
2
Model Construction

The two basic components of a statistical model, the deterministic part
and the stochastic part, are well separated in the penalized likelihood score
L(f)+(λ/2)J(f) of (1.3). The deterministic part is specified via J(f), which
defines the notion of smoothness for functions on domain X . The stochastic
part is characterized by L(f), which reflects the sampling structure of the
data.
In this chapter, we are mainly concerned with the construction of J(f)

for use in L(f) + (λ/2)J(f). At the foundation of the construction is some
elementary theory of reproducing kernel Hilbert spaces, of which a brief
self-contained introduction is given in §2.1. Illustrations of the construction
are presented on the domain {1, . . . ,K} through shrinkage estimates (§2.2)
and on the domain [0, 1] through polynomial smoothing splines (§2.3); the
discrete case also provides insights into the entities in a reproducing kernel
Hilbert space through those in a standard vector space. The construction
of models on product domains with the ANOVA structure of §1.3.2 built
in is discussed in §2.4, with detailed examples on domains {1, . . . ,K1} ×
{1, . . . ,K2}, [0, 1]2, and {1, . . . ,K} × [0, 1].
Also included in this chapter are some general properties of the penalized

likelihood score L(f) + (λ/2)J(f) that are largely independent of L(f).
One such property is the fact that a quadratic functional J(f) acts like
the minus log likelihood of a Gaussian process prior for f , which leads
to the Bayes model discussed in §2.5. Other important properties include
the existence of the minimizer of L(f) + (λ/2)J(f) and the equivalence of
penalized minimization and constrained minimization (§2.6).
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24 2. Model Construction

The definitions of numerous technical terms are embedded in the text.
For convenient back reference, the terms are set in boldface at the point of
definition.
Mathematically more sophisticated constructions, such as the thin-plate

splines on (−∞,∞)d, are deferred to Chap. 4.

2.1 Reproducing Kernel Hilbert Spaces

By adding a roughness penalty J(f) to the minus log likelihood L(f), one
considers only smooth functions in the space

{
f : J(f) < ∞}

or a subspace
therein. To assist analysis and computation, one needs a metric and a
geometry in the space, and the score L(f) + (λ/2)J(f) to be continuous
in f under the metric. The so-called reproducing kernel Hilbert space, of
which a brief introduction is presented here, is adequately equipped for the
purpose.
We start with the definition of Hilbert space and some of its elementary

properties. The discussion is followed by the Riesz representation theorem,
which provides the technical foundation for the notion of a reproducing
kernel. The definition of reproducing kernel Hilbert space comes next and
it is shown that a reproducing kernel Hilbert space is uniquely determined
by its reproducing kernel, for which any non-negative definite function
qualifies.

2.1.1 Hilbert Spaces and Linear Subspaces

As abstract generalizations of the familiar vector spaces, Hilbert spaces
inherit many of the structures of the vector spaces. To provide insights
into the technical concepts introduced here, abstract materials are followed
by vector space examples set in italic.
For elements f , g, h, . . . , define the operation of addition satisfying the

following properties: (i) f+g = g+f , (ii) (f+g)+h = f+(g+h), and (iii) for
any two elements f and g, there exists an element h such that f + h = g.
The third property implies the existence of an element 0 satisfying f +
0 = f . Further, define the operation of scalar multiplication satisfying
α(f + g) = αf + αg, (α + β)f = αf + βf , 1f = f , and 0f = 0, where α
and β are real numbers. A set L of such elements form a linear space if
f, g ∈ L implies that f + g ∈ L and αf ∈ L. A set of elements fi ∈ L are
said to be linearly independent if

∑
i αifi = 0 holds only for αi = 0, ∀i.

The maximum number of elements in L that can be linearly independent
defines its dimension.
Take real vectors of a given length as the elements; the standard vector

addition and scalar-vector multiplication satisfy the conditions specified for
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the operations of addition and scalar multiplication. The notions of linear
space, linear independence, and dimension reduce to those in standard vec-
tor spaces.
A functional in a linear space L operates on an element f ∈ L and

returns a real number as its value. A linear functional L in L satisfies
L(f + g) = Lf + Lg, L(αf) = αLf , f, g ∈ L, α real. A bilinear form
J(f, g) in a linear space L takes f, g ∈ L as arguments and returns a real
value and satisfies J(αf + βg, h) = αJ(f, h) + βJ(g, h), J(f, αg + βh) =
αJ(f, g)+βJ(f, h), f, g, h ∈ L, α, β real. Fixing one argument in a bilinear
form, one gets a linear functional in the other argument. A bilinear form
J(·, ·) is symmetric if J(f, g) = J(g, f). A symmetric bilinear form is
non-negative definite if J(f, f) ≥ 0, ∀f ∈ L, and it is positive definite
if the equality holds only for f = 0. For J(·, ·) non-negative definite, J(f) =
J(f, f) is called a quadratic functional.
Consider the linear space of all real vectors of a given length. A functional

in such a space is simply a multivariate function with the coordinates of the
vector as its arguments. A linear functional in such a space can be written
as a dot product, Lf = gTLf , where gL is a vector “representing” L. A bilin-
ear form can be written as J(f, g) = fTBJg with BJ a square matrix, and
J(f, g) is symmetric, non-negative definite, or positive definite when BJ

is symmetric, non-negative definite, or positive definite. A quadratic func-
tional J(f) = fTBJf is better known as a quadratic form in the classical
linear model theory.
A linear space is often equipped with an inner product, a positive def-

inite bilinear form with a notation (·, ·). An inner product defines a norm
in the linear space, ‖f‖ =

√
(f, f), which induces a metric to measure the

distance between elements in the space, D[f, g] = ‖f − g‖. The Cauchy-
Schwarz inequality,

|(f, g)| ≤ ‖f‖ ‖g‖, (2.1)

with equality if and only if f = αg, and the triangle inequality,

‖f + g‖ ≤ ‖f‖+ ‖g‖, (2.2)

with equality if and only if f = αg for some α > 0, hold in such a linear
space; see Problems 2.1 and 2.2.
Equip the linear space of all real vectors of a given length with an inner

product (f, g) = fT g; one obtains the Euclidean space. The Euclidean norm

‖f‖ =
√
fT f induces the familiar Euclidean distance between vectors. The

Cauchy-Schwarz inequality and the triangle inequality are familiar results
in a Euclidean space.
When limn→∞ ‖fn − f‖ = 0 for a sequence of elements fn, the sequence

is said to converge to its limit point f , with a notation limn→∞ fn = f
or fn → f . A functional L is continuous if limn→∞ Lfn = Lf whenever
limn→∞ fn = f . By the Cauchy-Schwarz inequality, (f, g) is continuous in
f or g when the other argument is fixed.
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In the Euclidean space, a functional is a multivariate function in the
coordinates of the vector, and the definition of continuity reduces to the
definition found in standard multivariate calculus.
A sequence satisfying limn,m→∞ ‖fn − fm‖ = 0 is called a Cauchy

sequence. A linear space L is complete if every Cauchy sequence in L
converges to an element in L. An element is a limit point of a set A if it
is the limit point of a sequence in A. A set A is closed if it contains all of
its own limit points.
The Euclidean space is complete. In the two-dimensional Euclidean space,

(−∞,∞) × {0} is a closed set, so is [a1, b1] × [a2, b2], where −∞ < ai ≤
bi < ∞, i = 1, 2.
A Hilbert space H is a complete inner product linear space. A closed

linear subspace of H is itself a Hilbert space. The distance between a
point f ∈ H and a closed linear subspace G ⊂ H is defined by D[f,G] =
infg∈G ‖f − g‖. By the closedness of G, there exists an fG ∈ G, called the
projection of f in G, such that ‖f − fG‖ = D[f,G]. Such an fG is unique
by the triangle inequality. See Problem 2.3.
In the two-dimensional Euclidean space, G =

{
f : f = (a, 0)T , a real

}

is a closed linear subspace. The distance between f = (af , bf)
T and G is

D[f,G] = |bf |, and the projection of f in G is fG = (af , 0)
T .

Proposition 2.1 Let fG be the projection of f ∈ H in a closed linear
subspace G ⊂ H. Then, (f − fG , g) = 0, ∀g ∈ G.
Proof : We prove by negation. Suppose (f − fG , h) = α 
= 0, h ∈ G. Write
β = (h, h) and take g = fG + (α/β)h ∈ G. It is easy to compute

‖f − g‖2 = ‖f − fG‖2 − α2/β < ‖f − fG‖2,

a contradiction. �
The linear subspace Gc =

{
f : (f, g) = 0, ∀g ∈ G} is called the orthog-

onal complement of G. By the continuity of (f, g), Gc is closed. Using
Proposition 2.1, it is easy to verify that

‖f − fG − fGc‖2 = (f − fG − fGc , f − fGc − fG)
= (f − fG , f − fGc)− (f − fG , fG)
− (fGc , f − fGc) + (fGc , fG)

= 0,

where fG ∈ G and fGc ∈ Gc are the projections of f in G and Gc, respec-
tively. Hence, there exists a unique decomposition f = fG + fGc for every
f ∈ H. It is clear now that (Gc)c = G. The decomposition f = fG + fGc

is called a tensor sum decomposition and is denoted by H = G ⊕ Gc,
Gc = H�G, or G = H�Gc. Multiple-term tensor sum decompositions can
be defined recursively.
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In the two-dimensional Euclidean space, the orthogonal complement of
G =

{
f : f = (a, 0)T , a real

}
is Gc =

{
f : f = (0, b)T , b real

}
.

Consider linear subspaces H0 and H1 of a linear space L, equipped with
inner products (·, ·)0 and (·, ·)1, respectively. Assume the completeness of
H0 and H1 so that they are Hilbert spaces. If H0 and H1 have only one
common element 0, then one may define a tensor sum Hilbert space H =
H0 ⊕H1 with elements f = f0+ f1 and g = g0 + g1, where f0, g0 ∈ H0 and
f1, g1 ∈ H1, and an inner product (f, g) = (f0, g0)0 +(f1, g1)1. It is easy to
verify that such a bottom-up pasting is consistent with the aforementioned
top-down decomposition; see Problem 2.4.
Consider the two-dimensional vector space. Equip the space H0 =

{
f :

f = (a, 0)T , a real
}

with the inner product (f, g)0 = afag, where f =

(af , 0)
T and g = (ag, 0)

T , and equip H1 =
{
f : f = (0, b)T , b real

}
with

the inner product (f, g)1 = bfbg, where f = (0, bf)
T and g = (0, bg)

T .
H = H0 ⊕H1 has elements of the form f = f0 + f1 = (af , 0)

T +(0, bf )
T =

(af , bf )
T and g = (ag, 0)

T + (0, bg)
T = (ag, bg)

T , and an inner product
(f, g) = (f0, g0)0 + (f1, g1)1 = afag + bfbg.
A non-negative definite bilinear form J(f, g) in a linear space H de-

fines a semi-inner-product in H which induces a square seminorm
J(f) = J(f, f). Unless J(f, g) is positive definite, the null space NJ =
{f : J(f, f) = 0, f ∈ H} is a linear subspace of H containing more elements
than just 0. With a nondegenerateNJ , one typically can define another non-
negative definite bilinear form J̃(f, g) in H satisfying the following condi-
tions: (i) it is positive definite when restricted to NJ , so J̃(f) = J̃(f, f) de-
fines a square full norm in NJ and (ii) for every f ∈ H, there exists g ∈ NJ

such that J̃(f−g) = 0. With such an J̃(f, g), it is easy to verify that J(f, g)
is positive definite in the linear subspace NJ̃ = {f : J̃(f, f) = 0, f ∈ H}
and that (J+ J̃)(f, g) is positive definite in H. Hence, a semi-inner-product
can be made a full inner product either via restriction to a subspace or via
augmentation by an extra term, both through the definition of an inner
product in its null space. If H is complete under the norm induced by
(J + J̃)(f, g), then it is easy to see that NJ and NJ̃ form a tensor sum
decomposition of H.
In the two-dimensional vector space H with elements f = (af , bf)

T and
g = (ag, bg)

T , J(f, g) = bfbg defines a semi-inner-product with the null

space NJ =
{
f : f = (a, 0)T , a real

}
. Define J̃(f, g) = afag, which

satisfies the two conditions specified above. It follows that NJ̃ =
{
f :

f = (0, b)T , b real
}
, in which J(f, g) = bfbg is positive definite. Clearly,

(J + J̃)(f, g) = bfbg + afag is positive definite in H.

