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Chapter 1

Introduction to probability theory

Exercise 1.1. Let X be a nonnegative r.v. with c.d.f. FX . Suppose that given 0 ≤ t ≤ X
(P(X > t) 6= 0), find the c.d.f of residual life time X.

Solution 1.1. Suppose 0 ≤ t ≤ z, then

P(X ≤ z| X > t) =
P(X ≤ z,X > t)

P(X > t)
=

P(t < X ≤ z)

P(X > t)
=

=
P(X ≤ z)−P(X ≤ t)

1−P(X ≤ t)
=

FX(z)− FX(t)

1− FX(t)
.

Exercise 1.2. Let X and Y be independent r.v.s with Poisson distribution of parameters λ
and µ, respectively. Verify that
a) the sum X + Y has Poisson distribution with parameter λ+ µ,
b) for any nonnegative integers m ≤ n the conditional distribution P(X = m | X + Y = n)
is binomial with parameter (n, λ

λ+µ
), i.e.

P(X = m | X + Y = n) =

(
m

n

)(
λ

λ+ µ

)m(

1− λ

λ+ µ

)n−m

.

Solution 1.2. a) Since the r.v.s X and Y are independent, therefore the generating function
of the r.v. X + Y has the form

GX+Y (z) = GX(z)GY (z) = eλ(z−1)eµ(z−1) = e(λ+µ)(z−1),

which justifies that X + Y has Poisson distribution with parameter λ+ µ Poisson.
b) With a simple calculation we have

P(X = m |X + Y = n) =
P(X = m,X + Y = n)

P(X + Y = n)
=

P(X = m)P(Y = n−m)

P(X + Y = n)
=

=

λm

m!
e−λ µn−m

(n−m)!
e−µ

(λ+µ)ne−(λ+µ)

n!

=

(
n

m

)
λmµn−m

(λ+ µ)n
=

(
m

n

)(
λ

λ+ µ

)m(
µ

λ+ µ

)n−m

.

Exercise 1.3. Let X and Y be independent r.v.s having uniform distribution on interval
(0, 1), and exponential distribution with parameter 1, respectively. Find the probability (con-
crete number) that X < Y .

3



Solution 1.3. It is clear that the density function of X is fX(x) = I{0<x<1}, and Y has
density function fY (y) = e−yI{y>0}, therefore

P(X < Y ) =

∞∫

−∞

∞∫

−∞

I{x<y}fX(x)fY (y)dxdy =

∞∫

0

1∫

0

I{x<y}e
−ydxdy =

=

∞∫

0

min(1,y)∫

0

e−ydxdy =

∞∫

0

min(1, y)e−ydy =

1∫

0

ye−ydy +

∞∫

1

e−ydy =

=
[
−ye−y

]1

0
+

1∫

0

e−ydy +
[
−e−y

]∞
1

= 1− e−1 = 0.63.

Exercise 1.4. Divide the interval (0, 1) into three pieces with two independently and ran-
domly chosen points U1 and U2 of the interval (0, 1). Find the probability of the event A that
the three pieces can determine a triangle.

Solution 1.4. The r.v.s U1 and U2 are independent and uniformly distributed on the interval
(0, 1). The lenght of the three pieces are:

U1, U2 − U1, 1− U2, ifU1 ≤ U2,
U2, U1 − U2, 1− U1, if U1 > U2.

The three pieces determine a triangle if and only if the triangle inequality is satisfied, then
using the formula of the total probability

P(A) = P(A |U1 ≤ U2)P(U1 ≤ U2) +P(A | U1 > U2)P(U1 > U2) =

= 2P(A | U1 ≤ U2)P(U1 ≤ U2) =

=

1∫

0

1∫

0

I(x ≤ (y − x) + (1− y), y − x ≤ x+ (1− y), (1− y) ≤ x+ (y − x))dxdy =

=

1∫

0

1∫

0

I(x ≤ 1

2
, y ≤ x+

1

2
,
1

2
≤ y)dxdy =

1/2∫

0

1/2+x∫

1/2

dydx =

1/2∫

0

xdx =
1

4
.

Exercise 1.5. Show that for a nonnegative r.v. X with finite n-th (n ≥ 1) moment it is

true E(Xn) =
∞∫

0

P(x < X)nxn−1dx.

Solution 1.5. Denote by FX(x) the c.d.f of the r.v. X. Since E(Xn) < ∞, then for a →
∞,E

(
XnI{X>a}

)
=

∞∫

a

xndFX(x) = −
∞∫

a

xnd(1 − FX(x)) → 0 and consequently −
∞∫

a

xnd(1 −
FX(x)) ≥ an(1− F (a)) → 0. Integrating by part, we have

E
(
XnI{X≤a}

)
= −

a∫

0

xnd(1− FX(x)) = − [xn(1− FX(x))]
a
0 +

a∫

0

(1− FX(x))d(x
n) =

= −an(1− F (a)) +

a∫

0

(1− FX(x))nx
n−1dx,
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from this it follows

E(Xn) = lim
a→∞



−an(1− F (a)) +

a∫

0

(1− FX(x))nx
n−1dx



 =

=

∞∫

0

(1− FX(x))nx
n−1dx =

∞∫

0

P(x < X)nxn−1dx.

Exercise 1.6. Let X and Y be independent r.v.s with uniform distribution on the interval
(0, 1). Find the quantities

a) E(|X − Y |), D2 (|X − Y |),

b) P(|X − Y |) > 1
2
.

Solution 1.6. a) Since fX(u) = fY (u) ≡ I{0<u<1}, then

E(|X − Y |) =

1∫

0

1∫

0

|x− y| fX(x)fY (y)dxdy =

1∫

0

1∫

0

|x− y| dxdy =

= 2

1∫

0

1∫

0

|x− y| I(x ≤ y)dxdy =

= 2

1∫

0

y∫

0

(y − x)dxdy = 2

1∫

0

[

y2 − 1

2
y2
]

dy =
1

3
,

and

D2 (|X − Y |) = E
(
|X − Y |2

)
− (E(|X − Y |))2 = E(X2 − 2EXY + EY 2)− 1

9
=

= 2

1∫

0

x2dx− 2





1∫

0

xdx





2

− 1

9
= 2 · 1

3
− 2

1

22
− 1

9
=

1

18
.

b) It is easy to see

P
(
|X − Y | > 1

2

)
=

1∫

0

1∫

0

I{|x−y|> 1
2}dxdy = 2

1∫

0

1∫

0

I{|x−y|> 1
2
,x≥y}dxdy =

= 2

1/2∫

0

dxdy = 2

1/2∫

0

(
1

2
− y

)

dy = 2

1/2∫

0

ydy = 2

[
1

2

1

22

]

=
1

4
.

Exercise 1.7. Let X and Y be independent r.v.s having exponential distribution with pa-
rameters λ and µ, respectively.

a) Determine the density function of r.v. Z = X + Y .
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b) Find the density function of r.v. W = min(X, Y ).

Solution 1.7. (a) Applying the convolution formula for the sum of independent r.v.s, we
have

fZ(z) =

∞∫

−∞

fX(x)fY (z − x)dx =

∞∫

−∞

λe−λxµe−µ(z−x)I(x > 0, z − x > 0)dx =

= λµe−µz

z∫

−∞

e−(λ−µ)xdx =

{
λ2ze−λz , if λ = µ

λµ
λ−µ

[
e−µz − e−λz

]
, if λ 6= m

.

As a result we get gamma distribution with parameter (λ, 2) if λ = µ and Erlang distribution
of first degree, if λ 6= µ.
(b) It is clear that

FZ(z) = P(Z ≤ z) = P(min(X, Y ) ≤ z) = 1−P(min(X, Y ) > z) =

= 1−P(X > z)P(Y > z) = 1− (1− FX(z)(1 − FY (z) =

= FX(z) + FY (z)− FX(z)FY (z),

from which
fZ(z) = fX(z) + fY (z)− fX(z)FY (z) + fY (z)(1 − FX(z).

Using the exponential distributions with parameters λ and µ, we have

fZ(z) = λe−λz
(
1−

[
1− e−µz

])
+ µe−µz

(
1−

[
1− e−λz

])
=

= λe−λz−µz + µe−λz−µz = (λ+ µ)e−(λ+µ)z.

Exercise 1.8. Let X1, ..., Xn be independent random variables having exponential distribu-
tion with parameter λ.
Find the expected values of the r.v.s Vn = max(X1, ..., Xn), and Wn = min(X1, ..., Xn).

Solution 1.8. Clearly

FVn(x) = P(Vn ≤ x) = P(X1 ≤ x, ..., Xn ≤ x) = (P(X1 ≤ x))n = (1− e−λx)n, x ≥ 0,

FWn(x) = P(Wn ≤ x) = 1−P(Wn > x) = 1−P(min(X1, ..., Xn) > x) =

= 1−P(X1 > x, ..., Xn > x) = 1− (P(X1 > x))n = 1−
(
e−λx

)n
= 1− e−λnx.

Using
∞∫

−∞
xdF (x) =

∞∫

−∞
(1−F (x))dx (see Exercise 1.5) and introducing in the integral a new

variable y = 1− e−λx, we get the expected value of Vn as follows

E(Vn) =

∞∫

0

(1− FV (x))dx =

∞∫

0

(1− (1− e−λx)n)dx =

∞∫

0

(1− (1− e−λx)n)dx =

=
1

λ

1∫

0

(1− yn)
1

1− y
dy =

1

λ

1∫

0

(1 + y + ...+ yn−1)dy =
1

λ

n−1∑

i=0

1

i
.

From the formula FWn(x) = 1 − e−λnx it can be seen that Wn has exponential distribution
with parameter λn, therefore E(Wn) =

1
λn
.

Note that the sequence of r.v.s Wn, n = 1, 2, ... has exponential limit distribution with pa-
rameter λ0 if the limit lim

n→∞
λn → λ0 is satisfied.
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Exercise 1.9. Let X and Y be independent r.v.s with density functions fX(x) and fY (x),
respectively. Determine the conditional expected value E(X | X < Y ).

Solution 1.9. By the definition

E(X|X < Y ) =
E
(
XI{X<Y }

)

P(X < Y )
,

where

P(X < Y ) =

∞∫

−∞

∞∫

−∞

I{x<y}fX(x)fY (y)dxdy =

∞∫

−∞

fX(x)





∞∫

x

fY (y)dy



dx =

=

∞∫

−∞

fX(x) (1− FY (x)) dx = E((1− FY (X)))

and

E
(
XI{X<Y }

)
=

∞∫

−∞

∞∫

−∞

xI{x<y}fX(x)fY (y)dxdy =

∞∫

−∞

xfX(x)





∞∫

x

fY (y)dy



dx =

=

∞∫

−∞

xfX(x) (1− FY (x)) dx = E(X(1− FY (X))).

Consequently,

E(X | X < Y ) =

∞∫

−∞
xfX(x) (1− FY (x)) dx

∞∫

−∞
fX(x) (1− FY (x)) dx

=
E(X(1− FY (X)))

E(1− FY (X))
.

Exercise 1.10. Determine the conditional expectation E(X |Y = y) and E(X |Y ), if the
joint probability density function of r.v.s X and Y has the form

(a) fX,Y (x, y) =

{
2, if 0 < x, y and x+ y < 1
0, otherwise

,

(b) fX,Y (x, y) =

{
3(x+ y), if 0 < x, y and x+ y < 1

0, otherwise
.

Solution 1.10. (a) Since fY (y) =
1∫

0

fX,Y (x, y)dx =
1−y∫

0

2dx = 2(1− y), 0 < y < 1, thus the

conditional density function is fX|Y (x|y) = fX,Y (x,y)

fY (y)
= 2

2(1−y)
= 1

1−y
, if 0 < x, y and x+y < 1,

so

E(X | Y = y) =

1−y∫

0

xfX|Y (x|y)dx =

1−y∫

0

x
1

1− y
dx =

1

2

(1− y)2

1− y
=

1

2
(1− y)

and

E(X | Y ) =
1

2
(1− Y ).
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(b) Analogously we get fY (y) =
1∫

0

fX,Y (x, y)dx =
1−y∫

0

3(x+y)dx = 3
[
1
2
(1− y)2 + y(1− y)

]
=

3
2
(1− y2) and fX|Y (x|y) = 3(x+y)

3
2
(1−y2)

= 4 x+y
1−y2

. From this it follows

E(X | Y = y) =

1−y∫

0

xfX|Y (x|y)dx =

1−y∫

0

x
2(x+ y)

1− y2
dx = 2

1
3
(1− y)3 + y(1− y)

1− y2
=

2

3

1 + y + y2

1 + y
,

E(X | Y ) =
2

3

1 + Y + Y 2

1 + Y
.

Exercise 1.11. Let X1, X2, ... be independent r.v.s with exponential distribution of parameter
λ. Let N be geometrically distributed r.v. with parameter p (pk = P(N = k) = p(1−p)k, k =
1, 2, ...), which does not depend on r.v.s (X1, X2, ...). Prove that the sum Y = X1 + ...+XN

has exponential distribution with parameter pλ.

Solution 1.11. Since the sum of r.v.s Yn = X1 + ... + Xn has gamma distribution with
parameter (n, λ) thus

fYn(x) =
λn

(n− 1)!
xn−1e−λx, x > 0

and

FY (y) = P(X1 + ...+XN ≤ y) =

∞∑

n=1

P(X1 + ...+XN ≤ y | N = n)P(N = n) =

=

∞∑

n=1

P(Yn ≤ y)P(N = n) =

∞∑

n=1

y∫

−∞

λn

(n− 1)!
xn−1e−λx

[
p(1− p)n−1

]
dx =

= pλ

y∫

−∞

( ∞∑

n=0

[(1−p)λx]n

n!

)

e−λxdx = pλ

y∫

−∞

(
e(1−p)λxe−λx

)
dx = pλ

y∫

−∞

e−pλxdx.

From this
fY (y) = pλe−pλx, y > 0,

therefore the r.v. Y really has exponential distribution with parameter pλ.

Exercise 1.12. Consider the distribution function of the sum Y40 of independent r.v.s
X1, ..., X40 having exponential distribution with parameter 1. Give an estimate for the prob-

ability p = P

( ∣

∣

∣
Y40−E(Y40)

∣

∣

∣

D(Y40)
> 0.05

)

calculated with the help of the central limit theorem. We

can numerically calculate this probability, because the r.v. Y40 has gamma distribution with
parameter (40, 1). Using this fact, what result can we obtain for the considered probability?
(According to the numerical calculation of the gamma distribution see, for example, NIST:
National Institute of Standards and Technology. Digital library of mathematical functions.
http://dlmf.nist.gov, or A. Lewandowski. Statistical tables. http://www.alewand.de. .)

Solution 1.12. By the use of the central limit theorem the r.v. (Y40 − E(Y40))/DY40 has
approximately N(0, 1) normal distribution, thus

P

( ∣

∣

∣
Y40−E(Y40)

∣

∣

∣

D(Y40)
> 0.05

)

= P
(

|Y40−40|√
40

> 0.05
)

≈ 1− (Φ(0.05)− Φ(−0.05)) = 0.0612,
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where Φ(x) = 1
2π

x∫

−∞
e−u2/2du denotes the standard distribution normal function. Compute

numerically the probability p using the software from http://www.alewand.de. Then

P
(

|Y40−40|√
40

> 0.05
)

= P
(

|Y40−40|√
40

> 0.05
)

=

= 1−P(39.6837 ≤ Y40 ≤ 40.3163) = 1− (0.5409− 0.5010) = 0.0601.

It can be seen that the difference between the estimated and numerically computed values is
only 0.0011.
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Chapter 2

Introduction to stochastic processes

Exercise 2.1. Let X1, X2, ... be independent identically distributed r.v.s with finite absolute
moment E(|X1|) < ∞. Let N be a r.v. taking positive integer numbers and independent of
r. v. (Xi, i = 1, 2, ...). Prove that

a) E(X1 + ...+XN ) = E(X1)E(N),

b) D2 (X1 + ...+XN ) = D2 (X1) + (E(X1))
2 (E(N))2

(Wald identities or Wald lemma).

