Chapter 2
Introduction to Stochastic Processes

2.1 Stochastic Processes

When considering technical, economic, ecological, or other problems, in several
cases the quantities {X;, ¢t € T} being examined can be regarded as a collection
of random variables. This collection describes the changes (usually in time and
in space) of considered quantities. If the set 7 is a subset of the set of real
numbers, then the set {t € 7} can be interpreted as time and we can say that the
random quantities X; vary in time. In this case the collection of random variables
{X:, t € T}is called a stochastic process. In mathematical modeling of randomly
varying quantities in time, one might rely on the highly developed theory of
stochastic processes.

Definition 2.1. Let 7 C R. A stochastic process X is defined as a collection
X = {X;, t € T} of indexed random variables X, which are given on the same
probability space (22, A, P ()).

Depending on the notational complexity of the parameter, we occasionally
interchange the notation X, with X(¢).

It is clear that X; = X;(w) is a function of two variables. For fixed t € T, X,
is a random variable, and for fixed w € 2, X, is a function of the variable t € T,
which is called a sample path of the stochastic process.

Depending on the set 7, X is called a discrete-time stochastic process if the
index set 7 consists of consecutive integers, for example, 7 = {0,1,...} or 7 =
{...,—1,0,1,...}. Further, X is called a continuous-time stochastic process if 7
equals an interval of the real line, for example, 7 = [a,b], T = [0,00) or T =
(—00, 00).

Note that in the case of discrete time, X is a sequence {X,, n € T} of random
variables, while it determines a random function in the continuous-time case. It
should be noted that similarly to the notion of real-valued stochastic processes, we
may define complex or vector valued stochastic processes also if X, take values in
a complex plane or in higher-dimensional Euclidean space.
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2.2 Finite-Dimensional Distributions of Stochastic Processes

A stochastic process {X;, t € T} can be characterized in a statistical sense by its
finite-dimensional distributions.

Definition 2.2. The finite-dimensional distributions of a stochastic process
{X:, t € T} are defined by the family of all joint distribution functions

Fioo, (X1, o.0,xn) =P Xy, <xi,..., X, < Xp),

wheren = 1,2,...andty,...,t, €T.

The family of introduced distribution functions

e Hoeesty €T, n=1,2,..}

satisfies the following, specified consistency conditions:

(a) For all positive integers n, m and indices ¢y, ..., ty4m € T
llm ... lim Fl‘] ..... Ipslpg-1seees t”+m(xlv---7xnsxn+lv---7xn+m)
Xp41—>00 Xp+4m—>00
=Fy (0 X0), X1y, X0 €ER
(b) For all permutations (iy, ..., i,) of the numbers {1,2,...,n}
FS] ..... Sn(xils--~sxi,,):Fl‘1 ..... l‘n(xlv'--vxn)s x1,...,anR,
where s; = li;, ] = 1,...,n.

Definition 2.3. If the family F of joint distribution functions defined previously
satisfies conditions (a) and (b), then we say that F satisfies the consistency
conditions.

The following theorem is a basic one in probability theory and ensures the
existence of a stochastic process (in general of a collection of random variables) with
given finite-dimensional distribution functions satisfying the consistency conditions.

Theorem 2.4 (Kolmogorov consistency theorem). Suppose a family of distribu-
tion functions F = {F,, ., ti,....t, € T, n =1,2,...} satisfies the consistency
conditions (a) and (b). Then there exists a probability space (2, A, P), and on that a
stochastic process {X;, t € T}, whose finite-dimensional distributions are identical

to F.

For our considerations, it usually suffices to provide the finite-dimensional
distribution functions of the stochastic processes, in which case the process is
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defined in a weak sense and it is irrelevant on which probability space it is given.
In some instances the behavior of the random path is significant (e.g., continuity
in time), which is related to a given probability space (2, .4, P) where the process
{X:, t € T}is defined. In this case the process is given in a strict sense.

2.3 Stationary Processes

The class of stochastic processes that show a stationary statistical property in time
plays a significant role in practice. Among these processes the most important ones
are the stationary processes in strict and weak senses. The main notions are given
here for one-dimensional processes, but the notion for high-dimensional processes
can be introduced similarly.

Definition 2.5. A process {X,, ¢t € T} is called stationary in a strict sense if the

joint distribution functions of random variables

(ths e th) and (Xl‘1+l‘s ey th"rl‘)

are identical for all ¢, positive integer n, and 11, ... , 1, € T satisfying the conditions
ti+teT,i=1,...,n.

Note that this definition remains valid in the case of vector-valued stochastic
processes. Consider a stochastic process X with finite second moment, that is,
E(X tz) < oo, forall t € T. Denote the expected value and covariance functions by

ux(t) =EX;), teT,
Ry (s,t) = cov(Xy, Xy)

E (X, —pux(@)(Xy — ux(s)), s,.t €T.

Definition 2.6. A process {X,, ¢t € T} is called stationary in a weak sense if X,
has finite second moment for all # € 7 and the expected value and covariance
function satisfy the following relation:

ux(@)=px, teT,
Rx(S,t) = Rx(t —5s), s,teT.

