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Introduction to probability theory
and stochastic processes



Chapter 1

Introduction to probability theory

Exercise 1.1. Let X be a nonnegative r.v. with c.d.f. Fx. Suppose that given 0 <t < X
(P(X >1t)#0), find the c.d.f of residual life time X .

Solution 1.1. Suppose 0 <t < z, then

PX<zX>t) Plt<X<
P(X <z X>t)= X<z X>t) Pl<X<z)

P(X >1t) P(X >1t)
. P(X S Z) —P(X S t) . Fx(Z) —Fx(t)
B 1-P(X <t) 11— Fx(t)

Exercise 1.2. Let X and Y be independent r.v.s with Poisson distribution of parameters A
and 1, respectively. Verify that

a) the sum X +Y has Poisson distribution with parameter \ + p,

b) for any nonnegative integers m < n the conditional distribution P(X =m | X +Y =n)

is binomial with parameter (n, F’\u), i.e.

rm e (0) (2) ()

Solution 1.2. a) Since the r.v.s X andY are independent, therefore the generating function
of the r.v. X +Y has the form

Gxiy(2) = Gx(2)Gy(2) = A en(z=1) — ((Am)(z=1)
which justifies that X +Y has Poisson distribution with parameter X + p Poisson.
b) With a simple calculation we have

PX=mX+Y=n PX=mPY =n-—m)

PX=m|X+Y=n)= P(X +Y =n) - P(X+Y =n)

B %67)‘(};7:7:;!67” A (m A\ pwo "
o OO\ S (A )t \n ) \ A+ p A ’
Exercise 1.3. Let X and Y be independent r.v.s having uniform distribution on interval

(0,1), and exponential distribution with parameter 1, respectively. Find the probability (con-
crete number) that X <Y .




Solution 1.3. It is clear that the density function of X is fx(x) = T{ocg<1y, and Y has
density function fy(y) = e YLiysoy, therefore

P(X <Y) / /I{Ky}fx ) fy (y dxdy—//I{Ky}e Ydxdy =

oo min(1l,y) o
:/ / e Ydxdy = /min Ly)e Ydy = /yeydy—l—/eydy =
0 0 0 0 1

1
= [—ye‘y}é + / e Ydy + [—e_yr;o =1-e'=0.63.
0

Exercise 1.4. Divide the interval (0,1) into three pieces with two independently and ran-

domly chosen points Uy and Uy of the interval (0,1). Find the probability of the event A that
the three pieces can determine a triangle.

Solution 1.4. The r.v.s Uy and Uy are independent and uniformly distributed on the interval
(0,1). The lenght of the three pieces are:

U17U2_U171_U27 ZfUl S U27
Uy, Uy —Us, 1 — Uy, if Uy > U

The three pieces determine a triangle if and only if the triangle inequality is satisfied, then
using the formula of the total probability

IP(A | Uy < Un)P(Uy < Uy) —

- //f@cs<y—x>+<1—y>,y—xsw(l—y),(l—y)Sx+<y—x>>dxdy:

11 1/21/2+a 1/2
1 11 1
= //I(x§§,y§x—|—§§ )dxdy—/ / dydx:/xdxzz
0 0 0 1/2 0

Exercise 1.5. Show that for a monnegative r.v. X with finite n-th (n > 1) moment it is

true E(X™) fo<X) " .

Solution 1.5. Denote by Fx(x) the c.d.f of the r.v. X. Since E(X") < oo, then for a —
00, E(X"Z(xsa}) = fx”dFX = — fx”d (1 = Fx(z)) — 0 and consequently — [ 2™d(1

a

Fx(z)) >a"(1— F(a )) — 0. Integmtmg by part, we have

B(X"Z(xe) = - [ a"d(L = Fx(e) = [2"(1 = Fx(e)lj + [ (1= Fx(o))da") =

0 0
a

—a™(1 = F(a)) + /(1 — Fx(z))na" 'dx,

0



from this it follows

E(X") = algglo —a"(1— F(a)) + /(1 — Fx(z))na"dx| =
0
= / (1 — Fx(z))na" 'dx = /P(x < X)na" 'dx.
0 0

Exercise 1.6. Let X and Y be independent r.v.s with uniform distribution on the interval
(0,1). Find the quantities

a) E(|X - Y]), D*(|X - Y]),
b) P(IX —Y]) > L.

Solution 1.6. a) Since fx(u) = fy(u) = Ziocu<ry, then

E(X-V]) = //Il’—ylfx( iy >dxdy—//|x—y|dasdy—

00
= 2//\x—y|[x<y)dxdy—
00
1 vy 1
2 1y 1
= 2 (y—@)dedy =2 [ |y = gy" dy = 3,
00 0

and

DR (X - ¥)) = B(X —YP) - (BIX - Y]) = B(X* - 2BXY 4 EY?) — | =

1
1 1 1 1 1
:Q/xde—2 /xdw ——=2. - —2— — — = —.
9 3 229 18
0

b) It is easy to see

P(X-Y|>1) - //z{x y>1}d:pdy—2//l{|z ooy drdy =

y 12
1 117 1
— 2 dedy=2 [ (z—y)dy=2 [ yay=2 .
/xy /(2 y) Y /yy l222} 4

0 0 0

Exercise 1.7. Let X and Y be independent r.v.s having exponential distribution with pa-
rameters \ and p, respectively.

a) Determine the density function of rv. Z =X +Y.

bt



b) Find the density function of r.v. W = min(X,Y).

Solution 1.7. (a) Applying the convolution formula for the sum of independent r.v.s, we
have

f22) = [ fx@lfle = 2)do = [ A e @ 0,2 > 0)ds =
/ A2 ze™H if A\=pu
— —pz —(A-pz 7. )
= )\/,L@ /6 dr = { )LMH [e_uz . €_>\Z] : Zf by 72 m -

As a result we get gamma distribution with parameter (\,2) if A = p and Erlang distribution

of first degree, if X # p.
(b) It is clear that

Fz(2) = P(Z<z)=Pmin(X,Y)<z)=1-Pmin(X,Y) > z2) =
1-PX>2)PY >2)=1—(1—-Fx(2)(1 — Fy(2) =
= Fx(2) + Fy(2) — Fx(2)Fy (2),
from which
f2(2) = [x(2) + [y (2) = [x(2)Fy (2) + Sy (2)(1 = Fx(2).
Using the exponential distributions with parameters A and p, we have
fz(z) = XM (1=[l—e™])+pe(1-[1—-e¥]) =
= NN e R = () p)em M,

Exercise 1.8. Let Xy, ..., X,, be independent random variables having exponential distribu-
tion with parameter .
Find the expected values of the r.v.s V,, = max(Xy, ..., X,,), and W, = min(Xj, ..., X,).

Solution 1.8. Clearly
Fy(z) = PV, <2)=P(X;<z,..,X,<x2)=(PX; <x)"

Fy,(z) = PW,<z)=1-P(W,>z)=1- P(mln(Xl, oy Xp) > x) =
= 1-PXi>2,..,.X,>2)=1-(P(X;>2)"=1— ()" =1—e"
Using [ xdF(z)= [ (1—F(x))dx (see Exercise[L) and introducing in the integral a new
variable y = 1 — e, we get the expected value of V,, as follows
E(V,) = /(1 — Fy(x))dx = /(1 — (1 — e dr = /(1 — (1 —e)V)dx =
0 0 0
1 1 1 11
- 1 — ny__— — 1 n—1 — -
A/( v dy A/( +y+ot+y"dy AZEZ
0 0 =

From the formula Fy, (z) = 1 — e *"® it can be seen that W,, has exponential distribution
with parameter An, therefore BE(W,) = +-.

Note that the sequence of r.v.s W,, n = 1,2, ... has exponential limit distribution with pa-
rameter Ao if the limit lim An — A\ is satisfied.

n—oo



Exercise 1.9. Let X and Y be independent r.v.s with density functions fx(x) and fy(x),
respectively. Determine the conditional expected value E(X | X <Y').

Solution 1.9. By the definition

_ E(XI{X<Y})
B(XIX <¥)= 55037
where
P(X <Y) //I{x<y}fX ) fy (y)dxdy = /fx /fY(y)dy dr =
:/h@ﬂ—ﬂ@ﬂwﬁm—mmm
and

E(XZ{x<y}) = //xI{Ky}fX( ) fy (y)dxdy = /fEfX /fy )dy | dx =

— [ hele) (1= Fria) do = BOX - Br(X))
Consequently,
[ fe@) (L= Fr(@) dr i

J fx(@) (1= Fr(@)da

Exercise 1.10. Determine the conditional expectation E(X |Y =vy) and E(X |Y), if the
joint probability density function of r.v.s X and'Y has the form

2, if O<z,yand r+y<1
(@) sty ={ 5 1O v

0, otherwise ’

_ [ 3+y), if 0<zyand z+y<1
() fxy(z,y) = { 0, otherwise '

Solution 1.10. (a) Since fy(y fny x,y)dr = f 2dr =2(1—y), 0<y <1, thus the
conditional density function is fX|y(x|y) = fxfi((;)y) = 2(12_y) = y, if 0 <a,y andx+y < 1,
50 - — ( ;
1 1(1—y)? 1
E(X|Y =y) = dr = d Lq_
(1Y =)= [ atartelpds= [ oo =350 = 20—y
0 0
and

B(X | V)= %(1—1/).



1 1-
(b) Analogously we get fy(y) = [ fxy(x,y)dz = fy?)(x—l—y)dx =3 [%(1 —y)?+y(l— y)} —
0 0

2(1—9?) and fxy(zly) = Soty) 4lzjyyg. From this it follows

TR
1-y 1-y 2( n ) 1(1 )3_'_ (1 ) 2144y + 2
T+y 1=y +y(l—y y+y
EX|Y =qy)= de = T g =9 _z
X1V =9 = [afslanin = [ o2 — S
0 0
21+Y +Y?
EX|Y)=2-"°- "~
(X1Y) 3 1+Y

Exercise 1.11. Let X4, X5, ... be independent r.v.s with exponential distribution of parameter
\. Let N be geometrically distributed r.v. with parameter p (p, = P(N = k) = p(1—p)k, k =
1,2,...), which does not depend on r.v.s (X1, X, ...). Prove that the sumY = X; + ... + Xy
has exponential distribution with parameter pA.

Solution 1.11. Since the sum of r.v.s Y, = X1 + ... + X,, has gamma distribution with
parameter (n, \) thus

fv, () = (= 1)!36”_16_’\’”, x>0

and

Fr(y) = P(Xi+..+Xy<y) =) PXi+..+Xy<y|N=n)P((N=n)=

A7
— 1)!1‘”7167)\1 [p(l o p)nfl} dr =

- SPM P =m =Y [ -

[ 2 [a—p)aln y
= p)\/ ZT e’\””dx:p)\/ (6(171’))‘164‘“) dx:p)\/ep’\xdx.

n—
0 —00 —00

From this
fyr(y) = pre ™, y >0,

therefore the r.v. Y really has exponential distribution with parameter pA.

Exercise 1.12. Consider the distribution function of the sum Yy of independent r.v.s
X1, ..., Xy0 having exponential distribution with parameter 1. Give an estimate for the prob-
pitity p — p ( Lo B0
ability p = DY)
can numerically calculate this probability, because the r.v. Yy has gamma distribution with
parameter (40,1). Using this fact, what result can we obtain for the considered probability?
(According to the numerical calculation of the gamma distribution see, for example, NIST:
National Institute of Standards and Technology. Digital library of mathematical functions.
http://dlmf.nist.gov, or A. Lewandowski. Statistical tables. hitp://www.alewand.de. .)

> 0.05 ) calculated with the help of the central limit theorem. We

Solution 1.12. By the use of the central limit theorem the r.v. (Yo — E(Yy))/DYyo has
approzimately N(0,1) normal distribution, thus

_E(Y,
P (W > 0.05) = P(% > 0.05) ~ 1 — (9(0.05) — ®(—0.05)) = 0.0612,
40

)



where ®(z) = % i e~ /2du denotes the standard distribution normal function. Compute

numerically the probability p using the software from http://www.alewand.de. Then

P(‘Y%‘O‘ > 0.05) _ P(% > 0.05) -

=1—P(39.6837 < Yjy <40.3163) = 1 — (0.5409 — 0.5010) = 0.0601.

It can be seen that the difference between the estimated and numerically computed values is
only 0.0011.



Chapter 2

Introduction to stochastic processes

Exercise 2.1. Let X1, Xs, ... be independent identically distributed r.v.s with finite absolute
moment E(|X1]) < oco. Let N be a r.v. taking positive integer numbers and independent of
r. v. (X;,i=1,2,...). Prove that

a) E(X; + ... + Xy) = E(X])E(N),

b) D?(X; + ...+ Xy) = D2 (X)) + (E(X1))* (E(N))”
(Wald identities or Wald lemma,).

Solution 2.1. a) Using the formula of the total expected value we have

n=1

— iE(X1 4+ ...+ X,)P(N =n) =

n=1

= ) nE(X)P(N =n) =E(X;) Y nP(N =n) = E(X,)E(N).

b) It is easy to see that
D2 (X; + ...+ Xn) = E(X; + ... + XnE(X)E(N))? = E(X; + ...+ Xn)* — (E(X1)E(N))?

and

E(X;+..+Xy) = ZE (Xi+..+Xn)? | N=n)P(N =n) =

— ZE((X1 —EX) + ..+ (X, — EX,)) +nEX,}*P(N =n) =

_ Z [nD? (X1) + n*(E(X1))?] P(N =n) =
- E(N) D? (X,) + E(N?)(E(X1))*.

10



Note that the identities remain valid if the r.v. N is a stopping time with respect to the
sequence of r.v.s (X;, i = 1,2,...), which means that the event {N = n} depends only on
(X1,..., X,) foralln=1,2,..