Solution 2.1. a) Using the formula of the total expected value we have

E(X1 + ... +XN) =

∞∑

n=1

E(X1 + ... +XN)| N = n}P(N = n) =

=

∞∑

n=1

E(X1 + ... +Xn)P(N = n) =

=
∞∑

n=1

nE(X1)P(N = n) = E(X1)
∞∑

n=1

nP(N = n) = E(X1)E(N).

b) It is easy to see that

D2 (X1 + ...+XN) = E(X1 + ... +XNE(X1)E(N))2 = E(X1 + ...+XN)
2 − (E(X1)E(N))2

and

E(X1 + ...+XN )
2 =

∞∑

n=1

E((X1 + ... +XN)
2 | N = n)P(N = n) =

=
∞∑

n=1

E(X1 + ... +Xn)
2P(N = n) =

=
∞∑

n=1

E((X1 − EX1) + ...+ (Xn − EXn)) + nEXn}2P(N = n) =

=
∞∑

n=1

[
nD2 (X1) + n2(E(X1))

2
]
P(N = n) =

= E(N) D2 (X1) + E(N2)(E(X1))
2.
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Note that the identities remain valid if the r.v. N is a stopping time with respect to the
sequence of r.v.s (Xi, i = 1, 2, ...), which means that the event {N = n} depends only on
(X1, ..., Xn) for all n = 1, 2, ...

Exercise 2.2. Let X0, X1, ... be independent r.v.s with joint distribution P(Xi = 1) =
P(Xi = −1) = 1

2
.

Define Z0 = 0, Zk = Zk−1 + Xk, k = 0, 1, ... Determine the expectation and covariance
function of the process (Zk, k = 1, 2, ...) (random walk on the integer numbers).
Let a and b be real numbers, |b| < 1. Denote W0 = aX0, Wk = bWk−1 + Xk, k = 1, 2, ...
(here the process (Wk, k = 0, 1, ...) constitutes a first degree autoregressive process with the
initial value aX0, and with the innovation process (Xk, k = 1, 2, ...)). If we fix the value b,
for which value of a will the process Wk be stationary in weak sense?

Solution 2.2. a) It is clear that E(Xk) =
1
2
· 1 + 1

2
· (−1) = 0, σ2

X = D2{Xk} = E(X2
k) −

(E(Xk))
2 = 1

2
· 1+ 1

2
· (−1)2 = 1, moreover cov(Xi, Xi) = σ2

X and by the independence of the
r.v.s Xi, cov(Xi, Xj) = 0, if i 6= j. Since Zk = Zk−1+Xk = ... = Xk + ...+X1, k = 1, 2, ...,
then

E(Zk) = E(Xk) + ... + E(Z1) = 0,

D2 (Zk) = D2 (Xk) + ...+D2 (X1) = kσ2
X .

b) Determine the expectation and covariance function of the process Wk. With a simple
calculation we get

Wk = bWk−1+Xk = Xk+ bXk−1+ b2Wk−2 = Xk+ bXk−1+ ...+ bk−1X1+ bkaX0, k = 1, 2, ...,

then the expectation function E(Wk) = E{Xk + bXk−1 + ... + bk−1X1 + bkaX0} = 0, the
deviation of Wk is the following

D2 (Wk) = D2
(
Xk + bXk−1 + ...+ bk−1X1 + bkaX0

)
=

= D2 (Xk) + b2D2 (Xk−1) + ...+ b2(k−1)D2 (X1) + b2kaD2 (X0) =

= σ2
X(1 + b2 + ... + b2(k−1)) + b2kaσ2

X =
1− b2k

1− b2
σ2
X + b2kaσ2

X .

Since the r.v.s Xk are independent with 0 expectation,then the covariance function is

RW (k +m, k) = cov(Wk+m,Wk) = E(Wk+mWk) =

= E([Xk+m + bXk+m−1 + ... + bm−1Xk + bmWk]Wk) =

= bmE(W 2
k ) = bmD2 (Wk) = bm

(
1− b2k

1− b2
+ b2ka

)

σ2
X .

From this it can be seen that if we choose a = 1
1−b2

, then the process (Wk, k = 0, 1, ...) will
be stationary with expectation function E(Wk) = 0, k = 0, 1, ... and covariance function
RW (k +m, k) = RW (k, k +m) = bm

1−b2
σ2
X , k,m = 0, 1, ....

Exercise 2.3. Let a and b real numbers and let U be a r.v. uniformly distributed on the
interval (0, 2π). Denote by Xt = a cos(bt + U), −∞ < t < ∞. Prove that the the random
cosine process (Xt, −∞ < t < ∞) is stationary.
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Solution 2.3. Since the expectation function of the process (Xt,−∞ < t < ∞) takes the

form µt = E(Xt) =
2π∫

0

a cos(bt + x) 1
2π
dx = a

2π

bt+2π∫

0

cos xdx = 0, therefore it does not depend

on the parameter t. The covariance function is

RX(t, s) = cov(Xt, Xs) = E(XtXs) =

2π∫

0

a2 cos(bt + x) cos(bs + x)
1

2π
dx =

=
a2

2π

2π∫

0

1

2
[cos(b(t + s) + 2x) + cos(b(t− s)]dx =

a2

4π
cos(b(t− s)) =

=
a2

4π
cos(b |t− s|),

which means that (Xt,−∞ < t < ∞) is stationary process.

Exercise 2.4. Let N(t), T ≥ 0 be a homogeneous Poisson process with intensity λ.
a) Determine the covariance and correlation function of N(t).
b) Determine the conditional expectation E(N(t + s) | N(t)).

Solution 2.4. a) Since N(t) has Poisson distribution with parameter λt, then E(N(t)) = λt
and D2{N(t)} = λt, t ≥ 0. By the use of the property of independent increments we can
get the covariance and correlation functions

cov(N(t+ s), N(t)) = cov([N(t+ s)−N(t)] +N(t), N(t)) = cov(N(t), N(t)) = λt, t, s ≥ 0,

corr(N(t+ s), N(t)) =
cov(N(t), N(t))

D(N(t+ s))D(N(t))
=

λt
√

λ(t + s)
√
λt

=
1

√
1 + s

t

.

b) Repeating the use of the property of independent increments, we have

E(N(t+ s) | N(t)) = E([N(t + s)−N(t)] +N(t) | N(t)) =

= E([N(t + s)−N(t)] | N(t)) + E(N(t) | N(t)) =

= E(N(t + s)−N(t)) +N(t) = λs+N(t).

12



Chapter 3

Markov chains

Exercise 3.1. Compute the probability that the CTMC with generator matrix



−1 0.5 0.5
1 −2 1
1 0 −1



 stays in state 1 after the second state transition, if the initial distribution

is (0.5, 0.5, 0).

Solution 3.1. Using the formulae (3.15) and (3.16), let us compute the transition probability
of the embedding Markov chain. We get

q0 = 1, q1 = 2, q2 = 1

and the transition probability matrix is

Π =





0 1/2 1/2
1/2 0 1/2
1 0 0



 .

Since the initial distribution is p = (1/2, 1/2, 0), then the distribution of the embedded Markov
chain after the second state transition is

p2 = pΠ2 = (5/8, 1/8, 2/8).

From this, we have the resulting probability for the state 1 as 5/8.

Exercise 3.2. Compute the stationary distribution of the CTMC with generator matrix



−3 3 0
4 −4 0
0 0 0



, if the initial distribution is (0.5, 0, 0.5).

Solution 3.2. The Markov chain is composed by two irreducible sets of states, {1, 2} and
{3}. The probability of being in these irreducible sets are determined by the initial probability
vector. The process starts in both sets with probability 0.5.

The stationary solution of the Markov chain on set {1, 2} assuming that the process starts
in that set is (0.5, 0.5). The overall stationary distribution is (0.5, 0.5, 0)0.5 + (0, 0, 1)0.5 =
(0.25, 0.25, 0.5).

Exercise 3.3. Zn and Yn, n = 1, 2, . . . , are discrete independent random variables.
P(Zn = 0) = 1−p,P(Zn = 1) = p and P(Yn = 0) = 1− q, P(Yn = 1) = q. Define the
transition probability matrix of the DTMC Xn if

Xn+1 = (Xn − Yn)
+ + Zn,

13



where (x)+ = max(x, 0). This equation is commonly referred to as the evolution equation of
the DTMC.

Solution 3.3. It can be seen that the state space of the Markov chain {Xn, n = 1, 2, ...}
is the set {0, 1, ...}.Using the evolution equation of the DMTC process we get the transition
probability matrix as follows

P(Xn+1 = j | Xn = i) = P((Xn − Yn)
+ + Zn = j | Xn = i) = P((i− Yn)

+ + Zn = j) =

= P((i− Yn)
+ + Zn = j | Yn = k, Zn = m)P(Yn = k, Zn = m) =

= P((i− k)+ +m = j)P(Yn = k, Zn = m) = P(Yn = k)P(Zn = m), i, j = 0, 1, ...

Since

P(Yn = k, Zn = m) = P(Yn = k)P(Zn = m) =







(1− q)(1− p), if k = m = 0,
(1− q)p, if k = 0, m = 1,
q(1− p), if k = 1, m = 0,

pq, if k = m = 1,

the transition probability matrix has the form (i, j = 0, 1, ...)

pij =







(1− q)(1− p), if j = i,
(1− q)p, if j = i+ 1,
q(1− p), if j = (i− 1)+,

pq, if j = (i− 1)+ + 1,
0, in other cases.

The transition probability graph with p̄ = 1− p and q̄ = 1− q is

p

1−p qp qp+

qp

qp

qp qp

qp

qp qp+ qp qp+

qp

qp

3210

Exercise 3.4. Xn, n = 1, 2, . . . , is a DTMC with transition probability matrix P =



3/6 1/6 2/6
3/4 0 1/4
0 1/3 2/3



. Compute E(X0X1) and corr(X0, X1) if the initial distribution is

(0.5, 0, 0.5) and the state space is S = {0, 1, 2}.

Solution 3.4. Let us denote the transition probability matrix

P = (pij) =





3/6 1/6 2/6
3/4 0 1/4
0 1/3 2/3



 ,

and the initial distribution

p = (p0, p1, p2) = (1/2, 0, 1/2).

14



Using the Markov property we have

E(X0X1) =
2∑

i=0

2∑

j=0

ijP(X0 = i, X1 = j) =
2∑

i=1

2∑

j=1

ijP(X1 = j | X0 = i)P(X0 = i) =

=

2∑

j=1

2jp2jp2 = 2 · 1
3
· 1
2
+ 2 · 2 · 2

3
· 1
2
=

5

3
.

It is clear that corr(X0, X1) =
E(X0X1)−E(X0)E(X1)

D(X0)D(X1)
. Since the distribution of RVs X1

is
q = (q0, q1, q2) = pTP = (1/4, 1/4, 1/2),

then by simple calculations we have

E(X0) =

2∑

i=0

ipi = 1, E(X2
0 ) =

2∑

i=0

i2pi = 2, D(X0) =
√

E(X2
0 )− (E(X0))2 = 1,

E(X1) =
2∑

i=0

iqi =
5

4
, E(X2

1 ) =
2∑

i=0

i2qi =
9

4
, D(X1) =

√

E(X2
1 )− (E(X1))2 =

3

4

and

corr(X0, X1) =
5/3− 1 · 5/4

1 · 3/4 =
5

9
.

Exercise 3.5. The generator of a CTMC is defined by

q0j =







1
3

if j = 1,
1
3

if j = 2,
−2

3
if j = 0,

0 otherwise;

qij =







1
3i

if j = i+ 1,
1
3i

if j = i+ 2,
− 2

3i
− µ if j = i,

µ if j = i− 1,
0 otherwise,

for i = 1, 2, . . . .

Evaluate the properties of this Markov chain using e.g., the Foster theorem.

Solution 3.5. Firstly, let us compute the transition probabilities of the embedding Markov
chain. Using the formulae (3.15) and (3.16) we have q0 = 2/3, qi =

2+3iµ
3i

, i = 1, 2, ..., thus

π0j =







1/2, j = 1
1/2, j = 2
0, j = 0
0, otherwise

πij =







1
2+3iµ

, j = i+ 1
1

2+3iµ
, j = i+ 2

3iµ
2+3iµ

, j = i− 1

0, j = 1
0, otherwise

, i = 1, 2, ...

Denote by X = (X0, X1, ...) the embedding Markov chain of the CTMC, then the Foster
theorem (Th. 3.42) says that the Markov chain X is ergodic if there exist constants a, b > 0
and ℓ ≥ 0 such that the innequalities

E(Xn+1 | Xn = i) ≤ a, i ≤ ℓ,
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E(Xn+1 | Xn = i) ≤ i− b, i > ℓ

hold. Since

E(Xn+1 | Xn = i) = (i+ 1)
1

2 + 3iµ
+ (i+ 2)

1

2 + 3iµ
+ (i− 1)

3iµ

2 + 3iµ
=

= i− 1 +
5

2 + 3iµ
, i = 1, 2, ...,

and

E(Xn+1 | Xn = 0) = 1 · 1
2
+ 2 · 1

2
=

3

2
,

then E(Xn+1 | Xn = i) ≤ i+3/2, i = 0, 1, ... Choosing ℓ = ⌈8/3µ⌉, a = ℓ+3/2 and b = 1/2
we have

E(Xn+1 | Xn = i) ≤ a, if i ≤ ℓ,

E(Xn+1 | Xn = i) ≤ i− b, if i > ℓ.

This means that the Foster’s conditions of ergodicity hold, i.e. the Markov chain X is ergodic.

Exercise 3.6. Show examples for

• reducible,

• periodic (and irreducible) and

• transient (and irreducible)

DTMCs. Evaluate limn→∞P(Xn = i) for these DTMCs, where i is a state of the Markov
chain.

Solution 3.6.

• Reducible

P =





1 0 0
1/3 1/2 1/6
0 0 1





The stationary probabilities depend on the initial distribution.

– If the process starts from state 1 then the stationary distribution is (1, 0, 0).

– If the process starts from state 2 then the stationary distribution is (2/3, 0, 1/3).

– If the process starts from state 3 then the stationary distribution is (0, 0, 1).

• Periodic

P =







0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0







The stationary probabilities depend on the initial distribution. If the process starts from
state 1 at time n = 0 then limn→∞P(X2n = i) = 1/2 for i = 1, 3, limn→∞P(X2n = i) =
0 for i = 2, 4 and limn→∞P(X2n+1 = i) = 1/2 for i = 2, 4, limn→∞P(X2n+1 = i) = 0
for i = 1, 3. That is, as n tends to infinity the distribution is (1/2, 0, 1/2, 0) in the odd
steps and it is (0, 1/2, 0, 1/2) in the even steps.
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• Transient:

P =










1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0

0 0 0
. . . 0

. . .










limn→∞P(Xn = i) = 0 for i = 0, 1, . . .

Exercise 3.7. Two players, A and B, play with dice according to the following rule. They
throw the dice and if the number is 1 then A gets 2£ from B, if the number is 2 or 3 then A
gets 1£ from B, if the number is greater than 3 then B gets 1£ from A. At the beginning of
the game both A and B have 3£. The game lasts until someone could not pay. What is the
probability that A wins?

Solution 3.7. Before giving a solution for excercise 3.7 , we consider the problem in a
more general setting (see, for example, [Shiryaev, 1994]). Let K < L < M < N be integer
numbers and let X = {Xn, n = 0, 1, ...} be a Markov chain with finite state space S =
{K,K+1, ..., N}. Let S0 = {K,K+1, ..., L−1},S1 = {L, L+1, ...,M},S2 = {M+1, ..., N},
then they are disjoint and non-empty subsets of S, for which S0 ∪ S1 ∪ S2 = S. Denote by
P = (pij) the transition probability matrix of the Markov chain X.

The problem is to give a system of recurrent equations which describes the probability of
the first hit for some state of the set S2 from a state i0 ∈ S1, which means the probability
that the process starts from a state i0 ∈ S1 at the time point 0 and it will be first in a state
from the set S2 without arriving some state from S0.

Let X0 = i0 ∈ S1 be an initial state. Let us introduce the set

Wn+1 = {(i0, i1, ..., in) : ik ∈ S1, 0 ≤ k ≤ n− 1, in ∈ S2

and denote
rn(i0) = P((X0, ..., Xn) ∈ Wn+1 | X0 = i0),

rn(i) = 1, if i ∈ S2, and rn(i) = 0, if i ∈ S0

and
Rn(i0) = r1(i0) + ... + rn(i0), n = 1, 2, ...,

Rn(i) = 1, if i ∈ S2, and Rn(i) = 0, if i ∈ S0.

Using the Markov property of the chain X we get the relations

r1(i0) =
∑

i1∈S2

pi0i1

and for n ≥ 2

rn(i0) =
∑

i1∈S1

pi0i1P((X0, X1, ..., Xn) ∈ Wn+1 | X0 = i0, X1 = i1) =

=
∑

i1∈S1

pi0i1P((X1, ..., Xn) ∈ Wn | X1 = i1) =
∑

i1∈S1

pi0i1rn−1(i1).
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Analogous equations can be derived for the probabilities Rn(i0), n ≥ 1 as follows

Rn(i0) = r1(i0) +
n∑

k=2

rk(i0) = r1(i0) +
n∑

k=2

∑

i1∈S1

pi0i1rk−1(i1) =

= r1(i0) +
∑

i1∈S1

pi0i1

n∑

k=2

rn−1(i1) = r1(i0) +
∑

i1∈S1

pi0i1Rn−1(i1).

