
Chapter 2

Matched Asymptotic Expansions

2.1 Introduction

The ideas underlying an asymptotic approximation appeared in the early
1800s when there was considerable interest in developing formulas to evalu-
ate special functions. An example is the expansion of Bessel’s function, given
in (1.15), that was derived by Poisson in 1823. It was not until later in the
century that the concept of an asymptotic solution of a differential equation
took form, and the most significant efforts in this direction were connected
with celestial mechanics. The subject of this chapter, what is traditionally
known as matched asymptotic expansions, appeared somewhat later. Its early
history is strongly associated with fluid mechanics and, specifically, aerody-
namics. The initial development of the subject is credited to Prandtl (1905),
who was concerned with the flow of a fluid past a solid body (such as an
airplane wing). The partial differential equations for viscous fluid flow are
quite complicated, but he argued that under certain conditions the effects
of viscosity are concentrated in a narrow layer near the surface of the body.
This happens, for example, with air flow across an airplane wing, and a pic-
ture of this situation is shown in Fig. 2.1. This observation allowed Prandtl
to go through an order-of-magnitude argument and omit terms he felt to
be negligible in the equations. The result was a problem that he was able
to solve. This was a brilliant piece of work, but it relied strongly on his
physical intuition. For this reason there were numerous questions about his
reduction that went unresolved for decades. For example, it was unclear how
to obtain the correction to his approximation, and it is now thought that
Prandtl’s derivation of the second term is incorrect (Lagerstrom, 1988). This
predicament was resolved when Friedrichs (1941) was able to show how to sys-
tematically reduce a boundary-layer problem. In analyzing a model problem
(Exercise 2.1) he used a stretching transformation to match inner and outer

M.H. Holmes, Introduction to Perturbation Methods, Texts in Applied
Mathematics 20, DOI 10.1007/978-1-4614-5477-9 2,
© Springer Science+Business Media New York 2013

57



58 2 Matched Asymptotic Expansions

Figure 2.1 Supersonic air flow, at Mach 1.4, over a wedge. The high speed flow
results in a shock layer in front of the wedge across which the pressure undergoes a
rapid transition. Because of its position in the flow, the shock is an example of an
interior layer (Sect. 2.5). There are also boundary layers present (Sect. 2.2). These
can be seen near the surface of the wedge; they are thin regions where the flow drops
rapidly to zero (which is the speed of the wedge). From Bleakney et al. (1949)

solutions, which is the basis of the method that is discussed in this chapter.
This procedure was not new, however, as demonstrated by the way in which
Gans (1915) used some of these ideas to solve problems in optics.

The golden age for matched asymptotic expansions was in the 1950s, and
it was during this period that the method was refined and applied to a wide
variety of physical problems. A short historical development of the method is
presented in O’Malley (2010). The popularity of matched asymptotic expan-
sions was also greatly enhanced with the appearance of two very good books,
one by Cole (1968), the other by Van Dyke (1975). The method is now one
of the cornerstones of applied mathematics. At the same time it is still being
extended, both in the type of problems it is used to resolve as well as in the
theory.

2.2 Introductory Example

The best way to explain the method of matched asymptotic expansions is to
use it to solve a problem. The example that follows takes several pages to
complete because it is used to introduce the ideas and terminology. As the
procedure becomes more routine, the derivations will become much shorter.

The problem we will study is

εy′′ + 2y′ + 2y = 0, for 0 < x < 1, (2.1)
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where
y(0) = 0 (2.2)

and

y(1) = 1. (2.3)

This equation is similar to that used in Sect. 1.7 to discuss uniform and
nonuniform approximations. The difference is that we will now derive the
approximation directly from the problem rather than from a formula for the
solution (Exercise 2.7).

An indication that this problem is not going to be as straightforward as
the differential equations solved in Sect. 1.6 is that if ε = 0, then the problem
is no longer second order. This leads to what is generally known as a singular
perturbation problem, although singularity can occur for other reasons. In
any case, to construct a first-term approximation of the solution for small
ε, we will proceed in four steps. The fifth step will be concerned with the
derivation of the second term in the expansion.

2.2.1 Step 1: Outer Solution

To begin, we will assume that the solution can be expanded in powers of ε.
In other words,

y(x) ∼ y0(x) + εy1(x) + · · · . (2.4)

Substituting this into (2.1) we obtain

ε(y′′0 + εy′′1 + · · · ) + 2(y′0 + εy′1 + · · · ) + 2(y0 + εy1 + · · · ) = 0.

The O(1) equation is therefore

y′0 + y0 = 0, (2.5)

and the general solution of this is

y0(x) = ae−x, (2.6)

where a is an arbitrary constant. Looking at the solution in (2.6) we have
a dilemma because there is only one arbitrary constant but two boundary
conditions – (2.2), (2.3). What this means is that the solution in (2.6) and
the expansion in (2.4) are incapable of describing the solution over the entire
interval 0 ≤ x ≤ 1. At the moment we have no idea which boundary condition,
if any, we should require y0(x) to satisfy, and the determination of this will
have to come later. This leads to the question of what to do next. Well, (2.6)
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is similar to using (1.71) to approximate the solution of (1.68). In looking at
the comparison in Fig. 1.14, it is a reasonable working hypothesis to assume
that (2.6) describes the solution over most of the interval, but there is a
boundary layer at either x = 0 or x = 1, where a different approximation
must be used. Assuming for the moment that it is at x = 0, and in looking at
the reduction from (1.70) to (1.71), then we are probably missing a term like
e−βx/ε. The derivation of this term is the objective of the next step. Because
we are going to end up with approximations of the solution over different
regions, we will refer to (2.6) as the first term in the expansion of the outer
solution.

2.2.2 Step 2: Boundary Layer

Based on the assumption that there is a boundary layer at x = 0, we introduce
a boundary-layer coordinate given as

x̄ =
x

εα
, (2.7)

where α > 0. From our earlier discussion it is expected that α = 1, and this
will be demonstrated conclusively subsequently. After changing variables from
x to x̄ we will take x̄ to be fixed when expanding the solution in terms of ε.
This has the effect of stretching the region near x = 0 as ε becomes small.
Because of this, (2.7) is sometimes referred to as a stretching transformation.

From the change of variables in (2.7), and from the chain rule, we have that

d

dx
=

dx̄

dx

d

dx̄
=

1

εα
d

dx̄
.

Letting Y (x̄) denote the solution of the problem when using this boundary-
layer coordinate, (2.1) transforms to

ε1−2α d
2Y

dx̄2
+ 2ε−αdY

dx̄
+ 2Y = 0, (2.8)

where, from (2.2),

Y (0) = 0. (2.9)

The boundary condition at x = 0 has been included here because the bound-
ary layer is at the left end of the interval.