Exercise 2.2. Let Xy, X1,... be independent r.v.s with joint distribution P(X; =1) =
P(X,=-1)=1

Define Zog = 0, Z), = Zp_1+ Xy, k = 0,1,... Determine the expectation and covariance
function of the process (Zy, k = 1,2,...) (random walk on the integer numbers).

Let a and b be real numbers, |b| < 1. Denote Wy = aXy, Wy = bWy1 + Xy, k =1,2,...
(here the process (Wi, k = 0,1,...) constitutes a first degree autoregressive process with the
initial value aXy, and with the innovation process (Xy, k = 1,2,...)). If we fix the value b,
for which value of a will the process Wy be stationary in weak sense?

Solution 2.2. a) It is clear that E(X;) = 2 -1+ 1.(=1) =0, 0% = D*{X,} = E(X}) —
(E(Xy))?> =35-1+3-(—1)% =1, moreover cov(X;, X;) = 0% and by the independence of the
r.v.s Xi, COV(XZ‘,X]'> = O, Zf’l 7é j Since Zk = Zk,1+Xk =..= Xk—|——|—X1, k= 1,2, vy

then

E(Z) = E(Xp)+..+E(Z) =0,
D2(Z,) = D2(X})+..+D?(X)) = ko%.

><[\'>

b) Determine the expectation and covariance function of the process Wy. With a simple
calculation we get

Wi=0Wi14+Xp =X, +bX) 1 +0PWio = X +bX) 1 + ...+ 01X + 00X, k=1,2,...,

then the expectation function B(Wy) = E{Xy + bXp_1 + ... + V" 1 Xy + bFaXo} = 0, the
deviation of Wy s the following

D? (W) = D?(Xj+bX 1+ ... + 0" 1X) + bFaXy) =

= D2 (Xy) +0°D? (X)) + ... + P*UD? (X)) 4 v*aD? (X,) =
1- bzk 2 2k 2
> 0x + b7 aok.

= o2(1+ 0+ ..+ ** V) 4 p?*ao? = —
Since the r.v.s X}, are independent with 0 expectation,then the covariance function is

Ry (k+m,k) = coviWiim, Wi) = EWirnWi) =
= E([Xk+m + ka+m—1 + ...+ bm_le + bka]Wk) =

m m m 1—b**
= V"E(W2)=0"D? (W) =b (1—()2 +b2ka> 0%
From this it can be seen that if we choose a = ﬁ, then the process (Wi, k = 0,1,...) will

be stationary with expectation function E(Wy) = 0, k = 0,1,... and covariance function
Rw(k+m,k) = Ry(k,k+m) = b—meag(, k,m=0,1,....

1—

Exercise 2.3. Let a and b real numbers and let U be a r.v. uniformly distributed on the
interval (0,2m). Denote by X; = acos(bt + U), —oo < t < co. Prove that the the random
cosine process (X;, —oo <t < 00) is stationary.

11



Solution 2.3. Sz’nce the expectation function of the process (X;,—oo < t < 00) takes the
bt+2m
form py = E(X f a cos(bt + :c) doe = 5= f cos xdx = 0, therefore it does not depend
0
on the parameter t. The covariance functwn 18

2

1
Rx(t,s) = cov(Xt,Xs):E(XtXS):/a2cos(bt+x)cos(bs—|—x)2—dx:
T
0
2
= [ Licos(b(t + 5) + 22) + cos(b(t — s)ldz = = cos(b(t — 5)) =
= 5 5lcos s x) + cos S x—47r coS 5)) =

0
2

= Z—W cos(b|t — s|),

which means that (X, —oo < t < 00) is stationary process.

Exercise 2.4. Let N(t),T > 0 be a homogeneous Poisson process with intensity \.
a) Determine the covariance and correlation function of N(t).
b) Determine the conditional expectation E(N(t + s) | N(t)).

Solution 2.4. a) Since N(t) has Poisson distribution with parameter At, then E(N(t)) = A\t
and D*{N(t)} = A\t, t > 0. By the use of the property of independent increments we can
get the covariance and correlation functions

cov(N(t+5), N(t)) = cov([N(t + s) — N(t)] + N(t), N(£)) = cov(N(t), N(t)) = M, t,5 >0,
cov(N(t),N(t) At

1
D(N(t+s)DIN@)  AGTava it

b) Repeating the use of the property of independent increments, we have

corr(N(t +s),N(t)) =

E(N(t+s) | N(t) = E(N(t+s)—N@]+N() | N)) =
= E([N(t+s) = N@®)] | N@)) +EN({@) [ N(t)) =
= E(N(t+s)— N(t)) + N(t) = As + N(t).

12



Chapter 3

Markov chains

Exercise 3.1. Compute the probability that the CTMC with generator matrix
—1 0.5 0.5
1 =2 1 stays in state 1 after the second state transition, if the initial distribution
1 0 -1

is (0.5,0.5,0).

Solution 3.1. Using the formulae (3.15) and (3.16), let us compute the transition probability

of the embedding Markov chain. We get

=1 =2 ¢p=1

and the transition probability matrix is

0 1/2 1/2
o=|1/2 0 1/2
1 0 0

Since the initial distribution isp = (1/2,1/2,0), then the distribution of the embedded Markov
chain after the second state transition is

From this, we have the resulting probability for the state 1 as 5/8.

Exercise 3.2. Compute the stationary distribution of the CTMC with generator matrix
-3 3 0
4 —4 0 |, if the initial distribution is (0.5,0,0.5).
0 0 O

Solution 3.2. The Markov chain is composed by two irreducible sets of states, {1,2} and
{3}. The probability of being in these irreducible sets are determined by the initial probability
vector. The process starts in both sets with probability 0.5.

The stationary solution of the Markov chain on set {1,2} assuming that the process starts
in that set is (0.5,0.5). The overall stationary distribution is (0.5,0.5,0)0.5 + (0,0,1)0.5 =
(0.25,0.25,0.5).

Exercise 3.3. Z, and Y,, n = 1,2,..., are discrete independent random wariables.
PZ,=0) =1-p,P(Z,=1) = p and P(Y,,=0) = 1—¢q, P(Y,,=1) = ¢q. Define the
transition probability matrixz of the DTMC X, if

Xn+1 = (Xn - Yn)+ + Zna

13



where (x)* = max(x,0). This equation is commonly referred to as the evolution equation of
the DTMC.

Solution 3.3. It can be seen that the state space of the Markov chain {X,, n = 1,2,...}
is the set {0,1,...}.Using the evolution equation of the DMTC process we get the transition
probability matriz as follows

PXopi=J | Xa=i) =P(Xp =Yo) "+ 2, =j [ Xa =) =P((( —Yo)" + Zn =) =

—P((i =Y, +Zn=7 | Yy=k Zn=m)P(Y, =k, Z, =m) =
—P(li—k) +m= )PV, =k Z,=m) =P, =k)P(Z,=m), i,j=0,1,..

Since
(1-¢)(1=p), if k=m=0,
B - - - - B (1 —q)p, Zf k=0, m=1,
pa, if k=m=1,
the transition probability matriz has the form (i,7 =0,1,...)
(1= —p) o j=1
(I=qp, if j=i+1,
Pij = q(l—p), Zf j:(i_l)Jra
0, i other cases.
The transition probability graph withp=1—p and g=1—q is
SICIINCING
\J@u@,\/@
ap
Exercise 3.4. X,,, n = 1,2,..., is a DTMC with transition probability matric P =
3/6 1/6 2/6
3/4 0 1/4 |. Compute E(XoX1) and corr(Xo, X1) if the initial distribution is
0 1/3 2/3

(0.5,0,0.5) and the state space is S = {0,1,2}.
Solution 3.4. Let us denote the transition probability matriz

3/6 1/6 2/6
0 1/3 2/3
and the initial distribution

p = (po, p1,p2) = (1/2,0,1/2).

14



Using the Markov property we have

E(XoX;)-E(X)E(X;)
D(X,)D(X3)

q=(q,q1,q) =p" P =(1/4,1/4,1/2),

then by simple calculations we have

It is clear that corr(Xg, X1) = . Since the distribution of RVs X

18

2 2

E(Xo) =) ip =1, E(X3) =) i*p;=2, D(Xo)= \/E(Xg) — (E(X0))? =1,

1=0 1=0

E(X) =Y ia =5 B(Y}) =Yg =, D(X) = /B0 - (B(Y) =

and 5/3—1-5/4 5
. —_— .
corr( Xo, X1) 1-3/4 9

Exercise 3.5. The generator of a C'TMC is defined by

1 e .
1 o = if 1 =141,
3 ifj=1 3 Sl
$ fj_ ’ % if 1 =142,
) 3 if j =2, ) By S 19
Di =19 22 4ri=0 Gij = = if j =1, fori=1,2,....
O3 otherwis’e' H ifj=i-1,
’ 0 otherwise,

FEvaluate the properties of this Markov chain using e.g., the Foster theorem.

Solution 3.5. Firstly, let us compute the transition probabilities of the embedding Markov
chain. Using the formulae (3.15) and (3.16) we have qo = 2/3, ¢; = 2231”, 1 =1,2, ..., thus

1 . .
=, J=1i+1
12, j=1 2+3in j':z'+2
1/2, j=2 2hhm’ 7 :
Toj = 0, j=0 Mg =\ mage J=i-1s t=Lh2
0, otherwise 0, J = 1,
0, otherwise

Denote by X = (Xo, X1,...) the embedding Markov chain of the CTMC, then the Foster
theorem (Th. 3.42) says that the Markov chain X is ergodic if there exist constants a,b > 0
and ¢ > 0 such that the innequalities

E(X | Xo=i) <a, i <

15



E(Xpp1 | Xo=i)<i—b, i>{

hold. Since
1 1 3ip
E(X, X,=1)=(0G+1 _ ) : — — =
(Xia | X, = 1) = (14 Vg + i+ D g + (= Dy
=7—1+ 5, ,1=1,2, ...,
2+ 3ip
and
3

1
E(Xp | X, =0)=1->+2-~=2,
(X1 | 0) st25=5
then BE(Xp1 | Xp=1) <i+3/2, i=0,1,... Choosing { = [8/3u], a=0+3/2 andb=1/2

we have
E(Xpi1 | X =1) <a, ifi <4,
EX, | Xp=19)<i—>b,ifi >/
This means that the Foster’s conditions of ergodicity hold, i.e. the Markov chain X is ergodic.
Exercise 3.6. Show examples for
e reducible,
e periodic (and irreducible) and

e transient (and irreducible)
DTMCs. FEvaluate lim,, o, P(X,, = 1) for these DTMCs, where i is a state of the Markov

chain.

Solution 3.6.

e Reducible
1 0 0
P = 1/3 1/2 1/6
0 0 1

The stationary probabilities depend on the initial distribution.

— If the process starts from state 1 then the stationary distribution is (1,0,0).

— If the process starts from state 2 then the stationary distribution is (2/3,0,1/3).

— If the process starts from state 3 then the stationary distribution is (0,0, 1).

e Periodic
0o 1/2 0 1/2
p_ /2 0 1/2 0
- 0o 1/2 0 1/2

1/2 0 1/2 0
The stationary probabilities depend on the initial distribution. If the process starts from
state 1 at timen = 0 then lim,,_,, P(Xso, = 1) = 1/2 fori = 1,3, lim,_,, P(Xy, = 1) =
0 fori=2,4 and lim, o P(Xo,41 =1) = 1/2 fori = 2,4, lim, o P(Xs,41 =1) =0
fori=1,3. That is, as n tends to infinity the distribution is (1/2,0,1/2,0) in the odd

steps and it is (0,1/2,0,1/2) in the even steps.
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o Transient:

1/2 1/2 0 0 0 0
/2 0 1/2 0 0 0

p—| 0 172 0 12 0 o0
0 0 1/2 0 1/2 0
0 0 0 0

lim, 0o P(X,, =4) =0 fori=0,1,...

Exercise 3.7. Two players, A and B, play with dice according to the following rule. They
throw the dice and if the number is 1 then A gets 2L from B, if the number is 2 or 3 then A
gets 1.£ from B, if the number is greater than 3 then B gets 1.£ from A. At the beginning of
the game both A and B have 3£. The game lasts until someone could not pay. What is the
probability that A wins?

Solution 3.7. Before giving a solution for excercise 3.7 , we consider the problem in a
more general setting (see, for example, [Shiryaev, 1994]). Let K < L < M < N be integer
numbers and let X = {X,,n = 0,1,...} be a Markov chain with finite state space S =
{K,K+1,..,N}. Let So = {K,K+1,...,.L—1},S ={L,L+1,... M} S ={M+1,..,N},
then they are disjoint and non-empty subsets of S, for which Sy US; USy = S. Denote by
P = (pi;) the transition probability matriz of the Markov chain X .

The problem s to give a system of recurrent equations which describes the probability of
the first hit for some state of the set Sy from a state iy € Sy, which means the probability
that the process starts from a state 19 € Sy at the time point 0 and it will be first in a state
from the set Sy without arriving some state from Sy.