The function Ry is called the covariance function.

It is clear that if a stochastic process with finite second moment is stationary
in a strict sense, then it is stationary in a weak sense also, because the expected
value and covariance function depend also on the two-dimensional joint distribution,
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which is time-invariant if the time shifts. Besides the covariance function Ry (¢), the
correlation function ry (¢) is also used, which is defined as follows:

1 1
ry(t) = mRX(I) = ng(l)-

2.4 Gaussian Process

In practice, we often encounter stochastic processes whose finite-dimensional
distributions are Gaussian. These stochastic processes are called Gaussian. In
queueing theory Gaussian processes often appear when asymptotic methods are
applied.

Note that the expected values and covariances determine the finite-dimensional
distributions of the Gaussian process; therefore, it is easy to verify that a Gaussian
process is stationary in a strict sense if and only if it is stationary in a weak sense. We
also mention here that the discrete-time Gaussian process consists of independent
Gaussian random variables if these random variables are uncorrelated.

2.5 Stochastic Process with Independent and Stationary
Increments

In several practical modeling problems, stochastic processes have independent and
stationary increments. These processes play a significant role both in theory and
practice. Among such processes the Wiener and the Poisson processes are defined
below.

Definition 2.7. If for any integer n > 1 and parameters ty,...,t, € T, tH < ... <
t,, the increments
th - XIO’ ceey th - th*l

of a stochastic process X = {X;, t € 7} are independent random variables, then
X is called a stochastic process with independent increments. The process X has
stationary increments if the distribution of X;1, — X;, t,t + h € T does not
depend on .

2.6 Wiener Process

As a special but important case of stochastic processes with independent and
stationary increments, we mention here the Wiener process (also called process
of Brownian motion), which gives the mathematical model of diffusion. A process
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X = {X;, t €]0,00)} is called a Wiener process if the increments of the process
are independent and for any positive integer n and 0 < #y < ... < t, the joint
density function of random variables X, ..., X;, can be given in the form

S0y ene s Xai oy ty) = Q)2 [to(ts — to) ... (ty — ta—1)]?

1 (x2 — xp)2 )2
X expil —= x_0+ (x1 — xo0) +...+(xn Xp—1) '
2\ 1 th—1 ty — th—

It can be seen from this formula that the Wiener process is Gaussian and the
increments
X, =X, j=1,...,m,

are independent Gaussian random variables with expected values 0 and variances
t;—t;—1. The expected value function and the covariance function are determined as

ux (@) =0, Rx(s,t) =min(¢,s), t,s>0.

2.7 Poisson Process

2.7.1 Definition of Poisson Process

Besides the Wiener process defined above, we discuss in this chapter another
important process with independent increments in probability theory, the Poisson
process. This process plays a fundamental role not only in the field of queueing
theory but in many areas of theoretical and applied sciences, and we will deal with
this process later as a Markov arrival process, birth-and-death process, and renewal
process. Its significance in probability theory and practice is that it can be used
to model different event occurrences in time and space in, for example, queueing
systems, physics, insurance, population biology. There are several introductions
and equivalent definitions of the Poisson process in the literature according to its
different characterizations. First we present the notion in the simple (classical) form
and after that in a more general context.

In queueing theory, a frequently used model for the description of the arrival
process of costumers is as follows. Assume that costumers arrive at the system one
after anotheratty < t, < ...;t, — oo as n — oo. The differences in occurrence
times, called interarrival times, are denoted by

Xi=t1, Xo=tb—t1,...., Xy =t, —th—1,....
Define the process {N(t), t > 0} with N(0) = 0 and

N(i)=max{n: t, <t}=max{n: X;+...+ X, <t}, t >0.
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This process counts the number of customers arriving at the system in the time
interval (0, 7] and is called the counting process for the sequence t; < f, < ....
Obviously, the process takes nonnegative integer values only, is nondecreasing, and
N(t) — N(s) equals the number of occurrences in the time interval (s,¢] for all
0<s<rt.

In the special case, when X, X», ... is a sequence of independent and identically
distributed random variables with exponential distribution Exp(4), the increments
N(t) — N(s) have a Poisson distribution with the parameter A(¢ — s). In addition,
the counting process N (7) possesses an essential property, that is, it evolves in time
without aftereffects. This means that the past and current occurrences have no
effect on subsequent occurrences. This feature leads to the property of independent
increments.

Definition 2.8. We say that the process N(¢) is a Poisson process with rate A if

1. N(0) =0,

2. N(t), t > 0is a process with independent increments,

3. The distribution of increments is Poisson with the parameter A(t — s) for all
0<s<t.

By definition, the distributions of the increments N (¢ + h) — N(t),t > 0,h > 0,
do not depend on the moment ¢; therefore, it is a process with stationary increments
and is called a homogeneous Poisson process at rate A. Next, we introduce the
Poisson process in a more general setting, and as a special case we have the
homogeneous case. After that we will deal with the different characterizations of
Poisson processes, which in some cases can serve as a definition of the process. At
the end of this chapter, we will introduce the notion of the high-dimensional Poisson
process (sometimes called a spatial Poisson process) and give its basic properties.