Example 2.1 (L2 space) All square integrable functions on [0, 1] form a
Hilbert space

L2[0, 1] =
{
f :

∫ 1

0
f2dx < ∞}
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with an inner product (f, g) =
∫ 1

0
fg dx. The space

G =
{
f : f = gI[x≤0.5], g ∈ L2[0, 1]

}

is a closed linear subspace with an orthogonal complement

Gc =
{
f : f = gI[x≥0.5], g ∈ L2[0, 1]

}
.

Note that elements in L2[0, 1] are defined not by individual functions but
by equivalent classes.

The bilinear form J(f, g) =
∫ 0.5

0 fg dx defines a semi-inner-product in
L2[0, 1], with a null space

NJ = Gc =
{
f : f = gI[x≥0.5], g ∈ L2[0, 1]

}
.

Define J̃(f, g) = C
∫ 1

0.5
fg dx, with C > 0 a constant; one has an inner

product (f, g) = (J + J̃)(f, g) =
∫ 0.5

0 fg dx + C
∫ 1

0.5 fg dx on L2[0, 1]. On
G = L2 �NJ , J(f, g) is a full inner product. �

Example 2.2 (Euclidean space) Functions on {1, . . . ,K} are vectors of
length K. Consider the Euclidean K-space with an inner product

(f, g) =
K∑

x=1

f(x)g(x) = fT g.

The space G =
{
f : f(1) = · · · = f(K)

}
is a closed linear subspace with

an orthogonal complement Gc =
{
f :

∑K
x=1 f(x) = 0

}
.

Write f̄ =
∑K

x=1 f(x)/K. The bilinear form

J(f, g) =

K∑

x=1

(
f(x)− f̄

)(
g(x)− ḡ

)
= fT

(
I − 1

K
11T

)
g

defines a semi-inner-product in the vector space with a null space

NJ = G =
{
f : f(1) = · · · = f(K)

}
.

Define J̃(f, g) = Cf̄ ḡ = CfT (11T /K)g, with C > 0 a constant; one has
an inner product in the vector space,

(f, g) = (J + J̃)(f, g) = fT

(
I +

C − 1

K
11T

)
g,

which reduces to the Euclidean inner product when C = 1. On Gc =
{
f :

∑K
x=1 f(x) = 0

}
, J(f, g) is a full inner product. �
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2.1.2 Riesz Representation Theorem

For every g in a Hilbert space H, Lgf = (g, f) defines a continuous linear
functional Lg. Conversely, every continuous linear functional L in H has a
representation Lf = (gL, f) for some gL ∈ H, called the representer of
L, as the following theorem asserts.

Theorem 2.2 (Riesz representation) For every continuous linear func-
tional L in a Hilbert space H, there exists a unique gL ∈ H such that
Lf = (gL, f), ∀f ∈ H.

Proof : LetNL =
{
f : Lf = 0

}
be the null space of L. Since L is continuous,

NL is a closed linear subspace. If NL = H, take gL = 0. When NL ⊂ H,
there exists a nonzero element g0 ∈ H�NL. Since (Lf)g0 − (Lg0)f ∈ NL,(
(Lf)g0 − (Lg0)f, g0

)
= 0. Some algebra yields

Lf =

(
Lg0

(g0, g0)
g0, f

)
.

Hence, one can take gL = (Lg0)g0/(g0, g0). The uniqueness is trivial. �
The continuity of L is necessary for the theorem to hold, or otherwise

NL is no longer closed and the proof breaks down.
All linear functionals in a finite-dimensional Hilbert space are continuous.

Actually, there is an isomorphism between anyK-dimensional Hilbert space
and the Euclidean K-space. See Problems 2.5 and 2.6.

2.1.3 Reproducing Kernel and Non-Negative Definite
Function

The likelihood part L(f) of the penalized likelihood functional L(f) +
(λ/2)J(f) usually involves evaluations; thus, for it to be continuous in
f , one needs the continuity of the evaluation functional [x]f = f(x).
Consider a Hilbert space H of functions on domain X . If the evaluation
functional [x]f = f(x) is continuous in H, ∀x ∈ X , then H is called a
reproducing kernel Hilbert space.
By the Riesz representation theorem, there exists Rx ∈ H, the represen-

ter of the evaluation functional [x](·), such that (Rx, f) = f(x), ∀f ∈ H.
The symmetric bivariate function R(x, y) = Rx(y) = (Rx, Ry) has the re-
producing property

(
R(x, ·), f(·)) = f(x) and is called the reproducing

kernel of the space H. The reproducing kernel is unique when it exists
(Problem 2.7).
The L2[0, 1] space of Example 2.1 is not a reproducing kernel Hilbert

space. In fact, since the elements in L2[0, 1] are defined by equivalent classes
but not individual functions, evaluation is not even well defined. A finite-
dimensional Hilbert space is always a reproducing kernel Hilbert space since
all linear functionals are continuous.
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Example 2.3 (Euclidean space) Consider again the EuclideanK-space
with (f, g) = fT g, with vectors perceived as functions on X =
{1, . . . ,K}. The evaluation functional [x]f = f(x) is simply coordinate
extraction. Since f(x) = eTx f , where ex is the xth unit vector, one has
Rx(y) = I[x=y]. A bivariate function on {1, . . . ,K} can be written as a
square matrix, and the reproducing kernel in the Euclidean space is simply
the identity matrix. �

A bivariate function F (x, y) on X is said to be a non-negative definite
function if

∑
i,j αiαjF (xi, xj) ≥ 0, ∀xi ∈ X , ∀αi real. For R(x, y) = Rx(y)

a reproducing kernel, it is easy to verify that

∥
∥
∥
∑

i

αiRxi

∥
∥
∥
2

=
∑

i,j

αiαjR(xi, xj) ≥ 0,

so R(x, y) is non-negative definite. As a matter of fact, there exists a
one-to-one correspondence between reproducing kernel Hilbert spaces and
non-negative definite functions, as the following theorem asserts.

Theorem 2.3 For every reproducing kernel Hilbert space H of functions
on X , there corresponds an unique reproducing kernel R(x, y), which is
non-negative definite. Conversely, for every non-negative definite function
R(x, y) on X , there corresponds a unique reproducing kernel Hilbert space
H that has R(x, y) as its reproducing kernel.

By Theorem 2.3, one may construct a reproducing kernel Hilbert space
simply by specifying its reproducing kernel. The following lemma is needed
in the proof of the theorem.

Lemma 2.4 Let R(x, y) be any non-negative definite function on X . If

n∑

i=1

n∑

j=1

αiαjR(xi, xj) = 0,

then
∑n

i=1 αiR(xi, x) = 0, ∀x ∈ X .

Proof : Augment the (xi, αi) sequence by adding (x0, α0), where x0 ∈ X
and α0 real are arbitrary. Since

0 ≤
n∑

i=0

n∑

j=0

αiαjR(xi, xj) = 2α0

n∑

i=1

αiR(xi, x0) + α2
0R(x0, x0)

and R(x0, x0) ≥ 0, it is necessary that
∑n

i=1 αiR(xi, x0) = 0. �
Proof of Theorem 2.3: Only the converse needs a proof. Given R(x, y),

write Rx = R(x, ·); one starts with the linear space

H∗ =
{
f : f =

∑
i αiRxi , xi ∈ X , αi real

}
,
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and defines in H∗ an inner product

(∑

i

αiRxi ,
∑

j

βjRyj

)
=

∑

i,j

αiβjR(xi, yj).

It is trivial to verify the properties of inner product for such a (f, g), except
that (f, f) = 0 holds only for f = 0, which is proved in Lemma 2.4. It is
also easy to verify that (Rx, f) = f(x), ∀f ∈ H∗.
By the Cauchy-Schwarz inequality,

∣
∣f(x)

∣
∣ =

∣
∣(Rx, f)

∣
∣ ≤

√
R(x, x) ‖f‖,

so convergence in norm implies pointwise convergence. For every Cauchy
sequence {fn} in H∗,

{
fn(x)

}
is a Cauchy sequence on the real line con-

verging to a limit. Note also that
∣
∣ ‖fn‖ − ‖fm‖ ∣∣ ≤ ‖fn − fm‖, so {‖fn‖

}

has a limit as well. The limit point of {fn} can then be defined by f(x) =
limn→∞ fn(x), ∀x ∈ X , with ‖f‖ = limn→∞ ‖fn‖. It will be shown shortly
that ‖f‖, thus defined, is unique; that is, for two Cauchy sequences {fn}
and {gn} satisfying limn→∞ fn(x) = limn→∞ gn(x), ∀x ∈ X , it is neces-
sary that limn→∞ ‖fn‖ = limn→∞ ‖gn‖. Adjoining all these limit points of
Cauchy sequences to H∗, one obtains a complete linear space H with the
norm ‖f‖. It is easy to verify that (f, g) =

(‖f + g‖2 − ‖f‖2 − ‖g‖2)/2 ex-
tends the inner product from H∗ to H and that (Rx, f) = f(x) holds in H,
so H is a reproducing kernel Hilbert space with R(x, y) as its reproducing
kernel.
We now verify the uniqueness of the definition of ‖f‖ in the completed

space, and it suffices to show that for every Cauchy sequence {fn} inH∗ sat-
isfying limn→∞ fn(x) = 0, ∀x ∈ X , it necessarily holds that limn→∞ ‖fn‖ =
0. We prove the assertion by negation. Suppose fn(x) → 0, ∀x ∈ X , but
‖fn‖2 → 3δ > 0. Take ε ∈ (0, δ). For n and m sufficiently large, one
has ‖fn‖2, ‖fm‖2 > 2δ and ‖fn − fm‖2 < ε. Fix such an m and write
fm =

∑
i αiRxi a finite sum. Since fn(x) → 0, ∀x ∈ X , it follows that∑

i αifn(xi) → 0. Hence, for n sufficiently large,

∣
∣(fn, fm)

∣
∣ =

∣
∣(fn,

∑
i αiRxi)

∣
∣ =

∣
∣∑

i αifn(xi)
∣
∣ < ε.