If n → ∞, then Rn(i0) → R(i) and we have the equations

R(i0) = r1(i0) +
∑

i1∈S1

pi0i1R(i1), R(i0) = 1, if i0 ∈ S2, and R(i0) = 0, if i ∈ S0.

Since the sequences Rn(i), n = 1, 2, ..., i ∈ S1 are monotonically nondecreasing, then the
limits R(i), i ∈ S1 exist.

Remark. Let i0 ∈ S1 and denote

Tn = min {k : Xk ∈ S1, 0 ≤ k ≤ n− 1, Xn ∈ S1 ∪ S2 } ,

Tn = n if Xk ∈ S1, 0 ≤ k ≤ n

and

En(i0) = E(Tn | X0 = i0).

The equations for the expectations En(i), n ≥ 0 are similar to the equations Rn(i), n ≥ 0
equations are valid, .
Denote

T (i0) = min{n : Xk ∈ S1, 0 ≤ k ≤ n− 1, Xn ∈ S1 ∪ S2 | X0 = i0}, i0 ∈ S1.

The RV T (i0), i0 ∈ S1 is finite with probability 1, therefore after very long run we have

P(B wins | X0 = 3) ≈ 1−P(A wins | X0 = 3).

Now, let us return to Solution 3.7. The possible (generalized) state space of the process X
is S = {wB, 0, ..., 6, wA}, where wB = {−1}, i.e. player B wins and wA = {7, 8} i.e. player
A wins. Note that wA and wB are absorbing states. Denote by S0 = {wA}, S1 = {0, 1, ..., 6}
and S2 = {wA}. The probability transition matrix of the MC X is

P =

wB

0
1
2
3
4
5
6
wA

wB 0 1 2 3 4 5 6 wA
















1 0 0 0 0 0 0 0 0
1/2 0 1/3 1/6 0 0 0 0 0
0 1/2 0 1/3 1/6 0 0 0 0
0 0 1/2 0 1/3 1/6 0 0 0
0 0 0 1/2 0 1/3 1/6 0 0
0 0 0 0 1/2 0 1/3 1/6 0
0 0 0 0 0 1/2 0 1/3 1/6
0 0 0 0 0 0 1/2 0 1/2
0 0 0 0 0 0 0 0 1

















,
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then we have a system of equations for the probabilities R(i) as follows (r1(3) = 0 because
the initial state is i0 = 3)

R(i) = 0, i ∈ S0, R(i) = 1, i ∈ S2, (3.1)

R(0) =
1

3
R(1) +

1

6
R(2), R(1) =

1

2
R(0) +

1

3
R(2) +

1

6
R(3),

R(i) =
1

2
R(i− 1) +

1

3
R(i− 1) +

1

6
R(i+ 1), 2 ≤ i ≤ 5,

R(6) =
1

2
R(5) +

1

2
.

Solving this system of linear equations we get

R(5) = 2R(6)− 1, R(4) =
10

3
R(6)− 7

3
, R(3) = 5R(6)− 4,

R(2) =
64

9
R(6)− 55

9
, R(1) =

88

9
R(6)− 79

9
, R(0) =

355

27
R(6)− 328

27
.

Thus from the equation R(0) = 1
3
R(1) + 1

6
R(2) it follows

R(6) =
443

470
= 0.943.

If X0 = 3 is the initial state, then the asymptotic probability that player A wins is (i.e. after
very long run)

R(3) = 5R(6)− 4 = 0.713.

Comment. The system of linear equations for values P(A wins | X0 = i), 0 ≤ i ≤ 6
can be obtained easier based on intuitively considerations. Denote by D = {A wins} the
event that the player A wins if the starting state is 0 ≤ i ≤ 6. Then by the Markov property
we have

P(D | X0 = i) =
∑

j∈S2

pij +
∑

j∈S1

pijP(D | X1 = j) =
∑

j∈S2

pij +
∑

j∈S1

pijP(D | X0 = j). (3.2)

Denote R(i) = P(D | X0 = i), i ∈ S1, the system of equations (3.1) follows immediately
from (3.2).

Exercise 3.8. Two players, A and B, play with dice according to the following rule. They
throw the dice and if the number is 1 then A gets 2£ from B, if the number is 2 or 3 then A
gets 1£ from B, if the number is greater than 3 then B gets 1£ from A. At the beginning of
the game both A and B have 3£. If one of them could not pay the required amount he gives
all of his money to the other and the game goes on. What is the expected amount of money
at A after a very long run? What is the probability that B cannot pay the required amount
in the next step of the game after a very long run?
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Solution 3.8. If one of the players cannot pay the required amount of money in a step of
the game, then he must give all his money to the other player and the game goes on. Denote
Xn, n = 0, 1, ... the amount of money the player A has in nth step of game. The state space
of the process X = (Xn, n = 0, 1, ...) is X = {0, 1, ..., 6}. Let us introduce a sequence
(Y1, Y2, ...) of independent RVs with identically distribution

Yn =







1/2, if − 1,
1/3, if 1,
1/6, if 2,

then the process can be represented with the evolution equation ((x)+ = max(x, 0))

Xn+1 =

{
(Xn + Yn+1)

+, if Xn + Yn+1 ≤ 4,
min(Xn + Yn+1, 6), if Xn + Yn+1 ≥ 5,

n = 0, 1, ...

Contrary to the exercise 3.6., in this case there are not absorbing states and the probability
transition matrix is

P =

0
1
2
3
4
5
6

0 1 2 3 4 5 6












1/2 1/3 1/6 0 0 0 0
1/2 0 1/3 1/6 0 0 0
0 1/2 0 1/3 1/6 0 0
0 0 1/2 0 1/3 1/6 0
0 0 0 1/2 0 1/3 1/6
0 0 0 0 1/2 0 1/2
0 0 0 0 0 1/2 1/2













.

The process X is homogeneous, irreducible and aperiodic MC with finite state space, therefore
it is ergodic (see Th. 3.40.) and his stationary distribution, which does not depend on the
initial distribution, satisfies the equations

πP = π, π = (π0, ..., π6),

π0 + ... + π6 = 1, πi ≥ 0,

From this we get the system of linear equations

π0 =
1

2
π0 +

1

2
π1, π1 =

1

3
π0 +

1

2
π2, π2 =

1

6
π0 +

1

3
π1 +

1

2
π3,

π3 =
1

6
π1 +

1

3
π2 +

1

2
π4, π4 =

1

6
π2 +

1

3
π3 +

1

2
π5,

π5 =
1

6
π3 +

1

3
π4 +

1

2
π6, π6 =

1

6
π4 +

1

2
π5 +

1

2
π6,

π0 + ...+ π6 = 1.

Expressing the probabilities πi one after the other, we get π1 = π0, π2 = 4
3
π0, π3 = 5

3
π0,

π4 = 19
9
π0, π5 = 8

3
π0, π6 = 91

27
π0, 1 = π0 + ... + π6 = 27

355
π0 and from this π0 = 27

355
= 0.076.

Finally we can compute the stationary distribution of the MC X

π = (0.076, 0.076, 0.101, 0.127, 0.161, 0.203, 0.256).
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Using the stationary distribution, the expected amount of money that A will have after very
long run

lim
n→∞

E(Xn) = π(0, 1, 2, 3, 4, 5, 6)T =

6∑

i=0

iπi = 3.904.

Denote D the event that B will not be able to pay the required amount in the next step of
the game after a very long run. Then

P(D) = lim
n→∞

(

P(D | Xn = 5)P(Xn = 5) +P(D | Xn = 6)P(Xn = 6)

)

=

= lim
n→∞

(

P(Yn+1 = 2)P(Xn = 5) +P(Yn+1 = 1)P(Xn = 6)

)

=

=
1

6
π5 +

1

3
π6 = 0.203 · 1

6
+ 0.256 · 1

3
= 0.119.

Exercise 3.9. There are two machines at a production site A and B. Their failure times are
exponentially distributed with parameter λA and λB, respectively. Their repair times are also
exponentially distributed with parameter µA and µB, respectively. There is a single repair
man associated with the two machines, which can work on one machine at a time. Compute
the probability that at least one of the machines works.

Solution 3.9. The system has five states as follows:
0 - A and B work at same time;
1 - A in repair and B works;
2 - A works and B in repair,
3 - A is waiting for the repair and B in repair ;
4 - A in repair and B is waiting for the repair.

Denote by Z = (Zt, t ≥ 0) the process with state spaces {0, 1, ..., 4} which desribes the state
of the system at the time point t, and let W0 = 0 < W1 < W2 < ...be the consecutive sequence
of the transition points of time of the system (i.e. the embedding MC of Z). Denote by P
the transition probability matrix of the MC W = (W0,W1, ...).

First solution. Let X, Y, U and V be independent exponentially distributed random
variables with parameters λA, λB, µA and µB, respectively. Firstly, we compute the probabil-
ities p01,p01 and p20. It is clear that

p01 = P(X < Y ) =

∞∫

0

∞∫

0

I{x<y}λAλBe
−λAxe−λBydxdy =

∞∫

0

y∫

0

λAλBe
−λAxe−λBydxdy =

=

∞∫

0

λB[1−e−λAy]e−λBydy = 1− λB

λA + λB

∞∫

0

(λA+λB)e
−(λA+λB)ydy = 1− λB

λA + λB
=

λA

λA + λB
.

Analogously, with the change of parameters, we have

p10 =
µA

µA + λB

, p20 =
µB

µB + λA

.
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Denote by Pij(t), t > 0 the distribution function of the holding time from a state i to an
other state j, then Pij(t) = P(W1 −W0 < t | W0 = i,W1 = j) and

P01(t) = P(X ≤ t, X ≤ Y ), P02(t) = P(Y ≤ t, X > Y ),

P10(t) = P(U ≤ t, U ≤ Y ), P14(t) = P(U ≤ t, U > Y ),

P20(t) = P(V ≤ t, V ≤ X), P23(t) = P(X ≤ t, V > X),

P31(t) = P(V ≤ t), P42(t) = P(U ≤ t).

It is clear that

P01(t) = P(X ≤ t, X < Y ) =

∞∫

0

∞∫

0

I{u≤t, u<v}λAλBe
−λAxe−λBydxdy =

=

t∫

0





∞∫

u

λAλBe
−λAue−λBydv



 du =

t∫

0

λAe
−(λA+λB)udu = 1− λA

λA + λB

e−(λA+λB)u

then
P

′

01(t) = λAe
−(λA+λB)u.

With the same computations we have

P
′

02(t) = λBe
−(λA+λB)u, P

′

10(t) = µAe
−(µA+λB)u, P

′

14(t) = µAe
−(µA+λB)u,

P
′

20(t) = µBe
−(λA+µB)u, P

′

23(t) = λAe
−(λA+µB)u, P

′

31(t) = µBe
−µBt, P

′

42(t) = µAe
−µAt

and in other cases P
′

ij(t) = 0. The transition rate matrix of the system

Q = (qij) =









−(λA + λB) λA λB 0 0
µA −(µA + λB) 0 0 λB

µB 0 −(λA + µB) λA 0
0 µB 0 −µB 0
0 0 µA 0 −µA









.

By the Kolmogorov forward differential equation

Π
′

(t) = Π(t)Q, t ≥ 0.

This ordinary differential equation is linear and has constant coefficient matrix Q with special
structure, therefore (see, for example, Bellmann: Introduction to Matrix Analysis, McGraw-
Hill, 1960., Ch. 14, §13) it has a unique solution Π(t), t ≥ t for all initial value Π(0) =
(p0, ..., p4), pi ≥ 0, p0 + ... + p4 = 1 and Π(t) determines a distribution for any t ≥ 0. The
stationary distribution of the system can be computed from the linear algebraic equations
πQ = 0,where π = (π0, ..., π4), πi ≥ 0, : π0 + ... + π4 = 1 :

(λA + λB)π0 = µAπ1 + µBπ2,

(µA + λB)π1 = λAπ0 + π3,

(µB + λA)π2 = λBπ0 + π4,
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π3 = λAπ2,

π4 = λBπ1,

π0 + π1 + π2 + π3 + π4 = 1.

Solving this system of equation, the quantity π0 + π1 + π2 will be the probability that at least
one of the machines works.

Second solution. The transition probability matrix of the embedding Markov chain is

P =









0 p01 1− p01 0 0
p10 0 0 0 1− p10
p20 0 0 0− p20 0
0 1 0 0 0
0 0 1 0 0









,

where p01 = P(X < Y ), p02 = P(Y ≤ X) = 1 − p01, p10 = P(U < Y ), p14 = P(Y ≤ U) =
1− p10, p20 = P(V < X), p23 = P(X ≤ V ) = 1− p20.

Firstly, we compute the probabilities p01,p01 and p20. It is clear that

p01 = P(X < Y ) =

∞∫

0

∞∫

0

InD(x < y)λAλBe
−λAxe−λBydxdy =

∞∫

0

y∫

0

λAλBe
−λAxe−λBydxdy =

=

∞∫

0

λB[1−e−λAy]e−λBydy = 1− λB

λA + λB

∞∫

0

(λA+λB)e
−(λA+λB)ydy = 1− λB

λA + λB
=

λA

λA + λB
.

Analogously, with the change of parameters, we have

p10 =
µA

µA + λB

, p20 =
µB

µB + λA

.

The stationary distribution of the embedded Markov chain is the solution of the system of
equations

rP = r, r = (r0, ..., r4), ri ≥ 0 and

4∑

i=0

ri = 1.

Let us use the method of stationary analysis based on the embedded MC (see p.149.).
For this we need to determine the stationary distribution r = (r1, ..., r4) and the mean times
τ̂j , j = 0, ..., 4 that the system spents in a state j. Then, by the proposed method, the
stationary distribution of the process Z is

πj =
rj τ̂j
4∑

j=0

rj τ̂j

, j = 0, ..., 4.

The holding time of state 1 has exponential distributions with parameter (λA + λB), because

P(τ1 ≤ t) = P(min(X, Y ) < t) = 1−P(min(X, Y ) ≥ t) =

= 1−P(X ≥ t, Y ≥ t) = 1−P(X ≥ t)P(Y ≥ t) = 1− e−(λA+λB)t,

therefore τ̂0 =
1

λA+λB
. With the same way we get

τ̂1 =
1

µA + λB
, τ̂2 =

1

λA + µB
, τ̂3 =

1

µb
, τ̂4 =

1

µA
.
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Exercise 3.10. Let X = (X0, X1, ...) be a two-state Markov chain with state space X =

{0, 1} and with the probability transition matrix P =

[
a 1− a

1− b b

]

, where 0 < a, b < 1.

Prove that P n = 1
2−a−b

Π+ (a+b−1)n

2−a−b
(I −P ), where Π =

[
1− b 1− a
1− b 1− a

]

and I =

[
1 0
0 1

]

.

Solution 3.10. For n = 1 it is true

1

2− a− b
Π+

a + b− 1

2− a− b
(I − P ) = −(I − P ) +

1

2− a− b
[Π+ (I −P )] =

= −I +P +
1

2− a− b

[
(1− b) + 1− a (1− a) + 0− (1− a)

(1− b) + 0− (1− b) (1− a) + 1− b

]

= −I +P + I = P .

It is easy to check that Π(I − P ) = (I − P )Π = 0 and P −Π = (a + b − 1)I. Apply the
method of induction. Suppose that the equation

P n =
1

2− a− b
Π+

(a+ b− 1)n

2− a− b
(I − P )

is true for n ≥ 2 then we prove that it is true for (n+ 1). Thus

P n+1 = PP n =
1

2− a− b
PΠ+

(a+ b− 1)n

2− a− b
P (I −P ) =

=
1

2− a− b
Π+

(a+ b− 1)n

2− a− b
[(a+ b− 1)I +Π](I −P ) =

=
1

2− a− b
Π+

(a+ b− 1)n+1

2− a− b
(I − P ).

From this it follows

lim
n→∞

P n =
1

2− a− b

[
1− b 1− a
1− b 1− a

]

.