Let {A(?), t > 0} be a nonnegative, monotonically nondecreasing, continuous-
from-right real-valued function for which A(0) = 0.

Definition 2.9. We say that a stochastic process {N(¢), ¢ > 0} taking nonnegative
integers is a Poisson process if

1. N(0) =0,
2. N(t) is a process with independent increments,
3. The CDFs of the increments N () — N(s) are Poisson with the parameter A (¢) —
A(s) forall 0 < s <1, thatis,
A1) — A(s)F
PV~ N = by = BOTRO oo g —gy

Since for any fixed ¢ > 0 the distribution of N(¢) = N(¢) — N(0) is Poisson with
mean A(?), that is the reason that N(¢) is called a Poisson process. We can state
that the process N(f) is a monotonically nondecreasing jumping process whose
increments N(t) — N(s), 0 < s < ¢, take nonnegative integers only and the
increments have Poisson distributions with the parameter (A(z) — A(s)). Thus the
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random variables N(z), ¢t > 0 have Poisson distributions with the parameter A(¢);
therefore, the expected value of N(¢) is E (N(t)) = A(¢), t > 0, which is called a
mean value function.

We also note that using the property of independent increments, the joint
distribution of the random variables N(¢,), ..., N(t,) can be derived for all positive
integers n and all 0 < #; < ... < t, without difficulty because for any integers
0<k <...<k, weget

P(N(t) =ki,....,N(ty) = k)
=P(Nt) =ki.Ntz) —=N(t)) =ka—ki,...,Nty) — N(thm1) = kn —ky—1)

— (At )k oA ﬁ (A(t;) — A(ti—y))kiki= e~ (M) —=A(ii—1))
k! Pl (ki —ki—1)! '

Since the mean value function A(¢) = E (N (t)) is monotonically nondecreasing,
the set of discontinuity points {t,} of A(¢) is finite or countably infinite. It can
happen that the set of discontinuity points {7, } has more than one convergence point,
and in this case we cannot give the points of {z,} as an ordered sequence 7; < 17, <
.... Define the jumps of the function A(¢) at discontinuity points t, as follows:

A=Aty +0) — A(r, — 0) = A(ry) — A(t, — 0).

By definition, the increments of a Poisson process are independent; thus it is easy to
check that the following decomposition exists:

N(t) = N, (1) + Ns(1),

where N, () and N,(z) are independent Poisson processes with mean value
functions

Ar() = A@) =Y Ay and Ag(1) =Y Ay

T, <t T, <t

The regular part N,(¢t) of N(¢) has jumps equal to 1 only, whose mean value
function A, (¢) is continuous. Thus we can state that the process N, (¢) is continuous
in probability, that is, for any point#, 0 < ¢ < oo, the relation

lim P (N, (1 + 5) = Ny(1) > 0) = lim P(N,(t +5) = N;(1) = 1) = 0

is true. The second part N(t) of N(t) is called a singular Poisson process because
it can have jumps only in discrete points {7, }. Then

/\k
P (Ny(t,) — Ny(t, — 0)) = k) = F e M k=0,1,2,....
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Definition 2.10. If the mean value function A(¢#) of a Poisson process
{N(t), t >0} is differentiable with the derivative A(s), s > 0 satisfying
At) = fot A(s)ds, then the function A(s) is called a rate (or intensity) function of
the process.

In accordance with our first definition (2.8), we say that the Poisson process N ()
is homogeneous with the rate A if the rate function is a constant A(¢) = A, ¢ > 0.
In this case, A(t) = Atf, t > 0 is satisfied; consequently, the distributions of all
increments N(z) — N(s), 0 < s < ¢t are Poisson with the parameter A(# — s) and
E(N(t) — N(s)) = A(t — s). This shows that the average number of occurrences
is proportional to the length of the corresponding interval and the constant of
proportionality is A. These circumstances justify the name of the rate A.

If the rate can vary with time, that is, the rate function does not equal a constant,
the Poisson process is called inhomogeneous.

2.7.2 Construction of Poisson Process

The construction of Poisson processes plays an essential role both from a theoretical
and a practical point of view. In particular, it is essential in simulation methods. The
Poisson process N (¢) and the sequence of the random jumping points 1| < t, < ...
of the process uniquely determine each other. This fact provides an opportunity to
give another definition of the Poisson process on the real number line. We prove that
the following two constructions of Poisson processes are valid (see, for example, pp.
117-118 in [85]).

Theorem 2.11 (Construction I). Let X1, X»,... be independent and identically
distributed random variables whose common CDF is exponential with parameter 1.
Define

o0
M(t) =" Tix gt xpziys £ = 0. @.1)

m=1
Then the process M(t) is a homogeneous Poisson process with an intensity rate
equal to 1.