Now,

ε > ‖fn − fm‖2 = ‖fn‖2 + ‖fm‖2 − 2(fn, fm) > 4δ − 2ε > 2δ,

a contradiction.
It remains to be shown that if a space H̃ has R(x, y) as its reproducing

kernel, then H̃ must be identical to the space H constructed above. Since
Rx = R(x, ·) ∈ H̃, ∀x ∈ X , so H ⊆ H̃. Now, for any h ∈ H̃ � H, by
orthogonality, h(x) = (Rx, h) = 0, ∀x ∈ X , so H̃ = H. The proof is now
complete. �
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From the construction in the proof, one can see that the space H
corresponding to R is generated from the “columns” Rx = R(·, x) of R,
very much like a vector space generated from the columns of a matrix.
In the sections to follow, we will be constantly decomposing reproducing

kernel Hilbert spaces into tensor sums or pasting up larger spaces by taking
tensor sums of smaller ones. The following theorem spells out some of the
rules in such operations.

Theorem 2.5 If the reproducing kernel R of a space H on domain X can
be decomposed into R = R0 + R1, where R0 and R1 are both non-negative
definite, R0(x, ·), R1(x, ·) ∈ H, ∀x ∈ X , and

(
R0(x, ·), R1(y, ·)

)
= 0, ∀x, y ∈

X , then the spaces H0 and H1 corresponding respectively to R0 and R1 form
a tensor sum decomposition of H. Conversely, if R0 and R1 are both non-
negative definite and H0 ∩H1 = {0}, then H = H0 ⊕H1 has a reproducing
kernel R = R0 +R1.

Proof : By the orthogonality between R0(x, ·) and R1(y, ·),
R0(x, y) =

(
R0(x, ·), R(y, ·)) = (

R0(x, ·), R0(y, ·)
)
,

so the inner product in H0 is consistent with that in H; hence, H0 is a
closed linear subspace of H. Now, for every f ∈ H, let f0 be the projection
of f in H0 and write f = f0 + f c

0 . Straightforward calculation yields

f(x) =
(
R(x, ·), f)

=
(
R0(x, ·), f0

)
+
(
R0(x, ·), f c

0

)
+
(
R1(x, ·), f0

)
+
(
R1(x, ·), f c

0

)

= f0(x) +
(
R1(x, ·), f c

0

)
,

so
(
R1(x, ·), f c

0

)
= f(x) − f0(x) = f c

0(x). This shows that R1 is the repro-
ducing kernel of H�H0; hence, H = H0 ⊕H1.
For the converse, it is trivial to verify that

(
R(x, ·), f) = (

R0(x, ·), f0
)
0
+
(
R1(x, ·), f1

)
1
= f0(x) + f1(x) = f(x),

where f = f0 + f1 ∈ H with f0 ∈ H0 and f1 ∈ H1, and (·, ·)0 and (·, ·)1 are
the inner products in H0 and H1, respectively. �

2.2 Smoothing Splines on {1, . . . , K}
As discussed in Example 2.3, a function on the discrete domain X ={
1, . . . ,K

}
is a vector of length K, evaluation is coordinate extraction,

and a reproducing kernel can be written as a non-negative definite matrix.
A linear functional in a finite-dimensional space is always continuous, so a
vector space equipped with an inner product is a reproducing kernel Hilbert
space.



2.2 Smoothing Splines on {1, . . . , K} 33

Let B be any K ×K non-negative definite matrix. Consider the column
space of B, HB =

{
f : f = Bc =

∑
j cjB(·, j)}, equipped with the inner

product (f, g) = fTBg. The standard eigenvalue decomposition gives

B = UDUT = (U1, U2)

(
D1 O
O O

)(
UT
1

UT
2

)
= U1D1U

T
1 ,

where the diagonal of D1 contains the positive eigenvalues of B and the
columns of U1 are the associated eigenvectors. The Moore-Penrose inverse
of B has an expression B+ = U1D

−1
1 UT

1 . It is clear that HB = HB+ ={
f : f = U1c

}
. Now, B+B = U1U

T
1 is the projection matrix onto HB, so

B+Bf = f , ∀f ∈ HB. It then follows that

[x]f = f(x) = eTx f = eTxB
+Bf = (B+ex)

TBf,

∀f ∈ HB (i.e., the representer of [x](·) is the xth column of B+). Hence,
the reproducing kernel is given by R(x, y) = B+(x, y), where B+(x, y) is
the (x, y)th entry of B+. The result of Example 2.3 is a trivial special case
with B = I.
The duality between (f, g) = fTBg and R = B+ provides a useful

insight into the relation between the inner product in a space and the
corresponding reproducing kernel: In a sense, the inner product and the
reproducing kernel are inverses of each other.
Now, consider a decomposition of the reproducing kernel in the Eu-

clidean K-space, R(x, y) = I[x=y] = 1/K + (I[x=y] − 1/K), or in matrix
terms, I = (11T /K) + (I − 11T /K). Since (11T /K)(I − 11T /K) = O,(
R0(x, ·), R1(y, ·)

)
= 0, ∀x, y. By Theorem 2.5, the decomposition de-

fines a tensor sum decomposition of the space RK = H0 ⊕ H1, where
H0 =

{
f : f(1) = · · · = f(K)

}
and H1 =

{
f :

∑K
x=1 f(x) = 0

}
. The inner

products in H0 and H1 have expressions (f, g)0 = fT g = fT (11T /K)g
and (f, g)1 = fT g = fT (I − 11T /K)g, respectively, where 11T /K is the
Moore-Penrose inverse of R0 = 11T /K and I − 11T /K is the Moore-
Penrose inverse of R1 = I − 11T /K. The decomposition defines a one-way

ANOVA decomposition with an averaging operator Af =
∑K

x=1 f(x)/K.
See Problem 2.8 for a construction yielding a one-way ANOVA decompo-
sition with an averaging operator Af = f(1).
Regression on X =

{
1, . . . ,K

}
yields the classical one-way ANOVA

model. Consider a roughness penalty

J(f) =

K∑

x=1

(
f(x)− f̄

)2
= fT

(
I − 11T

K

)
f,

where f̄ =
∑K

x=1 f(x)/K. The minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

K∑

x=1

(
η(x)− η̄

)2
(2.3)
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defines a shrinkage estimate being shrunk toward a constant. Similarly, if
one sets J(f) = fT f , then the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

K∑

x=1

η2(x) (2.4)

defines a shrinkage estimate being shrunk toward zero. Hence, smoothing
splines on a discrete domain reduce to shrinkage estimates.

The roughness penalty
∑K

x=1

(
f(x)− f̄

)2
appears natural for x nominal.

For x ordinal, however, one may consider alternatives such as

K∑

x=2

(
f(x)− f(x− 1)

)2
,

which have the same null space but use different “scaling” in the penalized
contrast space H1 =

{
f :

∑K
x=1 f(x) = 0

}
.

2.3 Polynomial Smoothing Splines on [0, 1]

The cubic smoothing spline of §1.1.1 is a special case of the polynomial
smoothing splines, the minimizers of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

(
η(m)

)2
dx, (2.5)

in the space C(m)[0, 1] =
{
f : f (m) ∈ L2[0, 1]

}
. Equipped with appropri-

ate inner products, the space C(m)[0, 1] can be made a reproducing kernel
Hilbert space.
We will present two such constructions and outline an approach to the

computation of polynomial smoothing splines. The two constructions yield
identical results for univariate smoothing, but provide building blocks sat-
isfying different side conditions for multivariate smoothing with built-in
ANOVA decompositions.

2.3.1 A Reproducing Kernel in C(m)[0, 1]

For f ∈ C(m)[0, 1], the standard Taylor expansion gives

f(x) =

m−1∑

ν=0

xν

ν!
f (ν)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u)du, (2.6)

where (·)+ = max(0, ·). With an inner product

(f, g) =

m−1∑

ν=0

f (ν)(0)g(ν)(0) +

∫ 1

0

f (m)g(m)dx, (2.7)
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it can be shown that the representer of evaluation [x](·) is

Rx(y) =

m−1∑

ν=0

xν

ν!

yν

ν!
+

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du. (2.8)

To see this, note that R
(ν)
x (0) = xν/ν!, ν = 0, . . . ,m−1, and that R

(m)
x (y) =

(x − y)m−1
+ /(m − 1)!. Plugging these into (2.7) with g = Rx, one obtains

the right-hand side of (2.6), so (Rx, f) = f(x).
The two terms of the reproducing kernel R(x, y) = Rx(y),

R0(x, y) =
m−1∑

ν=0

xν

ν!

yν

ν!
, (2.9)

and

R1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du, (2.10)

are both non-negative definite themselves, and it is also easy to verify
the other conditions of Theorem 2.5. To R0 there corresponds the space
of polynomials H0 =

{
f : f (m) = 0

}
with an inner product (f, g)0 =

∑m−1
ν=0 f (ν)(0)g(ν)(0), and to R1 there corresponds the orthogonal comple-

ment of H0,

H1 =
{
f : f (ν)(0) = 0, ν = 0, . . . ,m− 1,

∫ 1

0

(
f (m)

)2
dx < ∞}

, (2.11)

with an inner product (f, g)1 =
∫ 1

0 f (m)g(m)dx. The space H0 can be
further decomposed into the tensor sum of m subspaces of monomials{
f : f ∝ (·)ν} with inner products f (ν)(0)g(ν)(0) and reproducing ker-

nels (xν/ν!)(yν/ν!), ν = 0, . . . ,m− 1.
Setting m = 1, one has R0(x, y) = 1 and

R1(x, y) =

∫ 1

0

I[u<x]I[u<y]du = x ∧ y, (2.12)

where x ∧ y = min(x, y). This setting is useful for the computation of a
linear smoothing spline, the minimizer of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

∫ 1

0

η̇2dx. (2.13)

Setting m = 2, one has R0(x, y) = 1 + xy and

R1(x, y) =

∫ 1

0

(x− u)+(y − u)+du

= (x ∧ y)2
(
3(x ∨ y)− (x ∧ y)

)
/6, (2.14)



36 2. Model Construction

where x∨y = max(x, y). The latter formula can be used in the computation
of a cubic smoothing spline.
For m = 1, the tensor sum decomposition characterized by R = R0 +

R1 = [1]+ [x∧ y] naturally defines a one-way ANOVA decomposition with
an averaging operator Af = f(0), where the corresponding H0 spans the
“mean” space and H1 spans the “contrast” space; see §1.3.1 for discussions
on ANOVA decomposition and averaging operator.
For m = 2, the same ANOVA decomposition is characterized by the

kernel decomposition

R = R00 + [R01 +R1] = [1] +
[
xy +

{
(x ∧ y)2

(
3(x ∨ y)− (x ∧ y)

)
/6

}]
,

where R0 = 1 + xy is further decomposed into the sum of R00 = 1 and
R01 = xy. The kernel R00 generates the “mean” space and the kernels R01

and R1 together generate the “contrast” space, with R01 contributing to
the “parametric contrast” and R1 to the “nonparametric contrast.”

