
Chapter 2
Signal Measurement

There is one thing of which one can say neither that it is one
metre long, nor that it is not one metre long, and that is the
standard metre in Paris. But this is, of course, not to ascribe any
extraordinary property to it, but only to mark its peculiar role in
the language-game of measuring with a metre-rule.

Ludwig Wittgenstein

In this chapter we look at the principles of recording physiological signals and
subsequent analysis, including noise reduction. Signal measurement is predicated
on a preliminary model of the system under observation. The quality of signal mea-
surement has a profound impact on subsequent interpretation. A basic application
of signal analysis is to use a measurement model to remove unwanted portions
or “noise” from the measured signal. The two main purposes of signal analysis
and systems modeling in physiology are (1) to reduce the contaminating noise in
the observed signal and (2) to describe the process in terms of a few parameters.
Modeling the system is critical to both these aspects. Before any manner of noise
reduction is performed a conceptual model of the signal necessarily exists in the
mind of the observer. It is this model that determines how effectively the “true”
signal will be elucidated from the noisy recording. The selection of noise reduction
techniques will depend on this conceptual model.

2.1 Physiological Measurement

The schematic block diagram of physiological measurement in Fig. 2.1 shows
signal pickup followed by analogue processing and output. The signal is generated
by the physiological process and is usually some physical quantity that varies
in time (time signals) or space (images). The transducer converts this physical
quantity into electrical signals amenable to subsequent processing by the instrument.
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Fig. 2.1 General schematic of a measurement system

The analogue processing comprises amplifiers to magnify the desired signal,
reduction of unwanted “noise”, etc. The output device is a display or paper chart
recorder to present the information to the user. Most modern instruments convert
the analogue signal into digital form suitable for computer analysis. The digitized
signal can be analyzed on a computer either immediately as the signal comes
in (online processing) or stored in the computer for later more complex analysis
(offline processing).

Cascading Systems

The block diagram in Fig. 2.1 presents a convenient pictorial representation of the
measured signal being passed through several blocks in the system before final
presentation to the user. Each of the blocks in the system modifies the signal in
a manner characteristic of the block. The blocks must be chosen/designed such that
the desired signal is obtained as clearly as possible while minimizing the effect of
unwanted noise. A simple block will not change the shape of the signal, but might
change its amplitude—either magnification or diminution. A cascade of such simple
blocks is illustrated in Fig. 2.2. The scaling performed by each block (gain, G) is
written inside. The final output is the cumulative amplification of all the blocks. For
example, if the physiological signal is muscle force p.t/ Newtons, the transducer
produces 0.2 V/N, the analogue processor is a simple amplifier with amplification of
1,000, and the display device produces a deflection of 3 mm/V, then, the final output
is 600p.t/ mm/N (Fig. 2.2).

Thus cascading systems (or subsystems) produce a cumulative effect on the input
signal. The situation is somewhat more complex when the blocks do not just produce
simple scaling of the input, but affect the shape of the signal as well. To understand
such complex systems which are commonly encountered in real life we shall look
at ways of dealing with them.
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Fig. 2.2 A measurement system

Transduction is the conversion of one form of energy into another, or the
conversion of one physical quantity to another. A simple example is a mercury
thermometer which converts temperature into displacement of the mercury level.
Transduction can involve several stages, for example: a force transducer may com-
prise (1) conversion of force to displacement and (2) conversion of the displacement
to electrical resistance change. Usually, the final output is an electrical quantity so
that electronic circuits can be used for further processing.

A system with several subsystems will have an overall behavior that is the
cumulative effect of the subsystems. The set of subsystems includes everything from
the transducer to the final output device. Some subsystems are expressly introduced
to alter the measurement in specific ways, for example, frequency filtering, noise
reduction circuits, etc. Other subsystems like the transducer and output device are
intended to transfer the signal without any change as far as possible. However, in
practice, these subsystems have imperfect characteristics and introduce undesirable
changes in the signal. This degradation is different from the addition of “noise”
or “interference” signals. The degradation is due to the inability of the subsystem
to transfer the information perfectly. Knowledge of the characteristics of these
subsystems will enable us to compensate for such deficiencies. In this chapter
we’ll look at some methods of characterizing subsystems like transducers used to
pick up physiological signals. An important concept in such characterization is the
ability to determine or predict the change effected in any signal by the characterized
subsystem.

Static Calibration and Dynamic Calibration

The most basic calibration of a transducer is the static or steady-state calibration.
The static calibration ignores the speed of response of the transducer. Therefore,
the calibration procedure must ensure that all time-related factors are removed. For
example, when calibrating a thermometer, the thermometer is subjected to different
known temperatures and the corresponding reading is noted. When the applied or
input temperature is changed, the change in reading takes a few seconds or even
longer. The reading is noted only after it stabilizes or reaches a steady value (does
not change further). Therefore, the transitory changes of temperature reading are
ignored and only the steady-state reading is noted.
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Dynamic calibration establishes the behavior of the system during transitory
signals. In the case of the thermometer, how quickly the reading changes when the
applied temperature changes is described by the dynamic characteristics.