Theorem 2.12 (Construction II). Let Uy, U,, . .. be a sequence of independent and
identically distributed random variables having common uniform distribution on the
interval (0, T), and let N be a random variable independent of U; with a Poisson
distribution with the parameter AT . Define

N
NO =Y Tw,<y. 0=t <T. 2.2)

m=1

Then N(t) is a homogeneous Poisson process on the interval [0, T'] at rate A.
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We begin with the proof of Construction II. Then, using this result, we verify
Construction L.

Proof (Construction II). Let K be a positive integer and 71, . . . , fx positive constants
such that 7y = O <t <t <...<tg =T.Since, by Eq. 2.2), N(T) = N

and N(t) = Z Ziv, <1} the increments of N(¢) on the intervals (fx—1, %], k =

I,...,K,can be given in the form

N
N(tk) - N(tk—l) = ZI{[,(_1<U”§[,(}, k = 1, ey K.

n=1

Determine the joint characteristic function of the increments N () — N(#x—1). Let
sk €R, k =1,..., K, be arbitrary; then

K
¢(s1.....5x) = E (eXP { Y isk(N(@w) — N(¢k—1))§ )
k=1

00 K
P(N =O)+ZE(expgZisk(N(tk)—N(tk_l))} ‘N =n)P(N =n)

n=1 k=1

= ‘”+ZE(exp{ZUk ZI{Ik 1<Ul<tk}})P(N =n)
k=1
o n K
. AT _
=e ”—FZHE(eXP{Z I8k Ly 1<Ue<’k}}) ( n!) <

n=1/(=1

) K
_ —ATZ(Z — bt lSk> (A:') :e‘”exp{Ze”"k(tk—tk—O},

n=0 \k=1 k=1

K
and using the relation 7' = tx —fo = Y (tx — tx—1) we get
k=1

K
@(s1,...,5k) = l_[ exp {A(fx — fr—p) (€™ — D}

k=1

Since the characteristic function ¢(sy, . . ., sx ) derived here is equal to the joint char-
acteristic function of independent random variables having a Poisson distribution
with the parameters A(tx — tx—1), k = 1,..., K, the proof is complete. O

For the proof of Construction I we need the following well-known lemma of
probability theory.
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Lemma 2.13. Let T be a positive constant and k be a positive integer. Let
Ui, ..., U be independent and identically distributed random variables having a
common uniform distribution on the interval (0, T). Define by Uy, < ... < Uk
the ordered random variables Uy, . .., Uy. Then the joint PDF of random variables
Ui, ..., Upr is

Hoifo<nzn<..<u<T.

Uie U 1y ooy 1) = .
Sorge v (B ) 0, otherwise.

Proof. Since Uy < ... < Uy, it is enough to determine the joint PDF of random
variables Uy, ..., Urr on the set

K={t,....tp,): 0<t; <...<tp <T}.

Under the assumptions of the lemma, the random variables Uy, ..., Ui are inde-
pendent and uniformly distributed on the interval (0, 7'); thus for every permutation
i1,...,ix of the numbers 1,2,..., k (the number of all permutations is equal to k!)

P(U, <...<U.Uy <t1,....Uy, <i)
=P, <...2U., U =t,....Ur = tp),

then

Foyog (o ) =P U <t1,..., Uk < k)
=klPU <...2U, U <ty,....Ur )

5] 179
1
= k' e Fz{ttlfnnfuk}duk e du1
0 0
n 1

k!
zﬁ//.../duk...dul.

0 u Uf—1
From this we immediately have

|

SO (1o ) = ﬂ (tr,....tx) €K,

which completes the proof.

O
Proof (Construction I). We verify that for any 7' > 0 the process M (1), 0 <t < T
is a homogeneous Poisson process with rate A. By Construction II, N(T) = N,
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where the distribution of random variable N is Poisson with the parameter AT .
From Eq. (2.2) it follows that the process N(¢), 0 < ¢t < T, can be rewritten in
the form

N N
NO) =) Tzt = Y Tww=nrs

m=1 n=1

where for every k > 1 and under the condition N(7') = k the random variables
Ui, ...U; are independent and uniformly distributed on the interval (0,7) and
Ui < Uy < ... < Uy are the ordered random variables Uy, ... U;. Note that
we used these properties only to determine the joint characteristic function of the
increments. Define

h=X+...+4X,, n=1,2,...,

where, by assumption, X, X»,... are independent and identically distributed
random variables with a common exponential CDF of parameter 1. Then, using
the relation (2.1), forany0 <t < T,

M(T)

o0
7 JAf T > Ty,
M) = ZI{Tnit} — n;l {T, <t} = 1

n=1 0, if T <T.

By the previous note it is enough to prove that

(a) The random variable M (T") has a Poisson CDF with the parameter AT';

(b) For every positive integer k and under the condition M(T) = k, the joint CDF
of the random variables 77, ..., T, are identical with the CDF of the random
variables Uy, ..., Ukk.