Let Xy =19 € &1 be an initial state. Let us introduce the set

Wi = {(ig, i1, yin) : g €S, 0<k<n-—1, i, €Sy
and denote
T’n(io) = P((X(), ,Xn) - Wn+1 | XQ = io),
ro(i) =1, if i € Sy, and r,(i) =0, ifi € Sy

and
Rn(lo) = 7“1(’i0) + ...+ ’I“n(io), n = 1,2, vy

R.(i) =1, if1 € Sy, and R,(i) =0, ifi € Sp.
Using the Markov property of the chain X we get the relations
r1 (i) = Z Digia
i1E€S2

and forn > 2

Tn(i0> = Z piOiIP((Xo,Xl, ,Xn) I~ WnJrl ‘ XO = io,Xl = Zl) =

11E€S1
= > P P(Xiy ey X)) €W | Xi =) = Y pigintna(in).
11E€S1 11EST
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Analogous equations can be derived for the probabilities R, (io), n > 1 as follows

R (’LO =T ZO +Z7"k ZO =T ZO —Fzzplon’rk 121

k=2 i1€851
n
E Pigiy E Tn—1 21 _Tl ZO E pzou n—1 Z1)'
11E€S1 k=2 11E€S1

If n — oo, then R, (ig) — R(i) and we have the equations
R(ig) = r1(ip) Z Diviy R(11), R(ig) =1, ifig € Sy, and R(ig) =0, if i € So.
11E€S1

Since the sequences R, (i),n = 1,2, ..., 1 € 8§ are monotonically nondecreasing, then the
limits R(i), i € Sy ewist.

Remark. Let ig € S1 and denote
T,=min{k: X €85,0<k<n-1, X,eS5US },
T,=n if Xp €8, 0<k<n
and

En(lo) = E(Tn | Xo = Z.0)~

The equations for the expectations E, (i), n > 0 are similar to the equations R, (i), n > 0
equations are valid, .
Denote

T(ZQ):HHH{TL X8, 0<k<n—-1, X,eSUS | Xy = io}, 10 € S1.
The RV T'(ig), io € Sy is finite with probability 1, therefore after very long run we have
P(B wins | Xo =3) = 1 — P(A wins | Xo = 3).

Now, let us return to Solution 3.7. The possible (generalized) state space of the process X
is S = {wp,0,...,6,wa}, where wg = {—1}, i.e. player B wins and ws = {7,8} i.e. player
A wins. Note that wa and wg are absorbing states. Denote by Sy = {wa}, S1 ={0,1,...,6}
and Sy = {wa}. The probability transition matrixz of the MC X is

wg 0 1 2 3 4 5 6 wy
wg {1 0 0 0 0 0 0 0 0
o (12 o 1/31/6 0 0 0 0 0
1 0 1/2 0 1/31/6 0 0 0 0
2 0O 0 1/2 0 1/31/6 0 0 0
P= 3 o o0 0 1/2 0 1/31/6 0 o0 |,
4 o 0 0 0 1/2 0 1/3 1/6 0
5 o 0 0 0 0 1/2 0 1/3 1/6
6 O 0 0 0 0 0 1/2 0 1/2
wa\ O 0O 0O 0 0O 0 0 0 1



then we have a system of equations for the probabilities R(1) as follows (r1(3) = 0 because
the initial state is ig = 3)

R(G) = 0,i€ Sy Ri)=1, i€ S, (3.1)
RO) = LR()+ CRQ), R(1) = 3R0)+ SRE2)+ ZRE)

RG) — %R(z’ 1+ %R(i S+ éR(iJr 1), 2<i<5,

R6) = SR()+ 5

Solving this system of linear equations we get

10

R() = 2R(6) 1, R(4) = ZR(6) - g R(3) = 5R(6) — 4,
R(2) = %R(ﬁ) - % R(1) = 8—983(6) - % R(0) = %R(& - %

Thus from the equation R(0) = $R(1) 4+ $R(2) it follows

443
R(6) = — = 0.943.
(6) 470
If Xo = 3 is the initial state, then the asymptotic probability that player A wins is (i.e. after
very long run)

R(3) = 5R(6) — 4 = 0.713.

Comment. The system of linear equations for values P(A wins | Xo=1), 0 < i <6
can be obtained easier based on intuitively considerations. Denote by D = {A wins} the
event that the player A wins if the starting state is 0 < i < 6. Then by the Markov property
we have

P(D | Xo=1)= sz‘j + ZpijP(D | X1 =j) = sz‘j + ZpijP(D | Xo=17). (32)

JES2 JES1 JES2 JES1

Denote R(i) = P(D | Xg=1i), i € Sy, the system of equations (31) follows immediately

from (3.2).

Exercise 3.8. Two players, A and B, play with dice according to the following rule. They
throw the dice and if the number is 1 then A gets 2£ from B, if the number is 2 or 3 then A
gets 1.L from B, if the number is greater than 3 then B gets 1.£ from A. At the beginning of
the game both A and B have 3£. If one of them could not pay the required amount he gives
all of his money to the other and the game goes on. What is the expected amount of money
at A after a very long run? What is the probability that B cannot pay the required amount
in the next step of the game after a very long run?
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Solution 3.8. If one of the players cannot pay the required amount of money in a step of
the game, then he must give all his money to the other player and the game goes on. Denote
Xn, n=0,1,... the amount of money the player A has in nth step of game. The state space
of the process X = (X,, n = 0,1,...) is X = {0,1,...,6}. Let us introduce a sequence
(Y1,Y5,...) of independent RVs with identically distribution

1/27 Zf - 17
Y, =4¢ 1/3, if 1,
1/6, if 2,

then the process can be represented with the evolution equation ((x)* = max(z,0))

+ ; <
Xpy1 = { ) § Xnt Y £ 4, n=01,..

IHIIl(Xn + Yn+1> 6)a Zf Xn + Yn+1 Z 5a

Contrary to the exercise 3.6., in this case there are not absorbing states and the probability
transition matrix is

o 1 2 3 4 5 6
1/2 1/3 1/6 0 0 0 0
1/2 0 1/3 1/6 0 0 0
0 1/2 0 1/3 1/6 0 0
0 1/2 0 1/3 1/6 0
0 0 1/2 0 1/3 1/6
0o 0 0 1/2 0 1/2
0o 0 0 0 1/2 1/2

I
ST WO

0
0
0
0

The process X is homogeneous, irreducible and aperiodic MC with finite state space, therefore
it is ergodic (see Th. 3.40.) and his stationary distribution, which does not depend on the
wnitial distribution, satisfies the equations

7P =7, ™= (mo,..., ),

7T0+...+7T6:]_, 7TZ‘ZO,

From this we get the system of linear equations

1 1 1 1 1 1
7TOI§7T0—|—§7T1, 7T1:§7T0+§7T2, 7T2:67T0+§7T1+§7T3,
1 1 1 1
73:67T1+§7T2+§7T4, 7T4=67T2+§7Tg+§ﬁ5,
1 1 1 1
s = 6773+§7T4+§7T6a e = 6774+§7T5+§7T6a

7T0+...+7T6:1.

Ezxpressing the probabilities m; one after the other, we get m = my, o = %7‘(‘0, T3 = gwo,
_ 19 _ 8 _ 91 _ _ 21 ~ _ 27T _
T4 = oMo, T5 = 3T, M6 = 570, 1 = Mo + ... + Mg = 50 and from this 1o = 5z = 0.076.

Finally we can compute the stationary distribution of the MC X

m = (0.076, 0.076, 0.101, 0.127, 0.161, 0.203, 0.256).
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Using the stationary distribution, the expected amount of money that A will have after very
long run

lim E(X,) =7(0,1,2,3,4,5, 6)" Zmz—3904

Denote D the event that B will not be able to pay the required amount in the next step of
the game after a very long run. Then

n—o0

P(D) = lim (P(D | X, =5)P(X, =5)+P(D | X, =6)P(X, = 6)) -

= lim (PO = 2P(X, =)+ PV = DP(Y, =0)) =

n—oo

= %7?5 + %7?6 =0.203 - % + 0.256 - % =0.119.
Exercise 3.9. There are two machines at a production site A and B. Their failure times are
exponentially distributed with parameter Aa and Ag, respectively. Their repair times are also
exponentially distributed with parameter pa and pg, respectively. There is a single repair
man associated with the two machines, which can work on one machine at a time. Compute
the probability that at least one of the machines works.

Solution 3.9. The system has five states as follows:

0 - A and B work at same time;

1 - A in repair and B works;

2 - A works and B in repair,

3 - A is waiting for the repair and B in repair ;

4 - A in repair and B is waiting for the repair.
Denote by Z = (Z;, t > 0) the process with state spaces {0, 1, ...,4} which desribes the state
of the system at the time point t, and let Wy =0 < Wy < Wy < ...be the consecutive sequence
of the transition points of time of the system (i.e. the embedding MC of Z). Denote by P
the transition probability matriz of the MC W = (Wy, Wi, ...).

First solution. Let XY, U and V be independent exponentially distributed random
variables with parameters Aa, Ag, pa and g, respectively. Firstly, we compute the probabil-
ities po1,po1 and pog. It is clear that

pon =P(X <Y) / / TirepAarpe Me  PYdrdy = / / Aadpe MTe Y dydy =
0 0

o0 o0

= /)\B[l—e’\Ay]e)‘Bydy = 1— / (Aa+Ap)e “Qatdey gy — 1
0 0

AB - Aa
A+ A n A+ g

Analogously, with the change of parameters, we have

o\ B

plo:iﬂA—i—/\B’ pzo:i,ug-i—/\A.
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Denote by P;;(t), t > 0 the distribution function of the holding time from a state i to an
other state j, then Py;(t) =P(W; — Wy <t | Wy =14, W, =j) and

Pu(t) =P(X <t, X<Y), Ppn(t)=P(Y <t, X>Y),

Po(t) =PU<t, U<Y), Pult)=PU<t, U>Y),
Pgo(t):P(VSt, VSX), ng(t) P(th, V>X),
Pu(t) =P(V <1), Pult) = P(U <1).

It is clear that

Pou(t) =P(X <t, X <Y)= //I{ugt, U<U})\A)\Be_)‘“e_’\3ydxdy =
0 0

t o) t
_ / /)\A)\Be/\Aue/\BydU du = /)\Ae(/\AJF/\B)udu —1— )‘7A€*(>\A+/\B)u
Aa+ Ap
0 u 0

then
Py (t) = A qe~Patra)u,

Wiath the same computations we have

’

Poy(t) = e, Bly(t) = jae™ At Pl (1) = pyem (o,

’

Pio(t) = ppe a0 Py (1) = Aqe”Oatiol Pl () = pge o, Ply(t) = jrae "

and in other cases PZ/](t) = 0. The transition rate matriz of the system

“Outds) A s 0 0

A —(pa + AB) 0 0 AB
Q = (q;5) = 1B 0 —(Aatps) Aa 0
0 I 0 —up 0

0 0 HA 0 —HA

By the Kolmogorov forward differential equation

This ordinary differential equation is linear and has constant coefficient matriz Q with special
structure, therefore (see, for example, Bellmann: Introduction to Matriz Analysis, McGraw-
Hill, 1960., Ch. 14, §13) it has a unique solution II(t),t > t for all initial value TI(0) =
(Poy --sP4), Pi =0, po+ ... + ps =1 and I1(t) determines a distribution for any t > 0. The
stationary distribution of the system can be computed from the linear algebraic equations
mQ = 0,where ™ = (mg, ..., 7)), T >0, Mg+ ... + 14 =1:

(Aa + AB)To = prami + ppms,

(a + Ap)m = Aamg + 3,
(g + Aa)ma = Apmo + T4,
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Ty = AATo,

T4 = ABTI,

o+ + 7+ w3+ 74 = 1.

Solving this system of equation, the quantity mo + m + 7o will be the probability that at least
one of the machines works.
Second solution. The transition probability matriz of the embedding Markov chain is

0 por 1—por 0 0
po O 0 0 I —pio
P=1 po 0 0 0 — pao 0 ;
0 1 0 0 0
0 0 1 0 0

where ppr = P(X <Y), poe = P(Y <X) =1—po1, po = P(UY), pu=PY <U) =
L —pio, po =PV < X), po3=P(X V) =1~ pop.
Firstly, we compute the probabilities po1,por and pag. It is clear that

el ] 0 Y
pn=PX <Y)= //InD(x < y)/\A/\Be_’\”e_)‘Byd:pdy = ///\A/\BG_AMG_)\Byded?J =
0 0 0 0

o0 o0

_ _ _ AB A4
= [ Ag[l—eMV]eBYg :1—73/ AatAp)e Patreygy — 1 — .
/ ol A Ve v S D VED PR VY
0 0
Analogously, with the change of parameters, we have
P10 = KA DPao = KB
0= """+ 5 Po=—"—" -
pa+ A pe + Aa

The stationary distribution of the embedded Markov chain is the solution of the system of
equations

4
rP=r r=(ro,...m4), 7, >0 and Zri =1.
i=0

Let us use the method of stationary analysis based on the embedded MC' (see p.149.).
For this we need to determine the stationary distribution r = (ry, ...,74) and the mean times
7, 7 = 0,...,4 that the system spents in a state j. Then, by the proposed method, the
stationary distribution of the process Z is

The holding time of state 1 has exponential distributions with parameter (Aa + Ag), because
P(n<t) = Pmin(X,Y)<t)=1-Pmin(X,Y)>1t) =
= 1-PX>t,Y>t)=1-P(X>)P(Y >t)=1— ¢ Qatis)t

therefore 7o = +)\B With the same way we get

Aa
1 1 1 _1

A A~ A A

= p=— 7 .
YT opa+ st P Aa+ous Hb A

23



Exercise 3.10. Let X = (Xo, X1,...) be a two-state Markov chain with state space X =

“ 1;a},whe7“60<a,b<1.

{0,1} and with the probability transition matriz P = [ b

n __ 1 (a+b—1)" . 1-b 1—a o 1 0
Prove that P" = 5——TI1+ 5=——(I — P), where IT = { 1-b 1—a } and I = [ 01l
Solution 3.10. Forn =1 it is true

1 a+b—1 1
I-P)=—(I-P _
2—a—> +2—a—b( ) ( )+2—a—b

I+ (I —-P)]=

(1-b)+1—-a (1-—a)+0—-(1—a)
2—a—b| (1=0)+0—(1-0) (1—a)+1-0

It is easy to check that II(I — P) = (I — P)IT=0 and P — 11 = (a+b— 1)I. Apply the
method of induction. Suppose that the equation

= I+P+ ]:—I+P+I:P.