2.2 Static Characteristics of Transducers: Linearity

The static characteristics of a system refer to its behavior when the input and output
are steady and not varying with time. The static characteristics give the relation
between the input and the output, also called the sensitivity of the system or its gain.

If the input quantity is x and the output quantity is y, the function that describes
the steady-state relation between input and output, y D f .x/, is the static
characteristic. If the function f is the equation of a straight line, then the system
is said to be linear, otherwise it’s a nonlinear transducer. In the case of transducers
such a linear characteristic is desirable and the static input–output relation can be
written as

y D g x C c: (2.1)

In Eq. 2.1, g is the gain or sensitivity of the transducer and c is the offset. Most
systems that are nominally linear will have a range of valid operation. Outside this
range the system will not be linear. Saturation of electronic circuits which is due to
inability of the signals to exceed the supply voltage is a common non-linearity. If the
input signal falls outside the linear range of the system, the output will not be a good
reproduction of the input—this manifestation of nonlinearity is called distortion.
Figure 2.3 shows nonlinearity. The left side of the figure shows three signals over
1 s of time. On the top is the input signal in response to which, system A produces
the output shown in the middle and system B produces the output shown at the
bottom. The input–output graphs on the right side show nonlinear (or non-straight
line) characteristics for the two systems.

In Fig. 2.3 the input–output characteristic of system A can be described as
follows:

y D
8
<

:

2x �a < x < Ca;

c x > jaj ;

where a is a constant and defines the linear limit of the system. Such a simple
nonlinearity is seen in force transducers with physical limits built into the devices
to prevent damage. In this nonlinearity more than one simple linear equation is
required to describe the static characteristic of the system. In system B of Fig. 2.3,
a more complex function is required to describe the static input–output characteristic
and is a different kind of non-linearity. When such a nonlinearity exists with
y D f .x/ it is possible to use the inverse function, x D f �1.y/ to determine
the input from the measured output. However, this inverse function may not be a
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Fig. 2.3 Effect of nonlinearity. Two systems, A and B, with different types of nonlinear input–
output relation and their effect on a sinusoidal input are shown.The sensitivity (or gain) of both
systems is 2. The system in case A has simple saturation causing sharp truncation of the signal,
while the system in case B has a gradual saturation and the effect of the nonlinearity is more subtle

simple function and immediate calculation of the inverse function may be difficult.
Many nonlinear measurement systems use techniques to approximate the inverse
function and these are called linearization techniques.

Linearization of Nonlinear Models

Most real systems are nonlinear. In order to submit any system to linear systems
analysis it is necessary to use a linear model that adequately describes the system.
The simplest linearization technique is to limit the use of the model in a region of
operation where the properties are linear. For example, systems like thermometers
and electronic amplifiers are linear in their normal range of operation. Extremely
large signals, input to them will not produce a correspondingly large output; imagine
a laboratory mercury thermometer being subjected to a temperature of few hundred
degrees, it will certainly not be able to produce a corresponding reading. Therefore,
these systems are nonlinear outside their specified range of operation, but are linear
within a well-defined range. Some systems may exhibit more than one region that
is linear within itself. Approximating such a system by several linear descriptions
is called piecewise linearization. Often we may be interested in behavior of the
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system only within a small range of operation. If the nonlinear system behavior in
this range of operation can be approximated by a linear function, then such a single
piece linearization can be used.

Example

Consider a system that obtains the square of the input signal

y.t/ D x2.t/:

This system fails the linearity test (input–output relation is not a straight line) and
is nonlinear. If we know that the input is always within a small range x1 to x2, then
the input–output sensitivity may be approximated as a linear function in this range
of operation. If the output varies from y1 to y2 corresponding to the input variation
x1 to x2, then we may treat the system as if it were linear about the center of this
operating range, xm D .x1 C x2/=2. The slope of the function or the sensitivity of
the function at this midpoint of the range is

y2 � y2

x2 � x1

D �y

�x
� dy

dx

ˇ
ˇ
ˇ
ˇ
xDxm

D 2xm:

Since xm the midpoint of the selected input range is a constant (by definition),
the resulting system is a simple multiplying factor

y.t/ D 2xmx.t/:

Piecewise Linearization

This method of linearization can be extended to a larger range by breaking up
the range into a number of small segments, (a) x1 to x2, (b) x2 to x3, (c) x3

to x4, etc., and linearizing the system about the center of each segment. This is
piecewise linearization. However, not all systems are amenable to such linearization
treatment. A system that exhibits hysteresis in its input–output behavior cannot be
approximated by linear segments.