Note that the convergence rate is exponentional because of the inequality |a+ b− 1| < 1.
It can also be seen that for both initial values X0 = 0 and X0 = 1 of the Markov chain there
exists the limit matrix of the n-step transition matrix of the chain, which does not depend
on the initial value. Thus the Markov chain has limit distribution, for which

lim
n→∞

P(Xn = 1 | X0 = 0) = lim
n→∞

P(Xn = 1 | X0 = 1) =
1− a

2− a− b
,

lim
n→∞

P(Xn = 0 | X0 = 0) = lim
n→∞

P(Xn = 0 | X0 = 1) =
1− b

2− a− b
.
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Chapter 4

Renewal and regenerative processes

Exercise 4.1. Applying the Theorem 4.42 (page 140), find the limit (stationary) distri-
butions of age, residual lifetime and total lifetime (δ(t) = t − tN(t), γ(t) = tN(t)+1 − t,
β(t) = tN(t)+1 − tN(t)), if the interarrival times are independent random variables having
joint exponential distribution with parameter λ. Show the expected values for the limit dis-
tributions.

Solution 4.1. By the use of Theorem 4.42 (page 140) we get the limit distributions in the
following forms

G(x) = lim
t→∞

P(δ(t) ≤ x) = lim
t→∞

P(γ(t) ≤ x) =
1

(1/λ)

x∫

0

[1−F (s)]ds = λ

x∫

0

e−λsds = 1−e−λx,

H(x) = lim
t→∞

P(β(t) ≤ x) =
1

(1/λ)

x∫

0

sdF (s) =
1

(1/λ)

x∫

0

λe−λsds =

x∫

0

λ2e−λsds.

From these we can see that the limit distributions of δ(t) and γ(t) as t → ∞ coincide with the
exponential distribution of parameter λ. The limit distribution of β(t) as t → ∞ is gamma
distribution with parameter (2, λ), which coincides with the distribution of the sum of two
independent exponentially distributed r.v.s with parameter λ. The expected values for the
limit distributions are 1/λ, 1/λ, 2/λ.

Exercise 4.2. (Egodic property of semi-Markov processes) Consider a system with finite
state space X = {1, ..., N}. The system begins to work at the moment T0 = 0 in a
state X0 ∈ X and it changes the states at the random moments 0 < T1 < T2 < ...
Denote by X1, X2, ... the sequence of consecutive states of the system and suppose that it
constitutes a homogeneous, irreducible and aperiodic Markov chain with initial distribution
(pi = P(X0 = i), 1 ≤ i ≤ N) and probability transition matrix Π = (pij)

n
i,j=1. Define the pro-

cess X(t) = Xn−1, Tn−1 ≤ t < Tn, n = 1, 2, ... and assume that the sequence of holding times
Yk = Tk − Tk−1, k = 1, 2, ... depends only conditionally on the states Xk−1 = i and Xk = j

and denote Fij(x) = P(Yk ≤ x | Xk−1 = i, Xk = j) if pij > 0, where νij =
∞∫

0

xdFij(x) < ∞.

Find the limits for
(a) average number of transitions/time,
(b) relative frequencies of the states i in the sequence X0, X1, ...
(c) limit distribution P(Xt = i), i ∈ X,
(d) average time which is spent in a state i ∈ X.
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Solution 4.2. Since the Markov chain (Xk, k = 0, 1, ...) with finite state space is homo-
geneous, irreducible and aperiodic, then it is ergodic, consequently, the expected values of

return times µi =
∞∑

k=1

kfii(k) < ∞, 1 ≤ i ≤ N are finite and its stationary distribution

π = (π1, ..., πN ) can be given in the form πi = 1/µi, 1 ≤ i ≤ N . From the ergodic property
of the Markov chain it also follows that

1

n

n∑

k=1

I{Xk=i} → πi as n → ∞ with probability 1.

Let us introduce the notations

Ki(t) =

K(t)
∑

k=0

I{Xk=i}, K(t) = max{k : Tk ≤ t}, Si(t) =

t∫

0

I{X(s)=i}ds,

n
(i)
1 = min{k : Xk = i, k ≥ 1}, n(i)

m = min{k : Xk = i, k > n
(i)
m−1}, m = 2, 3, ...,

T (i)
m = T

n
(i)
m

=

n
(i)
m∑

k=1

Yk, m = 1, 2, ..., τ
(i)
1 = T

(i)
1 , τ (i)m = T (i)

m − T
(i)
m−1, m = 2, 3, ...

Note that Si(t) denotes the amount of time is spent by the process X(t) on the interval (0, t)
in a state i.

Let us consider the process (X(t), t ≥ 0) for a fixed i. Since (X0, X1, ...) is a Markov
chain and the sequence (Y1, Y2, ...) only conditionally depends on (X0, X1, ...), then the cycles

(X(t), t ∈ [T
(i)
m−1, T

(i)
m )), m = 2, 3, ... are independent and stochastically equivalent. Conse-

quently, the process (X(t), t ≥ 0) is regenerative under the condition X0 = i, otherwise it

is delayed regenerative. It is also clear that the r.v.s τ
(i)
m , m = 1, 2, ... are independent and

moreover, τ
(i)
m , m = 2, 3, ... are identically distributed, which means that (τ

(i)
m , m = 1, 2, ...)

forms a renewal or delayed renewal (in the case X0 6= i) process.

First we prove that E
(

τ
(i)
1 | X0 = j

)

, 1 ≤ j ≤ N are finite. Note that E
(

τ
(i)
2

)

=

E
(

τ
(i)
1 | X0 = i

)

and E
(

τ
(i)
1

)

=
N∑

j=1

E
(

τ
(i)
1 | X0 = j

)

P(X0 = j). Denote ν = max{νij :

1 ≤ i, j ≤ N, pij > 0} and A
(i)
1 = {X0 = i, X1 = i}, A

(i)
k = {X0 = i, X1 6= i, ..., Xk−1 6=

i, Xk = i}, k ≥ 2. Since for all 1 ≤ i, i1, ..., ik−1 ≤ N, k = 1, 2, ... we have

E
(

Y1 + ... + Yk | A(i)
k

)

= νi,i1 + νi1,i2 + ... + νik−1,i ≤ kν,

then

ai = E
(

τ
(i)
2

)

= E
(

τ
(i)
1 | X0 = i

)

=
∞∑

k=1

E

(

(Y1 + ...+ Yk)I{

A
(i)
k

} | X0 = i

)

=

=

∞∑

k=1

E
(

(Y1 + ... + Yk) | A(i)
k

)

P
(

A
(i)
k

)

≤
∞∑

k=1

kνP
(

A
(i)
k

)

=

∞∑

k=1

kνfii(k) = νµi < ∞.

Denote mij = min{k : pij(k) > 0}, where pij(k) is the k-step probability transition function.
The definition of mij is correct because the Markov chain (Xn, n ≥ 0) is irreducible. From
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this it follows that there exist i1, ..., im−1 ∈ X , is 6= i, 1 ≤ s ≤ mij such that p = P
(

B
(i,j)
mij

)

>

0, where B
(i,j)
mij = {X0 = i, X1 = i1, ..., Xmij−1 = imij−1, Xmij

= j}. Then

ai ≥ E

(

τ
(i)
1 I{

B
(i,j)
mij

} | X0 = i)

)

= E
(

τ
(i)
1 | B(i,j)

mij

)

P
(

B
(i,j)
mij

)

≥

≥ E
(

Ymij
+ ...+ Y

n
(i)
1

| B(i,j)
mij

)

p = E
(

Ymij
+ ...+ Y

n
(i)
1

| Xmij
= j
)

p =

= E
(

τ
(i)
1 | X0 = j

)

p,

consequently

E
(

τ
(i)
1 | X0 = j

)

≤ 1

p
ai < ∞.

(a) By the Remark 4.29 (page 135) the strong law of the large number is also valid for the

delayed renewal process (τ
(i)
m , m = 1, 2, ...), therefore with probability 1

Ki(t)

t
→ 1

ai

and consequently with probability 1

K(t)

t
=

N∑

i=1

Ki(t)

t
→ a =

N∑

i=1

1

ai
.

(b) Firstly, we prove that the convergence

Ki(t)

K(t)
=

1

K(t)

K(t)
∑

i=1

I{Xk−1=i} → πi, as t → ∞

is true with probability 1. Note that from the convergence of K(t)/t
a.s.→ a it follows that

K(t)
a.s.→ ∞, as t → ∞. Since the Markov chain (Xk, k = 0, 1, ...) is ergodic with stationary

distribution (π1, ..., πN), therefore

1

m

m∑

i=1

I{Xk−1=i}
a.s.→ πi, i = 1, ..., N as m → ∞.

On the one hand

Ki(t)

K(t)
=

[at]

K(t)

1

[at]

[at]
∑

i=1

I{Xk−1=i} +
[at]

K(t)

1

[at]





K(t)
∑

i=1

I{Xk−1=i} −
[at]
∑

i=1

I{Xk−1=i}





and on the other hand

1

[at]

∣
∣
∣
∣
∣
∣

K(t)
∑

i=1

I{Xk−1=i} −
[at]
∑

i=1

I{Xk−1=i}

∣
∣
∣
∣
∣
∣

≤ 1

[at]
|K(t)− [at]| =

∣
∣
∣
∣

K(t)

[at]
− 1

∣
∣
∣
∣

a.s.→ 0

because [at]
[t]

t
K(t)

a.s.→ 1, t → ∞, therefore Ki(t)
K(t)

a.s.→ πi as t → ∞.

27



(c) The process (X(t), t ≥ 0) is a (delayed) regenerative one with regenerative cycles τ
(i)
k (the

distribution of the cycle τ
(i)
1 can differ in distribution from the distribution of other cycles ),

therefore the convergence with probability 1

Si(t)

t
=

1

t

t∫

0

I{X(s)=i}ds
a.s.→ lim

t→∞
P(X(t) = i | X0 = i) =

=
1

ai
E





τ
(i)
1∫

0

I{X(s)=i}ds | X0 = i



 =
1

ai
E(Y1 | X0 = i) =

=
1

ai

N∑

i=1

E(Y1 | X0 = i, X1 = j)P(X1 = j | X0 = i) =
1

ai

N∑

i=1

pijνij =
νi
ai

is true, if τ
(i)
2 has non-lattice distribution (this condition is satisfied, for example, if Fij(x)

are non-lattice distribution functions.). Note that the convergence Si(t)
t

a.s.→ νi
ai

can be proved
directly with the help of strong law of large numbers, because

Ki(t)− 1

t

1

Ki(t)− 1

Ki(t)−1
∑

k=1

Y
n
(i)
k

≤ Si(t)

t
≤ Ki(t)

t

1

Ki(t)

Ki(t)∑

k=1

Y
n
(i)
k

,

where Ki(t)
a.s.→ ∞, t → ∞ and the r.v.s Y

n
(i)
k

, k = 1, 2, ... are independent and identically

distributed with E(Y
n
(i)
k

) = E(Y1 | X0 = i).

From the relations proved above it follows Ki(t)
K(t)

Si(t)/t
Ki(t)/t

a.s.→ πiνi (if τ
(i)
1 ≤ t then Ki(t) ≥ 1)

and the sum of average time which is spent in a state i equals to 1, thus

1 =
N∑

i=1

Si(t)

t
=

K(t)

t

N∑

i=1

Ki(t)

K(t)

Si(t)/t

Ki(t)/t
,

where
N∑

i=1

Ki(t)

K(t)

Si(t)/t

Ki(t)/t
a.s.→

N∑

i=1

πiνi.

Then we get

K(t)

t

a.s.→
(

N∑

i=1

πiνi

)−1

, t → ∞,

Ki(t)

t
=

Ki(t)

K(t)

K(t)

t

a.s.→ πi

(
N∑

i=1

πiνi

)−1

=
1

ai

and with probability 1

lim
t→∞

Si(t)

t
= lim

t→∞

Si(t)

Ki(t)

Ki(t)

K(t)

K(t)

t
=

πiνi
∑

k

πkνk
.
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As a consequence, can be obtained the expected values of regenerative cycles

ai =
1

πi

N∑

j=1

πjνj , a =

N∑

i=1

1

ai
=

N∑

i=1

1

πi

N∑

j=1

πjνj.
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Chapter 5

Markov chains with special structures

Exercise 5.1. X and Y are independent continuous PH distributed r.v. with representations
(α,A) and (β,B), respectively. Define the distribution of the following r.v.

• Z1 = c1X,

• Z2 equals to X with probability p and to Y with probability 1− p ,

• Z3 = c1X + c2Y ,

• Z4 = Min(X, Y ),

• Z5 = Max(X, Y ).

Solution 5.1. Z1, . . . , Z5 are continuous PH distributed with the following representations.
Denote the size of (α,A) by n and the size of (β,B) by m.

• PH representation of Z1 = c1X is of size n

(γ,G) = (α,
1

c1
A)

• PH representation of Z2 is of size n +m

γ = (pα, (1− p)β),G =
A 0
0 B

.

• PH representation of Z3 = c1X + c2Y is of size n+m

γ = (α, 0),G =
1
c1
A 1

c1
aβ

0 1
c2
B

,

where a = −A1I is the column vector of transition rates to the absorbing state.

• PH representation of Z4 = Min(X, Y ) is of size nm

γ = α⊗ β,G = A⊕B,
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• PH representation of Z5 = Max(X, Y ) is of size nm+ n+m

γ = (α⊗ β, 0, 0),G =

A⊕B I ⊗ b a⊗ I

0 A 0
0 0 B

,

where a = −A1I and b = −B1I.

Exercise 5.2. X and Y are independent discrete time PH distributed r.v. with representa-
tions (α,A) and (β,B), respectively. Define the distribution of the following r.v.

• Z1 = c1X,

• Z2 equals to X with probability p and to Y with probability 1− p ,

• Z3 = c1X + c2Y ,

• Z4 = Min(X, Y ),

• Z5 = Max(X, Y ).

Solution 5.2. Z1, . . . , Z5 are discrete PH distributed with the following representations.
Denote the size of (α,A) by n and the size of (β,B) by m.

• When c1 is a positive integer the PH representation of Z1 = c1X is of size c1n

γ = (α, 0, . . . , 0),G =

0 I · · · 0
...

. . .
. . .

...
0 0 · · · I

A 0 · · · 0

,

• PH representation of Z2 is of size n +m

γ = (pα, (1− p)β),G =
A 0
0 B

.

• When c1 and c2 are positive integers Z3 is PH distributed with size c1n + c2m . In
case of c1 = c2 = 2 the representation of Z3 is

γ = (α, 0, 0, 0),G =

0 I 0 0
A 0 aβ 0
0 0 0 I

0 0 B 0

,

where a = 1I−A1I is the column vector of transition probabilities to the absorbing state.
For c1, c2 > 2 the representation is obtained similarly.

• PH representation of Z4 = Min(X, Y ) is of size nm

γ = α⊗ β,G = A⊗B,

31



• PH representation of Z5 = Max(X, Y ) is of size nm+ n+m

γ = (α⊗ β, 0, 0),G =

A⊗B A⊗ b a⊗B

0 A 0
0 0 B

,

where a = 1I−A1I and b = 1I−B1I.

Exercise 5.3. There are two machines at a production site A and B. Their failure times are
exponentially distributed with parameter λA and λB, respectively. Their repair times are also
exponentially distributed with parameter µA and µB, respectively. There is a single repair
man associated with the two machines, which can work on one machine at a time. At a
given time both machines work. Compute the distribution and the moments of the time to
the first complete breakdown, when both machines are failed.

Solution 5.3. The time to the complete breakdown is continuous PH distributed with rep-
resentation

γ = (1, 0, 0),G =
−λA − λB λA λB

µA −λB − µA 0
µB 0 −λA − µB

.

The distribution and the moments of the time to complete breakdown, denoted by T , can be
obtained from this PH representation. E.g. its cumulated density function is

FT (t) = P(T < t) = 1− γ eGt1I,

and its moments are
E(T n) = n! γ(−G)−n1I.
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Part II

Queueing systems
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Chapter 6

Introduction to queueing systems

Exercise 6.1. Interpret the following Kendall’s notations

• M/M/1/∞/∞-FIFO, M/M/1

• M/M/2//4,

• M/M/1/m-PS,

• M/M/m-LIFO.

Solution 6.1. The default values are usually eliminated from the Kendall’s notations.

• M/M/1/∞/∞-FIFO and M/M/1 refer to the same queueing system with (time homo-
geneous) memoryless arrival and service processes, single server, infinite buffer, and
infinite population. The first version of the notation is the extended version of the
second one.

• M/M/2//4 refers to the queueing system with (time homogeneous) memoryless arrival
and service processes, two server units, infinite buffer, and a finite population of 4
customers.