2.3.2 Computation of Polynomial Smoothing Splines

Given the sampling points xi, i = 1, . . . , n in (2.5) and noting that the
space

{
f : f =

∑n
i=1 αiR1(xi, ·)

}
is a closed linear subspace of H1 given in

(2.11), one may write η ∈ C(m)[0, 1] as

η(x) =

m−1∑

ν=0

dν
xν

ν!
+

n∑

i=1

ciR1(xi, x) + ρ(x), (2.15)

where ci and dν are real coefficients, R1 is given in (2.10), and

ρ ∈ H1 �
{
f : f =

∑n
i=1 ciR1(xi, ·)

}
.

By orthogonality, ρ(xi) =
(
R1(xi, ·), ρ

)
= 0, i = 1, . . . , n. Denoting by S

the n×m matrix with the (i, ν)th entry xν
i /ν! and by Q the n× n matrix

with the (i, j)th entry R1(xi, xj), (2.5) can be written as

(Y − Sd−Qc)T (Y − Sd−Qc) + nλ cTQc+ nλ (ρ, ρ), (2.16)

where the fact that
∫ 1

0
R

(m)
1 (xi, x)R

(m)
1 (xj , x)dx = R1(xi, xj) is used. Note

that ρ only appears in the third term in (2.16), which is minimized at ρ = 0.
Hence, a polynomial smoothing spline resides in a space

H0 ⊕
{
f : f =

∑n
i=1 ciR1(xi, ·)

}
,

of finite dimension, and so can be computed via the minimization of the
first two terms of (2.16) with respect to c and d.
In this approach to the computation of polynomial smoothing splines,

one needs the reproducing kernel R1 that corresponds to a space H1 in

which the roughness penalty
∫ 1

0

(
f (m)

)2
dx is a full square norm, plus a

basis that spans the null space of the penalty.
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2.3.3 Another Reproducing Kernel in C(m)[0, 1]

The bilinear form
∫ 1

0
f (m)g(m)dx is a semi-inner-product in C(m)[0, 1], which

can be augmented to a full inner product by the addition of an inner prod-
uct in its null space, the space

{
f : f (m) = 0

}
of polynomials up to order

m − 1. In §2.3.1, we used
∑m−1

ν=0 f (ν)(0)g(ν)(0) as the inner product in{
f : f (m) = 0

}
. In this section, we will use a different inner product,

∑m−1
ν=0

( ∫ 1

0 f (ν)dx
)( ∫ 1

0 g(ν)dx
)
, in

{
f : f (m) = 0

}
, and derive the repro-

ducing kernel associated with

(f, g) =

m−1∑

ν=0

(∫ 1

0

f (ν)dx
)( ∫ 1

0

g(ν)dx
)
+

∫ 1

0

f (m)g(m)dx, (2.17)

which defines an inner product different from that in (2.7).
The sought-after reproducing kernel can most conveniently be expressed

in terms of the functions

kr(x) = −
( −1∑

μ=−∞
+

∞∑

μ=1

)
exp(2πiμx)

(2πiμ)r
, r = 1, 2, . . . , (2.18)

where i =
√−1. It is easy to verify that for r > 1, kr is well defined and

continuous on the real line, and for r = 1, it is well defined and continuous
at noninteger points; see Problem 2.9(a). It is also easy to verify that kr(x)
is real-valued and is periodic with period 1; see Problem 2.9(b). It can be

seen that k
(p)
r = kr−p, p = 1, . . . , r−2 and that k

(r−1)
r (x) = k1(x) for x not

an integer. It is known that k1(x) = x− 0.5 on (0, 1) (Problem 2.9(c)), and
we define k0 = 1. The kr functions are actually scaled Bernoulli polynomi-
als, kr(x) = Br(x)/r!; see Abramowitz and Stegun (1964, Chap. 23) for a
comprehensive list of results concerning the Bernoulli polynomials Br(x).

From the properties listed above, it is easy to verify that
∫ 1

0 k
(ν)
μ dx = δμ,ν ,

μ, ν = 0, . . . ,m− 1, where δμ,ν is the Kronecker delta. It then follows that
kν , ν = 0, . . . ,m − 1 form an orthonormal basis of H0 =

{
f : f (m) = 0

}

under the inner product (f, g)0 =
∑m−1

ν=0

( ∫ 1

0 f (ν)dx
)( ∫ 1

0 g(ν)dx
)
and that

R0(x, y) =
m−1∑

ν=0

kν(x)kν (y) (2.19)

is the reproducing kernel in H0; see Problem 2.5(c) for the definition of or-
thonormal basis. In fact,H0 can be further decomposed into the tensor sum

of m subspaces
{
f : f ∝ kν

}
with inner products

( ∫ 1

0
f (ν)dx

)( ∫ 1

0
g(ν)dx

)

and reproducing kernels kν(x)kν(y), ν = 0, . . . ,m− 1, respectively.
We now show that in the space

H1 =
{
f :

∫ 1

0 f (ν)dx = 0, ν = 0, . . . ,m− 1, f (m) ∈ L2[0, 1]
}

(2.20)



38 2. Model Construction

with a square norm (f, g)1 =
∫ 1

0
f (m)g(m)dx, the function

Rx(y) = km(x)km(y) + (−1)m−1k2m(x− y) (2.21)

is the representer of evaluation [x](·). From the properties of kr, it is easy to

verify that
∫ 1

0
R

(ν)
x (y)dy = 0, ν = 0, . . . ,m−1, and that R

(m)
x (y) = km(x)−

km(x−y) ∈ L2[0, 1], soRx ∈ H1 forH1 given in (2.20). Integrating by parts,

and using the periodicity of kr, r > 1, and the fact that
∫ 1

0 f (ν)dx = 0,
ν = 0, . . . ,m− 1, one can show that, for m > 1,

(Rx, f)1 =

∫ 1

0

(
km(x)− km(x − y)

)
f (m)(y)dy

= −
∫ 1

0

km−1(x− y)f (m−1)(y)dy

= · · · = −
∫ 1

0

k1(x− y)ḟ(y)dy; (2.22)

see Problem 2.10. Now, since

k1(x− y) =

{
x− y − 0.5 = k1(x) − y, y ∈ (0, x),

(1 + x− y)− 0.5 = k1(x)− y + 1, y ∈ (x, 1),

straightforward calculation yields

−
∫ 1

0

k1(x− y)ḟ(y)dy

= −
∫ 1

0

k1(x)ḟ (y)dy +

∫ 1

0

yḟ(y)dy −
∫ 1

x

ḟ(y)dy

= 0 + f(1)− (
f(1)− f(x)

)
= f(x).

The result holds for m = 1 via direct calculation. This proves that

R1(x, y) = km(x)km(y) + (−1)m−1k2m(x− y) (2.23)

is the reproducing kernel of H1 given in (2.20).
Obviously,H0∩H1 = {0}, so by the converse of Theorem 2.5, C(m)[0, 1] =

H0 ⊕H1 has the reproducing kernel R = R0 +R1. The identity

f(x) =

m−1∑

ν=0

kν(x)

∫ 1

0

f (ν)(y)dy+

∫ 1

0

(
km(x)−km(x−y)

)
f (m)(y)dy, (2.24)

∀f ∈ C(m)[0, 1], may be called a generalized Taylor expansion, where the
scaled Bernoulli polynomials kν(x) play the role of the scaled monomials
xν/ν! in the standard Taylor expansion of (2.6). The standard Taylor ex-
pansion is asymmetric with respect to the domain [0, 1], in the sense that
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a swapping of the two ends 0 and 1 would change its composition entirely,
whereas the generalized Taylor expansion of (2.24) is symmetric with re-
spect to the domain.
The computation of polynomial smoothing splines as outlined in §2.3.2

can also be performed by using the R1 of (2.23) instead of that of (2.10).
Also, one may use any basis {φν}m−1

ν=0 of the subspace H0 in the place of
{xν/ν!}m−1

ν=0 in the expression of η given in (2.15). The coefficients ci and
dν will be different when different φν and R1 are used, but the function
estimate

η(x) =

m−1∑

ν=0

dνφν(x) +

n∑

i=1

ciR1(xi, x)

will remain the same regardless of the choices of φν and R1.
When m = 1, R0(x, y) = 1 and

R1(x, y) = k1(x)k1(y) + k2(x− y). (2.25)

When m = 2, R0(x, y) = 1 + k1(x)k1(y) and

R1(x, y) = k2(x)k2(y)− k4(x− y). (2.26)

The R1 in (2.25) and (2.26) can be used in the computation of linear and
cubic smoothing splines in lieu of those in (2.12) and (2.14). To calculate
R1 in (2.25) and (2.26), one has, on x ∈ [0, 1],

k2(x) =
1

2

(
k21(x) −

1

12

)
,

k4(x) =
1

24

(
k41(x)−

k21(x)

2
+

7

240

)
,

(2.27)

where k1(x) = x−0.5; see Problem 2.11. Note that k2 and k4 are symmetric
with respect to 0.5 on [0, 1], so for x ∈ [−1, 0],

k2(x) = k2(x+ 1) = k2
(
0.5 + (x+ 0.5)

)
= k2

(
0.5− (x + 0.5)

)
= k2(−x),

and likewise, k4(x) = k4(−x). It then follows that k2(x − y) = k2
(|x− y|)

and k4(x− y) = k4
(|x− y|), for x, y ∈ [0, 1].

For m = 1, the tensor sum decomposition characterized by R = R0 +
R1 = [1]+

[
k1(x)k1(y)+k2(x−y)

]
defines a one-way ANOVA decomposition

with an averaging operator Af =
∫ 1

0 fdx, where the corresponding H0

spans the “mean” space and H1 spans the “contrast” space.
For m = 2, the same ANOVA decomposition is characterized by the

kernel decomposition

R = R00 + [R01 +R1] = [1] +
[
k1(x)k1(y) +

{
k2(x)k2(y)− k4(x− y)

}]
,

where R0 = 1+ k1(x)k1(y) is further decomposed into the sum of R00 = 1
and R01 = k1(x)k1(y). The kernel R00 generates the “mean” space and
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the kernels R01 and R1 together generate the “contrast” space, with R01

contributing to the “parametric contrast” and R1 to the “nonparametric
contrast.”

2.4 Smoothing Splines on Product Domains

To incorporate the ANOVA decomposition introduced in §1.3.2 for the
estimation of a multivariate function, one may construct a tensor product
reproducing kernel Hilbert space. Given Theorem 2.3, the construction of
the space can be done through the construction of the reproducing kernel,
for which one uses reproducing kernels on the marginal domains. One-
way ANOVA decompositions on the marginal domains naturally induce an
ANOVA decomposition on the product domain.
We begin with some general discussion of tensor product reproducing

kernel Hilbert spaces, where it is shown that the products of reproducing
kernels on the marginal domains form reproducing kernels on the prod-
uct domain. The construction is then illustrated with marginal domains{
1, . . . ,K

}
and [0, 1], using the (marginal) reproducing kernels introduced

in §§2.2 and 2.3.

2.4.1 Tensor Product Reproducing Kernel Hilbert Spaces

A convenient approach to the construction of reproducing kernel Hilbert
spaces on a product domain

∏Γ
γ=1 Xγ is by taking the tensor product of

spaces constructed on the marginal domains Xγ . The construction builds
on the following theorem.

Theorem 2.6 ForR〈1〉(x〈1〉, y〈1〉)non-negative definite onX1 andR〈2〉 (x〈2〉,
y〈2〉) non-negative definite on X2, R(x, y) = R〈1〉(x〈1〉, y〈1〉)R〈2〉(x〈2〉, y〈2〉)
is non-negative definite on X = X1 ×X2.