(a) First we prove that for any positive ¢ the CDF of the random variable M(¢) is
Poisson with the parameter (A7). Since the common CDF of independent and
identically distributed random variables X; is exponential with the parameter
A, the random variable T, has a gamma(n, A) distribution whose PDF (see the
description of gamma distribution in Sect. 1.2.2.) is

M n—1.—Ax
fr (x) = F(n)x" e if x >0,

0, if x <0.

From the exponential distribution of the first arrival we have

PM(@)=0)=P(X,>1)=e ™.
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Using the theorem of the total expected value, for every positive integer k we
obtain

PM@)=k)=PX1+ ...+ Xk <t < X1+ ...+ Xik+1)
=P(Tk <t <Ti + Xi+1)

t

)Lk
= [ P(Ty <t <Tp+ Xpesy | Tk = 2)——7F'e™d
/(k_ t + Xit1 | Tk Z)F(k)z e *dz
0

t
k

A
— P(— X k—1 —)»Zd
/ (t—z< k+l)F(k)Z € Z

0

t
/\k
— /e—l(t—z) Zk—le—/\zdz

T(k)
0

t
Mo [y QOF )
dz = r_ )Lt;
k)< /Z T ThokS krC

thus the random variable M(¢), ¢ > 0 has a Poisson distribution with the
parameter Af.

(b) Let T be a fixed positive number and let Uy, ... U be independent random
variables uniformly distributed on the interval (0, 1). Denote by Uy, < ... <
Uik the ordered random variables Uy, ... U;. Now we verify that for every
positive integer k the joint CDF of random variables 77, ..., Ty under the
condition M(T) = k is identical with the joint CDF of the ordered random
variables Uy, . . ., Uxi (see Theorem 2.3 of Ch. 4. in [48]).

For any positive numbers f;,...,f, the joint conditional CDF of random
variables 77, ..., Ty given M(t) = k can be written in the form

P(Ty<ti,....Tx <1z, M(T) = k)
P(M(T) = k) ’

P(Th<t,....Ti =tx IM(T) =k) =

By the result proved in part (a), the denominator has the form

k
P(M(T)=k) = @kL')e—”, k=0,1,...,

while the numerator can be written as follows:
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P(Th<n,....Tx <4, M(T) = k)
=PXi <, Xi+Xo<tr,.... X1+...+ Xk <ti, Xi+ ...+ Xpe1 >T7)

ty —uy 3—(u+u)  ge—(urt..Fug—p) k+1
=/ / / / / l_[( Atti)duk+1...du1
0 0 0 0 T—(uy+..4u) =1
11 h—uy B—(+w)  tpe—(u+...tug—1)
-k oMt M=) G duy
0o 0 0 0

1 h—uy 3= +u) =t Aug—1)

Zlke_lT/ / / duy ... du;.

0 0 0 0
Setting vi = uy,vo = uj + up,..., vk = uj + ... + ug, the last integral takes
the form
)LT k k!
ot []] o
: vy V2
thus
P(T, <t,... Tk<lk|M(T)—k)—Tk/// /dvk
0 vi v Vi
From this we get that the joint conditional PDF of random variables 77,..., Tk
given M(T) = k equals the constant value %, which, by the preceding lemma,
is identical with the joint PDF of random variables Uiy, ..., Ukr. Using the proof

of Construction II, we obtain that Construction I has the result of a homogeneous
Poisson process at rate A on the interval (0, T'], and at the same time on the whole
interval (0, co), because T was chosen arbitrarily. O

2.7.3 Basic Properties of a Homogeneous Poisson Process

Let N(¢), t > 0 be a homogeneous Poisson process with a rate A. We enumerate
below the main properties of N ().

(a) For any ¢ > 0 the CDF of N(¢) is Poisson with the parameter Az, that is,

(A r)k

A ,k=0,1,.

P(N(1) = k) =
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(b) The increments of N(z) —N(s), 0 < s < t, are independent and have a Poisson
distribution with the parameter A(¢ — s).

(c) The sum of two independent homogeneous Poisson processes N;(¢;A;) and
Nj(t; Ay) at rates A and A,, respectively, is a homogeneous Poisson process
with a rate (A; + A,).

(d) Given 0 < t < T < o0, a positive integer Ny and an integer k satisfy the
inequality 0 < k < Njy. The conditional CDF of the random variable N(¢)
given N(T') = Ny is binomial with the parameters (Ny, 1/T).

Proof.

P(N(t) =k | N(T) = Ny) = P(N(t) = k. N(T) = Np)

P (N(T) = No)
_ P(N() =k, N(T) = N(t) = Ny — k)
B P(N(T) = No)

_ G0 L QTN ((m”" e_n)“
k! (No — k)! No!

_ N() L k 1 B L N(j—k .
k T T
(e) The following asymptotic relations are valid as h — +0:

P(N(h) =0)=1—Ah+ o(h),
P(N(h) = 1) = Ah + o(h),
P(N(h) > 2) =o(h). (orderliness)

Lemma 2.14. For every nonnegative integer m the inequality

m
X |x] ’
e =Y Tl < el = o(x|™), x -0,

holds.