N R et Vi

P" =
2—a—> + 2—a—>

(I -P)
is true for n > 2 then we prove that it is true for (n+1). Thus

(a+b—1)"
- - pr4+ ="
2—a—>b + 2—a—>b

1 (a+b—-1)" -
st et - DI+INUI - P) =

Pt = pp" P(I-P)=

1 (a+b—1)"!
= ——Il+———+—(I - P).
2—a—> + 2—a—> ( )
From this it follows
. n 1 1-b 1—a
am P _2_a_b{1—b 1—a}

Note that the convergence rate is exponentional because of the inequality |a + b — 1] < 1.

It can also be seen that for both initial values Xo = 0 and Xo = 1 of the Markov chain there
exists the limit matrix of the n-step transition matriz of the chain, which does not depend
on the initial value. Thus the Markov chain has limit distribution, for which

1—a
IimP(X,=1|Xy=0) = ImP(X,=1|Xy=1)=———,
Jim P( | Xo=0) = limP( | Xo=1)=5——

1—-9%
ImP(X,=0| Xyp=0) = IImP(X,=0|Xy=1)= ——.
Jim P( | Xo=0) = limP( | Xo=1)=5—"—
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Chapter 4

Renewal and regenerative processes

Exercise 4.1. Applying the Theorem /.42 (page 140), find the limit (stationary) distri-
butions of age, residual lifetime and total lifetime (6(t) = t — tnw, () = tvw+ — L
B(t) = tnw+1 — tnw ), if the interarrival times are independent random wvariables having
joint exponential distribution with parameter . Show the expected values for the limit dis-
tributions.

Solution 4.1. By the use of Theorem 4.42 (page 140) we get the limit distributions in the
following forms

T T

G(x) = ImP(5(1) < x) = mP(y(t) < x) = ﬁ Ju-Felas=a [eras—1-c,

H(w) = mP(3(0) <0) = s [ dP(9) = s [ e s = [azevas

0 0 0

From these we can see that the limit distributions of 6(t) and ~y(t) ast — oo coincide with the
exponential distribution of parameter . The limit distribution of B(t) as t — oo is gamma
distribution with parameter (2,\), which coincides with the distribution of the sum of two
independent exponentially distributed r.v.s with parameter X\. The expected values for the
limit distributions are 1/, 1/X, 2/\.

Exercise 4.2. (Egodic property of semi-Markov processes) Consider a system with finite
state space X = {1,..,N}. The system begins to work at the moment Ty = 0 in a
state Xg € X and it changes the states at the random moments 0 < T7 < Ty, < ...
Denote by X1, Xs,... the sequence of consecutive states of the system and suppose that it
constitutes a homogeneous, irreducible and aperiodic Markov chain with initial distribution
(pi = P(Xo =1), 1 <i < N) and probability transition matriz I1 = (p;;);,_,. Define the pro-
cess X(t) = X1, Thoq <t <Tp,, n=1,2,... and assume that the sequence of holding times
Yo =T, —Tr_1, k=1,2,... depends only conditionally on the states X,_1 =i and Xy = j
and denote Fij(x) = PV <z | Xp—1 =i, Xx =7) if piy > 0, where v;; = [ xdFj;(x) < co.
Find the limits for ’

(a) average number of transitions/time,

(b) relative frequencies of the states i in the sequence Xo, Xi, ...

(c) limit distribution P(X, =), i € X,

(d) average time which is spent in a state i € X.
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Solution 4.2. Since the Markov chain (Xy, k = 0,1,...) with finite state space is homo-
geneous, irreducible and aperiodic, then it is ergodic, consequently, the expected values of

oo
return times pu; = Y. kfi(k) < oo, 1 < i < N are finite and its stationary distribution
k=1

7w = (71, ..., ™) can be given in the form m; = 1/u;, 1 < i < N. From the ergodic property
of the Markov chain it also follows that

1 n
— ZI{Xk:i} —m as n — oo with probability 1.
[y
Let us introduce the notations
K(t) ¢
Kz(t) = ZI{Xk:i}7 K(t) = max{k : Tk S t}, Sz(t) = /I{X(S)i}ds,
k=0 0
ngi) = min{k: Xy =i, k>1}, oY =min{k: X,=1i, k> nﬁi’,l}, m=2,3,..,

)

TO = Tw=Y Y m=12., 71" =1" 79=10-T0, m=23,..
k=1

Note that S;(t) denotes the amount of time is spent by the process X (t) on the interval (0,t)
i a state 1.

Let us consider the process (X(t), t > 0) for a fized i. Since (Xo, X1,...) is a Markov
chain and the sequence (Y1, Ys,...) only conditionally depends on (Xg, X1, ...), then the cycles
(X(t), t € [Tr(,f)_l, Ty(,f))), m = 2,3, ... are independent and stochastically equivalent. Conse-
quently, the process (X (t), t > 0) is regenerative under the condition Xo = i, otherwise it

is delayed regenerative. It is also clear that the r.v.s T,ﬁi’, m = 1,2,... are independent and

moreover, 7'7%), m = 2,3, ... are identically distributed, which means that (T,Ei’, m=1,2,..)
forms a renewal or delayed renewal (in the case Xy # i) process.

First we prove that E(Tl(i) | Xo :j>, 1 < j < N are finite. Note that E<7'2(i)> =
. . N A
E<7’1(Z) | Xo = z) and E<7’1(Z)> = ZE(T{Z) | Xo :j>P(X0 =j). Denote v = max{v;; :
j=1

1< Za] < N7 Dij > O} and A(ll) = {XO = iaXl = Z}a Al(;) = {XO = iaXl 7é ia"'anfl 7é
i, X, =1}, k>2. Since for all 1 <'i,iy,....;i51 < N, k=1,2,... we have

E(ifl + ...+ Yk | Al(;)> = Vi + Vi io + ...+ Vi _1,i S k?l/,

then

o0

o = B() =B | X0=1) = 3 B(05 Ty | Xo=i) =
k=1
- gE((lﬁ + .. +Y) | A,E@)P(A,(g')) < gkuP<Al(j)> — gkufii(k) = vy < .

Denote m;j = min{k : p;;j(k) > 0}, where p;;(k) is the k-step probability transition function.
The definition of my; is correct because the Markov chain (X,, n > 0) is irreducible. From
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this it follows that there exist iy, ...,0m—1 € X, 15 # 1, 1 <5 < my; such that p = P(Bﬁn”)> >
0, where Bf,i;? ={Xo=4X1=41,..., Xpn;—1 = tmy—1, Xmy; = j}. Then

a; 2 ( {B(z ! |X0_z)> = < D B,S%)P(B?(?%)) >

consequently
A 1
E(Tl(z) | Xo :j) < —a; < 0.
p
(a) By the Remark 4.29 (page 135) the strong law of the large number is also valid for the

delayed renewal process (Tg), m = 1,2,...), therefore with probability 1

) 1

t a;

and consequently with probability 1

N Kt
-y t()

i=1

I
S| =

.
Il
—
&

(b) Firstly, we prove that the convergence

K(t)
K;i(t) 1

= — IX_1:i — T, as t— oo
K(t) ~ K(t) Z =)

is true with probability 1. Note that from the convergence of K(t)/t “3 a it follows that
K(t) “3 00, as t — co. Since the Markov chain (X, k =0,1,...) is ergodic with stationary
distribution (my, ..., mx), therefore

_ZI{Xk = Z}—>7TZ, 1=1,...N as m — oc.

On the one hand

K, (t [at]

K(t) [at]
[at] 1
K(t o at Z {Xk 1= Z} ( )[ ] ZI{Xk—lzi} - E I{Xk‘—:l:i}
i=1 i=1

and on the other hand

[at]

1
o T 3T g0 - = 0 5

because %m % I;("((:)) L as t — oo.
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(¢) The process (X (t), t > 0) is a (delayed) regenerative one with regenerative cycles T/gi) (the
distribution of the cycle 7'1(2) can differ in distribution from the distribution of other cycles ),

therefore the convergence with probability 1

t

S 1 . | .
; = ; /I{X(S):i}ds — tlirgloP(X(t) =1 | Xo = Z) =
0
(4)
1 n : 1 :
= —E f I{X(S):Z}ds | XO =1 = —E()/l ‘ XO = 7/) =

a; 0 a;

1 — 1 — ”
Z; Y | Xo=1,X1=7)P(X1=j|Xo=1) ai;pﬂ] Y

is true, if TQ(i) has non-lattice distribution (this condition is satisfied, for example, if F;(x)
are non-lattice distribution functions.). Note that the convergence SZT(t)

directly with the help of strong law of large numbers, because

a.s. .
— X can be proved
a;

Ki(t)*l Ki(t

Ki(t) — 1 o < S0 LK)

1
t Ki(t) -1

)
Ynl(:) ,
k=1

1
K;(t)

k=1

where K;(t) 3 oo, t — 0o and the r.v.s Y o, k=1,2,.. are independent and identically
k
distributed with E(Y o) = E(Y: | Xo = i).
k

From the relations proved above it follows I;(i((:)) f;’l((?)//i Y mv (if Tl(i) <t then K;(t) > 1)

and the sum of average time which is spent in a state © equals to 1, thus

-f_suf s
where ) N
Then we get

and with probability 1




As a consequence, can be obtained the expected values of regenerative cycles
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Chapter 5

Markov chains with special structures

Exercise 5.1. X andY are independent continuous PH distributed r.v. with representations
(e, A) and (B, B), respectively. Define the distribution of the following r.v.

o /1 =01 X,

o /5 equals to X with probability p and to'Y with probability 1 — p |
o /3 =01 X+ Y,

o 7, =Min(X,Y),

o 75 =Mazx(X,Y).

Solution 5.1. 7, ..., Z5 are continuous PH distributed with the following representations.
Denote the size of (a, A) by n and the size of (3, B) by m.

e PH representation of Z1 = 1 X 1is of sizen

(7. G) = (@, - A)

&1

e PH representation of Zs is of size n +m

v =(pa, (1 -p)B),G = ? B

o

e PH representation of Z3 = c1 X + oY is of size n +m

LAl Llag
Y (a7 0)7 G 0 éB )
where a = — AT is the column vector of transition rates to the absorbing state.

e PH representation of Zy = Min(X,Y') is of size nm

Yy=a®3,G=Ao B,
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e PH representation of Zs = Max(X,Y) is of size nm +n+m

APB|Ibla®I
vy=(a®pB,0,0,G=| 0 A 0
0 0 B

where a = — AT and b = —B]1L.

Exercise 5.2. X and Y are independent discrete time PH distributed r.v. with representa-

tions (o, A) and (B, B), respectively. Define the distribution of the following r.v.

[} leClX,

e 75 equals to X with probability p and to'Y with probability 1 — p |

L] Zg = ClX + CQY,

Z, = Min(X,Y),

Zs = Mazx(X,Y).

Solution 5.2. Z,...,Z;5 are discrete PH distributed with the following representations.
Denote the size of (o, A) by n and the size of (3, B) by m.

o When c; is a positive integer the PH representation of Z1 = 1 X s of size cin

0| I 0
= a’ 07 * Y 0 Y G = E - i E 7
7= ) oo 7
Al O 0
e PH representation of Zy is of size n +m
AlO
v = e, (1-p)B),G =575

e When ¢y and cy are positive integers Zs is PH distributed with size cyn + com .

case of c; = co = 2 the representation of Zs is

0O(1| 010

B _|A|0|aB |0
’7—(@,0,0,0),G— O 0 O I )

00| B|O

In

where a = T— AT is the column vector of transition probabilities to the absorbing state.
For cy,co > 2 the representation is obtained similarly.

e PH representation of Zy = Min(X,Y') is of size nm

Yy=a®3,G=AR B,
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e PH representation of Zs = Max(X,Y) is of size nm +n+m

ARQB| | AQb|la® B
v=(a®3,0,0),G = 0 A 0 ,
0 0 B

wherea =1 — Al and b= 1 — BI.

Exercise 5.3. There are two machines at a production site A and B. Their failure times are
exponentially distributed with parameter Ay and Ag, respectively. Their repair times are also
exponentially distributed with parameter pa and pg, respectively. There is a single repair
man associated with the two machines, which can work on one machine at a time. At a
giwen time both machines work. Compute the distribution and the moments of the time to
the first complete breakdown, when both machines are failed.

Solution 5.3. The time to the complete breakdown is continuous PH distributed with rep-
resentation

_)\A_)\B )\A /\B
7:(]—70a0)7G: ha _)\B_,MA 0
KB 0 —A4 — iB

The distribution and the moments of the time to complete breakdown, denoted by T, can be
obtained from this PH representation. FE.q. its cumulated density function is

Fr(t) =P(T <t) =1—~ &1,

and its moments are
E(T") = n! v(—G)™"1.
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Part 11

Queueing systems
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Chapter 6

Introduction to queueing systems

Exercise 6.1. Interpret the following Kendall’s notations
o M/M/1/x/0-FIFO, M/M/1
o M/M/2//4,
o M/M/1/m-PS,
o M/M/m-LIFO.

Solution 6.1. The default values are usually eliminated from the Kendall’s notations.

o M/M/1/c/00-FIFO and M/M/1 refer to the same queueing system with (time homo-
geneous) memoryless arrival and service processes, single server, infinite buffer, and
infinite population. The first version of the notation is the extended version of the
second one.

M/M/2//4 refers to the queueing system with (time homogeneous) memoryless arrival
and service processes, two server units, infinite buffer, and a finite population of 4
customers.

M/M/1/m-PS refers to the queueing system with (time homogeneous) memoryless ar-
rival and service processes, single server, finite buffer of m —1 positions, and processor
sharing service discipline. In case of processor sharing the server serves as many cus-
tomers as many are present in the system at the same time. The service capacity is
uniformly distributed among the customers. With this service discipline the size of the
buffer does not play role.