Proof : It suffices to show that, for two non-negative definite matrices A
and B of the same size, their entrywise product, A ◦B, is necessarily non-
negative definite. By elementary matrix theory, A and B are non-negative
definite if and only if there exist vectors ai and bj such that A =

∑
i aia

T
i

and B =
∑

j bjb
T
j . Now,

A ◦B =
(∑

i aia
T
i

)
◦
(∑

j bjb
T
j

)

=
∑

i,j

(aia
T
i ) ◦ (bjbTj ) =

∑

i,j

(ai ◦ bj)(ai ◦ bj)T ,

so A ◦B is non-negative definite. �
By Theorem 2.3, every non-negative definite function R on domain X

corresponds to a reproducing kernel Hilbert space with R as its reproducing
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kernel. Given H〈1〉 on X1 with reproducing kernel R〈1〉 and H〈2〉 on X2 with
reproducing kernel R〈2〉, R = R〈1〉R〈2〉 is non-negative definite on X1 ×X2

by Theorem 2.6. The reproducing kernel Hilbert space corresponding to
such an R is called the tensor product space of H〈1〉 and H〈2〉, and is
denoted by H〈1〉 ⊗H〈2〉. The operation extends to multiple-term products
recursively.
Suppose one has reproducing kernel Hilbert spaces H〈γ〉 on domains

Xγ , γ = 1, . . . ,Γ, respectively. Further, assume that the spaces have one-
way ANOVA decompositions built in via the tensor sum decompositions
H〈γ〉 = H0〈γ〉 ⊕ H1〈γ〉, where H0〈γ〉 =

{
f : f ∝ 1

}
has a reproducing

kernel R0〈γ〉 ∝ 1 and H1〈γ〉 has a reproducing kernel R1〈γ〉 satisfying side
conditions AγR1〈γ〉(x〈γ〉, ·) = 0, ∀x〈γ〉 ∈ Xγ , where Aγ are the averaging
operators defining the one-way ANOVA decompositions on Xγ . The tensor
product space H = ⊗Γ

γ=1H〈γ〉 has a tensor sum decomposition

H =
Γ⊗

γ=1
(H0〈γ〉 ⊕H1〈γ〉) = ⊕

S

{( ⊗
γ∈S

H1〈γ〉
)⊗ ( ⊗

γ �∈S
H0〈γ〉

)}
= ⊕

S
HS , (2.28)

which parallels (1.7) on page 7, where the summation is over all subsets S ⊆{
1, . . . ,Γ

}
. The term HS has a reproducing kernel RS ∝ ∏

γ∈S R1〈γ〉, and
the projection of f ∈ H in HS is the fS appearing in (1.7). The minimizer
of L(f)+(λ/2)J(f) in a tensor product reproducing kernel Hilbert space is
called a tensor product smoothing spline. Examples of the construction
follow.

2.4.2 Reproducing Kernel Hilbert Spaces on {1, . . . , K}2
Set Aγf =

∑Kγ

x〈γ〉=1 f(x)/Kγ on discrete domains Xγ =
{
1, . . . ,Kγ

}
, γ =

1, 2. The marginal reproducing kernels that define the one-way ANOVA
decomposition on Xγ can be taken as R0〈γ〉(x〈γ〉, y〈γ〉) = 1/Kγ and

R1〈γ〉(x〈γ〉, y〈γ〉) = I[x〈γ〉=y〈γ〉] − 1/Kγ,

γ = 1, 2, as given in §2.2.
A function on

{
1, . . . ,K1

} × {
1, . . . ,K2

}
can be written as a vector of

length K1K2,

f =
(
f(1, 1), . . . , f(1,K2), . . . , f(K1, 1), . . . , f(K1,K2)

)T
,

and a reproducing kernel as a (K1K2) × (K1K2) matrix. Using matrix
notation, the products of the marginal reproducing kernels R0〈γ〉 and R1〈γ〉
given above and the subspaces they correspond to are listed in Table 2.1,
where 1K is of length K, IK is of size K ×K, and, as a matrix operator,
⊗ denotes the Kronecker product of matrices. The corresponding inner
products are defined by the Moore-Penrose inverses of these matrices, which
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TABLE 2.1. Product reproducing kernels on
{
1, . . . ,K1

}× {
1, . . . ,K2

}
.

Subspace Reproducing kernel

H0〈1〉 ⊗H0〈2〉 (1K11
T
K1

/K1)⊗ (1K21
T
K2

/K2)
H0〈1〉 ⊗H1〈2〉 (1K11

T
K1

/K1)⊗ (IK2 − 1K21
T
K2

/K2)
H1〈1〉 ⊗H0〈2〉 (IK1 − 1K11

T
K1

/K1)⊗ (1K21
T
K2

/K2)
H1〈1〉 ⊗H1〈2〉 (IK1 − 1K11

T
K1

/K1)⊗ (IK2 − 1K21
T
K2

/K2)

are themselves because they are idempotent. The decomposition of (2.28)
is seen to be

H = (H0〈1〉 ⊕H1〈1〉)⊗ (H0〈2〉 ⊕H1〈2〉)

= (H0〈1〉 ⊗H0〈2〉)⊕ (H1〈1〉 ⊗H0〈2〉)

⊕ (H0〈1〉 ⊗H1〈2〉)⊕ (H1〈1〉 ⊗H1〈2〉)

= H{} ⊕H{1} ⊕H{2} ⊕H{1,2}, (2.29)

where H{} spans the constant, H{1} spans the x〈1〉 main effect, H{2} spans
the x〈2〉 main effect, and H{1,2} spans the interaction.
If one would like to use the averaging operator Af = f(1) on a marginal

domain
{
1, . . . ,K

}
, the K-dimensional vector space may be decomposed

alternatively as

H0 ⊕H1 =
{
f : f(1) = · · · = f(K)

}⊕ {
f : f(1) = 0

}
,

with the reproducing kernels given by R0 = 1 and R1(x, y) = I[x=y �=1]; see
Problem 2.8.

2.4.3 Reproducing Kernel Hilbert Spaces on [0, 1]2

Set Af =
∫ 1

0 fdx on [0, 1]. The tensor product reproducing kernel Hilbert
spaces on [0, 1]2 can be constructed using the reproducing kernels (2.19)
and (2.23) derived in §2.3.3.

Example 2.4 (Tensor product linear spline) Setting m = 1 in §2.3.3,
one has

{
f : ḟ ∈ L2[0, 1]

}
=

{
f : f ∝ 1

}⊕ {
f :

∫ 1

0
fdx = 0, ḟ ∈ L2[0, 1]

}

= H0 ⊕H1,

with reproducing kernelsR0(x, y) = 1 and R1(x, y) = k1(x)k1(y)+k2(x−y).
This marginal space can be used on both axes to construct a tensor product
reproducing kernel Hilbert space with the structure of (2.28), with averag-

ing operators Aγf =
∫ 1

0
fdx〈γ〉, γ = 1, 2. The reproducing kernels and the

corresponding inner products in the subspaces are listed in Table 2.2. �
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Example 2.5 (Tensor product cubic spline) Setting m = 2 in §2.3.3,
one has

{
f : f̈ ∈ L2[0, 1]

}
=

{
f : f ∝ 1

}⊕ {
f : f ∝ k1

}

⊕ {
f :

∫ 1

0
fdx =

∫ 1

0
ḟdx = 0, f̈ ∈ L2[0, 1]

}

= H00 ⊕H01 ⊕H1,

where H01 ⊕ H1 forms the contrast in a one-way ANOVA decomposition

with an averaging operator Af =
∫ 1

0
fdx. The corresponding reproduc-

ing kernels are R00(x, y) = 1, R01(x, y) = k1(x)k1(y), and R1(x, y) =

k2(x)k2(y) − k4(x − y). Note that
∫ 1

0 R01(x, y)dy =
∫ 1

0 R1(x, y)dy = 0,
∀x ∈ [0, 1]. Using this space on both marginal domains, one can con-
struct a tensor product space with nine tensor sum terms. The subspace
H00〈1〉 ⊗ H00〈2〉 spans the constant term in (1.7) on page 7, the subspaces
H00〈1〉 ⊗ (H01〈2〉 ⊕ H1〈2〉) and (H01〈1〉 ⊕ H1〈1〉) ⊗H00〈2〉 span the main ef-
fects, and the subspace (H01〈1〉 ⊕ H1〈1〉) ⊗ (H01〈2〉 ⊕ H1〈2〉) spans the in-
teraction. The reproducing kernels and the corresponding inner products
in some of the subspaces are listed in Table 2.3. The separation of H01

and H1 is intended to facilitate adequate numerical treatment of the dif-
ferent components; it is not needed for the characterization of the ANOVA
decomposition in (2.28). �

For the averaging operator Af = f(0), similar tensor product repro-
ducing kernel Hilbert spaces can be constructed using the marginal spaces
described in §2.3.1; details are to be worked out in Problem 2.13. Note that
it is not necessary to use the same marginal space on both axes. Actually,
the choice of the order m and that of the averaging operator Af on differ-
ent axes are unrelated to each other. Although the reproducing kernels of
§§2.3.1 and 2.3.3 lead to identical polynomial smoothing splines for univari-
ate smoothing on [0, 1], they do yield different tensor product smoothing
splines on [0, 1]2, as their respective roughness penalties are different.

2.4.4 Reproducing Kernel Hilbert Spaces
on {1, . . . , K} × [0, 1]

Setting A1f =
∑K

x〈1〉=1 f(x)/K on X1 =
{
1, . . . ,K

}
and A2f =

∫ 1

0
fdx〈2〉

on X2 = [0, 1], tensor product spaces with the structure of (2.28) built in
can be constructed using the marginal spaces used in §§2.4.2 and 2.4.3.

Example 2.6 One construction of a tensor product space is by using
R0〈1〉(x〈1〉, y〈1〉) = 1/K and R1〈1〉(x〈1〉, y〈1〉) = I[x〈1〉=y〈1〉] − 1/K on X1 and
R0〈2〉(x〈2〉, y〈2〉) = 1 and R1〈2〉(x〈2〉, y〈2〉) = k1(x〈2〉)k1(y〈2〉) + k2(x〈2〉 − y〈2〉)
on X2. The reproducing kernels and the corresponding inner products in
the subspaces are listed in Table 2.4. �
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Example 2.7 Using R0〈1〉 = 1/K and R1〈1〉 = I[x〈1〉=y〈1〉] − 1/K on X1

and R00〈2〉 = 1, R01〈2〉 = k1(x〈2〉)k1(y〈2〉), and R1〈2〉 = k2(x〈2〉)k2(y〈2〉) −
k4(x〈2〉 − y〈2〉) on X2, one can construct a tensor product space with six
tensor sum terms. The subspace H0〈1〉 ⊗H00〈2〉 spans the constant, H0〈1〉 ⊗
(H01〈2〉 ⊕ H1〈2〉) and H1〈1〉 ⊗ H00〈2〉 span the main effects, and H1〈1〉 ⊗
(H01〈2〉 ⊕ H1〈2〉) spans the interaction. The reproducing kernels and the
corresponding inner products in the subspaces are listed in Table 2.5. �

2.4.5 Multiple-Term Reproducing Kernel Hilbert Spaces:
General Form

The examples of tensor product reproducing kernel Hilbert spaces on prod-
uct domains presented above all contain multiple tensor sum terms. In
general, a multiple-term reproducing kernel Hilbert space can be written
as H = ⊕βHβ , where β is a generic index, with subspaces Hβ having
inner products (fβ , gβ)β and reproducing kernels Rβ , where fβ is the pro-
jection of f in Hβ . It is often convenient to write (f, g)β for (fβ, gβ)β ,
which can be formally defined as a semi-inner-product in H satisfying
(f − fβ , f − fβ)β = 0.
The subspacesHβ are independent modules, and the within-module met-

rics implied by the inner products (fβ , gβ)β are not necessarily comparable
between the modules. Allowing for intermodule rescaling of the metrics, an
inner product in H can be specified via

J(f, g) =
∑

β

θ−1
β (fβ , gβ)β , (2.30)

where θβ ∈ (0,∞) are tunable parameters. The reproducing kernel associ-
ated with (2.30) is RJ =

∑
β θβRβ , as

J
(
RJ (x, ·), f

)
=

∑

β

θ−1
β

(
θβRβ(x, ·), fβ

)
β
=

∑

β

fβ(x) = f(x).