Proof. The assertion of the lemma follows from the nth-order Taylor approximation
to ¥ with the Lagrange form of the remainder term (see Sect. 7.7 of [4]), but one
can obtain it by simple computations. Using the Taylor expansion

X - 'xk
ey n
k!

k=0
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of the function e*, which implies that

. m oo X |m+1 (m + 1)| | |k
e’ — E E — X
= 0 W k _(m—l—l)' (m—l—l—l—k)!

" e x !

—_ = |x| — m 0
(m+ D! = k! (m + 1);6 o(|x]™), x = 0.

Proof of Property (e). From the preceding lemma we have as i — +0
P(N(h) =0) =e ™ =1—Ah+o(h),

P(N(h) =1) = Ah e = Ah(1 — Ah + o(h)) = Ah + o(h),

P(N(h)>2)=1-— (e_“’ + (Ali')le—“’) =— (e_“l — 14 (Ali')le—“’) = o(h).

|

(f) Given that exactly one event of a homogeneous Poisson process [N(¢), ¢t > 0]

has occurred during the interval (0, 7], the time of occurrence of this event is
uniformly distributed over (0, ¢].

Proof of Property (f). Denote by A the rate of the process N(z). Immediate
application of the conditional probability gives forall 0 < x < ¢

P(X <xN(@)=1) = PH1 =0 NO =1

P(NG) = 1)
_ P(N(x) = 1,N(1) — N(x) = 0)
P(N() =1)
_ P(N(&x) = DP(N(7 — x) = 0)
P(N(@)=1)
—1

|

(g) Strong Markov property. Let {N(¢), t > 0} be a homogeneous Poisson
process with the rate A, and assume that N(¢) is .4, measurable for all ¢ > 0,
where 4, C A, t > 0, is a monotonically increasing family of o-algebras.
Let 7 be a random variable such that the condition {t <t} € A, holds for all
t > 0. This type of random variable is called a Markov point with respect to



70 2 Introduction to Stochastic Processes

the family of o-algebra A4,, ¢ > 0. For example, the constant T = ¢ and the so-
called first hitting time, 7, = sup {s : N(s) < k}, where k is a positive integer,
are Markov points. Denote

N.(t) = N(t + 1) = N(v). t > 0.

Then the process N (f), ¢t > 0, is a homogeneous Poisson process with
the rate A, which does not depend on the Markov point T or on the process
{N@), 0=t =1t}

(h) Random deletion (filtering) of a Poisson process. Let N(t), t > 0 be a
homogeneous Poisson process with intensity A > 0. Let us suppose that
we delete points in the process N(¢) independently with probability (1 — p),
where 0 < p < 1 is a fixed number. Then the new process M(t), t > 0,
determined by the undeleted points of N (¢) constitutes a homogeneous Poisson
process with intensity pA.

Proof of the Property (h). Let us represent the Poisson process N (t) in the form

o0
N@) = Zz{rksr}y t >0,
k=1

where tp, = X1 + ... + X, k = 1,2,... and Xy, X,,... are independent
exponentially distributed random variables with the parameter A. The random
deletion in the process N(¢) can be realized with the help of a sequence of
independent and identically distributed random variables I, I5, ..., which do not
depend on the process N(z), t > 0 and have a distribution P ([, = 1) = p,
P (I = 0) = 1 — p. The deletion of a point # in the process N(z) happens only in
the case I = 0. Let Tp = 0, and denote by 0 < 77 < T, < ... the sequence of
remaining points. Thus the new process can be given in the form

oo oo
M(r) = ZI{Tkst} = Zz{tkst. =1, =0
k=1 k=1

Using the property of the process N(¢) and the random sequence I, k > 1, it
is clear that the sequence of random variables Y, = Ty — Tj—1, k = 1,2,...,
are independent and identically distributed; therefore, it is enough to prove that they
have an exponential distribution with the parameter pA,i.e.,P (Y; < y) = 1 —eP?.

The sequence of the remaining points T} can be given in the form Ty = t¢,,, k =
1,2, ..., where the random variables rn; are defined as follows:

np=min{j : j>1, I; =1},

ng =min{j : j >ne_y, I; =1}, k > 2.
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Let us compute the distribution of the random variable
Yi=T =X1+...+an.
By the use of the formula of total probability, we obtain

PYi<y)=PXi+...+ X, <)

=Y P(Xi+...+ X, <yl =k)P(n; =k)

k=1
o0

=Y P(Xi+...+ Xp < y)P(n =k).
k=1

The sum X; + ... 4 X} of independent exponentially distributed random variables
X; has a gamma distribution with the density function

k

A -
Sk d) = o= 1)!y" e,y >0,

whereas, on the other hand, the random variable 7| has a geometric distribution with
the parameter p, i.e.,

P(ni=k)=(1-p)''p

therefore, we get

,
DPXi+.. + X < y)P(ny =k) = Z/ K e™ (1 = p)! pdx
J !

y

y
_ /(Z [ —p)xx] )e_m dx = 1p /eu_,,me_mdx
0

- 0

=Ap [ e PMdx =1—e PV,

o\\{

O

(1) Modeling an inhomogeneous Poisson process. Let {A(¢), t > 0} be a non-
negative, monotonically nondecreasing, continuous-from-left function such that
A(0) = 0. Let N(¢), t > 0, be a homogeneous Poisson process with rate 1.
Then the process defined by the equation

Na(t) = N(A@®)), t =0,
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is a Poisson process with mean value function A(z), ¢ > 0.