M/M/m-LIFO refers to the queueing system with (time homogeneous) memoryless
arrival and service processes, m servers, finite buffer and infinite population and last
in first our service discipline. It means that an arriving customer always enter a server
independent of the number of customers in the system. If all servers are busy upon the
arrival of the new customer the new customer moves one of the customers under service
to the waiting queue and its server starts the service of the newly arrived customer.

Exercise 6.2. In a single server infinite buffer queueing model the arrival rate is X and the
service time is exponentially distributed with parameter p.

e Define the Little’s law for the whole queueing system, for the buffer and for the server.
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o Which one of these expressions define the server utilization?
o What is the utilization?

Solution 6.2. It is an M/M/1 queuing system.

o Let T, W, Y, be the mean system time, the mean waiting time and the mean service
time, and L, L., Ly be the mean number of customers in the system, in the buffer and
in the server, respectively, and A be the mean arrival rate. The application of Little’s
law for the whole queueing system, for the buffer and for the server result

L =T,
Ly = AW,
Ly=)\Y.

o The Little’s law applied for the server is related with the utilization, because the mean
number of customers in the server queue (L) define it.

e The mean number of customers in a single server queue (Lg) is the utilization of the
queue, p = Lg. In case of m servers Lg/m defines the utilization, p = Ls/m.

Exercise 6.3. Which ones of the following queueing systems are lossless:
o M/M/1,
o M/M/2/5/4,
o M/M/1/2-PS,
o M/M/m/m,
o M/M/m.
Solution 6.3.
o M/M/1 — it is lossless, because there is an infinite buffer,

o M/M/2/5/4 — it is lossless, because the population is 4 customers and there are 2
server and 3 buffer positions for customers.

o M/M/1/2-PS — it is lossless, because the server serves all customers at the same time
and buffer is not used.

o M/M/m/m — it is lossy queue, because the customers arrive when all servers are busy
are lost.

o M/M/m — it is lossless, because there is an infinite buffer.

Exercise 6.4. Which ones of the following queueing systems provides immediate service for
the customers:

o M/M/1,
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o M/M/}/5/3,
o M/M/1/2-PS,
o M/M/m/m,
o M/M/m.

Solution 6.4.

o M/M/1 — it is a waiting system, because the customers arrive when the server is busy
wait in the buffer.

o M/M/2/5/4 — it is a waiting system, because the customers arrive when both servers
are busy wait in the buffer.

o M/M/1/2-PS — it is an immediate service system, because the server serves all cus-
tomers at the same time with a portion of the server capacity.

o M/M/m/m — it is an immediate service system, because the customers arriving when all
servers are busy are lost and the ones which are not lost starts the service immediately
at arrial.

o M/M/m — it is a waiting system, because the customers arrive when all servers are
busy wait in the buffer.
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Chapter 7

Markovian queueing systems

Exercise 7.1. Compute the mean and the variance of the waiting time in an M/M/1 queue
based on the Wald’s identity.

Solution 7.1. The waiting of a customer in an M/M/1 queue, W, is the sum of the service
times of the customers, X;, which are in the system at its arrival. If the number of customers
in the system is N at the arrival of the customer, then its waiting time is

from which

= E(i XZ-> = iE (i Xi>P(N =n) = inE(X)P(N =n) = E(X)E(N),

n=0
and

O’W_ZO'Z x,P(N ZnaXP =n) =oxE(N).

n=0

Exercise 7.2. Two kinds of customers arrive to a queueing system with 3 servers. Type 1
customers arrive according to a Poisson process with rate A\y. A type 1 customer occupies one
server for an exponentially distributed amount of time with parameter py. Type 2 customers
arrive according to a Poisson process with rate As. A type 2 customer occupies two servers for
an exponentially distributed amount of time with parameter ps. Compute the loss probability
of type 2 customers if there is no buffer in the system.

Solution 7.2. The stochastic process describing the number of type 1 (first coordinate) and
type 2 (second coordinate) customers in the system is a CTMC with the following transition
graph.
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Compute the stationary probability distribution, p; ;, of this CTMC and the loss probability
18
A2
A1+ Ao

In state poo and p1o only the type 2 customers are lost.

Ploss = (po2 + p10) + P11+ Dos -

Exercise 7.3. One shop assistant serves the customers in a shop with exponentially dis-
tributed service time with parameter . The shop assistant wants to smoke after an exponen-
tially distributed time with parameter a. If the shop is idle leaves for smoking immediately.
If he is busy when he wants to smoke then he serves the customers while shop is not idle and
then he leaves for smoking. The length of the smoke break is exponentially distributed with
parameter 3. The customers arrive according to a Poisson process with rate \. Compute the
mean shopping time of customers if at most 3 customers can enter the shop. (Compute the
same measure if infinitely many customers can enter the shop.)

Solution 7.3. The stochastic process describing the state of the shop assistant (first coor-
dinate) and the number of customers in the shop (second coordinate) is a CTMC with the
following transition graph. The state of the shop assistant is 0 if it works and does not maiss
a cigarette, is 1 if it works and misses a cigarette, is 2 if it smokes.

T

We compute the mean shoppmg time of customers with the help of Little’s law. For that
we need the mean number of customers in the shop, L, and the mean customer arrival rate,
A. Based on the stationary probability distribution, p;;, of the CTMC the mean number of
customers in the shop is

and mean customer arrival rate is

where
Ploss = Po3 + P13 + P23-

Finally, the mean shopping time of customers is
T =1L/

If infinitely many customers can enter the shop then the Markov chain is infinite according
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to the second coordinate and we obtain a quasi birth death process of the form

L' F'| 0
Q B'| L
o |B|L ’
where
ela|0 w010 AO0LO0
L=/0|e , B=[0|0 , F={0|A|O0O],
610 ]|e 0/0]0 00| A
, || , p]o , | A]010
L_ﬁ o |’ B_O wl’ F_O 0 A

and e are the negative diagonal elements which are set such that all row sum of Q 1is zero.
Assuming that process is positive recurrent and the stationary solution of this QBD process
with irreqular level zero is vector py, and vectors p; = prR™" fori > 1, we can compute the
mean number of customers in the shop as

i=1

i=1 i=1

P (R(I ~R) 2+ R(I - R)—l) 1=p (R(I —R)Y(I-R)'+1) ) I

Due to the fact that there is no loss in case of infinite shop capacity (A = \) the mean
shopping time of a customer is

T=L/Xx=L/\

Exercise 7.4. There is a queueing system with two servers and two types of customers.
Type i customers arrive according to a Poisson process with rate \; and their service time 1s
exponentially distributed with parameter u;, i = 1,2. Server i is typically assigned with type
1 customers. If there is a type i customer in the system when server i is idle then it serves
a type 1 customer. If there is no type i customer in the system when server i is idle then it
can serve a customer of the other type. The arriwval of a new customer does not interrupt
the ongoing service. Compute the loss probability of type © customers if the buffer size is 3.

Solution 7.4. A finite CTMC describes the behavior of the queueing system, where the states
are identified by the triple (i, j, k). i indicates the state of server 1. i = 0 when server 1 is
1dle, 1 = 1 when server 1 serves a type 1 customer, and i = 2 when server 1 serves a type 2
customer. j indicates the state of server 2 in a similar manner, and k indicates the number
of customers in the buffer.

As it is visible from the (i, 7, k) state description the type of the customers in the buffer
1s not identified in the system state. It is a widely applicable trick to reduce the complexity of
the Markov chains describing the behavior of queueing systems. When the servers are busy
customers arrive to the buffer with rate A = A\ + Ao and a given customer in the buffer is of
type 1 with probability \1/\ and of type 2 with probability As/\.
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The transition rates from higher buffer occupancy to lower one are as follows

e from (1,1,7) to (1,1,i—1) at rate 21 A1 /X because either server 1 completes the service
at rate py and the next customer is type 1 with probability A1/ or server 2 completes
the service at rate py and the next customer is type 1 with probability A1 /A,

o from (1,1,7) to (1,2,i — 1) at rate 2u1 Ao/ because server 2 completes the service at
rate py and the next customer is type 2 with probability Ao/ A,

The loss probability of both customers type are identical and are associated with the states
when the buffer is full.

Ploss1 = Plossz2 = P1,1,3 T P1,2,3 + P2,1,3 + D223

Further type related measures can be computed based on the stationary distribution of this
Markov chain. E.g., the probability that a type 1 customer is served by server 2 is

Ptypei-server2 =

Exercise 7.5. Two kinds of customers arrive to a discrete time queueing system. In every
time slot a type © customer arrives with probability p;, © = 1,2, and no customer arrives with
probability 1 — p; — pa. There is a single server. The service time of a type 1 customer is
geometrically distributed with parameter q;. The service time of a type 2 customer is k time
slot and the buffer size is b. Compute the mean system time of type © customers fori=1,2,
ifk=1,2 and b=0,3, 0.

Solution 7.5. We present the solution for k = 2. The solution for k =1 is straight forward
based on that. A finite DTMC describes the behavior of the queueing system, where the states
are identified by the couple (i,7). i indicates the state of the server. i = 0 when the server
15 idle, 1 = 1 when the server serves a type 1 customer, 1 = 2 when the server serves a type
2 in the first time slot and i = 3 when the server serves a type 2 in the second time slot. j
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indicates the number of customers in the buffer. The following Markov chain describes the
behaviour when there is no buffer (b =0).

/FL\V (1-q)

The Markov chain also indicate that the customers that receive service, because the system
1s tdle at their arrival, start service immediately after arrival. Consequently, the total system
time is the service time for both types of customers and their means are

For the case when there is buffer in the system we follow the same approach as in Ezxercise
and the state of the Markov chain does not identify the type of the customers in the buffer
only the type of the customer in the server. That is, when the server is busy customer arrive
to the buffer with probability p = py + ps and a given customer in the buffer is of type 1 with
probability pi/p and of type 2 with probability p,/p. In case of buffer capacity 3 (b = 3) the
following Markov chain describes the queueing system, where pi = pop1/p and ps = pops/p-

%P + 4P + a.,p, + a,p, +
@) Qg QYR (1-q)
[y Gap [y aap Ly

When b = 3 the computation of the system time requires the stationary solution of the
Markov chain (p;; denote the stationary probabilities) and the application of the Little’s law
in a similar way as in Exercise[7.3. The loss probability of both customers type are identical
and are associated with the states when the buffer is full and the arriving customer is lost.

P13l —q1)p + pasp
Ploss = Ploss1 = Ploss2 = ( p) p1,3(1 - Ch) +p2,37

and the mean arrival rate of type 1 (type 2) customers is A\; = PiPioss (A2 = DoPioss). The
mean number of type 1 and type 2 customers in the queue are

3 3 3 ‘ 3 s 3
Li=) p, (1 + Jﬂ> —i—Zme-% Ly = me 3, (1 . jﬁ>
=0 —

i=2 j=0 7=0 =2 j=
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Finally, from the Little’s law we have

Ty = Li/M\ Ty = Ly/ )y .

The case when the buffer is infinite results in a quasi birth death process with special level
zero. Both, the special structure of level zero and the reqular structure of the higher levels are
readable from the Markov chain of buffer capacity 3. For example, the matrices describing
the regular part are

ap1+ (1 —q)po | qap2 | O QpT | aip3 | 0 (1—aq)p|0]0
L= 0 0 |p|l, B=| 0 [ 00|, F=[ 0 |0|p
D1 D2 0 2 Py |0 0 0]0

Note that (B + L 4+ F)1 = 1 holds, that is, the sum of the exit probabilities of each state is
one. The stability stability condition of the QBD process can also be obtained by work load
consideration. The service of a type 1 customer takes 1/q time slots in average and the
service of a type 2 customer takes 2 time slots. This way p1/q1 + pe 2 workload arrive to the
server in a time slot, which has to be less than 1 in a sable system.

When the buffer is infinite we can compute the system time based on the stationary
solution of the QBD type Markov chain. In this case \y = py and Ao = po, because there is
no loss due to the infinite buffer. The mean number of type 1 and type 2 customers in the
queue are

3 3

L1:ZP1,J‘ (1+&)+ZZPZJJP1> Ly = ZpL]jpz-l—ZZp (1+‘7—p2)
=0

1=2 j5=0 =2 j=0

and similarly

T1 :Ll/Xl ,TQZLQ/XQ .

Exercise 7.6. To improve the energy efficiency of a discrete time queueing system the server
is switched off (goes on vacation) for a geometrically distributed amount of time with param-
eter r if the system is idle at the end of a time slot. At the end of the vacation period the
server starts serving the arrived customers (if any) or goes for an other vacation (if none).
In every time slot one customer arrives with probability p and no customer arrives with prob-
ability 1 — p. The service time is geometrically distributed with parameter q and the buffer
size is b. Compute the mean system time, the mean vacation time and the mean idle time
of the server for b =3, 0.

Solution 7.6. When b = 3 the following finite DTMC describes the behavior of the queueing
system. The states are identified by the couple (i, j). i indicates the state of the server. i =0
when the server is on vacation, i = 1 when the server is active and serving a customer. j
the number of customers in the buffer. On the figure g=1—q, p=1—p and7 =1 —r.
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OO

P rp

qap+qp  qp+qp qgi%f qp+q

We compute the mean system time of customers, T, based on the stationary solution of
the Markov chain (denoted as p; ;) and the Little’s law in a similar way as in Ezercise[7.3
The loss probability s

P31 —@)p+pos(l —r)p

Ploss = D = p1,3(1 - q) +p073(1 - 7”),

and the mean arrival rate customers is A = ppss. 1The mean number of customers in the
queue 1s

13
L=> Y (i+j)pyand T =L/X.
i=0 j=0

The idle time and the vacation time of the server is identical because the server imme-
diately starts the vacation when it becomes idle and it finishes the vacation only when there
1s customer to serve. The vacation time of the server is discrete PH distributed and its rep-
resentation can be extracted from the Markov chain by interpreting the transition from the
lower row of states (server in vacation) to the upper ones (server busy) as transitions to an
absorbing state and recognizing that the vacation always starts in state (0,0).