When some of the θβ are set to ∞ in (2.30), J(f, g) defines a semi-inner-
product in H = ⊕βHβ . Such a semi-inner-product may be used to specify
J(f) = J(f, f) for use in L(f) + (λ/2)J(f). Subspaces not contributing
to J(f) form the null space of J(f), NJ =

{
f : J(f) = 0

}
. Subspaces

contributing to J(f) form the space HJ = H � NJ , in which J(f, g) is a
full inner product.
Observing Yi = η(xi) + εi, where xi ∈ X is a product domain and

εi ∼ N(0, σ2), one may estimate η via the minimization of

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λJ(η), (2.31)
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where J(f) = J(f, f) is as given above. The minimizer of (2.31) defines a
smoothing spline on X . The computation strategy outlined in §2.3.2 readily
applies here, with the subspaces H0 and H1 in §2.3.2 replaced by NJ and
HJ , respectively.
When some of the θβ are set to 0 in J(f) = J(f, f), the corresponding fβ

are not allowed in the estimate. One simply eliminates the corresponding
Hβ from the tensor sum.
Note that for the computation of a smoothing spline, all that one needs

are a basis of NJ and the reproducing kernel RJ associated with J(f) in
HJ = H�NJ . In particular, the explicit form of J(f) is not needed.

Example 2.8 Consider the construction of Example 2.5 on X = [0, 1]2.
Denote Hν,μ = Hν〈1〉 ⊗Hμ〈2〉, ν, μ = 00, 01, 1, with inner products (f, g)ν,μ
and reproducing kernels Rν,μ = Rν〈1〉Rμ〈2〉. One may set

J(f, g) = θ−1
1,00(f, g)1,00 + θ−1

1,01(f, g)1,01

+ θ−1
00,1(f, g)00,1 + θ−1

01,1(f, g)01,1 + θ−1
1,1(f, g)1,1

and minimize (2.31) in H = ⊕ν,μHν,μ. The null space of J(f) = J(f, f) is

NJ = H00,00 ⊕H01,00 ⊕H00,01 ⊕H01,01

= span{φ00,00, φ01,00, φ00,01, φ01,01}
= span

{
1, k1(x〈1〉), k1(x〈2〉), k1(x〈1〉)k1(x〈2〉)

}
,

where the basis functions φν,μ are explicitly specified. The minimizer of
(2.31) in H = ⊕ν,μHν,μ has an expression

η(x) =
∑

ν,μ=00,01

dν,μφν,μ(x) +

n∑

i=1

ciRJ(xi, x),

where

RJ = θ1,00R1,00 + θ1,01R1,01 + θ00,1R00,1 + θ01,1R01,1 + θ1,1R1,1.

The projections of η in Hν,μ are readily available from the expression. For
example, η01,00 = d01,00φ01,00(x) and η01,1 =

∑n
i=1 ciθ01,1R01,1(xi, x).

To fit an additive model, one may set

J(f, g) = θ−1
1,00(f, g)1,00 + θ−1

00,1(f, g)00,1

and minimize (2.31) in Ha = H00,00 ⊕H01,00⊕H1,00⊕H00,01 ⊕H00,1. The
null space is now

NJ = H00,00 ⊕H01,00 ⊕H00,01 = span{φ00,00, φ01,00, φ00,01},
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and HJ = H1,00 ⊕H00,1 with a reproducing kernel

RJ = θ1,00R1,00 + θ00,1R00,1.

The spaces H01,01, H1,01, H01,1, and H1,1 are eliminated from Ha. �

2.5 Bayes Model

Penalized likelihood estimation in a reproducing kernel Hilbert space H
with the penalty J(f) a square (semi) norm is equivalent to a certain em-
pirical Bayes model with a Gaussian prior. The prior has a diffuse compo-
nent in the null space NJ of J(f) and a proper component in HJ = H�NJ

with mean zero and a covariance function proportional to the reproducing
kernel RJ in HJ . The Bayes model may also be perceived as a mixed-effect
model, with the fixed effects residing in NJ and the random effects residing
in HJ .
We start the discussion with the familiar shrinkage estimates on discrete

domains, followed by the polynomial smoothing splines on [0, 1]. The calcu-
lus is seen to depend only on the null space NJ of J(f) and the reproducing
kernel RJ in its orthogonal complement HJ = H � NJ , hence applies to
smoothing splines in general. The general results are noted concerning the
general multiple-term smoothing splines of §2.4.5.

2.5.1 Shrinkage Estimates as Bayes Estimates

Consider the classical one-way ANOVA model with independent observa-
tions Yi ∼ N

(
η(xi), σ

2
)
, i = 1, . . . , n, where xi ∈

{
1, . . . ,K

}
. With a prior

η ∼ N(0, bI), it is easy to see that the posterior mean of η is given by the
minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

b

K∑

x=1

η2(x). (2.32)

Setting b = σ2/nλ, (2.32) is equivalent to (2.4) of §2.2.
Now, consider η = α1+η1, with independent priors α ∼ N(0, τ2) for the

mean and η1 ∼ N
(
0, b(I − 11T /K)

)
for the contrast. Note that ηT1 1 = 0

almost surely and that η̄ =
∑K

x=1 η(x)/K = α. The posterior mean of η is
given by the minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

τ2
η̄2 +

1

b

K∑

x=1

(
η(x)− η̄

)2
. (2.33)
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Letting τ2 → ∞ and setting b = σ2/nλ, (2.33) reduces to (2.3) of §2.2.
In the limit, α is said to have a diffuse prior. This setting may also be
considered as a mixed-effect model, with α1 being the fixed effect and η1
being the random effect.
Next we look at a two-way ANOVA model on

{
1, . . . ,K1

}×{
1, . . . ,K2

}

using the notation of §2.4.2. Assume that η = η∅ + η1 + η2 + η1,2 has four
independent components, with priors η∅ ∼ N(0, bθ∅R∅), η1 ∼ N(0, bθ1R1),
η2 ∼ N(0, bθ2R2), and η1,2 ∼ N(0, bθ1,2R1,2), where R∅ = R0〈1〉R0〈2〉,
R1 = R1〈1〉R0〈2〉, R2 = R0〈1〉R1〈2〉, and R1,2 = R1〈1〉R1〈2〉, as given in
Table 2.1. Note that Rβ ’s are orthogonal to each other and that an ηβ
resides in the column space of Rβ almost surely. The posterior mean of η
is given by the minimizer of

1

σ2

n∑

i=1

(
Yi − η(xi)

)2
+

1

b

∑

β

θ−1
β ηTR+

β η. (2.34)

Setting b = σ2/nλ and J(f) =
∑

β θ
−1
β fTR+

β f , (2.34) reduces to (2.31)
of §2.4.5, which defines a bivariate smoothing spline on a discrete product
domain. A θβ = ∞ in J(f) puts ηβ in NJ , which is equivalent to a diffuse
prior, or a fixed effect in a mixed-effect model. To obtain the additive model,
one simply eliminates η1,2 by setting θ1,2 = 0.

2.5.2 Polynomial Smoothing Splines as Bayes Estimates

Consider η = η0+η1 on [0, 1], with η0 and η1 having independent Gaussian
priors with mean zero and covariance functions,

E
[
η0(x)η0(y)

]
= τ2R0(x, y) = τ2

m−1∑

ν=0

xν

ν!

yν

ν!
,

E
[
η1(x)η1(y)

]
= bR1(x, y) = b

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du,

where R0 and R1 are taken from (2.9) and (2.10) of §2.3.1. Observing
Yi ∼ N

(
η(xi), σ

2
)
, the joint distribution of Y and η(x) is normal with

mean zero and a covariance matrix

(
bQ+ τ2SST + σ2I bξ + τ2Sφ

bξT + τ2φTST bR1(x, x) + τ2φTφ

)
, (2.35)

where Q is n × n with the (i, j)th entry R1(xi, xj), S is n × m with the
(i, ν)th entry xν−1

i /(ν − 1)!, ξ is n × 1 with the ith entry R1(xi, x), and
φ is m × 1 with the νth entry xν−1/(ν − 1)!. Using a standard result on
multivariate normal distribution (see, e.g., Johnson and Wichern (1992,
Result 4.6)), the posterior mean of η(x) is seen to be
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E
[
η(x)|Y]

= (bξT + τ2φTST )(bQ+ τ2SST + σ2I)−1Y

= ξT (Q + ρSST + nλI)−1Y

+ φT ρST (Q + ρSST + nλI)−1Y, (2.36)

where ρ = τ2/b and nλ = σ2/b.

Lemma 2.7 Suppose M is symmetric and nonsingular and S is of full
column rank.

lim
ρ→∞(ρSST +M)−1 = M−1 −M−1S(STM−1S)−1STM−1, (2.37)

lim
ρ→∞ρST (ρSST +M)−1 = (STM−1S)−1STM−1. (2.38)

Proof : It can be verified that (Problem 2.17)

(ρSST +M)−1 =

M−1 −M−1S(STM−1S)−1(I + ρ−1(STM−1S)−1)−1STM−1. (2.39)

Equation (2.37) follows trivially from (2.39). Substituting (2.39) into the
left-hand side of (2.38), some algebra leads to

ρST (ρSST +M)−1 = ρ(I − (I + ρ−1(STM−1S)−1)−1)STM−1

= (STM−1S)−1(I + ρ−1(STM−1S)−1)−1STM−1.

Letting ρ → ∞ yields (2.38). �
Setting ρ → ∞ in (2.36) and applying Lemma 2.7, the posterior mean

E
[
η(x)|Y]

is of the form ξT c+ φTd, with the coefficients given by

c = (M−1 −M−1S(STM−1S)−1STM−1)Y,

d = (STM−1S)−1STM−1Y,
(2.40)

where M = Q+ nλI.

Theorem 2.8 The polynomial smoothing spline of (2.5) is the posterior
mean of η = η0 + η1, where η0 diffuses in span{xν−1, ν = 1, . . . ,m} and η1
has a Gaussian process prior with mean zero and a covariance function

bR1(x, y) = b

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du,

for b = σ2/nλ.