The appropriate expansion for the boundary-layer solution is now

Y (x̄) ∼ Y0(x̄) + εγY1(x̄) + · · · , (2.10)
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where γ > 0. As stated previously, in this expansion x̄ is held fixed as ε
goes to zero (in the same way that x is held fixed in the outer expansion).
Substituting the expansion in (2.10) into (2.8) we get that

ε1−2α d2

dx̄2
(Y0 + · · · ) + 2ε−α d

dx̄
(Y0 + · · · ) + 2(Y0 + · · · ) = 0. (2.11)

① ② ③

Just as with the algebraic equations studied in Sect. 1.5, it is now necessary
to determine the correct balancing in (2.11). The balance between terms ②
and ③ was considered in Step 1, and so the following possibilities remain
(also see Exercise 2.6):

(i) ① ∼ ③ and ② is higher order.
The condition ① ∼ ③ requires that 1 − 2α = 0, and so α = 1

2 . With

this we have that ①,③ = O(1) and ② = O(ε−1/2). This violates our as-
sumption that ② is higher order (i.e., ② � ①), so this case is not possible.

(ii) ① ∼ ② and ③ is higher order.
The condition ① ∼ ② requires that 1−2α = −α, and so α = 1. With this
we have that ①,② = O(ε−1) and ③ = O(1). In this case, the conclusion
is consistent with the original assumptions, and so this is the balancing
we are looking for.

With this we have the following problem to solve:

O(1ε ) Y ′′
0 + 2Y ′

0 = 0 for 0 < x̄ < ∞,

Y0(0) = 0.

The general solution of this problem is

Y0(x̄) = A(1− e−2x̄), (2.12)

where A is an arbitrary constant. It should be observed that the dif-
ferential equation for Y0 contains at least one term of the outer-layer
Eq. (2.5). This is important for the successful completion of Step 3.

The boundary-layer expansion in (2.10) is supposed to describe the so-
lution in the immediate vicinity of the endpoint x = 0. It is therefore not
unreasonable to expect that the outer solution (2.6) applies over the remain-
der of the interval (this is assuming there are no other layers). This means
that the outer solution should satisfy the boundary condition at x = 1. From
(2.6) and (2.3) one finds that

y0(x) = e1−x. (2.13)
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Figure 2.2 Sketch of inner solution, (2.12), and outer solution, (2.13). Note the
overlap region along the x-axis where both solutions are essentially constant. Since
these approximations are supposed to be describing the same continuous function, it
must be that these constants are the same. Hence, A = e1

2.2.3 Step 3: Matching

It remains to determine the constant A in the first-term approximation of
the boundary-layer solution (2.12). To do this, the approximations we have
constructed so far are summarized in Fig. 2.2. The important point here is
that both the inner and outer expansions are approximations of the same
function. Therefore, in the transition region between the inner and outer
layers we should expect that the two expansions will give the same result.
This is accomplished by requiring that the value of Y0 as one comes out of
the boundary layer (i.e., as x̄ → ∞) is equal to the value of y0 as one comes
into the boundary layer (i.e., as x → 0). In other words, we require that

lim
x̄→∞ Y0 = lim

x→0
y0. (2.14)

In this text, the preceding equation will usually be written in the more com-
pact form of Y0(∞) = y0(0

+). However it is expressed, this is an example
of a matching condition, and from it we find that A = e1. With this (2.12)
becomes

Y0(x̄) = e1 − e1−2x̄. (2.15)

This completes the derivation of the inner and outer approximations of the
solution of (2.1). The last step is to combine them into a single expression.

Before moving on to the construction of the composite expansion, a word
of caution is needed about the matching condition given in (2.14). Although
we will often use this condition, it is limited in its applicability, and for
more complex problems a more sophisticated matching procedure is often
required. This will be discussed in more detail once the composite expansion
is calculated.
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Figure 2.3 Sketch of inner and outer regions and values of approximations in those
regions

2.2.4 Step 4: Composite Expansion

Our description of the solution consists of two pieces, one that applies near
x = 0, the other that works everywhere else. Because neither can be used
over the entire interval, they are not uniformly valid for 0 ≤ x ≤ 1. The ques-
tion we consider now is whether it is possible to combine them to produce a
uniform approximation, that is, one that works over the entire interval. The
position we are in is summarized in Fig. 2.3. The inner and outer solutions
are constant outside their intervals of applicability, and the constant is the
same for both solutions. The value of the constant can be written as either
y0(0) or Y0(∞), and the fact that they are equal is a consequence of the
matching condition (2.14). This observation can be used to construct a uni-
form approximation, namely, we just add the approximations together and
then subtract the part that is common to both. The result is

y ∼ y0(x) + Y0

(x
ε

)
− y0(0)

∼ e1−x − e1−2x/ε. (2.16)

The fact that the composite expansion gives a very good approximation
of the solution over the entire interval is shown in Fig. 2.4. Note, however,
that it satisfies the boundary condition at x = 0 exactly, but the one at
x = 1 is only satisfied asymptotically. This is not of particular concern since
the expansion also satisfies the differential equation in an asymptotic sense.
However, an alternative expansion that satisfies both boundary conditions is
developed in Exercise 2.14.

2.2.5 Matching Revisited

Because of the importance of matching, the procedure needs to be exam-
ined in more detail. The fact is that, even though the matching condition in
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Figure 2.4 Graph of exact solution of (2.1) and composite expansion given in (2.16)
in the case where ε = 10−1 and where ε = 10−2. Note the appearance of the boundary
layer, as well as the convergence of the composite expansion to the solution of the
problem, as ε decreases

0 11 2

Overlap Domain

Inner
Outer

Figure 2.5 Schematic of domains of validity of inner and outer expansions as as-
sumed in matching procedure. The intermediate variable is to be located within the
overlap region

(2.14) is often used when calculating the first term in the expansion, there are
situations where it is inapplicable. One of the more common examples of this
occurs when either the inner or outer expansions are unbounded functions of
their respective variable, so its limit does not exist. Examples of this will ap-
pear later in the chapter (e.g., Sect. 2.6), as well in succeeding chapters (e.g.,
Sect. 4.3). Another complication arises when constructing the second term
in an expansion. What this all means is that we need a more sophisticated
matching procedure, and finding one is the objective of this section.

The fundamental idea underlying matching concerns the overlap, or tran-
sition, region shown in Fig. 2.2. To connect the expansions on either side
of this region, we introduce an intermediate variable xη = x/η(ε) that is
positioned within this region. In particular, it is between the O(1) coordi-
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nate of the outer layer and the O(ε) coordinate of the inner layer (Fig. 2.5).
This means that η(ε) satisfies ε � η � 1. To match the expansions, the inner
and outer approximations must give the same result when they are expressed
in this transition layer coordinate.

The precise conditions imposed on η(ε) and on the expansions are stated
explicitly in the following matching procedure:

(i) Change variables in the outer expansion (from x to xη) to obtain
youter. It is assumed that there is an η1(ε) such that youter still pro-
vides a first-term expansion of the solution for any η(ε) that satisfies
η1(ε) � η(ε) ≤ 1.

(ii) Change variables in the inner expansion (from x̄ to xη) to obtain yinner.
It is assumed that there is an η2(ε) such that yinner still provides a first-
term expansion of the solution for any η(ε) that satisfies ε ≤ η(ε) � η2.