In modern digital measurement systems linearization is rather less of a problem
as even a complex function for the input–output relation can be inverted empirically
and a discrete form of the inverse function can be stored and used in the digital elec-
tronics. Such discretized inverse functions are called look-up tables of linearization.
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2.3 Noise and Interference

Unwanted signals, interference, and disturbances are collectively termed noise.
Usually noise is something that is added to the desired signal. Other disturbances
are termed distortion and nonlinearity. Noise can be from a well-defined source with
well-defined characteristics, or it can be from a mixture of sources and causes that
change over time. Noise signals can have a pattern and even rhythm or they can vary
unpredictably and be “random.”

Figure 2.4 shows an example of a randomly varying noise signal that is added to
the desired signal (ECG in this case). In the resulting signal the features of the ECG
are difficult to discern. Such random noise commonly arise from thermal effects in
electronic devices.

Figure 2.5 shows an example of a rhythmically varying noise signal, a sinu-
soidally varying signal that is added to the desired signal (ECG). Here too, the
features of the ECG are difficult to discern. The source of sinusoidal noise in this
case is the electromagnetic interference from the electrical powerline in the building.
In all cases of signal contamination by noise, first and foremost, attempts should be
made to reduce the noise pickup by improving the measurement setup. In the case
of noise from extraneous electromagnetic sources, substantial noise reduction can
be achieved by using a conductive shield around the signal lines. Physical methods
of noise reduction are often addressed by empirical rules since detailed analysis of
the noise sources is complex and difficult, as well as unnecessary if an empirical
solution works.

Only if physical methods of noise reduction fail should we resort to post-
acquisition noise removal. Once the noisy signal is acquired the signal and noise are
mixed and signal processing methods of noise removal will involve a compromise
of the amount of noise removed versus the amount of signal preserved.

Fig. 2.4 Additive noise: random noise added to ECG
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Fig. 2.5 Additive noise: 50Hz powerline interference added to ECG

2.4 Dynamic Characteristics of Transducers

The static characteristics of a transducer do not indicate the speed of response of the
transducer. In many measurements the speed of response is important and dynamic
calibration helps us to quantify the time-related behavior of the system. To obtain
the dynamic characteristics standard time-varying functions are used as the input as
discussed below.

Step Input: The Step Response

One of the simplest and most common methods of dynamic calibration of a
transducer is to obtain its response to a step change in input.

Consider a simple mercury thermometer. When the thermometer is taken from
room temperature and immersed in a glass of hot water, the thermometer reading
will slowly rise and after a few seconds will show the correct temperature. The rea-
son for the slow rise is due to the fact that the glass bulb and the mercury inside
cannot undergo the change of temperature instantaneously. The temperature change
of the thermometer is directly proportional to the difference in temperature between
the water and thermometer. In other words, when the temperature difference is large,
the temperature change is large. Therefore, the rate of change of temperature of the
thermometer depends on the instantaneous difference in the temperature of the water
and the thermometer itself. This can be written algebraically, using x to denote the
temperature of the water (input) and y to denote the temperature of the thermometer
which corresponds to the reading (output):
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Fig. 2.6 Step response of a mercury thermometer (time constant D 0:1)

�y

�t
D a Œx.t/ � y.t/� ; (2.2)

where a is a constant.
Writing Eq. 2.2 in differential form and rearranging the constants:

dy.t/

dt
C ay.t/ D ax.t/: (2.3)

In the step change of temperature described above, the thermometer is at room
temperature To till time to and then suddenly the temperature is raised to T1. Let us
assume that To D 0 and T1 D 1, and to D 0. Then the input x.t/ is a step function,
x.t/ D 1, for t � 0 and zero otherwise. Solving Eq. 2.3 for this value of x we get
the step response (Fig. 2.6):

ys.t/ D
(

Œ1 � e�at � t � 0;

0 t < 0:
(2.4)

A somewhat more complex response can be obtained from a weighing scale
or pressure sensor. The increased complexity is due to the fact that the sensing
entities in these have mass (m), frictional losses (B), and elasticity (K). The sensing
depends on the displacement of part of the sensing element. If the applied force is
designated by x and the resulting displacement in the sensing element is y, we can
equate the applied force to the resisting forces:

x.t/ D Ky.t/ C B
dy.t/

dt
C m

d2y.t/

dt2
: (2.5)

A step change in force or pressure can be produced by quickly applying or
releasing an input force or pressure. The response to such a step change in input
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Fig. 2.7 Step response of a force transducer (natural freq D 3 Hz, damping D 0:4)

can be captured on an oscilloscope or computer and the transducer’s characteristics
determined.