Proof of Property (i). Obviously, N(A(0)) = N(0) = 0, and the increments of
the process N, (¢) are independent and the CDF of the increments are Poissonian,
because for any 0 < s < t the CDF of the increment Ny (t) — N (s) is Poisson with
the parameter A(z) — A(s),

P (NA(1) = Na(s) = k) = P(N(A(1)) — N(A(5)))

k
_ (A(2) ;'A(S)) e_(A(;)_A(S)), k=0.1,....

2.7.4 Higher-Dimensional Poisson Process

The Poisson process can be defined, in higher dimensions, as a model of random
points in space. To do this, we first concentrate on the process on the real number
line, from the aspect of a possible generalization.

Let {N(¢), t > 0} be a Poisson process on a probability space (£2,.4, P).
Assume that it has a rate function A(¢), ¢ > 0; thus, the mean value function has the

form
t

A(t) = [ A(s)ds, t >0,
/

where the function A(¢) is nonnegative and locally integrable function. Denote by
11,1y, . .. the sequence of the random jumping points of N(¢). Since the mean value
function is continuous, the jumps of N(¢) are exactly 1; moreover, the process N(¢)
and the random points IT = {7,1,, ...} determine uniquely each other. If we can
characterize the countable set IT of random points {7}, f,, . . .}, then at the same time
we can give a new definition of the Poisson process N ().

Denote by B+ = B(R4) the Borel o-algebra of the half line Ry = [0, 00),
i.e., the minimal o-algebra that consists of all open intervals of Ry. Let B; =
(a;,b;], i =1,...,n,benonoverlappingintervals of R ; then obviously B; € B.
Introduce the random variables

H(Bl) Z#{HﬂB,} Z#{tj SIS B,’}, i=1,...,n,
where # {-} means the number of elements of a set; then

I(Bi) = N(bi) — N(a).
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By the use of the properties of Poisson processes, the following statements hold:

(1) The random variables I1(B;) are independent because the increments of the
process N (t) are independent.

(2) The CDF of T1(B;) is Poisson with the parameter A(B;), i.e.,

Y
sy = k) = DOV

where A(B;) = -[Bi A(s)ds, 1 <i <n.

Observe that by the definition of random variables IT(B;), it is unimportant
whether or not the set of random points IT = {z} is ordered and TI(B;) is
determined by the number of points #; only, which is included in the interval (a;, b;].
This circumstance is important because we want to define the Poisson processes on
higher-dimensional spaces, which do not constitute an ordered set, contrary to the
one-dimensional case.

More generally, let B; € B(Ry), 1 <i < n, be disjoint Borel sets and denote
TI(B;) = #{I1 N B;}. It can be checked that [T(B;) are random variables defined by
the random points IT = {7, ,, ...} and they satisfy properties (1) and (2). On this
basis, the Poisson process can be defined in higher-dimensional Euclidean spaces
and, in general, in metric spaces also (see Chap. 2. of [54]).

Consider the d-dimensional Euclidean space S = R¢ and denote by B(S)
the Borel o-algebra of the subset of S. We will define the Poisson process IT as
a random set function satisfying properties (1) and (2). Let IT : 2 — S be a
random point set in S, where S denotes the set of all subsets of S consisting of
countable points. Then the quantities T1(A) = #{I1 N A} define random variables
forall A € B(S).

Definition 2.15. We say that IT is a Poisson process on the space S if [T € Sis a
random countable set of points in S and the following conditions are satisfied:

(1) The random variables IT(A;) = #{I1 N A;} are independent for all disjoint sets
Ay, ..., Ay € B(S).

(2) For any A € B(S) the CDF of random variables I1(A4) are Poisson with the
parameter A(A), where 0 < A(A) < oo.
The function A(A), A € B(S) is called a mean measure of a Poisson process
(see [54], p. 14).

Properties:

1. Since the random variable I1(A) has a Poisson distribution with the parameter
A(A), then E (TT(A)) = A(A) and D? (T1(A)) = A(A).

2. If A(A) is finite, then the random variable I1(A) is finite with probability 1, and
if A(A) = oo, then the number of elements of the random point set IT N A is
countably infinite with probability 1.

3. For any disjoint sets Ay, A,, ... € B(S),
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M(4) =) T(4) and A(4) =) A4,
i=1

i=l1

where A = U2, A;. The last relation means that the mean measure A(B), B €
B(S) satisfies the conditions of a measure, i.e., it is a nonnegative, o-additive set
function on the measurable space (S, B(S)), which justifies the name of A.