(iii) It is assumed that the domains of validity of the expansions for youter
and yinner overlap, that is, η1 � η2. In this overlap region, for the
expansions to match, it is required that the first terms from youter and
yinner be equal.

The assumptions contained in (i) and (ii) can be proved under fairly mild
conditions; they are the essence of Kaplun’s extension theorem (Lagerstrom,
1988). Actually, one is seldom interested in determining η1 or η2 but only that
there is an interval for η(ε) such that yinner and youter match. It is important,
however, that the matching not depend on the specific choice of η(ε). For
example, if one finds that matching can only occur if η(ε) = ε1/2, then there
is no overlap domain, and the procedure is not applicable. In comparison to
the situation for (i) and (ii), the assumption on the existence of an overlap
domain in (iii) is a different matter, and a satisfactory proof has never been
given. For this reason it has become known as Kaplun’s hypothesis on the
domain of validity (Lagerstrom, 1988).

Examples

1. To use the foregoing matching procedure on our example problem, we
introduce the intermediate variable xη, defined as

xη =
x

εβ
, (2.17)

where 0 < β < 1. This interval for β comes from the requirement that
the scaling for the intermediate variable must lie between the outer scale,
O(1), and the inner scale, O(ε). Actually, it may be that in carrying out the
matching of yinner and youter we must reduce this interval for β. To see if the
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expansions match, note that the inner solution, from (2.10) and (2.12),
becomes

yinner ∼ A(1 − e−2xη/ε
1−β

) + · · ·
∼ A+ · · · , (2.18)

and the outer solution, from (2.4) and (2.13), becomes

youter ∼ e1−xηε
β

+ · · ·
∼ e1 + · · · . (2.19)

The expansions in (2.18) and (2.19) are supposed to agree to the first
term in the overlap domain, and therefore A = e1. �

2. Suppose that

y =

√
1 + x+

ε

ε+ x
, (2.20)

where 0 ≤ x ≤ 1. The outer expansion is found by fixing x, with 0 < x ≤ 1,
and expanding for small ε to obtain

y ∼ √
1 + x +

ε

2x
√
1 + x

+ · · · . (2.21)

The boundary-layer expansion is found by setting x̄ = x/ε and expanding
to obtain

Y ∼
√

2 + x̄

1 + x̄
+

1

2
εx̄

√
1 + x̄

2 + x̄
+ · · · . (2.22)

Given that (2.21) and (2.22) are expansions for a known function, we do
not use matching to determine an unknown constant as in the previous
example. Rather, the objectives here are to demonstrate how to use an
intermediate variable to match the first two terms in an expansion and to
provide an example that shows that condition (2.14), although very useful,
has limited applicability. Its limitations are evident in this example by
looking at what happens to the second term in the expansions when letting
x → 0 in (2.21) and letting x̄ → ∞ in (2.22). Because both terms become
unbounded, it is necessary to use a more refined matching method than
a simple limit condition. To verify the matching principle, we substitute
(2.17) into (2.21) to obtain

youter ∼
√
1 + εβxη +

ε1−β

2xη

√
1 + εβxη

+ · · ·

∼ 1 +
1

2
εβxη + · · ·+ ε1−β 1

2xη
+ · · · .
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Similarly, from (2.22) we get

yinner ∼ 1 + ε1−β 1

2xη
+ · · ·+ 1

2
εβxη + · · · .

Comparing these two expansions it is evident that they match. Another
observation is that there is a strong coupling between the various terms
in the expansions. For example, the first term from y1 is what matches
with the second term coming from Y0. This coupling can cause difficulties
in determining if expansions match, particularly when computing several
terms in an expansion. A hint of this will be seen when calculating the
second term in the next example. �

The interested reader may consult Lagerstrom (1988) for a more extensive
discussion of the subtleties of matching using an intermediate variable. Also,
there are other ways to match, and a quite popular one, due to Van Dyke
(1975), is discussed in Exercise 2.12. His procedure is relatively simple to use
but can occasionally lead to incorrect results (Fraenkel, 1969).

As the final comment about matching, it is a common mistake to think
that it is equivalent to the requirement that y0 and Y0 must intersect. To
show that this is incorrect, note that Y0 = 1− e−x/ε and y0 = 1+x are inner
and outer approximations, respectively, of y = 1 + x− e−x/ε. However, even
though Y0(∞) = y0(0

+), the two function never intersect.

2.2.6 Second Term

Generally, to illustrate a method, we will only derive the first term in an
expansion. However, the second term is important as it gives a measure of
the error. The procedure to find the second term is very similar to finding
the first, so only the highlights will be given here.

Substituting the outer expansion (2.4) into the problem and collecting the
O(ε) terms one finds that y′1 + y1 = − 1

2y
′′
0 , with y1(1) = 0. The solution of

this problem is

y1 =
1

2
(1− x)e1−x.

Similarly, from the boundary-layer Eq. (2.11) we get that γ = 1 and Y ′′
1 +

2Y ′
1 = −2Y0, with Y1(0) = 0. The general solution of this is

Y1 = B(1− e−2x̄)− x̄e1(1 + e−2x̄),

where B is an arbitrary constant. To match the expansions, we use the inter-
mediate variable given in (2.17). The outer expansion in this case takes the
form
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youter ∼ e1−xηε
β

+
ε

2
(1− xηε

β)e1−xηε
β

+ · · ·

∼ e1 − εβxηe
1 +

1

2
εe1 +

1

2
ε2βe1x2

η + · · · , (2.23)

and, setting ξ = −2xη/ε
1−β, the boundary-layer expansion becomes

yinner ∼ e1(1− eξ) + ε

[
B(1 − eξ)− xηe

1

ε1−β
(1 + eξ)

]
+ · · ·

∼ e1 − εβxηe
1 +Bε+ · · · . (2.24)

Matching these we get that B = 1
2e

1. Note, however, that these expansions
do not appear to agree since (2.23) contains a O(ε2β) term that (2.24) does
not have. To understand why this occurs, note that both expansions produce
a O(εβ) term that does not contain an arbitrary constant. If this term is
not identical for both expansions, then there is no way the expansions will
match. In the outer expansion this term comes from the O(1) problem, and
in the boundary layer it comes from the O(ε) solution. In a similar manner,
one finds that the x2

η term in (2.23) also comes from the first term. However,
for the boundary layer it comes from the O(ε2) problem (the verification of
this is left as an exercise). Therefore, the expansions match.

It is now possible to construct a two-term composite expansion. The basic
idea is to add expansions and then subtract the common part. This yields
the following result:

y ∼ y0 + εy1 + Y0 + εY1 −
(
e1 − xηe

1√ε+
ε

2
e1
)

∼ e1−x − (1 + x)e1−2x/ε +
ε

2

[
(1− x)e1−x − e1−2x/ε

]
.