1—p (1—r)p 0 0

0 [1—-p(Q—r) (1—r) 0
f=110.0,0}, 0o 0 [a-pi-n|a-

0 0 0 1—7r

The mean of the vacation time can be computed as B 1.

In the case when the buffer is infinite the reqular structure of the above Markov chain
follows for all buffer levels. There are more than one ways to define a QBD process based
on this reqular Markov chain. It is possible to define a QBD such that level 5 is composed by
states (0,7) and (1, ) in this case the structure is reqular for level zero; and it is also possible
to define a QBD such that level j is composed by states (0,7) and (1,7 — 1) in this case the
structure is special for level zero. In the second case level zero has different dimension, it is
composed by a single state, state (0,0).

The regular matriz blocks of the QBD whose level j is composed by states (0, 7) and (1, j)
are

| =r)(-p) Tp _|0|r(1—-p) | A=r)p 0
L= 0 pg+(1—=p(1—-q)| B=5 q(1—p) |’ F= (1-qp|
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Note again that (B + L+ F)1 = 1 holds.

When the buffer is infinite and the system is stable we can compute the mean system time
of customers based on the stationary solution of the QBD type Markov chain. In this case
X\ = p, because there is no loss due to the infinite buffer. The mean number of customers in
the queue s

1 00
L=>"Y (i+j)py; and T =L/\.

i=0 j=0

We compute the mean vacation time with infinite buffer based on the stochastic interpreta-
tion of the system behavior. The vacation starts in state (0,0) and there are two conditions to
finish the vacation. There is an arrival and at the same time or after the arrival a transition
with probability r occurs. This stochastic interpretation allow a simpler PH representation
of the vacation time

_ | l=p|(A=r)p
_{170}7 G_ O 1—r

Note that (5, B) and (v, G) define the same distribution.

Exercise 7.7. Compute the stationary number of customers in a M/M/2/3/4 queue if X\ = 1
and p = 2.

Solution 7.7. The Markov chain of M/M/2/3/4 queue is

4\ 3A 2\

With A =1 and p = 2 the stationary probabilities satisfy the following local balance and
normalizing equations.

4 3 3 2 3
b1 = 5Po, P2 = 7P1 = §p0>]93 = ZPQ = ZPO;ZPz‘ =1,
i=0

from which

4 8 6 3
21]71 - 217272 - 21,]93 - 21 )
and the mean number of customers is

3
29
=0 21

Exercise 7.8. Compute the loss probability of the M/M/m/m/K system for K > m.

Po =

Solution 7.8. The Markov chain of M/M/m/m/K queue is

A(K-1) A(K=2) A (K-m+2) A (K-m+1)

OROMOMME 30
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The stationary probabilities satisfy the following local balance and normalizing equations.

K—i+1)) _ <
pizgpi,l, v=1,...,m, Zpizl,
z,u i=0

from which

060

26

The loss probability of the M/M/m/m/K queue is Pioss = Pm-

Exercise 7.9. Compare the probability of waiting in an M /M /m queue with the loss prob-
ability in an M/M/m/m queue for m = 1,2, 3, where the arrival and service intensities are
wdentical. Interpret the relation of the results.

Solution 7.9. In an M/M/1 queue the probability of waiting is Puyer = ﬁ and i an

>

M/M/1/1 queue (Markov chain with 2 states) the loss probability is pioss = 74

Next we compute the probability of waiting and the loss probability for m '3 only. The
stationary state probabilities of the M /M /3 queue satisfy

pz~=%pi—1, i=1,2, pi:%pi—la =34, Zpi:l’
i=0
p i—2 S
pi:pol.fm, i=12, pz:m(%) ) 1= 20.m, and ;pi:msig
from which
Puwait = Zfig pioo - 3%_; 32—5)\ :
po+pL+ D oD 1+ﬁ+2/\733—5

The stationary state probabilities of the M/M/3/3 queue (Markov chain with 4 states)
satisfy

3
A .
pi:mpifla Z:172737 ZP@ZL
i=0
from which
3
D3 3%—,13

Ploss Po + P1 + P2 + 3 1+ﬁ+%+%.

In both cases the waiting probability is larger than the loss probability because the Markov
chains spend the same amount of time in the 0,...,m —1 part of the state space, but in case
of M/M/m queue the Markov chain spends more time in the other part of the state space,
which is composed by infinitely many states, than in the case of M/M/m/m queue, when
the other part of the state space is composed by a single state.
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Exercise 7.10. A complex system is composed by two main units. The failure and the repair
time of unit i, ©+ = 1,2, are exponentially distributed with parameter \; and p;, respectively.
The units are maintained by a single repairman. Define the Markov chain of the system be-
havior if the service discipline of the repairman is FIFO, preemptive LIFO, processor sharing,
if the repair of unit 1 has a preemptive priority over the one of unit 2, if the repair of unit
1 has a non-preemptive priority over the one of unit 2.

Solution 7.10.

Processor sharing Preemptive priority of unit 1

The non-preemptive priority of unit 1 is identical with the FIFO case, because the repair-
man does not interrupt the ongoing service process and at the time when the ongoing service
process is completed there is only only one failed unit to repair.

Exercise 7.11. Customers of a discrete time queueing system (under service and waiting)
can be lost. Fach customer is lost with probability r in each time slot. One customer arrives
with probability p (and with 1 —p no customer arrives) in each time slot and the service time
s geometrically distributed with parameter q. Compute the probability of successful service
completion if the buffer size is 3.

Solution 7.11. The following DTMC describe the system behavior,
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with transition probabilities

Diji+1 = (1 - q)p?“(i, 0)’
pii = qpr(i,0) + (1 = q)(1 = p)r(3,0) + (1 — ¢)pr(i, 1),
pii-1 = qpr(i, 1) +q(1 —p)r(i,0) + (1 —¢)(1 = p)r(i, 1) + (1 — q)pr (7, 2),
iof i>2

ey

where r(i, j) denotes the probability that j customers are lost in a time slot, when there are
1 customers in the system at the beginning of the time slot. The number of lost customers is
binomially distributed with parameters i,r, that is, r(i,5) = (;)rj(l — )i,

The transition probabilities are determined by the distribution of the number of served
customers, Y, the number of arrived customers, V, and the number of lost customers, Z.
Which are Beroulli distributed with parameters q, Beroulli distributed with parameters p and
in case of i customers binomially distributed with parameters i,r, respectively. When there
are i customers 2x2x (i+1) cases needs to be evaluated to obtain the transition probabilities.
The evolution equation presents a rather compact way to describe the same DTMC. Let X,
be the number of customers in the system in time slot n and Y, Z,, V, the number of served,
lost and arrived customers in time slot n, than

X, = min(max(X,_; — Y, — Z,,0) + V,,,3) .
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Chapter 8

Non-Markovian queueing systems

Exercise 8.1. There is an M/G/1 queue. The arrival intensity is A and the service time
1s exponentially distributed with parameter ps with probability 1 — p and it is the sum of
two independent exponentially distributed random variable with parameters py, and po with
probability p.

o Compute the utilization of the server.
o Compute the coefficient of variation of the service time.
o Compute the mean system time of customers.

o Compute the mean number of customers in the buffer.

Solution 8.1.

o Let S be the service time and S; be exponentially distributed with parameter p;. The
mean service time and the utilization are

E(S)=(1—-pE(S) +p(E(S +5)) =1 - p)i +p (i + i) ., p=2AE(S) .

e The second moment and the coefficient of variation of the service time are

E(S?) = (1 = p)E(S}) + p (E((S1 + 5»)?)) =
= (1 = p)E(S}) +p (E(S?) + 2E(S1)E(S:) + E(53)) =
2 2 2 2
=g (it )
cv(s) = B
E(5)

E(T) = E(S) (1+1fp HCQV(S)) .

o The mean waiting time and the mean number of customers in the buffer are

p 14+ CV(S)
1—p 2 ’

E(W) = E(S) E(Lw) = AE(W).
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An alternative solution of the exercise is to recognize that the service time is PH dis-
tributed with representation

ﬁ:{pal_p}aB: e e

Based on the PH representation of the service time we can apply the analysis of the M/PH/1
queue for which closed form expressions are available.

Exercise 8.2. Customers arrive to a dentist according to a Poisson process with intensity
A. Arriving customers enter the dentist’s surgery if it is idle, otherwise they wait in the
waiting room. At the dentist’s surgery there is a registration of time D (deterministic). With
probability p the patient is directed to the dentist for treatment which takes an exponentially
distributed time with parameter p, with probability 1 — p the patient is rejected.

o Compute the mean time of customers in the waiting room.
o Compute the probability that an arriving customer has to wait.

o Compute the mean waiting time.

Solution 8.2.

o Let S be the service time and St be the treatment time which is exponentially distributed
with parameter p. The mean service time and the utilization are

1
E(S) =D+ pE(Sr) =D —i—p; ., p=AE(S) .
The second moment and the coefficient of variation of the service time are

2
E(S?) = D* 4+ pE(S2) = D* + pE

E(S?
vis)= 25
E(5)
Based on these quantities the mean waiting time s
1+ CV
E(W) = B(s) £ LECVE)
1—p 2

e The probability that an arriving customer has to wait can be computed from the uti-
lization of the system as follows

P(waiting) =1 —p .
o The waiting time s the time a customer spends in the waiting room.

Exercise 8.3. F4(t) is the inter-arrival distribution in an G/M/1 queue whose service rate
is w. N(t) is the number of customers in the system at time t and T1,Ts, ... denote the
arrival instances of the first, second, etc. customers. The mean of the stationary number of
customers is N = lim;_,o, E(N(t)) and the mean of the stationary number of customers at
arrival instances is N = lim,,_,o. E(N(T,,—)). Compute the relation of N and N if
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o inter-arrival distribution is hyper-exponential (F4(t) = 1 — pe*t — (1 — p)e???),
e inter-arrival distribution is deterministic,

e inter-arrival distribution is exponential.

Solution 8.3. N denotes the mean number of customers in a G/M/1 queue at a random
time instant and N denotes the mean number of customers right before an arrival instance.
The arrival process is not a Poisson process and consequently PASTA property does not
hold. That is, the distribution of the number of customers at a random time instant and
the distribution of number of customers right before an arrival instance are different (in
general). On page 263 we have that the number of customers right before arrivals, N(T,—),
is geometrically distributed with parameter 2*, that is P, = P(N(T,,—) = () = 2**(1 — 2*),
where z* is the solution of z* = A™(u — 2*u) and A~ (s) is the Laplace Stieltjes transform of
Fy(t), A~(s) = [,e *"dFa(t).

The N(t) process, number of customers in the G/M/1 queue at time t, is a Markov
regenerative process with regeneration instances at customer arrivals. The relation of the
distribution at a regeneration instance and at a random time instance is provided on page
162. The stationary distribution (at random time) can be computed from the embedded
distribution as:

2 B
> B ’
where T; is the mean time to the next embedded instance starting from state j, and 7j; is the

mean time spent in state k before the next embedded instance starting from state j as it is
indicated in the following time diagram.

Tk

(8.1)

u(®) ‘
377

O

t

Denoting the mean arrival intensity by X, we have A = 1/ [,1 — Fa(t)dt. In a G/M/1
queue the embedded instances are the arrival instances, and 7; = 1/X for all i > Ois the
mean inter-arrival time. The following diagram details the stochastic process between arrival
instances in order to compute Ty.

analysis ofl21 ‘ = ‘
_—
T
uy ===
3 . .
time to arrive level 1
2 | / time spent in level 1 before arrival or departure
// next departure
T next arrival
—_————=|
—

50



In the figure T is the sum of i + 1 — k service times and it has an Erlang(i + 1 — k, )
distribution. Using that we have

o) t t—1
Tik = / / / e M dx fErl(i—i—l—k) (7') dr dA(t)
t=0 J717=0 J =0

Tio = /t:o /Tzo(t —7) fer@rig(T) dr dA(1)

Note the level independent behavior of 7y, that is Tk, = Tivjk+s, VJ > 0 and Vk>0.
Computing Ty and substituting into (8.1)) results in

and

To=1—p and my=p(l -z k>1,

where p = j\i.

Based on the stationary behavior at random instance we can compute the mean number
of customers in the queue, N = L, the mean system time, T, the mean number of waiting
customers, Ly, and the mean waiting time

- - L 1 1
N=L=Yim=—"— 7=2== ,
P T =z Ao L=z
OO. ,OZ* LW 1 z*
L =§ —Dmp=—"—, W="FH=—- "
W (i = Do 1—27 A pl—z*"

i=1

and the mean number of customers in the queue right before arrivals is

. oo_ ¥
N:;zﬂzl_z*

Special G/M/1 queues

e cxponentially distributed inter-arrival time — M/M/1 queue:
A

A™(s) = 5+ A

A

=AY — ') = ———
(1 —2z"p) Y

A
and its valid (inside the unit disk) solution is z* = — = p. z* =1 is also a solution of
1

the equation but it is not valid.

e [Lrlang(\,2) distributed inter-arrival time — Ey /M/1 queue:

A™(s) = (s J)\r )\)2
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o deterministic inter-arrival time — D/M/1 queue:
A~(s) =e P
p=1/uD, 2" =A~(u—z'p)=e P07

e hyper-exponentially distributed inter-arrival time — Hy /M/1 queue:

MM n P22
8"—)\1 S+)\2

A~(s) =

- 2A
Assuming py = pa = 0.5, and \y = 2\y = X\ = 1, we have A = 5 p =

. 9 1 902 1
=t Ve T

Exercise 8.4. Find the mean value of number of customers in the system and in the waiting
queue in the M/G/1 system. Let us consider the cases of of M/M/1 and M/D/1 systems.