• M/M/1/m-PS refers to the queueing system with (time homogeneous) memoryless ar-
rival and service processes, single server, finite buffer of m−1 positions, and processor
sharing service discipline. In case of processor sharing the server serves as many cus-
tomers as many are present in the system at the same time. The service capacity is
uniformly distributed among the customers. With this service discipline the size of the
buffer does not play role.

• M/M/m-LIFO refers to the queueing system with (time homogeneous) memoryless
arrival and service processes, m servers, finite buffer and infinite population and last
in first our service discipline. It means that an arriving customer always enter a server
independent of the number of customers in the system. If all servers are busy upon the
arrival of the new customer the new customer moves one of the customers under service
to the waiting queue and its server starts the service of the newly arrived customer.

Exercise 6.2. In a single server infinite buffer queueing model the arrival rate is λ and the
service time is exponentially distributed with parameter µ.

• Define the Little’s law for the whole queueing system, for the buffer and for the server.
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• Which one of these expressions define the server utilization?

• What is the utilization?

Solution 6.2. It is an M/M/1 queuing system.

• Let T , W , Ȳ , be the mean system time, the mean waiting time and the mean service
time, and L, Lw, Ls be the mean number of customers in the system, in the buffer and
in the server, respectively, and λ be the mean arrival rate. The application of Little’s
law for the whole queueing system, for the buffer and for the server result

L = λT,

Lw = λW,

Ls = λȲ .

• The Little’s law applied for the server is related with the utilization, because the mean
number of customers in the server queue (Ls) define it.

• The mean number of customers in a single server queue (Ls) is the utilization of the
queue, ρ = Ls. In case of m servers Ls/m defines the utilization, ρ = Ls/m.

Exercise 6.3. Which ones of the following queueing systems are lossless:

• M/M/1,

• M/M/2/5/4,

• M/M/1/2-PS,

• M/M/m/m,

• M/M/m.

Solution 6.3.

• M/M/1 – it is lossless, because there is an infinite buffer,

• M/M/2/5/4 – it is lossless, because the population is 4 customers and there are 2
server and 3 buffer positions for customers.

• M/M/1/2-PS – it is lossless, because the server serves all customers at the same time
and buffer is not used.

• M/M/m/m – it is lossy queue, because the customers arrive when all servers are busy
are lost.

• M/M/m – it is lossless, because there is an infinite buffer.

Exercise 6.4. Which ones of the following queueing systems provides immediate service for
the customers:

• M/M/1,
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• M/M/4/5/3,

• M/M/1/2-PS,

• M/M/m/m,

• M/M/m.

Solution 6.4.

• M/M/1 – it is a waiting system, because the customers arrive when the server is busy
wait in the buffer.

• M/M/2/5/4 – it is a waiting system, because the customers arrive when both servers
are busy wait in the buffer.

• M/M/1/2-PS – it is an immediate service system, because the server serves all cus-
tomers at the same time with a portion of the server capacity.

• M/M/m/m – it is an immediate service system, because the customers arriving when all
servers are busy are lost and the ones which are not lost starts the service immediately
at arrival.

• M/M/m – it is a waiting system, because the customers arrive when all servers are
busy wait in the buffer.
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Chapter 7

Markovian queueing systems

Exercise 7.1. Compute the mean and the variance of the waiting time in an M/M/1 queue
based on the Wald’s identity.

Solution 7.1. The waiting of a customer in an M/M/1 queue, W , is the sum of the service
times of the customers, Xi, which are in the system at its arrival. If the number of customers
in the system is N at the arrival of the customer, then its waiting time is

W =

N∑

i=1

Xi,

from which

E(W ) = E

(
N∑

i=1

Xi

)

=

∞∑

n=0

E

(
n∑

i=1

Xi

)

P(N = n) =

∞∑

n=0

nE(X)P(N = n) = E(X)E(N),

and

σW =
∞∑

n=0

σ∑n
i=1 Xi

P(N = n) =
∞∑

n=0

nσXP(N = n) = σXE(N).

Exercise 7.2. Two kinds of customers arrive to a queueing system with 3 servers. Type 1
customers arrive according to a Poisson process with rate λ1. A type 1 customer occupies one
server for an exponentially distributed amount of time with parameter µ1. Type 2 customers
arrive according to a Poisson process with rate λ2. A type 2 customer occupies two servers for
an exponentially distributed amount of time with parameter µ2. Compute the loss probability
of type 2 customers if there is no buffer in the system.

Solution 7.2. The stochastic process describing the number of type 1 (first coordinate) and
type 2 (second coordinate) customers in the system is a CTMC with the following transition
graph.

2,0

0,1

0,0 1,0

1,1

3,0

2µ2λ1

λ2µ 2λ

1λ

1µ1µ
1µ

1µ

1λ1λ

37



Compute the stationary probability distribution, pi,j, of this CTMC and the loss probability
is

ploss =
λ2

λ1 + λ2
(p0,2 + p1,0) + p1,1 + p0,3 .

In state p0,2 and p1,0 only the type 2 customers are lost.

Exercise 7.3. One shop assistant serves the customers in a shop with exponentially dis-
tributed service time with parameter µ. The shop assistant wants to smoke after an exponen-
tially distributed time with parameter α. If the shop is idle leaves for smoking immediately.
If he is busy when he wants to smoke then he serves the customers while shop is not idle and
then he leaves for smoking. The length of the smoke break is exponentially distributed with
parameter β. The customers arrive according to a Poisson process with rate λ. Compute the
mean shopping time of customers if at most 3 customers can enter the shop. (Compute the
same measure if infinitely many customers can enter the shop.)

Solution 7.3. The stochastic process describing the state of the shop assistant (first coor-
dinate) and the number of customers in the shop (second coordinate) is a CTMC with the
following transition graph. The state of the shop assistant is 0 if it works and does not miss
a cigarette, is 1 if it works and misses a cigarette, is 2 if it smokes.

0,30,20,10,0

1,31,21,1

2,32,22,12,0

α
µ

λλ λ

µµ

β βββ

µ µ µ

αα

α

λ λλ

λ λ

We compute the mean shopping time of customers with the help of Little’s law. For that
we need the mean number of customers in the shop, L, and the mean customer arrival rate,
λ̄. Based on the stationary probability distribution, pi,j, of the CTMC the mean number of
customers in the shop is

L =

3∑

j=1

j

2∑

i=0

pi,j

and mean customer arrival rate is
λ̄ = λploss

where
ploss = p03 + p13 + p23.

Finally, the mean shopping time of customers is

T = L/λ̄.

If infinitely many customers can enter the shop then the Markov chain is infinite according
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to the second coordinate and we obtain a quasi birth death process of the form

Q =

L′ F ′ 0 · · ·
B′ L F

. . .

0 B L
. . .

...
. . .

. . .
. . .

,

where

L =

• α 0
0 • 0
β 0 •

, B =

µ 0 0
0 0 µ
0 0 0

, F =

λ 0 0
0 λ 0
0 0 λ

,

L′ =
• α
β • , B′ =

µ 0
0 µ

, F ′ =
λ 0 0
0 0 λ

.

and • are the negative diagonal elements which are set such that all row sum of Q is zero.
Assuming that process is positive recurrent and the stationary solution of this QBD process
with irregular level zero is vector p0, and vectors pi = p1R

i−1 for i ≥ 1, we can compute the
mean number of customers in the shop as

L =
∞∑

i=1

ip1R
i−11I = p1

( ∞∑

i=1

(i− 1)Ri−1 +
∞∑

i=1

Ri

)

1I =

p1

(

R(I −R)−2 +R(I −R)−1

)

1I = p1

(

R(I −R)−1 ((I −R)−1 + I))

)

1I.

Due to the fact that there is no loss in case of infinite shop capacity (λ̄ = λ) the mean
shopping time of a customer is

T = L/λ̄ = L/λ.

Exercise 7.4. There is a queueing system with two servers and two types of customers.
Type i customers arrive according to a Poisson process with rate λi and their service time is
exponentially distributed with parameter µi, i = 1, 2. Server i is typically assigned with type
i customers. If there is a type i customer in the system when server i is idle then it serves
a type i customer. If there is no type i customer in the system when server i is idle then it
can serve a customer of the other type. The arrival of a new customer does not interrupt
the ongoing service. Compute the loss probability of type i customers if the buffer size is 3.

Solution 7.4. A finite CTMC describes the behavior of the queueing system, where the states
are identified by the triple (i, j, k). i indicates the state of server 1. i = 0 when server 1 is
idle, i = 1 when server 1 serves a type 1 customer, and i = 2 when server 1 serves a type 2
customer. j indicates the state of server 2 in a similar manner, and k indicates the number
of customers in the buffer.

As it is visible from the (i, j, k) state description the type of the customers in the buffer
is not identified in the system state. It is a widely applicable trick to reduce the complexity of
the Markov chains describing the behavior of queueing systems. When the servers are busy
customers arrive to the buffer with rate λ = λ1 + λ2 and a given customer in the buffer is of
type 1 with probability λ1/λ and of type 2 with probability λ2/λ.
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The transition rates from higher buffer occupancy to lower one are as follows

• from (1, 1, i) to (1, 1, i−1) at rate 2µ1λ1/λ because either server 1 completes the service
at rate µ1 and the next customer is type 1 with probability λ1/λ or server 2 completes
the service at rate µ1 and the next customer is type 1 with probability λ1/λ,

• from (1, 1, i) to (1, 2, i − 1) at rate 2µ1λ2/λ because server 2 completes the service at
rate µ1 and the next customer is type 2 with probability λ2/λ,

• . . .

The loss probability of both customers type are identical and are associated with the states
when the buffer is full.

ploss1 = ploss2 = p1,1,3 + p1,2,3 + p2,1,3 + p2,2,3.

Further type related measures can be computed based on the stationary distribution of this
Markov chain. E.g., the probability that a type 1 customer is served by server 2 is

ptype1-server2 =

2∑

i=0

3∑

k=0

pi,1,k

2∑

i=0

3∑

k=0

pi,1,k +

2∑

j=0

3∑

k=0

p1,j,k

.

Exercise 7.5. Two kinds of customers arrive to a discrete time queueing system. In every
time slot a type i customer arrives with probability pi, i = 1, 2, and no customer arrives with
probability 1 − p1 − p2. There is a single server. The service time of a type 1 customer is
geometrically distributed with parameter q1. The service time of a type 2 customer is k time
slot and the buffer size is b. Compute the mean system time of type i customers for i = 1, 2,
if k = 1, 2 and b = 0, 3,∞.

Solution 7.5. We present the solution for k = 2. The solution for k = 1 is straight forward
based on that. A finite DTMC describes the behavior of the queueing system, where the states
are identified by the couple (i, j). i indicates the state of the server. i = 0 when the server
is idle, i = 1 when the server serves a type 1 customer, i = 2 when the server serves a type
2 in the first time slot and i = 3 when the server serves a type 2 in the second time slot. j
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indicates the number of customers in the buffer. The following Markov chain describes the
behaviour when there is no buffer (b = 0).

0,0

2,0

3,0

1,0

)

2

(1−

1q

q1
p1

p

p

1

1

0

The Markov chain also indicate that the customers that receive service, because the system
is idle at their arrival, start service immediately after arrival. Consequently, the total system
time is the service time for both types of customers and their means are

T1 =
1

q1
, T2 = 2 .

For the case when there is buffer in the system we follow the same approach as in Exercise
7.4 and the state of the Markov chain does not identify the type of the customers in the buffer
only the type of the customer in the server. That is, when the server is busy customer arrive
to the buffer with probability p = p1 + p2 and a given customer in the buffer is of type 1 with
probability p1/p and of type 2 with probability p1/p. In case of buffer capacity 3 (b = 3) the
following Markov chain describes the queueing system, where p∗1 = p0p1/p and p∗2 = p0p2/p.
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p
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When b = 3 the computation of the system time requires the stationary solution of the
Markov chain (pi,j denote the stationary probabilities) and the application of the Little’s law
in a similar way as in Exercise 7.3. The loss probability of both customers type are identical
and are associated with the states when the buffer is full and the arriving customer is lost.

ploss = ploss1 = ploss2 =
p1,3(1− q1)p+ p2,3p

p
= p1,3(1− q1) + p2,3,

and the mean arrival rate of type 1 (type 2) customers is λ̄1 = p1ploss (λ̄2 = p2ploss). The
mean number of type 1 and type 2 customers in the queue are

L1 =
3∑

j=0

p1,j

(

1 +
jp1
p

)

+
3∑

i=2

3∑

j=0

pi,j
jp1
p

, L2 =
3∑

j=0

p1,j
jp2
p

+
3∑

i=2

3∑

j=0

pi,j

(

1 +
jp2
p

)
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Finally, from the Little’s law we have

T1 = L1/λ̄1 , T2 = L2/λ̄2 .

The case when the buffer is infinite results in a quasi birth death process with special level
zero. Both, the special structure of level zero and the regular structure of the higher levels are
readable from the Markov chain of buffer capacity 3. For example, the matrices describing
the regular part are

L =

q1p1 + (1− q2)p0 q1p2 0
0 0 p0
p1 p2 0

, B =

q1p
∗
1 q1p

∗
2 0

0 0 0
p∗1 p∗2 0

, F =

(1− q1)p 0 0
0 0 p
0 0 0

.

Note that (B +L+ F )1I = 1I holds, that is, the sum of the exit probabilities of each state is
one. The stability stability condition of the QBD process can also be obtained by work load
consideration. The service of a type 1 customer takes 1/q1 time slots in average and the
service of a type 2 customer takes 2 time slots. This way p1/q1 + p2 2 workload arrive to the
server in a time slot, which has to be less than 1 in a sable system.

When the buffer is infinite we can compute the system time based on the stationary
solution of the QBD type Markov chain. In this case λ̄1 = p1 and λ̄2 = p2, because there is
no loss due to the infinite buffer. The mean number of type 1 and type 2 customers in the
queue are

L1 =
∞∑

j=0

p1,j

(

1 +
jp1
p

)

+
∞∑

i=2

3∑

j=0

pi,j
jp1
p

, L2 =
∞∑

j=0

p1,j
jp2
p

+
3∑

i=2

∞∑

j=0

pi,j

(

1 +
jp2
p

)

and similarly
T1 = L1/λ̄1 , T2 = L2/λ̄2 .

Exercise 7.6. To improve the energy efficiency of a discrete time queueing system the server
is switched off (goes on vacation) for a geometrically distributed amount of time with param-
eter r if the system is idle at the end of a time slot. At the end of the vacation period the
server starts serving the arrived customers (if any) or goes for an other vacation (if none).
In every time slot one customer arrives with probability p and no customer arrives with prob-
ability 1 − p. The service time is geometrically distributed with parameter q and the buffer
size is b. Compute the mean system time, the mean vacation time and the mean idle time
of the server for b = 3,∞.

Solution 7.6. When b = 3 the following finite DTMC describes the behavior of the queueing
system. The states are identified by the couple (i, j). i indicates the state of the server. i = 0
when the server is on vacation, i = 1 when the server is active and serving a customer. j
the number of customers in the buffer. On the figure q̄ = 1− q, p̄ = 1− p and r̄ = 1− r.
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We compute the mean system time of customers, T , based on the stationary solution of
the Markov chain (denoted as pi,j) and the Little’s law in a similar way as in Exercise 7.3.
The loss probability is

ploss =
p1,3(1− q)p+ p0,3(1− r)p

p
= p1,3(1− q) + p0,3(1− r),

and the mean arrival rate customers is λ̄ = pploss. The mean number of customers in the
queue is

L =

1∑

i=0

3∑

j=0

(i+ j)pi,j and T = L/λ̄ .

The idle time and the vacation time of the server is identical because the server imme-
diately starts the vacation when it becomes idle and it finishes the vacation only when there
is customer to serve. The vacation time of the server is discrete PH distributed and its rep-
resentation can be extracted from the Markov chain by interpreting the transition from the
lower row of states (server in vacation) to the upper ones (server busy) as transitions to an
absorbing state and recognizing that the vacation always starts in state (0, 0).

β = {1, 0, 0, 0} , B =

1− p (1− r)p 0 0
0 (1− p)(1− r) (1− r)p 0
0 0 (1− p)(1− r) (1− r)p
0 0 0 1− r

.

The mean of the vacation time can be computed as βB−11I.

In the case when the buffer is infinite the regular structure of the above Markov chain
follows for all buffer levels. There are more than one ways to define a QBD process based
on this regular Markov chain. It is possible to define a QBD such that level j is composed by
states (0, j) and (1, j) in this case the structure is regular for level zero; and it is also possible
to define a QBD such that level j is composed by states (0, j) and (1, j − 1) in this case the
structure is special for level zero. In the second case level zero has different dimension, it is
composed by a single state, state (0, 0).