Note that the common part in this case contains the terms in (2.23) and
(2.24) except for the x2

η term in (2.23).
Occasionally it happens that an expansion (inner or outer) produces a

term of an order, or form, that the other does not have. A typical example
of this occurs when trying to expand in powers of ε. It can happen that to
be able to match one expansion with another expansion from an adjacent
layer, it is necessary to include other terms such as those involving ln(ε).
This process of having to insert scales into an expansion because of what is
happening in another layer is called switchbacking. Some of the more famous
examples of this involve logarithmic scales; these are discussed in Lagerstrom
(1988). We will come across switchbacking in Sects. 2.4 and 6.9 when includ-
ing transcendentally small terms in the expansions.
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2.2.7 Discussion

The importance of matching cannot be overemphasized. Numerous assump-
tions went into the derivation of the inner and outer approximations, and
matching is one of the essential steps that supports these assumptions. If
they had not matched, it would have been necessary to go back and deter-
mine where the error had occurred. The possibilities when this happens are
almost endless, but it would be helpful to start looking in the following places.

1. The boundary layer is at x = 1, not at x = 0. In this case the boundary-
layer coordinate is

x̄ =
x− 1

εα
. (2.25)

This will be considered in Sect. 2.3. For certain problems it may be nec-
essary to replace the denominator with a function μ(ε), where μ(ε) is
determined from balancing or matching. A heuristic argument to help
determine the location of the boundary layer is given in Sect. 2.5.

2. There are boundary layers at both ends of an interval. See Sect. 2.3.
3. There is an interior layer. In this case the stretching transformation is

x̄ =
x− x0

εα
, (2.26)

where x0 is the location of the layer (this may depend on ε) (Sects. 2.5
and 2.6).

4. The form of the expansion is incorrect. For example, the outer expansion
may have the form y ∼ ξ(ε)y0(x) + · · · , where ξ is a function determined
from the balancing or matching in the problem; see Exercise 2.2(b) and
Sect. 2.6.

5. The solution simply does not have a layer structure and other methods
need to be used (Exercise 2.4 and Chap. 3).

Occasionally it happens that it is so unclear how to proceed that one
may want to try to solve the problem numerically to get an insight into
the structure of the solution. The difficulty with this is that the presence
of boundary or interior layers can make it hard, if not nearly impossible,
to obtain an accurate numerical solution. Nice illustrations of this can be
found in Exercises 2.29 and 2.40, and by solving (2.105) with k = 1. Another
way to help guide the analysis occurs when the problem originates from an
application and one is able to use physical intuition to determine the locations
of the layers. As an example, in solving the problem associated with Fig. 2.1
one would expect a boundary layer along the surface of the wedge and an
interior layer at the location of the shock.
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Exercises

2.1. The Friedrichs model problem for a boundary layer in a viscous fluid is
(Friedrichs, 1941)

εy′′ = a− y′ for 0 < x < 1,

where y(0) = 0, y(1) = 1, and a is a given positive constant with a �= 1.
(a) After finding the first term of the inner and outer expansions, derive a

composite expansion of the solution of this problem.
(b) Derive a two-term composite expansion of the solution of this problem.

2.2. Find a composite expansion of the solution of the following problems:
(a) εy′′ + 2y′ + y3 = 0 for 0 < x < 1, where y(0) = 0 and y(1) = 1/2.
(b) εy′′ + exy′ + εy = 1 for 0 < x < 1, where y(0) = 0 and y(1) = 1.
(c) εy′′ + y(y′ + 3) = 0 for 0 < x < 1, where y(0) = 1 and y(1) = 1.
(d) εy′′ = f(x)− y′ for 0 < x < 1, where y(0) = 0 and y(1) = 1. Also, f(x)

is continuous.
(e) εy′′ + (1 + 2x)y′ − 2y = 0 for 0 < x < 1, where y(0) = ε and y(1) =

sin(ε).

(f) εy′′ + y′ + y =

∫ 1

0

K(εx, s)y(s)ds for 0 < x < 1, where y(0) = 1 and

y(1) = −1. Also, K(x, s) = e−s(1+x).

(g) εy′′ = eεy
′
+ y for 0 < x < 1, where y(0) = 1 and y(1) = −1.

(h) εy′′ − y3 = −1− 7x2 for 0 < x < 1, where y(0) = 0 and y(1) = 2.

2.3. Consider the problem of solving

ε2y′′ + ay′ = x2 for 0 < x < 1,

where y′(0) = λ, y(1) = 2, and a and λ are positive constants.

(a) Find a first-term composite expansion for the solution. Explain why the
approximation does not depend on λ.

(b) Find the second terms in the boundary layer and outer expansions and
match them. Be sure to explain your reasoning in matching the two ex-
pansions.

2.4. A small parameter multiplying the highest derivative does not guaran-
tee that the solution will have a boundary layer for small values of ε. As
demonstrated in this problem, this can be due to the form of the differential
equation or the particular boundary conditions used in the problem.
(a) After solving each of the following problems, explain why the solution

does not have a boundary layer.

(i) εy′′ +2y′+2y = 2(1+ x) for 0 < x < 1, where y(0) = 0 and y(1) = 1.
(ii) ε2y′′ + ω2y = 0 for 0 < x < 1 and ω > 0.
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(b) Consider the equation ε2y′′ − xy′ = 0 for 0 < x < 1. From the exact
solution, show that there is no boundary layer if the boundary conditions
are y(0) = y(1) = 2, while there is a boundary layer if the boundary
conditions are y(0) = 1 and y(1) = 2.

2.5. It is possible for a solution to have boundary-layer-like properties, but
the form of the expansions is by no means obvious. The following examples
illustrate such situations.

(a) ε2y′′ = y′ for 0 < x < 1, where y′(0) = −1 and y(1) = 0. Solve this
problem and explain why there is a boundary layer at x = 1 but the
expansion for the outer region is not given by (2.4).

(b) εy′ = (x − 1)y for 0 < x, where y(0) = 1. There is a boundary layer at
x = 0. Use the methods of this section to derive a composite expansion of
the solution. Find the exact solution and explain why the approximation
you derived does not work.

2.6.(a) For (2.11) consider the balance of ① 	 ②, ③. This case is not a
distinguished limit because the order (α) is not unique. Explain why the
solutions from this region are contained in (2.12).

(b) Discuss the case of ② 	 ①, ③ in conjunction with the outer solution (this
also is not a distinguished limit).

2.7. The exact solution of (2.1)–(2.3) is

y(x) =
er+x − er−x

er+ − er−
,

where εr± = −1 ± √
1− 2ε. Obtain the inner, outer, and composite expan-

sions directly from this formula.

2.8. Consider the problem

εy′′ + y′ + xy = 0 for α(ε) < x < β(ε),

where y(α) = 1 and y(β) = 0. One way to deal with this ε-dependent interval
is to change coordinates and let s = (x − α)/(β − α). This fixes the domain
and puts the problem into a Lagrange-like viewpoint.
(a) Find the transformed problem.
(b) Assuming α ∼ εα1 + · · · and β ∼ 1 + εβ1, find a first-term composite

expansion of the solution of the transformed problem. Transform back
to the variable x and explain why the first-term composite expansion is
unaffected by the perturbed domain.