Solution 8.4. The mean value of number of customers is computed on page 236. For the
mean value of number of waiting customers we have

;(k_l)pk:;kpk_;]%:p-i—%—p
_ NE(Y?)
S 2(1—p)°

In case of the M/M/1 system the second moment of service time is E(Y?) = % By
using this value the main queue length is

AE(Y?)
2(1-p)

A
p+ ==+
W

The main number of waiting customers is

S D= k=Y p=pt i)
k=1 k=1 k=1 2(1=p)
B /\QE(Y2) B /\2 B p2

C20-p) pp=A) 1-p
These values can be computed knowing that for the M /M /1 system the stationary distribution
1s geometrical. The mean value of number of customers is




1 1 B 0>
1—p? 1-p] 1-p
Let the service time be equal to T in the M/D/1 system, then p = XT, E(Y?) = T?. The
mean value of number of customers in the system is

=(1—=pp (

NE(Y?) . NT

P o=y 2(1 - \T)

20T - NT? p(2—p)
21— 20T)  2(1—p)’

the mean value of waiting customers

)\2E(Y2) )\2T2 p2

21 —p) 2(1-XT) 201 -p)

Exercise 8.5. By using the Pollaczek-Khinchin transform equation show that in the M/M/1
system the equilibrium distribution is geometrical.

Solution 8.5. Use the fact that for the distribution of service time

~ —~ - H
b~ (s)= [ e *pe "de = .
()= [ e T

0
Exercise 8.6. Let us consider the M/G/1 system with bulk arrivals, an arriving group
with probability g; consists of i customers. Show that the generating function of number
of customers entering during time t is e 1=CE) where \ is the intensity of arrivals and

G(z) = ; gizt.

Solution 8.6. Let P;(k) denote the probability of event that in i groups together appear k
customers. For the generating function of entering customers we have

Exercise 8.7. Show that in the M/G/1 system with bulk arrivals the generating function of
number of customers arriving for the service time of a customer is b~ (A(1 — G(z)), where
b~(s) is the Laplace-Stieltjes transform of distribution function of this service time.
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Solution 8.7. Let P;i(k) has the same meaning as in the previous exercise. We have

_ ; (Aﬁ)ZeAwGi(z)dB@)
B /Z [AxCZ(Z)]Z N dB(z) = B (A1 — G(2))) = ZCJZ]
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Chapter 9

Queueing systems with structured
Markov chains

Exercise 9.1. Define a MAP representation of the departure process of an M/M/1/2 queue
with arrival rate A and service rate .

Solution 9.1.

- A
D, = —A—p| A D, =\ p
—p 1
Exercise 9.2. Define a ]\A/[APA representation of the departure process of a MAP/M/1/1
queue with arrival MAP (Dg, D) and service rate .

Solution 9.2.

D, — D, D, . D, - 010
pl | Do + Dy — pul pd |0
Exercise 9.3. Define a MiﬁlP representation of the customer loss process of a MAP/M/1/1
queue with arrival MAP (Dg, D) and service rate p.

Solution 9.3.

D, — D, D, . D, - 0] 0O
ILLI DO — /LI 0 D]_
Exercise 9.4. Compute the generator of the CTMC which describes the number of customers
and the phase of the arrival PH distribution in a PH/M /1 queue if the representation of the

PH distributed inter-arrival time is (o, A), with o = (1,0) and A = ( —Oa 01/72 ) and the
service rate 18 L.
Solution 9.4.
—a of2| a2 0 0 0 0 0
0 — | = 0 0 0 0 0
w0 |—a—p a2 a/2 0 0 0
0 W 0 -y — U v 0 0 0
0 0 0 —a—pn  «wf2 |a/2 0
0 0 0 W 0 -y = v 0
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Exercise 9.5. Compute the generator of the CTMC which describes the number of customers

and the phase of the service PH distribution in a M/PH/1 queue if the arrival rate is A and

the representation of the PH distributed service time is (8, B), with = (1/3,2/3) and
_( —H M

B- ( o )

Solution 9.5. Solution 1: If the idle state of the queue is represented with a single state of

the Markov chain then the generator is

—A| A/3 2)\/3 0 0 0 0
0 |- A—pu 1 A 0 0 0
~y 0 —A—7 0 A 0 0
0 0 0 —“A—pu L A0
0 v/3 2v/3 0 A= 0 A
0 0 0 "

0 0 0

Solution 2: If the idle state of the queue is represented with two states of the Markov
chain then the generator is

-A 0 A 0 0 0 0 0
0 =X 0 A 0 0 0 0
0 0 |—A—p 1 A 0 0 0

v/3 2v/3 0 —A—7 0 A 0 0
0 0 0 0 —A—u L A0
0 0 v/3 2v/3 0 “A—=7] 0 A
0 0 0 0 '

0 0 0 0

Exercise 9.6. The packet transmission is performed in two phases in a slotted time com-
munication protocol. The first phase is the resource allocation and the second is the data
transmission. The times of both phases are geometrically distributed with parameters q; and
q2. In every time slot one packet arrives with probability p (and no packet arrives with
probability 1 — p). Compute the probability of packet loss if at most 2 packets can be in the
system.

Solution 9.6. The service time distribution is indeed a discrete PH distribution with repre-
l1—aq a1

sentation
ﬁ:(l,O)andB:( 0 1_q2),

and the queueing system is a discrete time M/PH/1/2 queue. The following DTMC charac-
terize its behavior,
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%P

where pg = 1 —p and state i, j indicates that there are © customers in the system and the
service process of the customer in service is in phase j. The probability of packet loss is

p2ap + p22(l — @2)p
Ploss = 21 2]92( 2) =DP21 +P2,2(1_Q2)>

where p; ; denotes the stationary probability of state i, j.

Exercise 9.7. Requests arrive to a computer according to a Poisson process with rate \. The
service of these requests requires first a processor operation for an exponentially distributed
amount of time with parameter . After this processor operation the request leaves the
system with probability p or requires a consecutive disk operation with probability 1 — p.
The time of the disk operation is exponentially distributed with parameter us. After the disk
operation the request requires a processor operation as it was a new one. There can be several
loops of processor and disk operations. The processor is blocked during the disk operation
and one request is handled at a time.

Compute the efficient utilization of the processor, and the request loss probability if there
s no buffer in the system.

Compute the efficient utilization of the processor, and the system time of the requests if
there is an infinite buffer in the system.

Solution 9.7. Similar to the previous exercise the service time distribution is a continuous
PH distribution with representation

(1,0) cmdB:(_’ul “1(1_p)) ,

6 M2 —H2

and the queueing system is a (continuous time) M/PH/1/1 queue if there is no buffer and
an M/PH/1 queue if there is an infinite buffer. The related CTMCs are as follow.

A
(o0l p (11
le(1—|o)11

M/PH/1/1 queue

Y



M/PH/1 queue

State 1, j indicates that there are i customers in the system and the service process of the
customer in service is in phase j and p; ; denotes the stationary probability of state i, j.
In case of no buffer the effective utilization of the server and the loss probability are

p = Dpi1 and Prss = P11 + P12,

and in case of infinite buffer the effective utilization of the server and the loss probability are

p= me and piss = 0.

i=1
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Chapter 10

Queueing networks

Exercise 10.1. In the depicted queueing network the requests of input A are forwarded
towards output B according to the following traffic routing probabilities p = 0.3,q; = 0.2, qo =
0.5,q3 = 0.3.

A2 R1 P R2
1-p
4
R3 % R4 B
%

The requests from input A arrive according to a Poisson process with rate A = 50. The
service times are exponentially distributed in nodes R1, R2, R3 with parameters p1; = 90, ps =
35, n3 = 100, respectively. The service time in R4 is composed of two phases. The first phase
15 exponentially distributed with parameter g = 400 and the second phase is deterministic

with D = 0.01.
o Compute the traffic load of the nodes.

o Compute the mean and the coefficient of variation of the service time at node R4.

o Compute the system time at each node.

o Compute Ao at which the system is at the limit of stability.

Solution 10.1.

o The following traffic equations characterize the traffic load of the nodes.
A=A A =pAi+ @Az Az = (1= p)Ai + @33 A= Ao+ @As.
With the given probabilities the solution of the traffic equations is
M= A=X/2; Ag=X; A=A
o The service time at node R4 is the sum of independent random variables, Sy = X + D,

where X 1s exponentially distributed and D is deterministic.
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1 1 1

B(Si) = B(X + D) = B(X) + B(D) = ;0o + 10 = o
CV(S,) = Var(S;) Var(X)+ Var(D)  (1/400)*4+0 1
YTEG)?. T E(X+D)? (1/400 + 1/100)2 25

The service time at node R1, R2, R3 is exponentially distributed with mean E(S;) =
1/, E(S2) = 1/ua, E(S5) = 1/us, respectively. Since the service time at node R/
18 non-exponential we compute the system time based on the Pollaczek-Khinchin mean
value formulae

1+ CV(S))

1 =1,2,3,4
2 ) ? It I N

B(T) = B(S:) + T2 B(S)

where p; = NE(S;) and the coefficient of variation of the exponential service time is

CV(S)) = CV(S,) = CV(S;) = 1.

The utilization of the nodes as a function of A are
A /\/2 A
=ME = — A E =
P1 1E(S1) 90,P2 2 E(52) = 35 70’
A A
p3 = A3E(S3) = Too' P4 = ME(Sy) = 20"

Consequently the limit of stability is Apee = 70, because node R2 gets instable at that
load.

Exercise 10.2. In the depicted queueing network the requests of input A are forwarded
towards output B according to the following traffic routing probabilities p1o = 0.3, p13 = 0.7.

A 1/1@% B
\jm@/

The requests from input A arrive according to a Poisson process with rate A = 50. In nodes
R1, R2 and R3 there are single servers, infinite buffers and the service times are exponentially
distributed with parameters py = 80, uy = 45, u3 = 50, respectively. There are two servers
and two additional buffer at note Rj. Both of servers can serve requests with exponentially
distributed service time with parameter py = 40.

Characterize the nodes with the Kendall’s notation.
Compute the traffic load of the nodes.

Compute the system time at each node.

Compute the utilization of the servers at Node R4.

Compute the packet loss probability.
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o Compute the mean time of a request from A to B.

o Which node is the bottleneck of the system? Which node saturates first when X\ in-
creases?

Solution 10.2.

e There are M/M/1 queueing systems at Node R1, R2, R3, and an M/M/2/} at Node
R4

A=A A =pieAi; A3 =pisA; A= Ao+ As.
With the given probabilities the solution of the traffic equations is

o The system time at the M/M/1 type nodes are

E(}) = E(S) + 1 f"p E(S). i=1,2.3,

where p; = NE(S;) = Ni/pi. The systems time at the M/M/2// type node can be
computed based on the stationary solution of the following CTMC (denoted as p;).

)\4 )\4 )\4 )\4
— — — e .
° Ha Q Ha M&“/@

The system time at Node R/ is

4
E(Ty) = L4/ )\, where Ly = Zz’pi, A= A1 —py).

i=0
o The utilization of the servers at Node R4 is 1 — py.

o There is no packet loss at Node R1, R2, R3. Packetls are only lost at Node R/ with
probability py. Due to the fact that all packets goes to Node R4, the overall packet loss
probability is py as well.

o A packet take the path through nodes R1, R2, R/ with probability p1o and through nodes
R1, R3, R4 with probability p13, consequently

E(T) = P12 (E(Tl) + E(Tg) + E(T4)) + D13 (E(Tl) + E(Tg) + E(T4)) .

e Node R/ never saturates because it has finite buffer. The utilization of the other 3
nodes are

03\ A 0.7) A
15 = 150 P = MBS = 4 714

Node R3 is the bottleneck which saturates first at around A = 71.4.

A
p1 = )\1E(51) = %7,02 = >\2E(52) =
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Chapter 11
Applied queueing systems

Exercise 11.1. A transmission link with capacity C = 5MB/s serves two kinds of CBR
connections. Type i connections arrive according to a Poisson process with rate \; and occupy

¢; bandwidth of the link for an exponentially distributed amount of time with parameter u;
(i=1,2), where ¢y = 1MB and ¢y = 2MB.

1. Describe the system behavior with a CTMC and compute the loss probability of type 1
customers if Ay = 0.

2. Describe the system behavior with a CTMC when both A\; and Xy are positive and
compute the loss probability of type 1, type 2 connections and the overall loss probability
of connections.

3. Which loss probability is higher the one of type 1 or the one of type 2 connections?
Why?

4. Compute the link utilization factor when both arrival intensities are positive.

5. Compute the link utilization of type 1 and type 2 connections.

Solution 11.1. e When Ay = 0 we obtain an M/M/5/5 queueing system with the num-
ber of type 1 connections and the loss probability is loss; = ps .

o When Ay > 0 we need to keep track the number of ongoing connections. The states of
the Markov chain are identified by the number of ongoing type 1 and type 2 connections.
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Type 1 connections are lost in states (1,2), (3,1), (5,0), while type 2 connections are
lost in states (1,2), (3,1), (5,0), (0,2), (2,1), (4,0). The related loss probabilities are

loss; = p12+ P31 + P50, (08S2 = P12+ D31 + D50+ Po2 + P21+ Pao

and the overall loss probability is

loss = p1ao+p31+pso+ (Po2 + P21 + Do),

A2
A1+ A
where p; ; denotes the stationary probability of state (i, 7).

The loss probability of type 2 connections is higher, because type 2 connections are lost
in more states than type 1 connections.