The regular matrix blocks of the QBD whose level j is composed by states (0, j) and (1, j)
are

L =
(1− r)(1− p) rp

0 pq + (1− p)(1− q)
, B =

0 r(1− p)
0 q(1− p)

, F =
(1− r)p 0

0 (1− q)p
.
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Note again that (B +L+ F )1I = 1I holds.

When the buffer is infinite and the system is stable we can compute the mean system time
of customers based on the stationary solution of the QBD type Markov chain. In this case
λ̄ = p, because there is no loss due to the infinite buffer. The mean number of customers in
the queue is

L =
1∑

i=0

∞∑

j=0

(i+ j)pi,j and T = L/λ̄ .

We compute the mean vacation time with infinite buffer based on the stochastic interpreta-
tion of the system behavior. The vacation starts in state (0, 0) and there are two conditions to
finish the vacation. There is an arrival and at the same time or after the arrival a transition
with probability r occurs. This stochastic interpretation allow a simpler PH representation
of the vacation time

γ = {1, 0} , G =
1− p (1− r)p
0 1− r

.

Note that (β,B) and (γ,G) define the same distribution.

Exercise 7.7. Compute the stationary number of customers in a M/M/2/3/4 queue if λ = 1
and µ = 2.

Solution 7.7. The Markov chain of M/M/2/3/4 queue is

1 320 µ

4λ

2µ

3λ

2µ

2λ

With λ = 1 and µ = 2 the stationary probabilities satisfy the following local balance and
normalizing equations.

p1 =
4

2
p0, p2 =

3

4
p1 =

3

2
p0, p3 =

2

4
p2 =

3

4
p0,

3∑

i=0

pi = 1 ,

from which

p0 =
4

21
p1 =

8

21
, p2 =

6

21
, p3 =

3

21
,

and the mean number of customers is

L =

3∑

i=0

ipi =
29

21
.

Exercise 7.8. Compute the loss probability of the M/M/m/m/K system for K > m.

Solution 7.8. The Markov chain of M/M/m/m/K queue is

... mm−1

λ (K−m+1)(K−m+2)λ

1 20

λ

µ

λ (K−2)λ (K−1)K

2µ 3µ (m−1)µ µm
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The stationary probabilities satisfy the following local balance and normalizing equations.

pi =
(K − i+ 1)λ

iµ
pi−1, i = 1, . . . , m,

m∑

i=0

pi = 1,

from which

pi = p0

i∏

j=1

(K − j + 1)λ

jµ
= p0

K! λi

K−i! i! µi
= p0

(
K

i

)(
λ

µ

)i

, i = 0, . . . , m,

pi =

(
K

i

)(
λ

µ

)i

m∑

j=0

(
K

j

)(
λ

µ

)j
, i = 0, . . . , m.

The loss probability of the M/M/m/m/K queue is ploss = pm.

Exercise 7.9. Compare the probability of waiting in an M/M/m queue with the loss prob-
ability in an M/M/m/m queue for m = 1, 2, 3, where the arrival and service intensities are
identical. Interpret the relation of the results.

Solution 7.9. In an M/M/1 queue the probability of waiting is pwait = λ
µ

and in an

M/M/1/1 queue (Markov chain with 2 states) the loss probability is ploss =
λ
µ

1+λ
µ

.

Next we compute the probability of waiting and the loss probability for m = 3 only. The
stationary state probabilities of the M/M/3 queue satisfy

pi =
λ

iµ
pi−1, i = 1, 2, pi =

λ

3µ
pi−1, i = 3, 4, . . . ,

∞∑

i=0

pi = 1,

pi = p0
λi

i!µi
, i = 1, 2, pi = p2

(
λ

3µ

)i−2

, i = 2, . . . , m, and

∞∑

i=2

pi = p2
3µ

3µ− λ

from which

pwait =

∑∞
i=3 pi

p0 + p1 +
∑∞

i=2 pi
=

λ3

3!µ3
3µ

3µ−λ

1 + λ
µ
+ λ2

2µ2
3µ

3µ−λ

.

The stationary state probabilities of the M/M/3/3 queue (Markov chain with 4 states)
satisfy

pi =
λ

iµ
pi−1, i = 1, 2, 3,

3∑

i=0

pi = 1,

from which

ploss =
p3

p0 + p1 + p2 + p3
=

λ3

3!µ3

1 + λ
µ
+ λ2

2µ2 +
λ3

3!µ3

.

In both cases the waiting probability is larger than the loss probability because the Markov
chains spend the same amount of time in the 0, . . . , m−1 part of the state space, but in case
of M/M/m queue the Markov chain spends more time in the other part of the state space,
which is composed by infinitely many states, than in the case of M/M/m/m queue, when
the other part of the state space is composed by a single state.
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Exercise 7.10. A complex system is composed by two main units. The failure and the repair
time of unit i, i = 1, 2, are exponentially distributed with parameter λi and µi, respectively.
The units are maintained by a single repairman. Define the Markov chain of the system be-
havior if the service discipline of the repairman is FIFO, preemptive LIFO, processor sharing,
if the repair of unit 1 has a preemptive priority over the one of unit 2, if the repair of unit
1 has a non-preemptive priority over the one of unit 2.

Solution 7.10.

0,1

1,0

1,1

1,1

0,0

λ1

µ 2

µ1

λ2λ
2µ

1µ

1

2

λ

0,1

1,0

1,1

1,1

0,0

λ1

µ 2

µ1

λ2λ
2µ

1µ

1

2

λ

FIFO service Preemptive LIFO

/2

0,0 1,0

1,10,1

/22µ

1µ
1λ

2λ
2λ2µ

1µ

1λ

0,1

1,0

1,1

0,0

λ1
2λ2µ 2λ

1µ

1µ

1λ

Processor sharing Preemptive priority of unit 1

The non-preemptive priority of unit 1 is identical with the FIFO case, because the repair-
man does not interrupt the ongoing service process and at the time when the ongoing service
process is completed there is only only one failed unit to repair.

Exercise 7.11. Customers of a discrete time queueing system (under service and waiting)
can be lost. Each customer is lost with probability r in each time slot. One customer arrives
with probability p (and with 1−p no customer arrives) in each time slot and the service time
is geometrically distributed with parameter q. Compute the probability of successful service
completion if the buffer size is 3.

Solution 7.11. The following DTMC describe the system behavior,

p

1−p

10 2 3 4
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with transition probabilities

pi,i+1 = (1− q)pr(i, 0),

pi,i = qpr(i, 0) + (1− q)(1− p)r(i, 0) + (1− q)pr(i, 1),

pi,i−1 = qpr(i, 1) + q(1− p)r(i, 0) + (1− q)(1− p)r(i, 1) + (1− q)pr(i, 2)
︸ ︷︷ ︸

if i≥2

,

. . . . . . ,

where r(i, j) denotes the probability that j customers are lost in a time slot, when there are
i customers in the system at the beginning of the time slot. The number of lost customers is
binomially distributed with parameters i, r, that is, r(i, j) =

(
i
j

)
rj(1− r)i−j.

The transition probabilities are determined by the distribution of the number of served
customers, Y , the number of arrived customers, V , and the number of lost customers, Z.
Which are Beroulli distributed with parameters q, Beroulli distributed with parameters p and
in case of i customers binomially distributed with parameters i, r, respectively. When there
are i customers 2×2×(i+1) cases needs to be evaluated to obtain the transition probabilities.
The evolution equation presents a rather compact way to describe the same DTMC. Let Xn

be the number of customers in the system in time slot n and Yn, Zn, Vn the number of served,
lost and arrived customers in time slot n, than

Xn = min(max(Xn−1 − Yn − Zn, 0) + Vn, 3) .
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Chapter 8

Non-Markovian queueing systems

Exercise 8.1. There is an M/G/1 queue. The arrival intensity is λ and the service time
is exponentially distributed with parameter µ2 with probability 1 − p and it is the sum of
two independent exponentially distributed random variable with parameters µ1 and µ2 with
probability p.

• Compute the utilization of the server.

• Compute the coefficient of variation of the service time.

• Compute the mean system time of customers.

• Compute the mean number of customers in the buffer.

Solution 8.1.

• Let S be the service time and Si be exponentially distributed with parameter µi. The
mean service time and the utilization are

E(S) = (1− p)E(S1) + p (E(S1 + S2)) = (1− p)
1

µ2

+ p

(
1

µ1

+
1

µ2

)

, ρ = λE(S) .

• The second moment and the coefficient of variation of the service time are

E(S2) = (1− p)E(S2
1) + p (E((S1 + S2)

2)) =

= (1− p)E(S2
1) + p (E(S2

1) + 2E(S1)E(S2) + E(S2
2)) =

= (1− p)
2

µ2
2

+ p

(
2

µ2
1

+
2

µ1µ2
+

2

µ2
2

)

CV(S) =
E(S2)

E(S)2
− 1 .

• The mean system time of customers is

E(T ) = E(S)

(

1 +
ρ

1− ρ

1 +CV(S)

2

)

.

• The mean waiting time and the mean number of customers in the buffer are

E(W ) = E(S)
ρ

1− ρ

1 +CV(S)

2
, E(LW ) = λE(W ).
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An alternative solution of the exercise is to recognize that the service time is PH dis-
tributed with representation

β = {p, 1− p},B =
−µ2 µ2

−µ1
.

Based on the PH representation of the service time we can apply the analysis of the M/PH/1
queue for which closed form expressions are available.

Exercise 8.2. Customers arrive to a dentist according to a Poisson process with intensity
λ. Arriving customers enter the dentist’s surgery if it is idle, otherwise they wait in the
waiting room. At the dentist’s surgery there is a registration of time D (deterministic). With
probability p the patient is directed to the dentist for treatment which takes an exponentially
distributed time with parameter µ, with probability 1− p the patient is rejected.

• Compute the mean time of customers in the waiting room.

• Compute the probability that an arriving customer has to wait.

• Compute the mean waiting time.

Solution 8.2.

• Let S be the service time and ST be the treatment time which is exponentially distributed
with parameter µ. The mean service time and the utilization are

E(S) = D + pE(ST ) = D + p
1

µ
, ρ = λE(S) .

The second moment and the coefficient of variation of the service time are

E(S2) = D2 + pE(S2
T ) = D2 + p

2

µ2

CV(S) =
E(S2)

E(S)2
− 1 .

Based on these quantities the mean waiting time is

E(W ) = E(S)
ρ

1− ρ

1 +CV(S)

2
.

• The probability that an arriving customer has to wait can be computed from the uti-
lization of the system as follows

P(waiting) = 1− ρ .

• The waiting time is the time a customer spends in the waiting room.

Exercise 8.3. FA(t) is the inter-arrival distribution in an G/M/1 queue whose service rate
is µ. N(t) is the number of customers in the system at time t and T1, T2, . . . denote the
arrival instances of the first, second, etc. customers. The mean of the stationary number of
customers is N̄ = limt→∞E(N(t)) and the mean of the stationary number of customers at
arrival instances is Ň = limn→∞E(N(Tn−)). Compute the relation of N̄ and Ň if
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• inter-arrival distribution is hyper-exponential (FA(t) = 1− peλ1t − (1− p)eλ2t),

• inter-arrival distribution is deterministic,

• inter-arrival distribution is exponential.

Solution 8.3. N̄ denotes the mean number of customers in a G/M/1 queue at a random
time instant and Ň denotes the mean number of customers right before an arrival instance.
The arrival process is not a Poisson process and consequently PASTA property does not
hold. That is, the distribution of the number of customers at a random time instant and
the distribution of number of customers right before an arrival instance are different (in
general). On page 263 we have that the number of customers right before arrivals, N(Tn−),
is geometrically distributed with parameter z∗, that is Pℓ = P(N(Tn−) = ℓ) = z∗ℓ(1 − z∗),
where z∗ is the solution of z∗ = A∼(µ− z∗µ) and A∼(s) is the Laplace Stieltjes transform of
FA(t), A

∼(s) =
∫

t
e−stdFA(t).

The N(t) process, number of customers in the G/M/1 queue at time t, is a Markov
regenerative process with regeneration instances at customer arrivals. The relation of the
distribution at a regeneration instance and at a random time instance is provided on page
162. The stationary distribution (at random time) can be computed from the embedded
distribution as:

πk =

∑

j Pjτjk
∑

j Pjτj
, (8.1)

where τj is the mean time to the next embedded instance starting from state j, and τjk is the
mean time spent in state k before the next embedded instance starting from state j as it is
indicated in the following time diagram.

τ21
τ

22

20

τ23

τ2

τ

1

3

2

t

U(t)

Denoting the mean arrival intensity by λ̄, we have λ̄ = 1/
∫

t
1 − FA(t)dt. In a G/M/1

queue the embedded instances are the arrival instances, and τi = 1/λ̄ for all i ≥ 0is the
mean inter-arrival time. The following diagram details the stochastic process between arrival
instances in order to compute τik.

21τ

1

time to arrive level 1

next departure 

next arrival

τt−

τ

3

2

analysis of 

time spent in level 1 before arrival or departure

U(t)

t
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In the figure τ is the sum of i + 1 − k service times and it has an Erlang(i + 1 − k, µ)
distribution. Using that we have

τik =

∫ ∞

t=0

∫ t

τ=0

∫ t−τ

x=0

e−µx dx fErl(i+1−k)(τ) dτ dA(t)

and

τi0 =

∫ ∞

t=0

∫ t

τ=0

(t− τ) fErl(i+1−k)(τ) dτ dA(t)

Note the level independent behavior of τi,k, that is τi,k = τi+j,k+j, ∀j ≥ 0 and ∀k>0.
Computing τik and substituting into (8.1) results in

π0 = 1− ρ and πk = ρ(1− z∗)z∗k−1, k ≥ 1 ,

where ρ = λ̄ 1
µ
.

Based on the stationary behavior at random instance we can compute the mean number
of customers in the queue, N̄ = L, the mean system time, T , the mean number of waiting
customers, LW , and the mean waiting time

N̄ = L =

∞∑

i=0

iπi =
ρ

1− z∗
, T =

L

λ̄
=

1

µ

1

1− z∗
,

LW =
∞∑

i=1

(i− 1)π0 =
ρ z∗

1− z∗
, W =

LW

λ̄
=

1

µ

z∗

1− z∗
,

and the mean number of customers in the queue right before arrivals is

Ň =
∞∑

i=0

iPi =
z∗

1− z∗

Special G/M/1 queues

• exponentially distributed inter-arrival time – M/M/1 queue:

A∼(s) =
λ

s+ λ

z∗ = A∼(µ− z∗µ) =
λ

µ− z∗µ+ λ

and its valid (inside the unit disk) solution is z∗ =
λ

µ
= ρ. z∗ = 1 is also a solution of

the equation but it is not valid.

• Erlang(λ, 2) distributed inter-arrival time – E2/M/1 queue:

A∼(s) =

(
λ

s+ λ

)2

ρ =
λ

µ
=

λ

2µ
, z∗ = 2ρ+

1

2
−
√

2ρ+
1

4
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• deterministic inter-arrival time – D/M/1 queue:

A∼(s) = e−sD

ρ = 1/µD, z∗ = A∼(µ− z∗µ) = e−µD(1−z∗)

• hyper-exponentially distributed inter-arrival time – H2/M/1 queue:

A∼(s) =
p1λ1

s+ λ1
+

p2λ2

s+ λ2

Assuming p1 = p2 = 0.5, and λ1 = 2λ2 = λ = 1, we have λ =
2λ

3
, ρ =

λ

µ
=

2λ

3µ
and

z∗ =
9ρ

8
+

1

2
−
√

9ρ2

64
+

1

4

Exercise 8.4. Find the mean value of number of customers in the system and in the waiting
queue in the M/G/1 system. Let us consider the cases of of M/M/1 and M/D/1 systems.

Solution 8.4. The mean value of number of customers is computed on page 236. For the
mean value of number of waiting customers we have

∞∑

k=1

(k − 1)pk =
∞∑

k=1

kpk −
∞∑

k=1

pk = ρ+
λ2E(Y 2)

2(1− ρ)
− ρ

=
λ2E(Y 2)

2(1− ρ)
.

In case of the M/M/1 system the second moment of service time is E(Y 2) = 2
µ2 . By

using this value the main queue length is

ρ+
λ2E(Y 2)

2(1− ρ)
=

λ

µ
+

λ2 · 2
µ2

2
(

1− λ
µ

) =
λ

µ− λ
.

The main number of waiting customers is

∞∑

k=1

(k − 1)pk =
∞∑

k=1

kpk −
∞∑

k=1

pk = ρ+
λ2E(Y 2)

2(1− ρ)
− ρ

=
λ2E(Y 2)

2(1− ρ)
=

λ2

µ(µ− λ)
=

ρ2

1− ρ
.