Using such a step function for x.t/, we can solve Eq. 2.5:

ys.t/ D C

"

1 C e��!nt

p
1 � �2

sin
�p

1 � �2!nt � �
�
#

: (2.6)

In Eq. 2.6 !n D p
K=m is called the natural frequency � D B=

p
4mK is called

the damping factor, and C D m=K , is a scaling constant. The phase shift � D
tan�1

�
�p

1 � �2=�
�

is explained in later chapters. The step response of such a

second-order system (underdamped, i.e., � < 1) is shown in Fig. 2.7.

Sinusoidal Test Signals: The Frequency Response

Sinusoidal signals are eigenfunctions for linear time-invariant systems which we’ll
discuss later. An eigenfunction is one that preserves its shape when passed through
the system. Unlike a step signal given to a system, when a sinusoidal signal is
given to a linear system, the output will have the same sinusoidal shape but a
different amplitude and a time shift. Most systems in general will respond to
sinusoids of different frequencies with different gains (sensitivity) and different
time shifts (or phase shift of each sinusoid). This frequency-dependent gain and
phase shift is an alternative way of characterizing the system’s dynamic properties.
This so-called frequency response of the system is an important and commonly used
characterization and will be discussed in Chap. 3.
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Fig. 2.8 Biopotential transduction and measurement

2.5 Transduction and Measurement Case Study

Biopotential signal recording shown schematically in Fig. 2.8 can be used to
understand some of the issues discussed above. The biopotential signal originates in
electric fields in biological tissue due to the movement of ions. The signal is picked
up by conductive electrodes and transferred by wires to electronic amplifiers. The
wires carrying these small potentials are easily affected by electromagnetic fields
from the mains powerline, radio signals, etc., and noise is introduced. To reduce such
noise, differential recording is usually used in biopotential recording. In differential
recording, if the noise in both electrodes (and wires) is identical, then it is canceled
electronically. In order for the noise in both electrodes and wires to be identical, the
electrodes and wires should be spatially close together. The electrode spacing is set
by various biological considerations, but placing the wires close together is often
done easily. Next, the ability of the electronic amplifiers to subtract out the common
signal and amplify only the differential signal is called the common mode rejection
ratio (CMRR). If the CMRR is good (large) and the noise is similar in both wires,
then most of the noise from electromagnetic interference can be avoided.

After the best measures are taken to reduce noise pickup, if noise still remains in
the signal then other electronic ways of filtering the noise can be used. Electronic
filters (or “hardware filters” or “analogue filters”) have the same effect as digital
filters (or “algorithmic filters” or “computational filters”), in that a compromise is
involved in deciding between the amount of noise to remove and the amount of
signal to preserve. The quality and nature of electronic filters and digital filters are
different, since electronic filters are limited by physical components, while digital
filters are usually limited by computational time.

2.6 Exercises

5. In each of the following transducers, what is the input and output? (a) Mercury
manometer. (b) Weighing scale. (c) Accelerometer, (d) Gyroscope.
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Table 2.1 Exercise 9

Time 5 10 15 20 25 30

Ice �5 �8 �10 �11 �12 �12

Boiling water 12 18 23 25 28 28

Table 2.2 Exercise 10

Pressure (cm H2O) 50 100 150 200

Output (V) 1.0 1.4 1.8 2.2

6. A piston in a cylinder with a spring as shown below can be used as a pressure
sensor. The displacement read on the scale gives the pressure reading. Obtain an
expression for the input–output relation of the sensor.

7. What is electrode impedance? How can it be measured? Why is it important?

8. When is an electrical pressure transducer better than a mercury manometer?

9. A lab thermometer is calibrated by immersing it into a beaker of controlled
temperature—ice and boiling water are used for the purpose. The readings (of
the length of the mercury column) are taken every 5 s after immersion (the time
of immersion in each case is taken as t D 0) and tabulated in Table 2.1. The
displacement of the mercury at room temperature, 30 ıC, is taken as 0 mm. Plot
time graphs of the two measurements. What is the sensitivity of the thermometer in
mm/ıC ?

10. A pressure transducer is calibrated using a column of water and the readings
are given in Table 2.2. What is the calibration relation? Write the sensitivity and
offset with units. What is the pressure if the output is 0.5 V?

11. What is the difference between static calibration and dynamic calibration?
Discuss with respect to calibrating a blood pressure transducer. Why does an
invasive catheter type transducer require more stringent dynamic specifications than
a simple mercury manometer that can used for measuring systole and diastole
noninvasively?
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12. The step response of a transducer is given by Eq. 2.6. In the figure below,
P1 D (0.028764 s, 2.039 V) and P3 D (0.0812043s, 2.02306 V), where the units
are seconds and volts. The final value of the signal is 1. Determine the damping
coefficient and the natural frequency.
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