(c) Find the second term in the composite expansion of the solution of the
transformed problem. Transform back to the variable x and explain how
the two-term composite expansion is affected by the perturbed domain.
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2.9. Consider the problem

εy′′ + p(x)y′ + q(x)y = f(x) for 0 < x < 1,

where y(0) = α and y(1) = β. Assume p(x), q(x), and f(x) are continuous
and p(x) > 0 for 0 ≤ x ≤ 1.
(a) In the case where f = 0, show that

y ∼ β exp

(∫ 1

x

q(s)

p(s)
ds

)
+

[
α− β exp

(∫ 1

0

q(s)

p(s)
ds

)]
h(x),

where h(x) = e−p(0)x/ε.
(b) In the case where f = 0, but using the WKB method [see Exercise 4.3(b)],

one obtains the result in part (a) except that

h(x) =
p(0)

p(x)
exp

(∫ x

0

q(s)

p(s)
ds− 1

ε

∫ x

0

p(s) ds

)
.

In Ou and Wong (2003) it is stated that this, and not the expression in
part (a), is the “correct asymptotic approximation.” Comment on this
statement. (Hint: If they are correct, then the material covered in this
section can be ignored.)

(c) Find a composite expansion of the solution in the case where f(x) is not
zero.

(d) Suppose p(x) < 0 for 0 ≤ x ≤ 1. Show that the transformation x̂ = 1− x
and the result from part (a) can be used to obtain a composite expansion
of the solution.

2.10. Consider the problem

εy′′ + 6
√
xy′ − 3y = −3 for 0 < x < 1,

where y(0) = 0 and y(1) = 3.
(a) Find a composite expansion of the problem.
(b) Find a two-term composite expansion.

2.11. This problem is concerned with the integral equation

εy(x) = −q(x)

∫ x

0

[y(s)− f(s)]sds for 0 ≤ x ≤ 1,

where f(x) is smooth and positive.
(a) Taking q(x) = 1 find a composite expansion of the solution y(x).
(b) Find a composite expansion of the solution in the case where q(x) is

positive and continuous but not necessarily differentiable.

2.12. Another way to match inner and outer expansions comes from
Van Dyke (1975). To understand the procedure, suppose two terms have been
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calculated in both regions and the boundary-layer coordinate is x̄ = x/εα,
then do the following:

(i) Substitute x/εα for x̄ into the inner expansion and expand the result to
two terms (with x fixed).

(ii) Substitute εαx̄ for x into the outer expansion and expand the result to
two terms (with x̄ fixed).

After the results from (i) and (ii) are rewritten in terms of x, the matching
condition states that the two expansions should agree exactly (to two terms).

(a) Using this matching procedure find a two-term composite expansion of
the solution of (2.1).

(b) Using this matching procedure find a two-term composite expansion of
the solution of

εy′′ = f(x)− y′ for 0 < x < 1,

where y(0) = 0, y(1) = 1, and f(x) is a given smooth function.

2.13. As seen in Fig. 2.4, in the boundary layer the solution of (2.1) is con-
cave down (i.e., y′′ < 0). This observation is useful for locating layers; this
is discussed further in Sect. 2.5. However, not all boundary layers have strict
concavity properties, and this problem considers such an example. The in-
terested reader is referred to Howes (1978) for an extended discussion of this
situation.
(a) Find a composite expansion for the solution of

ε2y′′ = (x− y)(y − 2) for 0 < x < 1,

where y(0) = 3 and y(1) = 1.
(b) Explain why the solution of this problem does not have a boundary layer

that is strictly concave up or concave down but has one that might be
identified as concave–convex.

2.14. Some consider it bothersome that a composite expansion generally does
not satisfy boundary conditions exactly. One procedure that has been used to
correct this situation is to note that the composite expansion for (2.1), before
imposing boundary condition (2.3), is y ∼ a(e−x − e−2x/ε). Substituting this
into (2.3) we then find that a = e1/(1− e−3/ε).
(a) This violates our assumption, as expressed in (2.4), that y0(x) is indepen-

dent of ε. However, is the result still an asymptotic approximation of the
solution for 0 ≤ x ≤ 1?

(b) Use this idea to find a first-term composite expansion (that satisfies the
boundary conditions exactly) for the solution of the problem

εy′′ = f(x)− y′ for 0 < x < 1,

where y(0) = 0, y(1) = 1 and f(x) is a given smooth function.



74 2 Matched Asymptotic Expansions

2.3 Examples Involving Boundary Layers

Almost all of the principal ideas underlying the method of matched asymp-
totic expansions were introduced in the example of Sect. 2.2. In the remainder
of this chapter these ideas are applied, and extended, to more complicated
problems. The extensions considered in this section are what happens when
there are multiple boundary layers, and what can happen when the problem
is nonlinear.

Example 1

To investigate an example where there is a boundary layer at each end of an
interval, consider the problem of solving

ε2y′′ + εxy′ − y = −ex for 0 < x < 1, (2.27)

where

y(0) = 2, and y(1) = 1. (2.28)

Unlike the example in Sect. 2.2, one of the coefficients of the preceding equa-
tion depends on x. This is not responsible for the multiple boundary layers,
but, as we will see, it does result in different equations for each layer.

2.3.1 Step 1: Outer Expansion

The expansion of the solution in this region is the same as the last exam-
ple, namely, y ∼ y0 + · · · . From this and (2.27) one obtains the first-term
approximation

y0 = ex. (2.29)

Clearly this function is incapable of satisfying either boundary condition,
an indication that there are boundary layers at each end. An illustration of
our current situation is given in Fig. 2.6. The solid curve is the preceding
approximation, and the boundary conditions are also shown. The dashed
curves are tentative sketches of what the boundary-layer solutions look like.

2.3.2 Steps 2 and 3: Boundary Layers and Matching

For the left endpoint we introduce the boundary-layer coordinate x̄ = x/εα,
in which case (2.27) becomes
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2

1

1

Figure 2.6 The solid curve is the outer approximation (2.29), and the dashed
curves are guesses on how the boundary-layer solutions connect y0 with the boundary
conditions

ε2−2α d
2Y

dx̄2
+ εx̄

dY

dx̄
− Y = −eε

αx̄. (2.30)

① ② ③ ④

In preparation for balancing, note that

eε
αx̄ ∼ 1 + εαx̄+ · · · .

Also, as before, Y (x̄) is used to designate the solution in this boundary-layer
region. The balance in this layer is between terms ①, ③, ④, and so α = 1.
The appropriate expansion for Y is Y ∼ Y0(x̄)+ · · · , and from (2.30) and the
boundary condition at x̄ = 0 we have that

Y ′′
0 − Y0 = −1 for 0 < x̄ < ∞, (2.31)

where

Y0(0) = 2. (2.32)

Note that (2.31) has at least one term in common with the equation for the
outer region (which we should expect if there is to be any hope of matching
the inner and outer expansions). The general solution is

Y0(x̄) = 1 +Ae−x̄ + (1−A)ex̄. (2.33)

This must match with the outer solution given in (2.29). The matching con-
dition is Y0(∞) = y0(0), and so from (2.29) we have that A = 1.