These values can be computed knowing that for the M/M/1 system the stationary distribution
is geometrical. The mean value of number of customers is

∞∑

k=1

k · (1− ρ)ρk = (1− ρ)ρ
1

(1− ρ)2
=

ρ

1− ρ
.

The mean value of waiting customers

∞∑

k=1

(k − 1)(1− ρ)ρk = (1− ρ)ρ

( ∞∑

k=1

kρk−1 −
∞∑

k=1

ρk−1

)
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= (1− ρ)ρ

[
1

(1− ρ)2
− 1

1− ρ

]

=
ρ2

1− ρ
.

Let the service time be equal to T in the M/D/1 system, then ρ = λT , E(Y 2) = T 2. The
mean value of number of customers in the system is

ρ+
λ2E(Y 2)

2(1− ρ)
= λT +

λ2T 2

2(1− λT )

=
2λT − λ2T 2

2(1− λT )
=

ρ(2 − ρ)

2(1− ρ)
,

the mean value of waiting customers

λ2E(Y 2)

2(1− ρ)
=

λ2T 2

2(1− λT )
=

ρ2

2(1− ρ)
.

Exercise 8.5. By using the Pollaczek-Khinchin transform equation show that in the M/M/1
system the equilibrium distribution is geometrical.

Solution 8.5. Use the fact that for the distribution of service time

b∼(s) =

∞∫

0

e−sxµe−µxdx =
µ

s+ µ
.

Exercise 8.6. Let us consider the M/G/1 system with bulk arrivals, an arriving group
with probability gi consists of i customers. Show that the generating function of number
of customers entering during time t is e−λt(1−G(z)), where λ is the intensity of arrivals and

G(z) =
∞∑

i=1

giz
i.

Solution 8.6. Let Pi(k) denote the probability of event that in i groups together appear k
customers. For the generating function of entering customers we have

e−λt +

∞∑

i=1

∞∑

k=i

(λt)i

i!
e−λtPi(k)z

k

=
∞∑

i=0

(λt)i

i!
e−λt

∞∑

k=i

Pi(k)z
k

=
∞∑

i=0

(λt)i

i!
e−λtGi(z)

=

∞∑

i=0

[λtG(z)]i

i!
e−λt = e−λt[1−G(z)].

Exercise 8.7. Show that in the M/G/1 system with bulk arrivals the generating function of
number of customers arriving for the service time of a customer is b∼(λ(1 − G(z)), where
b∼(s) is the Laplace-Stieltjes transform of distribution function of this service time.
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Solution 8.7. Let Pi(k) has the same meaning as in the previous exercise. We have

∞∫

0

e−λxdB(x) +

∞∫

0

∞∑

i=1

∞∑

k=i

(λx)i

i!
e−λxPi(k)z

kdB(x)

=

∞∫

0

∞∑

i=0

(λx)i

i!
e−λx

∞∑

k=i

Pi(k)z
kdB(x)

=

∞∑

i=0

(λx)i

i!
e−λxGi(z)dB(x)

=

∞∫

0

∞∑

i=0

[λxG(z)]i

i!
e−λxdB(x) = b∼(λ(1−G(z))) =

∞∑

j=0

cjz
j .
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Chapter 9

Queueing systems with structured
Markov chains

Exercise 9.1. Define a MAP representation of the departure process of an M/M/1/2 queue
with arrival rate λ and service rate µ.

Solution 9.1.

D0 =
−λ λ

−λ−µ λ
−µ

D1 = µ
µ

Exercise 9.2. Define a MAP representation of the departure process of a MAP/M/1/1
queue with arrival MAP (D̂0, D̂1) and service rate µ.

Solution 9.2.

D0 =
D̂0 D̂1

µI D̂0 + D̂1 − µI
, D1 =

0 0
µI 0

.

Exercise 9.3. Define a MAP representation of the customer loss process of a MAP/M/1/1
queue with arrival MAP (D̂0, D̂1) and service rate µ.

Solution 9.3.

D0 =
D̂0 D̂1

µI D̂0 − µI
, D1 =

0 0

0 D̂1

.

Exercise 9.4. Compute the generator of the CTMC which describes the number of customers
and the phase of the arrival PH distribution in a PH/M/1 queue if the representation of the

PH distributed inter-arrival time is (α,A), with α = (1, 0) and A =

(
−α α/2
0 −γ

)

and the

service rate is µ.

Solution 9.4.

−α α/2 α/2 0 0 0 0 0
0 −γ γ 0 0 0 0 0
µ 0 −α − µ α/2 α/2 0 0 0
0 µ 0 −γ − µ γ 0 0 0
0 0 µ 0 −α− µ α/2 α/2 0
0 0 0 µ 0 −γ − µ γ 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.
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Exercise 9.5. Compute the generator of the CTMC which describes the number of customers
and the phase of the service PH distribution in a M/PH/1 queue if the arrival rate is λ and
the representation of the PH distributed service time is (β,B), with β = (1/3, 2/3) and

B =

(
−µ µ
0 −γ

)

.

Solution 9.5. Solution 1: If the idle state of the queue is represented with a single state of
the Markov chain then the generator is

−λ λ/3 2λ/3 0 0 0 0
0 −λ− µ µ λ 0 0 0
γ 0 −λ− γ 0 λ 0 0
0 0 0 −λ− µ µ λ 0
0 γ/3 2γ/3 0 −λ− γ 0 λ

0 0 0
. . .

. . .
. . .

. . .

0 0 0
. . .

. . .
. . .

. . .

.

Solution 2: If the idle state of the queue is represented with two states of the Markov
chain then the generator is

−λ 0 λ 0 0 0 0 0
0 −λ 0 λ 0 0 0 0
0 0 −λ− µ µ λ 0 0 0

γ/3 2γ/3 0 −λ− γ 0 λ 0 0
0 0 0 0 −λ− µ µ λ 0
0 0 γ/3 2γ/3 0 −λ− γ 0 λ

0 0 0 0
. . .

. . .
. . .

. . .

0 0 0 0
. . .

. . .
. . .

. . .

.

Exercise 9.6. The packet transmission is performed in two phases in a slotted time com-
munication protocol. The first phase is the resource allocation and the second is the data
transmission. The times of both phases are geometrically distributed with parameters q1 and
q2. In every time slot one packet arrives with probability p (and no packet arrives with
probability 1 − p). Compute the probability of packet loss if at most 2 packets can be in the
system.

Solution 9.6. The service time distribution is indeed a discrete PH distribution with repre-
sentation

β = (1, 0) and B =

(
1− q1 q1

0 1− q2

)

,

and the queueing system is a discrete time M/PH/1/2 queue. The following DTMC charac-
terize its behavior,
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p

q

0

1−

where p0 = 1− p and state i, j indicates that there are i customers in the system and the
service process of the customer in service is in phase j. The probability of packet loss is

ploss =
p2,1p+ p2,2(1− q2)p

p
= p2,1 + p2,2(1− q2),

where pi,j denotes the stationary probability of state i, j.

Exercise 9.7. Requests arrive to a computer according to a Poisson process with rate λ. The
service of these requests requires first a processor operation for an exponentially distributed
amount of time with parameter µ1. After this processor operation the request leaves the
system with probability p or requires a consecutive disk operation with probability 1 − p.
The time of the disk operation is exponentially distributed with parameter µ2. After the disk
operation the request requires a processor operation as it was a new one. There can be several
loops of processor and disk operations. The processor is blocked during the disk operation
and one request is handled at a time.

Compute the efficient utilization of the processor, and the request loss probability if there
is no buffer in the system.

Compute the efficient utilization of the processor, and the system time of the requests if
there is an infinite buffer in the system.

Solution 9.7. Similar to the previous exercise the service time distribution is a continuous
PH distribution with representation

β = (1, 0) and B =

(
−µ1 µ1(1− p)
µ2 −µ2

)

,

and the queueing system is a (continuous time) M/PH/1/1 queue if there is no buffer and
an M/PH/1 queue if there is an infinite buffer. The related CTMCs are as follow.

1,2

1,1p

(1−p)

0,0

λ

1µ
2µ

1µ

M/PH/1/1 queue
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3,21,2

p 2,1 3,1p0,0 1,1 p

(1−p) (1−p) (1−p)

2,2 λ

λ

λλ

λλλ

1µ

2µ
1µ

2µ
1µ

2µ

1µ1µ
1µ

M/PH/1 queue

State i, j indicates that there are i customers in the system and the service process of the
customer in service is in phase j and pi,j denotes the stationary probability of state i, j.

In case of no buffer the effective utilization of the server and the loss probability are

ρ = p1,1 and ploss = p1,1 + p1,2,

and in case of infinite buffer the effective utilization of the server and the loss probability are

ρ =
∞∑

i=1

pi,1 and ploss = 0.
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Chapter 10

Queueing networks

Exercise 10.1. In the depicted queueing network the requests of input A are forwarded
towards output B according to the following traffic routing probabilities p = 0.3, q1 = 0.2, q2 =
0.5, q3 = 0.3.

R1 R2

R4R3

q
1

q
3

q
2

p

1−p

A

B

λ

The requests from input A arrive according to a Poisson process with rate λ = 50. The
service times are exponentially distributed in nodes R1, R2, R3 with parameters µ1 = 90, µ2 =
35, µ3 = 100, respectively. The service time in R4 is composed of two phases. The first phase
is exponentially distributed with parameter µ4 = 400 and the second phase is deterministic
with D = 0.01.

• Compute the traffic load of the nodes.

• Compute the mean and the coefficient of variation of the service time at node R4.

• Compute the system time at each node.

• Compute λmax at which the system is at the limit of stability.

Solution 10.1.

• The following traffic equations characterize the traffic load of the nodes.

λ1 = λ; λ2 = pλ1 + q1λ3; λ3 = (1− p)λ1 + q3λ3; λ4 = λ2 + q2λ3.

With the given probabilities the solution of the traffic equations is

λ1 = λ; λ2 = λ/2; λ3 = λ; λ4 = λ.

• The service time at node R4 is the sum of independent random variables, S4 = X+D,
where X is exponentially distributed and D is deterministic.
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E(S4) = E(X +D) = E(X) + E(D) =
1

400
+

1

100
=

1

80

CV(S4) =
Var(S4)

E(S4)
2 =

Var(X) +Var(D)

E(X +D)2
=

(1/400)2 + 0

(1/400 + 1/100)2
=

1

25

• The service time at node R1, R2, R3 is exponentially distributed with mean E(S1) =
1/µ1, E(S2) = 1/µ2, E(S3) = 1/µ3, respectively. Since the service time at node R4
is non-exponential we compute the system time based on the Pollaczek-Khinchin mean
value formulae

E(Ti) = E(Si) +
ρi

1− ρi
E(Si)

1 +CV(Si)

2
, i = 1, 2, 3, 4,

where ρi = λiE(Si) and the coefficient of variation of the exponential service time is
CV(S1) = CV(S2) = CV(S3) = 1.

• The utilization of the nodes as a function of λ are

ρ1 = λ1E(S1) =
λ

90
, ρ2 = λ2E(S2) =

λ/2

35
=

λ

70
,

ρ3 = λ3E(S3) =
λ

100
, ρ4 = λ4E(S4) =

λ

80
.

Consequently the limit of stability is λmax = 70, because node R2 gets instable at that
load.

Exercise 10.2. In the depicted queueing network the requests of input A are forwarded
towards output B according to the following traffic routing probabilities p12 = 0.3, p13 = 0.7.

A B

1 4

2

3

The requests from input A arrive according to a Poisson process with rate λ = 50. In nodes
R1, R2 and R3 there are single servers, infinite buffers and the service times are exponentially
distributed with parameters µ1 = 80, µ2 = 45, µ3 = 50, respectively. There are two servers
and two additional buffer at note R4. Both of servers can serve requests with exponentially
distributed service time with parameter µ4 = 40.

• Characterize the nodes with the Kendall’s notation.

• Compute the traffic load of the nodes.

• Compute the system time at each node.

• Compute the utilization of the servers at Node R4.

• Compute the packet loss probability.

60



• Compute the mean time of a request from A to B.

• Which node is the bottleneck of the system? Which node saturates first when λ in-
creases?

Solution 10.2.

• There are M/M/1 queueing systems at Node R1, R2, R3, and an M/M/2/4 at Node
R4.

•
λ1 = λ; λ2 = p12λ1; λ3 = p13λ1; λ4 = λ2 + λ3.

With the given probabilities the solution of the traffic equations is

λ1 = λ; λ2 = 0.3λ; λ3 = 0.7λ; λ4 = λ.

• The system time at the M/M/1 type nodes are

E(Ti) = E(Si) +
ρi

1− ρi
E(Si), i = 1, 2, 3,

where ρi = λiE(Si) = λi/µi. The systems time at the M/M/2/4 type node can be
computed based on the stationary solution of the following CTMC (denoted as pi).

4210 2 22 3 44µ
4λ

4µ

4λ

4µ

4λ4

µ

λ

The system time at Node R4 is

E(T4) = L4/λ̄, where L4 =
4∑

i=0

ipi, λ̄ = λ(1− p4).

• The utilization of the servers at Node R4 is 1− p0.

• There is no packet loss at Node R1, R2, R3. Packets are only lost at Node R4 with
probability p4. Due to the fact that all packets goes to Node R4, the overall packet loss
probability is p4 as well.

• A packet take the path through nodes R1, R2, R4 with probability p12 and through nodes
R1, R3, R4 with probability p13, consequently

E(T ) = p12 (E(T1) + E(T2) + E(T4)) + p13 (E(T1) + E(T3) + E(T4)) .

• Node R4 never saturates because it has finite buffer. The utilization of the other 3
nodes are

ρ1 = λ1E(S1) =
λ

80
, ρ2 = λ2E(S2) =

0.3λ

45
=

λ

150
, ρ3 = λ3E(S3) =

0.7λ

50
=∼ λ

71.4
.

Node R3 is the bottleneck which saturates first at around λ = 71.4.
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Chapter 11

Applied queueing systems

Exercise 11.1. A transmission link with capacity C = 5MB/s serves two kinds of CBR
connections. Type i connections arrive according to a Poisson process with rate λi and occupy
ci bandwidth of the link for an exponentially distributed amount of time with parameter µi

(i = 1, 2), where c1 = 1MB and c2 = 2MB.

1. Describe the system behavior with a CTMC and compute the loss probability of type 1
customers if λ2 = 0.

2. Describe the system behavior with a CTMC when both λ1 and λ2 are positive and
compute the loss probability of type 1, type 2 connections and the overall loss probability
of connections.

3. Which loss probability is higher the one of type 1 or the one of type 2 connections?
Why?

4. Compute the link utilization factor when both arrival intensities are positive.

5. Compute the link utilization of type 1 and type 2 connections.

Solution 11.1. • When λ2 = 0 we obtain an M/M/5/5 queueing system with the num-
ber of type 1 connections and the loss probability is loss1 = p5,0.

2,00,0 1,0 5,04,03,0

1λ

4µ 5µ1 1

1λ1λ 1λ

1µ

1

13µ12µ

λ

• When λ2 > 0 we need to keep track the number of ongoing connections. The states of
the Markov chain are identified by the number of ongoing type 1 and type 2 connections.

62



2,11,1

0,2 1,2

3,00,0

0,1

1,0 4,0 5,0

3,1

2,0

µ2
λ 22λ µ2

λ1

1

1

λ1λ1λ

1µ

11 5µ4µ

1λ
1λ

2λ 2λ

2λ2λ
1λ

13µ12µ

1

2

λ

22µ

µ

1

22

λ

13µ

µ

12µ

1

2µ

µ µ

Type 1 connections are lost in states (1, 2), (3, 1), (5, 0), while type 2 connections are
lost in states (1, 2), (3, 1), (5, 0), (0, 2), (2, 1), (4, 0). The related loss probabilities are

loss1 = p1,2 + p3,1 + p5,0, loss2 = p1,2 + p3,1 + p5,0 + p0,2 + p2,1 + p4,0

and the overall loss probability is

loss = p1,2 + p3,1 + p5,0 +
λ2

λ1 + λ2
(p0,2 + p2,1 + p4,0),

where pi,j denotes the stationary probability of state (i, j).

• The loss probability of type 2 connections is higher, because type 2 connections are lost
in more states than type 1 connections.

• Link utilization is obtained by weighting utilized bandwidth with the associated state
probabilities

ρ =

∑5
i=0

∑3
j=0 pi,j(i 1MB + j 2MB)

5MB
.

