takes the

form of w/ N, where  is a known constant. Thus the reader transmits N; instead of

the actual probability value in the polling requests. If we assume N,,,, is no more

than a million, then 20 bits for N; are sufficient. GMLE has a fixed frame size of

one slot. EGMLE has a fixed frame size of 10 slots. EZB and UPE-M also have
pre-determined frame sizes. Let oo = 90%, 8 = 9%, 6% and 3%. The three plots in
Fig. 2.9 show the estimation times of the algorithms with respect to the number of
tags in the deployment. The times grow very slowly as the number of tags increase,
which suggests the algorithms all scale well. In the first plot of Fig. 2.9, UPE-M
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takes the least amount of time, only about 0.5 second, to estimate 20,000 tags,
while the other algorithms take between 0.7 to 2.0 seconds. GMLE(1.594) takes
less estimation time than GMLE(0.5) and the ratio is 0.61, which is consistent with
the theoretical value of 0.58 in Fig. 2.2. Similarly, EGMLE(1.0) takes less time
than EGMLE(0.5) and the ratio is 0.68, which is also consistent with the theoretical
value of 0.67 in Fig. 2.5. Figures 2.10 and 2.11 show similar simulation results
when o = 95% and 99%, respectively. Even though the new algorithms take longer
to complete, their estimation time is still small. We believe the extra time needed
can be well justified for the large energy saving.
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There exists a performance tradeoff between GMLE and EGMLE. In the
previous two subsections, we have examined energy cost in terms of number of
responses and number of transmitted bits. EGMLE always performs better than
GMLE. In this subsection, we compare estimation time of our two methods. GMLE
performs better than EGMLE. Because the focus of this work is on energy efficiency,
we regard EGMLE as the best estimator for energy saving.
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2.5 Other Methods

Instead of identifying individual RFID tags, Floerkemeier [4, 5] studies the problem
of estimating the cardinality of a tag set based on the number of empty slots.
The proposed scheme employs a Bayesian probability estimation to achieve fast
estimation. The scheme is similar to hash-based estimators [3, 14] and the difference
is discussed in [8]. In Kodialam and Nandagopal’s approach [7], information from
tags are collected by a RFID reader in a series of time frames. Each frame consists
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of a number of slots, and the tags probabilistically respond in those slots. Using the
probabilistic counting methods, the reader estimates the number of tags based on
the number of empty slots or the number of collision slots in each frame. Their best
estimator is called the Unified Probabilistic Estimator (UPE). A follow-up work by
the same authors proposes the Enhanced Zero-Based Estimator (EZB) [8], which
makes its estimation based on the number of empty slots. The focus of the above
estimators is to reduce the time it takes a reader to complete the estimation process.
Because their goal is not conserving energy for active tags, their design is not geared
towards reducing the number of transmissions made by the tags.

The Lottery-Frame scheme (LoF) [11] by Qian et al. employs a geometric
distribution-based scheme to determine which slot in a time frame each tag will
respond. It significantly reduces the estimation time when comparing with UPE.
However, every tag must respond in each of the time frames, resulting in large
energy cost when active tags use their own power to transmit. The First Non-Empty
slots Based algorithm (FNEB) [6] uses the slot number of the first reply from tags
in a frame to count RFID tags in both static and dynamic environments.

Also related is a novel security protocol proposed by Tan et al. to monitor the
event of missing tags in the presence of dishonest RFID readers [13]. In order to
prevent a dishonest reader from replaying previously collected information, they
maintain a timer in the server and periodically update the system clock. Li et al.
[10] design a series of efficient protocols that employ novel techniques to identify
missing tags in large-scale RFID systems.

2.6 Summary

This chapter presents two probabilistic algorithms for estimating the number of
RFID tags in a region. Solving the tag estimation problem incurs energy cost both
at the RFID reader and at active tags. The asymmetry is that energy cost at tags
should be minimized while energy cost at the reader is relatively less of a concern
because the reader’s battery can be replaced easily or it may be powered by an
external source. To exploit this asymmetry, the probabilistic algorithms trade more
energy cost at the reader for less cost at the tags. The performance of the algorithms
is controlled by a parameter , specifying the contention probability that tags use
to decide whether they will transmit. By modifying this parameter, the algorithms
can make tradeoff between energy cost and estimation time.
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