To determine the solution in the boundary layer at the other end, we
introduce the boundary-layer coordinate

x̃ =
x− 1

εβ
. (2.34)

In this region we will designate the solution as Ỹ (x̃). Introducing (2.34) into
(2.27) one obtains the equation

ε2−2β d
2Ỹ

dx̃2
+ (1 + εx̃)ε1−β dỸ

dx̃
− Ỹ = −e1+εβ x̃. (2.35)
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The distinguished limit in this case occurs when β = 1. So the expansion
Ỹ ∼ Ỹ0(x̃) yields the problem

Ỹ0
′′ + Ỹ0

′ − Ỹ0 = −e for −∞ < x̃ < 0, (2.36)

where

Ỹ0(0) = 1. (2.37)

It is important to notice that this boundary-layer equation has at least one
term in common with the equation for the outer region. In solving this prob-
lem the general solution is found to be

Ỹ0(x̃) = e+Ber+x̃ + (1− e−B)er−x̃, (2.38)

where 2r± = −1±√
5.

The matching requirement is the same as before, which is that when ap-
proaching the boundary layer from the outer region you get the same value as
when you leave the boundary layer and approach the outer region. In other
words, it is required that Ỹ0(−∞) = y0(1). Hence, from (2.38), B = 1 − e.
As a final comment, note that boundary-layer Eq. (2.36) differs from (2.31),
and this is due to the x dependence of the terms in the original problem.

2.3.3 Step 4: Composite Expansion

The last step is to combine the three expansions into a single expression.
This is done in the usual way of adding the expansions together and then
subtracting the common parts. From (2.29), (2.33), and (2.38), a first-term
expansion of the solution over the entire interval is

y ∼ y0(x) + Y0(x̄)− Y0(∞) + Ỹ0(x̃)− Ỹ0(−∞)

∼ ex + e−x/ε + (1− e)e−r(1−x)/ε, (2.39)

where 2r = −1+
√
5. This approximation is shown in Fig. 2.7 along with the

numerical solution. One can clearly see the boundary layers at the endpoints
of the interval as well as the accuracy of the asymptotic approximation as ε
decreases. �

Example 2

Some interesting complications arise when using matched asymptotic expan-
sions with nonlinear equations. For example, it is not unusual for the solution
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Figure 2.7 Graph of numerical solution of (2.27), (2.28) and the composite expan-
sion given in (2.39) in the case where ε = 10−1 and where ε = 10−2. Note the
appearance of the boundary layers, as well as the convergence of the composite ex-
pansion to the solution of the problem, as ε decreases

of a nonlinear equation to be defined implicitly. To understand this situation,
consider the problem

εy′′ + εy′ − ey = −2− x for 0 < x < 1, (2.40)

where y(0) = 0 and y(1) = 1.
The first term in the outer expansion can be obtained by simply setting

ε = 0 in (2.40). This yields ey0 = 2+x, and so y ∼ ln(x+2). Given that this
does not satisfy either boundary condition, the outer expansion is assumed to
hold for 0 < x < 1. An illustration of our current situation is given in Fig. 2.8.
The solid curve is the outer approximation, and the boundary conditions are
also shown. The dashed curves are tentative sketches of what the boundary-
layer solutions look like.

For the boundary layer at x = 0 the coordinate is x̄ = x/
√
ε, and one finds

that Y ∼ Y0, where

Y ′′
0 − eY0 = −2

for Y0(0) = 0. Multiplying the differential equation by Y ′
0 and integrating

yields

1

2

(
d

dx̄
Y0

)2

= B − 2Y0 + eY0 . (2.41)
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1

(2)

1

Figure 2.8 The solid curve is the outer approximation, and the dashed curves are
guesses on how the boundary-layer solutions connect y0 with the boundary conditions

We can determine the constant B if we look at how the expansions in the pre-
vious examples matched. For example, Fig. 2.2, shows that for the boundary-
layer solution, Y ′

0 → 0 and Y0 → y0(0) as x̄ → ∞. Assuming this monotonic
convergence occurs in the present example, then, since y0(0) = ln(2), from
(2.41) we get B = 2[−1 + ln(2)]. Now, solving (2.41) for Y ′

0 we obtain

Y ′
0 = ±

√
2(B − 2Y0 + eY0) .

To determine which sign, it is evident from Fig. 2.8 that the boundary-layer
solution increases from Y0(0) = 0 to Y0(∞) = y0(0) = ln(2), and so we take
the + sign. Doing this, separating variables, and then integrating yields the
following result:

∫ Y0

0

ds√
2(B − 2s+ es)

= x̄. (2.42)

This is the solution of the O(1) problem in the boundary layer and it defines
Y0 implicitly in terms of x̄. It is important to note that the assumptions that
were made to derive this result, such as Y ′

0 → 0 and Y0 → y0(0) as x̄ → ∞,
hold for this solution.

The derivation of the expansion of the solution for the boundary layer
at x = 1 is very similar (Exercise 2.26). The boundary-layer coordinate is

x̃ = (x− 1)/
√
ε. One finds that Ỹ ∼ Ỹ0, where

∫
˜Y0

1

ds√
2(A− 3s+ es)

= −x̃ (2.43)

for A = 3[−1 + ln(3)].
Even though the boundary-layer solutions are defined implicitly, it is still

possible to write down a composite approximation. Adding the expansions
together and then subtracting the common parts we obtain
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y ∼ y0(x) + Y0(x̄)− y0(0) + Ỹ0(x̃)− y0(1)

∼ ln

(
1

6
(x+ 2)

)
+ Y0(x̄) + Ỹ0(x̃).

A few additional comments and results for this example can be found in
Exercise 2.26. �

Example 3

The ideas underlying matched asymptotic expansions are not limited to
boundary-value problems. As an example, in studying the dynamics of auto-
catalytic reactions one comes across the problem of solving (Gray and Scott,
1994)

ε
du

dt
= e−t − uv2 − u, (2.44)

dv

dt
= uv2 + u− v, (2.45)

where u(0) = v(0) = 1. In this case, there is an initial layer (near t = 0), as
well as an outer solution that applies away from t = 0.

For the outer solution, assuming u ∼ u0+ εu1+ · · · and v ∼ v0+ εv1+ · · ·
one finds that the first-order problem is

0 = e−t − u0v
2
0 − u0,

d

dt
v0 = u0v

2
0 + u0 − v0.

The solution of this system is v0 = (t + a)e−t and u0 = e−t/(v20 + 1), where
a is a constant determined from matching.

For the initial layer, letting τ = t/ε and assuming that U ∼ U0(τ) + · · ·
and V ∼ V0(τ) + · · · one obtains the problem of solving

U ′
0 + · · · = e−ετ − (U0 + · · · )(V0 + · · · )2 − (U0 + · · · ),

V ′
0 + · · · = ε

[
(U0 + · · · )(V0 + · · · )2 + (U0 + · · · )− (V0 + · · · )] .

From this it follows that

U ′
0 = 1− U0V

2
0 − U0,

V ′
0 = 0.