Proof : The only thing that remains to be verified is that c and d in (2.40)
minimize (2.16) on page 36. Differentiating (2.16) with respect to c and d
and setting the derivatives to 0, one gets
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Q
{
(Q+ nλI)c + Sd−Y

}
= 0,

ST {Qc+ Sd−Y} = 0.
(2.41)

It is easy to verify that c and d given in (2.40) satisfy (2.41). �

2.5.3 Smoothing Splines as Bayes Estimates: General Form

Besides the choices of covariance functions R0 and R1, nothing is specific
to polynomial smoothing splines in the derivation of §2.5.2. In general,
consider a reproducing kernel Hilbert space H = ⊕p

β=0Hβ on a domain X
with an inner product

(f, g) =

p∑

β=0

θ−1
β (f, g)β =

p∑

β=0

θ−1
β (fβ , gβ)β

and a reproducing kernel

R(x, y) =

p∑

β=0

θβRβ(x, y),

where (f, g)β is an inner product in Hβ with a reproducing kernel Rβ ,
fβ is the projection of f in Hβ , and H0 is finite dimensional. Observing
Yi ∼ N

(
η(xi), σ

2
)
, a smoothing spline on X can be defined as the minimizer

of the functional

1

n

n∑

i=1

(
Yi − η(xi)

)2
+ λ

p∑

β=1

θ−1
β (η, η)β (2.42)

in H; see also (2.31) of §2.4.5. A smoothing spline thus defined is a Bayes
estimate of η =

∑p
β=0 ηβ , where η0 has a diffuse prior in H0 and ηβ ,

β = 1, . . . , p, have mean zero Gaussian process priors on X with covariance
functions E

[
ηβ(x)ηβ(y)

]
= bθβRβ(x, y), independent of each other, where

b = σ2/nλ. Treated as a mixed-effect model, η0 contains the fixed effects
and ηβ , β = 1, . . . , p, are the random effects.

2.6 Minimization of Penalized Functional

As an optimization object, analytical properties of the penalized likelihood
functional L(f)+(λ/2)J(f) can be studied under general functional analyti-
cal conditions such as the continuity, convexity, and differentiability of L(f)
and J(f). Among such properties are the existence of the minimizer and
the equivalence of penalized optimization and constrained optimization.
We first show that the penalized likelihood estimate exists as long as the

maximum likelihood estimate uniquely exists in the null space NJ of J(f).
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We then prove that the minimization of L(f) + (λ/2)J(f) is equivalent to
the minimization of L(f) subject to a constraint of the form J(f) ≤ ρ for
some ρ ≥ 0, and quantify the relation between ρ and λ.

2.6.1 Existence of Minimizer

A functional A(f) in a linear space L is said to be convex if for f, g ∈ L,
A
(
αf+(1−α)g

) ≤ αA(f)+(1−α)A(g), ∀α ∈ (0, 1); the convexity is strict
if the equality holds only for f = g.

Theorem 2.9 (Existence) Suppose L(f) is a continuous and convex
functional in a Hilbert space H and J(f) is a square (semi) norm in H
with a null space NJ , of finite dimension. If L(f) has a unique minimizer
in NJ , then L(f) + (λ/2)J(f) has a minimizer in H.

The minus log likelihood L(f |data) in (1.3) is usually convex in f , as
will be verified on a case-by-case basis in later chapters. The quadratic
functional J(f) is convex; see Problem 2.18. A minimizer of L(f) is unique
in NJ if the convexity is strict in it, which is often the case.
Without loss of generality, one may set λ = 2 in the theorem. The proof

of the theorem builds on the following two lemmas, with L(f) and J(f) in
the lemmas being the same as those in Theorem 2.9.

Lemma 2.10 If a continuous and convex functional A(f) has a unique
minimizer in NJ , then it has a minimizer in the cylinder area Cρ =

{
f :

f ∈ H, J(f) ≤ ρ
}
, ∀ρ ∈ (0,∞).

Lemma 2.11 If L(f)+J(f) has a minimizer in Cρ =
{
f : f ∈ H, J(f) ≤

ρ
}
, ∀ρ ∈ (0,∞), then it has a minimizer in H.

The rest of the section are the proofs.

Proof of Lemma 2.10: Let ‖ ·‖0 be the norm in NJ , and f0 be the unique
minimizer of A(f) in NJ . By Theorem 4 of Tapia and Thompson (1978,
p. 162), A(f) has a minimizer in a “rectangle”

Rρ,γ =
{
f : f ∈ H, J(f) ≤ ρ, ‖f − f0‖0 ≤ γ

}
.

Now, if the lemma is not true (i.e., that A(f) has no minimizer in Cρ for
some ρ), then a minimizer fγ of A(f) in Rρ,γ must satisfy ‖fγ − f0‖0 = γ.
By the convexity of A(f) and the fact that A(fγ) ≤ A(f0),

A
(
αfγ + (1− α)f0

) ≤ αA(fγ) + (1− α)A(f0) ≤ A(f0), (2.43)

for α ∈ (0, 1). Now, take a sequence γi → ∞ and set αi = γ−1
i , and write

αifγi + (1 − αi)f0 = fo
i + f∗

i , where fo
i ∈ NJ and f∗

i ∈ H � NJ . It is
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easy to check that ‖fo
i − f0‖0 = 1 and that J(f∗

i ) ≤ α2
i ρ. Since NJ is

finite dimensional, {fo
i } has a convergent subsequence converging to, say,

f1 ∈ NJ , and ‖f1− f0‖0 = 1. It is apparent that f∗
i → 0. By the continuity

of A(f) and (2.43), A(f1) ≤ A(f0), which contradicts the fact that f0
uniquely minimizes A(f) in NJ . Hence, ‖fγ − f0‖0 = γ cannot hold for all
γ ∈ (0,∞). This completes the proof. �

Proof of Lemma 2.11: Without loss of generality we assume L(0) = 0. If
the lemma is not true, then a minimizer fρ of L(f) + J(f) in Cρ must fall
on the boundary of Cρ for every ρ (i.e., J(fρ) = ρ, ∀ρ ∈ (0,∞)). By the
convexity of L(f),

L(αfρ) ≤ αL(fρ), (2.44)

for α ∈ (0, 1). By the definition of fρ,

L(fρ) + J(fρ) ≤ L(αfρ) + J(αfρ). (2.45)

Combining (2.44) and (2.45) and substituting J(fρ) = ρ, one obtains

L(αfρ)/α+ ρ ≤ L(αfρ) + α2ρ,

which, after some algebra, yields

L(αfρ) ≤ −α(1 + α)ρ. (2.46)

Now, choose α = ρ−1/2. Since J(αfρ) = 1, (2.46) leads to

L(f1) ≤ −(ρ1/2 + 1),

which is impossible for large enough ρ. This proves the lemma. �

Proof of Theorem 2.9: Applying Lemma 2.10 on A(f) = L(f) + J(f)
leads to the condition of Lemma 2.11, and the lemma, in turn, yields the
theorem. �

2.6.2 Penalized and Constrained Optimization

For a functional A(f) in a linear space L, define Af,g(α) = A(f + αg) as

functions of α real indexed by f, g ∈ L. If Ȧf,g(0) exists and is linear in g,

∀f, g ∈ L, A(f) is said to be Fréchet differentiable in L, and Ȧf,g(0) is
the Fréchet derivative of A at f in the direction of g.

Theorem 2.12 Suppose L(f) is continuous, convex, and Fréchet differ-
entiable in a Hilbert space H, and J(f) is a square (semi) norm in H.
If f∗ minimizes L(f) in Cρ =

{
f : f ∈ H, J(f) ≤ ρ

}
, then f∗ mini-

mizes L(f)+(λ/2)J(f) in H, where the Lagrange multiplier relates to ρ via
λ = −ρ−1L̇f∗,f∗

1
(0) ≥ 0, with f∗

1 being the projection of f∗ in HJ = H�NJ .
Conversely, if fo minimizes L(f) + (λ/2)J(f) in H, where λ > 0, then fo

minimizes L(f) in
{
f : f ∈ H, J(f) ≤ J(fo)

}
.
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The minus log likelihood L(f |data) in (1.3) is usually Fréchet
differentiable, as will be verified on a case-by-case basis in later chapters.

Proof of Theorem 2.12: If J(f∗) < ρ, then by the convexity of L(f), f∗

is a global minimizer of L(f), so the result holds with λ = L̇f∗,f∗
1
(0) = 0.

In general, J(f∗) = ρ; thus, f∗ minimizes L(f) on the boundary contour
Co

ρ =
{
f : f ∈ H, J(f) = ρ

}
. It is easy to verify that J̇f,g(0) = 2J(f, g),

where J(f, g) is the (semi) inner product associated with J(f). The space
tangent to the contour Co

ρ at f∗ is thus G =
{
g : J(f∗, g) = J(f∗

1 , g) = 0
}
.

Pick an arbitrary g ∈ G. When J(g) = 0, f∗ + αg ∈ Co
ρ . Since

0 ≤ L(f∗ + αg)− L(f∗) = αL̇f∗,g(0) + o(α),

one has L̇f∗,g(0) = 0. When J(g) 
= 0, without loss of generality one
may scale g so that J(g) = ρ; then,

√
1− α2f∗ + αg ∈ Co

ρ . Now, write

γ =
(√

1− α2 − 1
)
/α. By the linearity of L̇f,g(0) in g, one has

0 ≤ L
(√

1− α2f∗ + αg
)− L(f∗)

= L
(
f∗ + α(γf∗ + g)

)− L(f∗)

= αγL̇f∗,f∗(0) + αL̇f∗,g(0) + o(α)

= αL̇f∗,g(0) + o(α),

where αγ =
√
1− α2 − 1 = O(α2) = o(α); so, again, L̇f∗,g(0) = 0.

It is easy to see that J(f∗
1 ) = ρ and that Gc = span{f∗

1 }. Now, every
f ∈ H has an unique decomposition f = βf∗

1 + g, with β real and g ∈ G;
hence,

L̇f∗,f (0) +
λ

2
J̇f∗,f (0) =L̇f∗,βf∗

1
(0) + L̇f∗,g(0) + λJ(f∗, βf∗

1 + g)

=βL̇f∗,f∗
1
(0) + βλρ. (2.47)

With λ = −ρ−1L̇f∗,f∗
1
(0), (2.47) is annihilated for all f ∈ H; thus, f∗

minimizes L(f) + (λ/2)J(f). Finally, note that L(f∗ − αf∗
1 ) ≥ L(f∗) for

α ∈ (0, 1), so L̇f∗,f∗
1
(0) ≤ 0. The converse is straightforward and is left as

an exercise (Problem 2.21). �

2.7 Bibliographic Notes

Section 2.1

The theory of Hilbert space is at the core of many advanced analysis
courses. The elementary materials presented in §2.1.1 provide a minimal
exposition for our need. An excellent treatment of vector spaces can be
found in Rao (1973, Chap. 1). Proofs of the Riesz representation theorem
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can be found in many references, of different levels of abstraction; the one
given in §2.1.2 was taken from Akhiezer and Glazman (1961). The theory of
reproducing kernel Hilbert space was developed by Aronszajn (1950), which
remains the primary reference on the subject. The exposition in §2.1.3 is
minimally sufficient to serve our need.