• The link utilization of type 1 and 2 connections are

ρ1 =

∑5
i=0

∑3
j=0 pi,j i 1MB

5MB
, ρ2 =

∑5
i=0

∑3
j=0 pi,j j 2MB

5MB
.

Exercise 11.2. There is a transmission link with capacity C = 13MB/s, which serves adap-
tive connections. The connections arrive according to a Poisson process with rate λ and their
length is exponentially distributed with parameter µ. The minimal and maximal bandwidth
of the adaptive connections are cmin = 2MB/s and cmax = 3MB/s, respectively. Compute
the average bandwidth of an adaptive connection in equilibrium.

Solution 11.2. The adaptive connection arrive and depart according to the number of cus-
tomers in an M/M/6/6 queueing system, but the bandwidth of the active connection changes
with the arrival and departure of other connections. The Markov chain indicates the number
of active connections as well as the bandwidth utilization.
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432

λ

µ µ µ µ

λ λ λ

10

λ

µ 65

λ

µ2 3 4 5 6

2*3MB 3*3MB 4*3MB 6*13/6MB5*13/5MB1*3MB

The mean bandwidth of an adaptive connection is

E(SA) =
4∑

i=1

pi i 3MB + p5 5 13/5MB + p6 6 13/6MB,

where pi denotes the stationary probability of state i.

Exercise 11.3. There is a transmission link with capacity C = 13MB/s, which serves elastic
connections. The connections arrive according to a Poisson process with rate λ and during an
elastic connection an exponentially distributed amount of data is transmitted with parameter
γ. The minimal and maximal bandwidth of the elastic connections are cmin = 2MB/s and
cmax = 3MB/s, respectively. Compute the average bandwidth of an elastic connection in
equilibrium. Compute the average time of an elastic connection in equilibrium.

Solution 11.3. The elastic connection arrive according to a Poisson process, but their de-
parture rates depend on the bandwidth utilization. The bandwidth of the active connection
also changes with the arrival and departure of other connections. The following Markov
chain indicates the number of active connections as well as the bandwidth utilization.

432

λ

γ γ

λ λ λ

10

λ

γ 65

λ

2*3MB 3*3MB 4*3MB 6*13/6MB5*13/5MB1*3MB

3 6 9 γ12 γ γ13 13

The mean bandwidth of an elastic connection is

E(SE) =

4∑

i=1

pi i 3MB + p5 5 13/5MB+ p6 6 13/6MB,

where pi denotes the stationary probability of state i. It seems similar to the bandwidth of the
adaptive connection in the previous exercise, but the pi probabilities differ in the two Markov
chains.

The average time of an elastic connection is PH distributed with the following represen-
tation.

γ3 γ3 γ3 γ3

γ3 γ6 γ9

p0 p1 p2 p3 p4 p5
p6/(1−    ) p6/(1−    ) p6/(1−    ) p6/(1−    ) p6/(1−    ) p6/(1−    )

432

λλ λ λ

1 65

λ

13/5 γ 13/6 γ

5∗13/6 γ4∗13/5 γ
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The number above the states indicate the associated initial probabilities an the downward
arrows indicate the transitions to the absorbing state. This PH representation describes the
sojourn of a randomly chosen tagged customer in the system. The arrival rate is independent
of the number of connections. The probability that the tagged connection arrives to the system
when there are i (i = 0, . . . , 5) connections is proportional to pi. The connections arrive when
there are 6 active connections are lost and the probabilities are normalized for the states in
which incoming connections are accepted. If an arrival occurs when there are i (i = 0, . . . , 5)
ongoing connections then after the arrival there will be i+1 active connections. The Markov
chain of the PH distribution describes the behavior of the system up to the departure of the
tagged connection. When there are i connections in the system 1/i portion of the utilized
bandwidth is associated with the tagged connection with terminates with a rate proportional
with its instantaneous bandwidth.

Exercise 11.4. A transmission link with capacity C = 3MB/s serves two kinds of elastic
connections. Type 1 connections arrive according to a Poisson process with rate λ1 = 0.5
1/s, transmit an exponentially distributed amount of data with parameter γ1 = 4 1/MB. The
minimal and maximal bandwidth of type 1 connections are č1 = 1MB/s and ĉ1 = 1MB/s.
Type 2 connections are characterized by λ2 = 0.1 1/s, γ1 = 2 1/MB, č2 = 1MB/s and
ĉ2 = 2MB/s.

a. Describe the system behavior with a CTMC.

b. Compute the mean number of type 1 and type 2 connections.

c. Compute the mean channel utilization.

d. Compute the loss probability of type 1 and type 2 connections.

e. Compute the average bandwidth of type 2 connections.

Solution 11.4. a. Describe the system behavior with a CTMC.

1,1

1,0

0,1

0,0

2,1

3,02,0

1,2

0,3

0,2

λ1

µ1

µ1

λ1 λ1

λ1λ1

λ1

λ 2

λ 2 λ 2

λ 2 λ 2
λ 2

12µ

13µ12µ

1

3µ2

3µ2 2

222µ

2µ

µ

22µ µ

b. Compute the mean number of type 1 and type 2 connections.

E(X1) =
∑

i

∑

j

ipij , E(X2) =
∑

i

∑

j

jpij.
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c. Compute the mean channel utilization.

ρ = 1− p00 − 2/3p10 − 1/3(p20 + p01)

d. Compute the loss probability of type 1 and type 2 connections.

ploss = ploss1 = ploss2 = p03 + p12 + p21 + p30.

e. Compute the average bandwidth of type 2 connections.

C̄2 =
number of connections and the bandwidth of the connections

number of connections
=

=
1 · 2 · p01 + 2 · 1.5 · p02 + 3 · 1 · p03 + 1 · 2 · p11 + 1 · 1 · p21 + 1 · 1 · p21

E(X2)
.

Exercise 11.5. A transmission link with capacity C = 3MB/s serves two kinds of connec-
tions an elastic and an adaptive. Type 1 elastic connections arrive according to a Poisson
process with rate λ1 [1/s], transmit an exponentially distributed amount of data with parame-
ter γ1 [1/MB]. The minimal and maximal bandwidth of type 1 connections are č1 = 0.75MB/s
and ĉ1 = 1.5MB/s. Type 2 adaptive connections arrive according to a Poisson process with
rate λ2 [1/s] and stay in the system for an exponentially distributed amount of time with pa-
rameter µ2 [1/s]. The minimal and maximal bandwidth of type 2 connections are č2 = 1MB/s
and ĉ2 = 2MB/s.

a. Describe the system behavior with a CTMC.

b. Compute the loss probability of type 1 and type 2 connections.

c. Compute the average bandwidth of type 1 and type 2 connections.

d. Compute the mean number of type 1 and type 2 connections on the link.

Solution 11.5. a. Describe the system behavior with a CTMC.

1,1

1,0

0,1

0,0

2,1

2,0

1,2

0,3

0,2

4,03,0

λ1 λ1 λ1λ1

1.5γ1 3γ
1

3γ
1 3γ

1

λ2 λ2 λ2

λ2λ2

λ23µ2

2µ2

µ2 µ2

2µ2

µ2λ1
λ1

λ1

γ
1

1.5γ1 2γ1

b. Compute the loss probability of type 1 and type 2 connections.

ploss1 = p40 + p21 + p12 + p03, ploss2 = p40 + p30 + p21 + p12 + p03,

ploss =
(λ1 + λ2)(p40 + p21 + p12 + p03) + λ2p40

λ1 + λ2

,
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c. Compute the average bandwidth of type 1 and type 2 connections.

c̄1 = 1p12 + 1.5(p10 + p11) + 3(p20 + p30 + p40),

c̄2 = 1p21 + 1.5p11 + 2(p12 + p01) + 3(p02 + p03),

d. Compute the mean number of type 1 and type 2 connections on the link.

E(X1) =
∑

i

∑

j

ipij = (p10 + p11 + p12) + 2(p20 + p21) + 3p30 + 4p40,

E(X2) =
∑

i

∑

j

jpij = (p01 + p11 + p21) + 2(p02 + p12) + 3p03,

Exercise 11.6. Compute the mean value of waiting time in the cyclic-waiting system.

Solution 11.6. The generating function of waiting time (measured in cycles) is

P (z) =

[

1− λ

µ

1− e−λT

e−λT (1− e−µT )

]

×

×

µ

λ+ µ
− µ(1− e−λT )

λ+ µ

z

z − e−λT

1− λ(1− e−µT )

λ+ µ

z

1− ze−µT
− µ(1− e−λT )

λ+ µ

z

z − e−λT

.

Introducing the notations

A(z) =
µ

λ+ µ
− µ(1− e−λT )

λ+ µ

z

z − e−λT
,

B(z) = 1− λ(1− e−µT )

λ+ µ

z

1− ze−µT
− µ(1− e−λT )

λ+ µ

z

z − e−λT
,

the mean value of number of cycles is

lim
z→1

[

1− λ

µ

1− e−λT

e−λT (1− e−µT )

]
A′B − AB′

2B2
.

By using twice l’Hospital’s rule and taking into account

lim
z→1

A′B − AB′

2B2
= lim

z→1

A′′B′ −A′B′′

2B′2 ,

A′(1) =
µe−λT

(λ+ µ)(1− e−λT )
,

A′′(1) = − 2µe−λT

(λ + µ)(1− e−λT )2
,

B′(1) = − λ

(λ + µ)(1− e−µT )
+

µe−λT

(λ+ µ)(1− e−λT )
,

B′′(1) = − 2λe−µT

(λ + µ)(1− e−µT )2
− 2µe−λT

(λ+ µ)(1− e−λT )2
,

we finally obtain

P ′(1) =
λ[1− e−(λ+µ)T ]

(1− e−µT )[µe−λT (1− e−µT )− λ(1− e−λT )]
.
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Exercise 11.7. Let us consider our cyclic-waiting system in case of discrete time. Divide
the cycle time T into n equal parts and suppose that for an interval T/n a new customer
enters with probability r (there is no entry with probability 1− r), the service in process for
such an interval is continued with probability q and completed with probability 1 − q (i.e.
the service time has geometrical distribution). The service may be started at the moment of
arrival or at moments differing from it by the multiples of T .

(a) Show that the number of customers in the system at moments tk−0 constitute a Markov
chain, find its transition probabilities.

(b) Find the generating function of number of customers in the system in equilibrium and
the stability condition.

Solution 11.7. (a) Similarly to the continuous time case we will consider two possibilities:
at the beginning of service there is one customer in the system or there are at least two
customers in the system.

The case of one customer. We begin the service of the customer and after a certain
time the second one arrives. Let u be the service time and the second customer appears at
time v after the beginning of service. The remaining service time is ℓ (ℓ = 0, 1, 2, . . .) with
probability

P{u− v = ℓ} =

∞∑

k=ℓ+1

qk−1(1− q)(1− r)k−ℓ−1r =
r(1− q)qℓ

1− q(1− r)
.

We find the time from the entry of second customer till the beginning of its service. It is 0 if
the customer arrives during the last time slice of the first customer’s service, n if u−v belongs
to the interval [1, n], 2n if u− v ∈ [n+1, 2n], and, generally, in if u− v ∈ [(i− 1)n+ 1, in].
The corresponding probabilities are

in∑

ℓ=(i−1)n+1

r(1− q)qℓ

1− q(1− r)
=

rq

1− q(1− r)

(
q(i−1)n − qin

)
.

The generating function of number of customers arriving for a time slice is 1 − r + rz, so
the generating function of customers entering for the waiting time is

∞∑

i=1

rq(1− qn)

1− q(1− r)
q(i−1)n(1− r + rz)in =

rq(1− r + rz)n(1− qn)

[1− q(1− r)][1− qn(1− r + rz)n]
.

Taking into account that the first customer obligatorily arrives and the waiting time may be
equal to zero for the generating function of entering customers we obtain

A(z) =

∞∑

i=0

aiz
i =

(1− r)(1− q)

1− q(1− r)
+ z

r(1− q)

1 − q(1− r)
+ z

rq(1− r + rz)n(1− qn)

[1 − q(1− r)][1− qn(1− r + rz)n]
,

where
(1− r)(1− q)

1− q(1− r)
is the probability of event for the service of first customer no further

customers arrive.
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The case of at least two customers. At the beginning of service of first customer the

second customer is present, too. Let x = u−
[
u− 1

n

]

n ([x] denote the integer part of x),

and let y be the mod T interarrival time (1 ≤ y ≤ n). The time elapsed between the starting
moments of two successive customers is

[
u− 1

n

]

n + y if x ≤ y and

([
u− 1

n

]

+ 1

)

n+ y if x > y.

Let us fix y and consider the cycle [in+ 1, (i+ 1)n]. If the service of first customer ends till
y (including y), then the time till the beginning of service of second customer is in + y and
the probability of this event is

in+y
∑

j=in+1

qj−1(1− q) = qin − qin+y,

in case x > y the time is (i+ 1)n+ y and the probability is

(i+1)n
∑

j=in+y+1

qj−1(1− q) = qin+y − q(i+1)n.

i changes from 0 to ∞ (the summation is extended for all possible values of service time),
for fixed y the generating functions of entering customers in the two cases will be

∞∑

i=0

[qin − qin+y](1− r + rz)in+y =
(1− r + rz)y

1− qn(1− r + rz)n
− (1− r + rz)yqy

1− qn(1− r + rz)n
,

∞∑

i=0

[qin+y − qin+n](1− r + rz)in+n+y =
qy(1− r + rz)n+y

1− qn(1− r + rz)n
− qn(1− r + rz)n+y

1− qn(1− r + rz)n
.

y has truncated geometrical distribution, it takes on the value k (k = 0, 1, 2, . . . , n) with

probability
(1− r)kr

1− (1− r)n
.

Consequently, the generating function of transition probabilities is

B(z) =
n∑

k=1

(1− r)k−1r

1− (1− r)n
1

1− qn(1− r + rz)n

×[(1 − r + rz)k − (1− r + rz)kqk + (1− r + rz)n+kqk − (1− r + rz)n+kqn]

=
1− (1− r)n(1− r + rz)n

1− (1− r)(1− r + rz)

r(1− r + rz)

1− (1− r)n

+
1− qn(1− r)n(1− r + rz)n

1− q(1− r)(1− r + rz)

rq(1− r + rz)[(1 − r + rz)n − 1]

[1− (1− r)n][1 − qn(1− r + rz)n]
.

We have seen that, as in the continuous case, the length of interval between two successive
starting moments is determined by the service time of first customer and the interarrival
time of first and second customers, so they are independent random variables. By using the
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memoryless property of geometrical distribution, we obtain the number of customers in the
system at moments just before the beginning of services constitute a Markov chain.

(b) The system is considered at moments just before starting the services of customers.
Let us denote the ergodic distribution by pi (i = 0, 1, 2, . . .) and introduce the generating

function by P (z) =
∞∑

i=0

piz
i. For pi we have the system of equations

pj = p0aj + p1aj +

j+1∑

i=2

pibj−i+1,

from which
∞∑

j=0

pjz
j = p0A(z) + p1A(z) +

∞∑

j=0

j+1
∑

i=2

pibj−i+1z
j

=
1

z
P (z)B(z)− 1

z
p0B(z) + p0A(z) + p1A(z)− p1B(z),

or

P (z) =
p0[zA(z)− B(z)] + p1z[A(z) − B(z)]

z −B(z)
.

Since
p0 = p0a0 + p1a0,

we have

p1 =
1− a0
a0

p0 =
r

(1− r)(1− q)
p0.

We find p0 from the condition P (1) = 1

p0 =
1− B′(1)

1−B′(1) + A′(1) + r
(1−r)(1−q)

[A′(1)−B′(1)]
.

The chain is irreducible, so p0 > 0.

Using the values

A′(1) =
r

1− q(1− r)
+

nr2q

[1− q(1− r)](1− qn)
,

B′(1) = 1− nr(1− r)n

1− (1− r)n
+

nr2q[1− qn(1− r)n]

(1− qn)[1− (1− r)n][1 − q(1− r)]
,

we obtain (

1 +
r

(1− r)(1− q)

)

A′(1)− r

(1− r)(1− q)
B′(1)

=
nr2q

(1− qn)[1− q(1− r)]
+

nr2(1− r)n

(1− r)[1− (1− r)n][1− q(1− r)]
> 0,

so the condition 1− B′(1) > 0 must be fulfilled. This leads to the expression

nr(1− r)n

1− (1− r)n
− nr2q[1− qn(1− r)n]

(1− qn)[1− (1− r)n][1 − q(1− r)]
> 0.

From it we obtain the stability condition

rq

1− qn
1− qn(1− r)n

1− q(1− r)
< (1− r)n.
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