Solving these equations and using the given initial conditions that U0(0) =
V0(0) = 1 one finds that U0 = 1

2 (1 + e−2τ ) and V0 = 1.
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The matching conditions are simply that u0(0) = U0(∞) and v0(0) =
V0(∞), from which one finds that a = 1. Therefore, composite expansions for
the first terms are

u ∼ 1

2
e−2t/ε +

e−t

1 + (1 + t)2e−2t
,

v ∼ (1 + t)e−t.

The preceding derivation was relatively straightforward, but the time vari-
able can cause some interesting complications. For example, the time interval
is usually unbounded, and this can interfere with the well-ordering of an ex-
pansion, which is discussed extensively in Chap. 3. There are also questions
related to the stability, or instability, of a steady-state solution, and this is
considered in Chap. 6 . �

Example 4

It is possible to have multiple layers in a problem and have them occur on
the same side of an interval. An example of this arises when solving

ε3y′′ + x3y′ − εy = x3, for 0 < x < 1, (2.46)

where

y(0) = 1, and y(1) = 3. (2.47)

To help explain what happens in this problem, the numerical solution is
shown in Fig. 2.9. It is the hook region, near x = 0, that is the center of
attention in this example.

The outer expansion is y ∼ x + 2, and this holds for 0 < x ≤ 1. This
linear function is clearly seen in Fig. 2.9. To investigate what is happening
near x = 0, set x̄ = x/εα. The differential equation in this case becomes

ε3−2α d2

dx̄2
Y + ε2αx̄3 d

dx̄
Y − εY = ε3αx̄3. (2.48)

① ② ③ ④

There are two distinguished limits (other than the one for the outer region).
One comes when ① ∼ ③, in which case α = 1. This is an inner–inner layer,
and in Fig. 2.9 this corresponds to the monotonically decreasing portion of
the curve in the immediate vicinity of x = 0. The other balance occurs
when ② ∼ ③, in which case α = 1

2 . This is an inner layer, and in Fig. 2.9 this
corresponds to the region where the solution goes through its minimum value.
Carrying out the necessary calculations, one obtains the following first-term
composite expansion (Exercise 2.16):
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Figure 2.9 Numerical solution of (2.46) and (2.47), in the case where ε = 10−3.
The lower plot shows the solution in the hook region near x = 0

y ∼
{
x+ e−x/ε + 2e−ε/(2x2) for 0 < x ≤ 1,
1 for x = 0.

(2.49)

To reiterate a point made in the earlier examples, note that the equation for
the inner–inner layer has no terms in common with the equation for the outer
region, but the inner layer equation shares terms with both. �

Exercises

2.15. Find a composite expansion of the solution of the following problems
and sketch the solution:

(a) εy′′ + ε(x+ 1)2y′ − y = x− 1 for 0 < x < 1, where y(0) = 0 and
y(1) = −1.

(b) εy′′ − y′ + y2 = 1 for 0 < x < 1, where y(0) = 1/3 and y(1) = 1.
(c) εy′′ − exy = f(x) for 0 < x < 1, where y(0) = 1 and y(1) = −1.
(d) εy′′ + εy′ − y2 = −1− x2 for 0 < x < 1, where y(0) = 2 and y(1) = 2.
(e) εy′′ − y(y′ + 1) = 0 for 0 < x < 1, where y(0) = 3 and y(1) = 3.
(f) εy′′ + y(y′ + 3) = 0 for 0 < x < 1, where y(0) = 4 and y(1) = 4.
(g) εy′′ + y(1− y)y′ − y = 0 for 0 < x < 1, where y(0) = −2 and y(1) = −2.
(h) ε2y′′ + ε(3− x2)y′ − 4y = 4x for −1 < x < 1, where y(−1) = 2 and

y(1) = 3.
(i) εy′′ − y(1 + y)y′ − 3y = 0 for 0 < x < 1, where y(0) = 2 and y(1) = 2.
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(j) εy′′′′ − (1 + x)y′ = 1− x2 for 0 < x < 1, where y(0) = y′(0) = y(1) =
y′(1) = 0.

(k) ε3y′′ =
(y − ex)3

(1 + εy′)2
for 0 < x < 1, where y(0) = 0 and y(1) = 4.

(l) ε
d

dx

(
E(x)

u′

1− εu′

)
− u = f(x) for 0 < x < 1, where u(0) = u(1) = 0.

Also, E(x), f(x) are known, smooth, positive functions.

(m) ε(x2y′)′ =
x2(y − 1)

y
for 0 < x < 1, where y′(0) = 0 and y(1) = 2.

(n) (yε)′′ − y = −ex for 0 < x < 1, where y(0) = 2 and y(1) = 3.

2.16. Derive (2.49).

2.17. Consider the boundary value problem

εy′′ − xy′ − κy = −1 for − 1 < x < 1,

where y(−1) = y(1) = 0. Assuming

κ =

∫ 1

−1

y2dx,

find the first term in an expansion of κ for small ε.

2.18. The Reynolds equation from the gas lubrication theory for slider bear-
ings is (DiPrima, 1968; Shepherd, 1978)

ε
d

dx
(H3yy′) =

d

dx
(Hy) for 0 < x < 1,

where y(0) = y(1) = 1. Here H(x) is a known, smooth, positive function with
H(0) �= H(1).
(a) Find a composite expansion of the solution for small ε. Note the boundary-

layer solution will be defined implicitly, but it is still possible to match
the expansions.

(b) Show that if the boundary layer is assumed to be at the opposite end
from what you found in part (a), then the inner and outer expansions do
not match.

2.19. This exercise considers the problem of a beam with a small bending
stiffness. This consists in solving (Denoel and Detournay, 2010)

εy′′ = (1 − x) sin y − cos y for 0 < x < 1,

where y(0) = y(1) = π/2. In this problem, y is an angular variable that is
assumed to satisfy 0 ≤ y ≤ π, and sin y+(1−x) cosy ≥ 0. Find the first term
in the expansions in (i) the outer layer, (ii) the boundary layer at x = 0, and
(iii) a composite expansion.
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2.20. The Michaelis–Menten reaction scheme for an enzyme catalyzed
reaction is (Holmes, 2009)

ds

dt
= −s+ (μ+ s)c,

ε
dc

dt
= s− (κ+ s)c,

where s(0) = 1 and c(0) = 0. Here s(t) is the concentration of substrate, c(t)
is the concentration of the chemical produced by the catalyzed reaction, and
μ, κ are positive constants with μ < κ. Find the first term in the expansions
in (i) the outer layer, (ii) the initial layer, and (iii) a composite expansion.

2.21. The Poisson–Nernst–Planckmodel for flow of ions through a membrane
consists of the following equations (Singer et al., 2008): for 0 < x < 1,

dp

dx
+ p

dφ

dx
= −α,

dn

dx
− n

dφ

dx
= −β,

ε2
d2φ

dx2
= −p+ n.

The boundary conditions are φ(0) = 1, φ(1) = 0, p(0) = 4, and n(0) = 1. In
these equations, p and n are the concentrations of the ions with valency 1 and
−1, respectively, and φ is the potential. Assume that α and β are positive
constants that satisfy κ < 1, where

κ =
α+ β

2
√
p(0)n(0)

.