Like the one-dimensional case, when the Poisson process has a rate function, it is
an important class of Poisson processes for which there exists a nonnegative locally
integrable function A with the property

A(B) = /l;)t(s)ds, B € B(S)

(here the integral is defined with respect to the Lebesgue measure ds). Then the
mean measure A is nonatomic, that is, there is no point 5o € B(S) such that
A({so}) > 0.

4. By the use of properties 1 and 3, it is easy to obtain the relation

D* (M(4)) = ) D> (TI(4)) = ) A(4) = A(4).
i=1

i=1
5. Forany B, C € B(S),
cov(IT(B), II(C)) = A(BNC).

Proof. Since IT(B) = II(BNC)+II(B\C) and I1(C) = [I(BNC) 4+ II(C\ B),
where the sets A N C, A\C and C\A are disjoint, the T1(4 N C), IT(A\C), and
[1(C\ A) are independent random variables, and thus

cov(IT(A), TI(C)) = cov(II(A N C), TI(A N C))
=D>(II(ANC)) =A(ANC).

O
6. For any (not necessarily disjoint) sets Aj,..., A, € B(S) the joint distribution
of random variables IT1(A;), ..., I1(A4,) is uniquely determined by the mean

measure A.

Proof. Denote the set of the 2" pairwise disjoint sets by
C ={C = B;N...N B,, where B; means the set either 4;, or fL};

then the random variables I1(C) are independent and have a Poisson distribution
with the parameter A(C). Consequently, the random variables I1(A;), ..., I1(4,)
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can be given as a sum from a 2" number of independent random variables
I1(C), C € C, having a Poisson distribution with the parameter A(C); there-
fore, the joint distribution of random variables T1(A;) is uniquely determined by
I1(C), C € C, and the mean measure A. O

Comment 2.16. Let S = RY, and assume
AA) = / A(x)dx, 4 € B(S),
A

where A(x) is a nonnegative and locally integrable function and dx = dx,_dx,. If
|A| denotes the n-dimensional (Lebesgue) measure of a set A and the function A(x)
is continuous at a point xo € S, then

A(A4) ~ Axo) | Al

if the set A is included in a small neighborhood of the point x.
The Poisson process Il is called homogeneous if A(x) = A for a positive
constant A. In this case for any A € B(S) the inequality A(A) = A | A| holds.

The following three theorems state general assertions on the Poisson processes
defined in higher-dimensional spaces (see Chap. 2 of [54]).

Theorem 2.17 (Existence theorem). If the mean measure A is nonatomic on the
space S and it is o-finite, i.e., it can be expressed in the form

o0
A= ZA,, where A;(S) < oo,

i=1

then there exists a Poisson process Il on the space S and has mean measure A.

Theorem 2.18 (Superposition theorem). If T1;,i = 1,2,..., is a sequence of
independent Poisson processes with mean measure Ny, A,, ... on the space S,
then the superposition I1 = U2 T1; is a Poisson process with mean measure
A=Y A

Theorem 2.19 (Restriction theorem). Let T1 be a Poisson process on the space S
with mean measure A. Then for any Sy € B(S) the process

Iy =1IINS,
can be defined as a Poisson process on S with mean measure
Ao(A) = A(ANSy).

The process Tl can be interpreted as a Poisson process on the space Sy with mean
measure Ao, where Mg is called the restriction of mean measure A to Sy.
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2.8 Exercises

Exercise 2.1. Let X, X»,... be independent identically distributed random vari-
ables with finite absolute moment E (] X;|) < co. Let N be arandom variable taking
positive integer numbers and independent of the random variable (X;,i = 1,2,...).
Prove that

@EX; +...+Xy)=EMX)E(N),
(b) D? (X1 + ...+ Xy) = D (X)) + (E(X1))* (E(N))*
(Wald identities or Wald lemma).

Exercise 2.2. Let Xy, X1, ... be independent random variables with joint distribu-
tionP(X; =1)=P(X; =-1)=1.

Define Zg = 0, Zy = Zx—1 + Xk, k = 0, 1,.... Determine the expectation and
covariance function of the process (Z;,k = 1,2,...) (random walk on the integer
numbers).

Let @ and b be real numbers, || < 1. Denote Wy = aXo, Wy = bWji—; +
Xi, k = 1,2,... [here the process (Wi,k = 0,1,...) constitutes a first-degree
autoregressive process with the initial value a Xy and with the innovation process
(Xk,k =1,2,...)]. If we fix the value b, for which value of a will the process Wj
be stationary in a weak sense?

Exercise 2.3. Let ¢ and b be real numbers, and let U be a random variable
uniformly distributed on the interval (0, 27r). Denote X; = acos(bt + U), —oo0 <
t < oo. Prove that the random cosine process (X;, —0o < t < 00) is stationary.

Exercise 2.4. Let N(¢),T > 0 be a homogeneous Poisson process with inten-
sity A.

(a) Determine the covariance and correlation functions of N(¢).
(b) Determine the conditional expectation E (N (¢ + s) | N(t)).
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