Link utilization is obtained by weighting utilized bandwidth with the associated state
probabilities
300 D=0 Piy(i IMB + j 2MB)
B 5MB '

The link utilization of type 1 and 2 connections are

Yo Xopig i IMB 30 3T iy j 2MB

Exercise 11.2. There is a transmission link with capacity C' = 13MB/s, which serves adap-
tive connections. The connections arrive according to a Poisson process with rate A and their
length is exponentially distributed with parameter p. The minimal and mazimal bandwidth
of the adaptive connections are Cpim = 2MB/s and ¢y = 3MB/s, respectively. Compute
the average bandwidth of an adaptive connection in equilibrium.

Solution 11.2. The adaptive connection arrive and depart according to the number of cus-
tomers in an M/M/6/6 queueing system, but the bandwidth of the active connection changes
with the arrival and departure of other connections. The Markov chain indicates the number
of active connections as well as the bandwidth utilization.
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1*3MB 2*3MB 3*3MB 4*3MB 5*13/5MB 6*13/6MB

The mean bandwidth of an adaptive connection is

4
E(S4) =) p; i 3MB + p5 5 13/5MB + pg 6 13/6MB,

i=1
where p; denotes the stationary probability of state i.

Exercise 11.3. There is a transmission link with capacity C = 13MB/s, which serves elastic
connections. The connections arrive according to a Poisson process with rate A\ and during an
elastic connection an exponentially distributed amount of data is transmitted with parameter
v. The minimal and mazimal bandwidth of the elastic connections are ¢pi, = 2MB/s and
Cmaz = 3MB/s, respectively. Compute the average bandwidth of an elastic connection in
equilibrium. Compute the average time of an elastic connection in equilibrium.

Solution 11.3. The elastic connection arrive according to a Poisson process, but their de-
parture rates depend on the bandwidth utilization. The bandwidth of the active connection
also changes with the arrival and departure of other connections. The following Markov
chain indicates the number of active connections as well as the bandwidth utilization.

1*3MB 2*3MB 3*3MB 4*3MB 5*13/5MB 6*13/6MB

The mean bandwidth of an elastic connection is

4
E(Sp) = p; i 3MB +p5 5 13/5MB + pg 6 13/6MB,
i=1

where p; denotes the stationary probability of state v. It seems similar to the bandwidth of the
adaptive connection in the previous exercise, but the p; probabilities differ in the two Markov
chains.

The average time of an elastic connection is PH distributed with the following represen-
tation.

Po/(16 ) P,/(16 ) Po/(1Pg)  Pa/(1Pg) P /(1) Ps/(1g )

403/5y 513/6y
3y 13/5y 13/6 y
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The number above the states indicate the associated initial probabilities an the downward
arrows indicate the transitions to the absorbing state. This PH representation describes the
sojourn of a randomly chosen tagged customer in the system. The arrival rate is independent
of the number of connections. The probability that the tagged connection arrives to the system
when there arei (i =0,...,5) connections is proportional to p;. The connections arrive when
there are 6 active connections are lost and the probabilities are normalized for the states in
which incoming connections are accepted. If an arrival occurs when there arei (i =10,...,5)
ongoing connections then after the arrival there will be 141 active connections. The Markov
chain of the PH distribution describes the behavior of the system up to the departure of the
tagged connection. When there are i connections in the system 1/i portion of the utilized
bandwidth is associated with the tagged connection with terminates with a rate proportional
with its instantaneous bandwidth.

Exercise 11.4. A transmission link with capacity C = 3MB/s serves two kinds of elastic
connections. Type 1 connections arrive according to a Poisson process with rate A\ = 0.5
1/s, transmit an exponentially distributed amount of data with parameter vy =4 1/MB. The
minimal and mazimal bandwidth of type 1 connections are ¢, = 1MB/s and ¢, = 1MB/s.
Type 2 connections are characterized by Ao = 0.1 1/s, v = 2 1/MB, ¢, = 1MB/s and
¢o = 2MBYs.

a. Describe the system behavior with a CTMC.

b. Compute the mean number of type 1 and type 2 connections.
c. Compute the mean channel utilization.

d. Compute the loss probability of type 1 and type 2 connections.
e. Compute the average bandwidth of type 2 connections.

Solution 11.4.  a. Describe the system behavior with a CTMC.

b. Compute the mean number of type 1 and type 2 connections.

E(Xy) = Zzipz’j , B(Xy) = Zijzj-

i
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c. Compute the mean channel utilization.
p=1—poo —2/3pio — 1/3(pa0 + po1)
d. Compute the loss probability of type 1 and type 2 connections.
Dioss = Ploss1 = Ploss2 = P03 T P12 + P21 + P3o-

e. Compute the average bandwidth of type 2 connections.

c, — number of connections and the bandwidth of the connections _
number of connections

1-2-ppn+2-15-po+3-1-pos+1-2-pu+1-1-poy+1-1-py

B E(Xs) '

Exercise 11.5. A transmission link with capacity C' = 3MB/s serves two kinds of connec-
tions an elastic and an adaptive. Type 1 elastic connections arrive according to a Poisson
process with rate Ay [1/s], transmit an exponentially distributed amount of data with parame-
teryy [1/MB]. The minimal and mazimal bandwidth of type 1 connections are ¢, = 0.75MB/s
and ¢, = 1.5MB/s. Type 2 adaptive connections arrive according to a Poisson process with
rate Ay [1/s] and stay in the system for an exponentially distributed amount of time with pa-

rameter uy [1/s]. The minimal and mazimal bandwidth of type 2 connections are ¢o = 1MB/s
and ¢y = 2MBY/s.

a. Describe the system behavior with a CTMC.
b. Compute the loss probability of type 1 and type 2 connections.
c. Compute the average bandwidth of type 1 and type 2 connections.

d. Compute the mean number of type 1 and type 2 connections on the link.

Solution 11.5.  a. Describe the system behavior with a CTMC.

b. Compute the loss probability of type 1 and type 2 connections.

Dlosst = P40 + P21 + P12 + Po3,  Dioss2 = Pao + P3o + P21 + P12 + Dos,

(A A2)(pao + pa1 + pr2 + pos) + Aapao
DPioss = ’
AL+ Ao
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c. Compute the average bandwidth of type 1 and type 2 connections.
¢1 = 1pia + 1.5(p1o + p11) + 3(p20 + Pso + Pao),
Co = 1pay + 1.5p11 + 2(p12 + po1) + 3(po2 + pos),

d. Compute the mean number of type 1 and type 2 connections on the link.

E(X;) = Z Z ipi; = (P10 + P11+ Pr2) + 2(p2o + P21) + 3p30 + 4pao,
(2N

E(X,) = Z ijij = (po1 + p11 + p21) + 2(po2 + P12) + 3pos,
i
Exercise 11.6. Compute the mean value of waiting time in the cyclic-waiting system.
Solution 11.6. The generating function of waiting time (measured in cycles) is
A 1—e T
P = [1—— X
(2) [ e (1 — e“T)}

poo opl—e?M) 2

» A p Ap  z—e M
A1 — e+ z p(l—e?) 2
A p 1 —ze#T Atp  z—e M
Introducing the notations
1— =T
Az) = P p(l—e™) = |
A+ 1 Atp  z—eT
B(») A=) 2 Cpl=eM) 2 |
Ap 1 —ze T Apu  z—e T

the mean value of number of cycles is
, A 1—eM A'B— AB’
lim |1 — ——= .
21 pe (1 — enT) 2B?

By using twice [’Hospital’s rule and taking into account

A/B _ AB/ A//B/ _ A/B//
i T g
A1) = pe
(A+p)(1—e )’
A// 2/‘L€_>\T
[ rd
AT
B(1) = — A + re ,
A+m)d—e ™) (A+p)(l—e?T)
B'(1) = — 2 e HT B 2pe
T TOEAl e R (I - e TR
we finally obtain
1 — e~ A+WT
P(1) = AL —em |

(T = M) e (1= ) = N1 =]
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Exercise 11.7. Let us consider our cyclic-waiting system in case of discrete time. Divide
the cycle time T into n equal parts and suppose that for an interval T'/n a new customer
enters with probability r (there is no entry with probability 1 — r ), the service in process for
such an interval is continued with probability q and completed with probability 1 — q (i.e.
the service time has geometrical distribution). The service may be started at the moment of
arrival or at moments differing from it by the multiples of T'.

(a) Show that the number of customers in the system at moments ty—0 constitute a Markov
chain, find its transition probabilities.

(b) Find the generating function of number of customers in the system in equilibrium and
the stability condition.

Solution 11.7. (a) Similarly to the continuous time case we will consider two possibilities:
at the beginning of service there is one customer in the system or there are at least two
customers in the system.

The case of one customer. We begin the service of the customer and after a certain
time the second one arrives. Let u be the service time and the second customer appears at
time v after the beginning of service. The remaining service time is £ (€ = 0,1,2,...) with
probability

Plu—v=1{(} = Z ¢ -(1 =) = %

We find the time from the entry of second customer till the beginning of its service. It is 0 if
the customer arrives during the last time slice of the first customer’s service, n if u—v belongs
to the interval [1,n], 2n if u —v € [n+ 1,2n|, and, generally, in if u—v € [(i — 1)n+ 1,in].
The corresponding probabilities are

in

T(]'_Q)qg rq i—1)n mn
2 Teq-n T )
t=(i—1)n+1

The generating function of number of customers arriving for a time slice is 1 —r + rz, so
the generating function of customers entering for the waiting time s

Z 7"q< q ) q(zfl)n(l — 4+ ,],,Z)Z’n _ 7"q< r+ TZ) ( q ) )
2T (i) = a(l =1 = (L= +72)7

Taking into account that the first customer obligatorily arrives and the waiting time may be
equal to zero for the generating function of entering customers we obtain

Ny A=n0-g) g r(l—r )l — ")
A= 2o == P Tma-n T -l — (= e
(1-n(i-g)

1—q(1—r)
customers arrive.

where is the probability of event for the service of first customer no further
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The case of at least two customers. At the beginning of service of first customer the
u—1

second customer is present, too. Lel v =u — n ([x] denote the integer part of x),

n
and let y be the mod T interarrival time (1 <y <n). The time elapsed between the starting
moments of two successive customers is

-1 —1
[u }n—i—y if <y and ({u }—I—l)n—i—y if x>y.
n

n

Let us fix y and consider the cycle [in+ 1, (i + 1)n|. If the service of first customer ends till
y (including y), then the time till the beginning of service of second customer is in +y and
the probability of this event is

in+y

Y @ —g) =g =",

j=in+1
in case x >y the time is (1 + 1)n + y and the probability is

(i+1)n

Z qul(l _ Q) _ qiner . q(i+1)n.
j=inty+1

i changes from 0 to oo (the summation is extended for all possible values of service time),
for fized y the generating functions of entering customers in the two cases will be

= . ‘ ‘ 1—7+rz)Y (1—r+rz)¥e
n __ anty 1 — mty ( o
;[q q ]( 7""—7"/3) 1_qn(1_,r_|_7nz)n 1—q"(1—7“+7“z)”’
i n-+ n n+
Z[qiner — (1 — )ity = (1 —r+rz)"ty g (I —r+rz)"ty |
P l—¢"(l—r+4+rz)" 1—q¢"(1—r+rz)"
y has truncated geometrical distribution, it takes on the value k (k = 0,1,2,...,n) with
Lo (L=r)kr
bability ——————.
probability (=)

Consequently, the generating function of transition probabilities is

B(z)zz (1—r)1ty 1

p 1—(1=r)"1—q"(1—7r+rz)"

x[(1—r+r2) — (1 —r+r2)"¢" + (1 —r4r2)" " — (1 —r +rz)"¢"
1= =r)"A=r+rz)"r(l -1 +712)
1—-(1-=r)(1=r+rz) 1—(1—r)»
l—q"(1=r)"A—r+rz)" rq(l —r+rz)[(1 —7r+rz)" —1]
l—gl—r)(1—=r+rz) I1—©0-=r)[1—q¢(1—r+rz)"]
We have seen that, as in the continuous case, the length of interval between two successive

starting moments is determined by the service time of first customer and the interarrival
time of first and second customers, so they are independent random variables. By using the
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memoryless property of geometrical distribution, we obtain the number of customers in the
system at moments just before the beginning of services constitute a Markov chain.

(b) The system is considered at moments just before starting the services of customers.
Let us denote the ergodic distribution by p; (i = 0,1,2,...) and introduce the generating

function by P(2) = >_ piz'. For p; we have the system of equations
i=0

j+1
Dj = Poaj + p1a; + Zpibj—z‘—f—l;
i=2
from which
[e’¢) ' oo j+1 '
ijzj = poA(2) + p1A(2) + Z Zpibjfzﬁrlz]
=0 =0 =2
1 1
= ;P(Z)B(Z) — ;POB(Z) + poA(2) + p1A(z) — ;1 B(2),
or
po) — BEAG) =BG+ pizlA() - B()
z— B(z) '
Since
Po = Polo + P1ao,
we have

_l=ay r
pl - a/O pO - (1 o 7")(1 o q)pO
We find po from the condition P(1) =1

1 - B(1)
+ il

T BEm A A1) = B(1)

The chain is irreducible, so py > 0.

Using the values

, B r nr’q
A = T—qi—n)  T—ql=rll=q)
ey wralt = g (1 =)’
B =1 T I O ) s O R s
we obtain
(4 i) A0 g PO
_ nreq n nri(l—r)" >0,

(1=¢M)1 =gl =7)] (1 =r)1 =1 =)l —q(l—r)
so the condition 1 — B'(1) > 0 must be fulfilled. This leads to the expression

nr(l—r)" nrig[l — ¢ (1 —r)"] -
I—(1=r (A=g¢)I-(0=r)l=q-r]"
From it we obtain the stability condition
rg 1—q"(d—r)"
1—q¢® 1—¢q(1—71)

<(1—mr)"
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