Section 2.2

Shrinkage estimates are among basic techniques in classical decision the-
ory and Bayesian statistics; see, e.g., Lehmann and Casella (1998, §5.5).
The interpretation of shrinkage estimates as smoothing splines on discrete
domains has not appeared elsewhere. Vector spaces are much more famil-
iar to statisticians than reproducing kernel Hilbert spaces, and this section
is intended to help the reader to gain further insights into entities in a
reproducing kernel Hilbert space.

Section 2.3

The space C(m)[0, 1] with the inner product (2.7) and the representer of
evaluation (2.8) derived from the standard Taylor expansion are stan-
dard results found in numerical analysis literature; see, e.g., Schumaker
(1981, Chap. 8). The reproducing kernel (2.21) of C(m)[0, 1] associated with
the inner product (2.17) was derived by Craven and Wahba (1979), and
was used more often than (2.8) as marginal kernels in tensor product
smoothing splines. Results concerning Bernoulli polynomials can be found
in Abramowitz and Stegun (1964, Chap. 23).
The computational strategy outlined in §2.3.2 was derived by Kimeldorf

and Wahba (1971) in the setting of Chebyshev splines, of which the polyno-
mial smoothing splines of (2.5) are special cases; see §4.5.2 for Chebyshev
splines. For many years, however, the device was not used much in ac-
tual numerical computation. The reasons were multifold. First, algorithms
based on (2.16) are of order O(n3), whereas O(n) algorithms exist for poly-
nomial smoothing splines; see §§3.4 and 3.10. Second, portable numerical
linear algebra software and powerful desktop computing were not available
until much later. Since the late 1980s, generic algorithms and software have
been developed based on (2.16) for the computation of smoothing splines,
univariate and multivariate alike; see §3.4 for details.

Section 2.4

A comprehensive treatment of tensor product reproducing kernel Hilbert
spaces can be found in Aronszajn (1950), where Theorem 2.6 was quoted
as a classical result of I. Schur. The proof given here was suggested by
Liqing Yan.
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The idea of tensor product smoothing splines was conceived by Barry
(1986) and Wahba (1986). Dozens of references appeared in the litera-
ture since then, among which Chen (1991), Gu and Wahba (1991b, 1993a,
1993b), Gu (1992b, 1995a 1996, 2004), Wahba, Wang, Gu, Klein, and Klein
(1995) and Gu and Ma (2011) registered notable innovations in the the-
ory and practice of the tensor product spline technique. The materials of
§§2.4.3–2.4.5 are scattered in these references. The materials of §2.4.2, how-
ever, had not appeared in the smoothing literature prior to the first edition
of this book.

Section 2.5

The Bayes model of polynomial smoothing splines was first observed by
Kimeldorf andWahba (1970a, 1970b). The materials of §§2.5.2 and 2.5.3 are
mainly taken from Wahba (1978, 1983). The elementary materials of §2.5.1
in the familiar discrete setting provide insights into the general results. In
Bayesian statistics, such models are more specifically referred to as empir-
ical Bayes models; see, e.g., Berger (1985, §4.5).

Section 2.6

The existence of penalized likelihood estimates has been discussed by many
authors in various settings; see, e.g., Tapia and Thompson (1978, Chap. 4)
and Silverman (1982). The general result of Theorem 2.9 and the elemen-
tary proof are taken from Gu and Qiu (1993).
The relation between penalized optimization and constrained optimiza-

tion in the context of natural polynomial splines was noted by Schoenberg
(1964), where L(f) was a least squares functional. The general result of
Theorem 2.12 was adapted from the discussion of Gill, Murray, and Wright
(1981, §3.4) on constrained nonlinear optimization.

2.8 Problems

Section 2.1

2.1 Prove the Cauchy-Schwarz inequality of (2.1).

2.2 Prove the triangle inequality of (2.2).

2.3 Let H be a Hilbert space and G ⊂ H a closed linear subspace. For
every f ∈ H, prove that the projection of f in G, fG ∈ G, that satisfies

‖f − fG‖ = inf
g∈G

‖f − g‖

uniquely exists.
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(a) Show that there exists a sequence {gn} ⊂ G such that

lim
n→∞ ‖f − gn‖ = δ = inf

g∈G
‖f − g‖.

(b) Show that

‖gm − gn‖2 = 2‖f − gm‖2 + 2‖f − gn‖2 − 4‖f − gm + gn
2

‖2.

Since limm,n→∞ ‖f − gm+gn
2 ‖ = δ, {gn} is a Cauchy sequence.

(c) Show the uniqueness of fG using the triangle inequality.

2.4 Given Hilbert spaces H0 and H1 satisfying H0∩H1 = {0}, prove that
the space H =

{
f : f = f0 + f1, f0 ∈ H0, f1 ∈ H1

}
with an inner product

(f, g) = (f0, g0)0 + (f1, g1)1 is a Hilbert space, where f = f0 + f1, g =
g0+g1, f0, g0 ∈ H0, f1, g1 ∈ H1, and (·, ·)0 and (·, ·)1 are the inner products
in H0 and H1, respectively. Prove that H0 and H1 are the orthogonal
complements of each other as closed linear subspaces of H.

2.5 The isomorphism between a K-dimensional Hilbert space H and the
Euclidean K-space is outlined in the following steps:

(a) Take any φ ∈ H0 = H nonzero, denote φ1 = φ/‖φ‖, and obtain

H1 = H0 � {
f : f = αφ1, α real

}
.

Prove that H1 contains nonzero elements if K > 1.

(b) Repeat step (a) for Hi−1, i = 2, . . . ,K, to obtain φi and

Hi = Hi−1 � {
f : f = αφi, α real

}
.

Prove that HK−1 =
{
f : f = αφK , α real

}
, so HK = {0}.

(c) Verify that (φi, φj) = δi,j , where δi,j is the Kronecker delta. The
elements φi, i = 1, . . . ,K, are said to form an orthonormal basis of
H. For every f ∈ H, there is a unique representation f =

∑K
i=1 αiφi,

where αi are real coefficients.

(d) Prove that the mapping f ↔ α, where α are the coefficients of f ,
defines an isomorphism between H and the Euclidean space.

2.6 Prove that in an Euclidean space, every linear functional is continu-
ous.

2.7 Prove that the reproducing kernel of a Hilbert space, when it exists,
is unique.
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Section 2.2

2.8 On X =
{
1, . . . ,K

}
, the constructions of reproducing kernel Hilbert

spaces outlined below yield a one-way ANOVA decomposition with an av-
eraging operator Af = f(1).

(a) Verify that the reproducing kernel R0 = 1 = 11T generates the space
H0 =

{
f : f(1) = · · · = f(K)

}
with an inner product (f, g)0 =

fT (11T /K2)g.

(b) Verify that the reproducing kernel R1 = I[x=y �=1] = (I − e1e
T
1 )

generates the space H1 =
{
f : f(1) = 0

}
with an inner product

(f, g)1 = fT (I − e1e
T
1 )g, where e1 is the first unit vector.

(c) Note that H0 ∩ H1 = {0}, so H0 ⊕ H1 is well defined and has the
reproducing kernel R0+R1. With the expressions given in (a) and (b),
however, one in general has (f1, f1)0 
= 0 for f1 ∈ H1 and (f0, f0)1 
= 0
for f0 ∈ H0. Nevertheless, f = 1eT1 f for f ∈ H0, so one may write
(f, g)0 = fT (e1e

T
1 )g. Similarly, as f = (I−1eT1 )f for f ∈ H1, one may

write (f, g)1 = fT (I−e11
T )(I−1eT1 )g. Verify the new expressions of

(f, g)0 and (f, g)1. Check that with the new expressions, (f1, f1)0 = 0,
∀f1 ∈ H1, and that (f0, f0)1 = 0, ∀f0 ∈ H0, so the inner product in
H0 ⊕ H1 can be written as (f, g) = (f, g)0 + (f, g)1 with the new
expressions.

(d) Verify that (11T + I − e1e
T
1 )

−1 = e1e
T
1 + (I − e11

T )(I − 1eT1 ) (i.e.,
the reproducing kernel R0+R1 and the inner product (f, g)0+(f, g)1
are inverses of each other).

Section 2.3

2.9 Consider the function kr(x) of (2.18).

(a) Prove that the infinite series converges for r > 1 on the real line and
for r = 1 at noninteger points.

(b) Prove that kr(x) is real-valued.

(c) Prove that k1(x) = x− 0.5 on x ∈ (0, 1).

2.10 Prove (2.22) through integration by parts, for m > 1. Note that kr,

r > 1, are periodic with period 1 and that
∫ 1

0
f (ν)dx = 0, ν = 0, . . . ,m− 1.

2.11 Derive the expressions of k2(x) and k4(x) on [0, 1] as given in (2.27)
by successive integration from k1(x) = x−.5. Note that for r > 1, dkr/dx =
kr−1 and kr(0) = kr(1).
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Section 2.4

2.12 On X =
{
1, . . . ,K1

} × {
1, . . . ,K2

}
, construct tensor product

reproducing kernel Hilbert spaces with the structure of (2.28).

(a) With A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 1).

(b) With A1f = f(1, x〈2〉) and A2f =
∑K2

x〈2〉=1 f(x)/K2.

2.13 On X = [0, 1]2, construct tensor product reproducing kernel Hilbert
spaces with the structure of (2.28).

(a) With A1f = f(0, x〈2〉) and A2f = f(x〈1〉, 0), using (2.9) and (2.10)
with m = 1, 2.

(b) With A1f = f(0, x〈2〉) and A2f =
∫ 1

0
fdx〈2〉, using (2.9), (2.10),

(2.19) and (2.23), with m = 1, 2.

2.14 On X =
{
1, . . . ,K

} × [0, 1], construct tensor product reproducing
kernel Hilbert spaces with the structure of (2.28).

(a) With A1f = f(1, x〈2〉) and A2f = f(x〈1〉, 0).

(b) With A1f = f(1, x〈2〉) and A2f =
∫ 1

0
fdx〈2〉.

(c) With A1f =
∑K

x〈1〉=1 f(x)/K and A2f = f(x〈1〉, 0).

2.15 To compute the tensor product smoothing splines of Example 2.8,
one may use the strategy outlined in §2.3.2.

(a) Specify the matrices S and Q in (2.16), for both the full model and
the additive model.

(b) Decompose the expression of η(x) into those of the constant, the main
effects, and the interaction.

2.16 In parallel to Example 2.8 and Problem 2.15, work out the corre-
sponding details for the computation of tensor product smoothing splines
on

{
1, . . . ,K

}× [0, 1], using the construction of Example 2.7.

Section 2.5

2.17 Verify (2.39).
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Section 2.6

2.18 Prove that a quadratic functional J(f) is convex.

2.19 Let A(f) be a strictly convex functional in a Hilbert space H. Prove
that if the minimizer of A(f) exists in H, then it is also unique.

2.20 Consider a strictly convex continuous function f(x) on (−∞,∞)2.
Prove that if f1(x〈1〉) = f(x〈1〉, 0) has a minimizer, then f(x) + x2

〈2〉 has a
unique minimizer.

2.21 Prove that if fo minimizes L(f) + λJ(f), where λ > 0, then fo

minimizes L(f) subject to J(f) ≤ J(fo).
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