Also, you can assume that α �= β.
(a) Assuming there is a boundary layer at x = 0, derive the outer and

boundary-layer approximations. Explain why, if the outer approximation
for φ is required to satisfy φ(1) = 0, the approximations you derived do
not match.

(b) There is also a boundary layer at x = 1. Derive the resulting approxi-
mations and complete the matching you started in part (a). From this
show that

p(1) ∼ p(0)eφ(0)(1− κ)2β/(α+β)

and

n(1) ∼ n(0)e−φ(0)(1− κ)2α/(α+β).

2.22. A modified version of the Grodsky model for insulin release is to find
y = y(t, λ), which satisfies (Carson et al., 1983)
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ε
dy

dt
= −y + f(t) +

∫ ∞

0

y(t, s)e−γsds for 0 < t < ∞,

where y = g(λ) when t = 0. Also, γ > 1.
(a) Find a composite expansion of the solution for small ε.
(b) Derive the composite expansion you obtained in part (a) from the exact

solution, which is

y =
[
g(λ)− γg0(1 − et/κ)

]
e−t/ε +

1

ε

∫ t

0

f(τ)e−(γ−1)(t−τ)/κdτ,

where κ = εγ and g0 =
∫∞
0

g(s)e−γsds. Also, what is the composite
expansion when γ = 1?

2.23. The eigenvalue problem for the vertical displacement, u(x), of an elastic
beam that is under tension is

ε2u′′′′ − u′′ = λu for 0 < x < 1,

where u = u′ = 0 at x = 0, 1. The question is, what values of λ produce a
nonzero solution of the problem? In this context, λ is the eigenvalue, and it
depends on ε.
(a) Find the first term in the expansions for u(x) and λ.
(b) Find the second term in the expansions for u(x) and λ.

2.24. Find a composite expansion of the solution of

ε2y′′ + 2εp(x)y′ − q(x)y = f(x) for 0 < x < 1,

where y(0) = α and y(1) = β. The functions p(x), q(x), and f(x) are contin-
uous and q(x) is positive for 0 ≤ x ≤ 1.

2.25. In the study of an ionized gas confined to a bounded domain Ω, the
potential φ(x) satisfies

−∇2φ+ h

(
φ

ε

)
= α for x ∈ Ω,

where conservation of charge requires

∫

Ω

h

(
φ

ε

)
dV = β

and, assuming the exterior of the region is a conductor, ∂nφ = γ on ∂Ω. The
function h(s) is smooth and strictly increasing with h(0) = 0. The positive
constants α and β are known (and independent of ε), and the constant γ is
determined from the conservation of charge equation.
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Figure 2.10 Solution of problem in Exercise 2.25 in the case where ε = 10−3

(a) For the case of one dimension, suppose Ω is the interval 0 < x < 1. What
does the problem reduce to? Find γ in terms of α and β.

(b) Find the exact solution of the problem in part (a) when h(s) = s. Sketch
the solution for γ < 0, and describe the boundary layers that are present.

(c) For the one-dimensional problem in part (a), find the first term in the
inner and outer expansions of the solution. In doing this, take h(s) =
s2k+1, where k is a positive integer, and assume β < α. For comparison
the numerical solution is shown in Fig. 2.10 in the case where k = 1,
α = 3, β = 1, and ε = 10−3.

(d) Discuss the steps needed to find a composite expansion involving the
terms derived in part (c).

(e) For Ω ⊂ R
n, where n > 1, find γ.

2.26. This exercise examines Example 2 in more depth.
(a) Letting f(s) = 2(B − 2s + es), where B = 2[−1 + ln(2)], sketch f for

−∞ < s < ∞.
(b) Writing f(s) = (ln(2)− s)2g(s), show that g(s) is positive and g(ln(2)) =

2. It is also possible to show that g(s) is monotone increasing for
−∞ < s < ∞.

(c) With part (b), (2.42) can be written as

∫ Y0

0

ds

(ln(2)− s)
√
g(s)

= x̄.

Use this to prove the monotonicity assumed in the derivation of (2.42).
(d) Derive (2.43).
(e) Use the ideas developed in parts (a) and (b) to show that (2.43) can be

written as
∫

˜Y0

1

ds

(ln(3)− s)
√
h(s)

= −x̃,

where h is positive with h(ln(3)) = 3.
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2.4 Transcendentally Small Terms

Even in the simplest boundary-layer problems, a question arises about what
is missing in the expansion. For example, consider the problem of solving

εy′′ = 2− y′ for 0 < x < 1, (2.50)

where y(0) = 0 and y(1) = 1. This problem has a boundary layer at x = 0.
For the outer approximation, assuming the usual power series expansion

y ∼ y0(x) + εy1(x) + ε2y2(x) + · · · , (2.51)

one finds that y0 = 2x− 1 and y1 = y2 = · · · = 0. In other words, the entire
outer expansion is just y ∼ 2x − 1. Given that y = 2x − 1 is not the exact
solution, the expansion (2.51) is missing something. Whatever this something
is, it is transcendentally small compared to the power functions. Because of
this, we have ignored this part of the approximation in all of the examples and
exercises in the earlier sections of this chapter. There are, however, occasional
situations where transcendentally small terms in the outer region must be
accounted for. The objective here is to explore how this is done. The first
example demonstrates the basic ideas, even though it is not necessary to
include transcendentally small terms to obtain an accurate approximation.
The second example is more challenging and involves a problem where such
terms are used to complete the approximation.

Example 1

The first example is (2.50). As stated earlier, when assuming an outer expan-
sion of the form (2.51), one finds that y0 = 2x − 1 and y1 = y2 = · · · = 0.
For the boundary layer at x = 0, the expansion is found to be

Y (x̄) ∼ A0

(
1− e−x̄

)
+ ε

[
2x̄+A1

(
1− e−x̄

)]
+ ε2A2

(
1− e−x̄

)
+ · · · , (2.52)

where x̄ = x/ε. Note that the preceding expansion satisfies the boundary
condition at x = 0 but has not yet been matched with the outer expansion.

To determine what the outer expansion is missing, we replace (2.51) with
the assumption that

y ∼ y0 + εy1 + ε2y2 + · · ·+ z0(x, ε) + z1(x, ε) + · · · , (2.53)

where the zi are well-ordered and transcendentally small compared to the
power functions. Specifically, zj � zi, ∀i < j, and zi � εn, ∀i, n. At this
point we have no idea how zi depends on ε, but we will determine this in the
analysis to follow. It is important to note, however, that because (2.53) is the
outer expansion, it holds for ε → 0 with x held fixed with 0 < x ≤ 1.
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Substituting (2.53) into (2.50) yields

ε(y′′0 + εy′′1 + · · ·+ z′′0 + z′′1 + · · · ) = 2− (y′0 + εy′1 + · · ·+ z′0 + z′1 + · · · ).

The problems for the yi are unaffected, and so as before we obtain y0 = 2x−1
and y1 = y2 = · · · = 0. To determine the equation for z0, remember that we
are not certain of how this function depends on ε. Because of this we will
retain everything involving z0, and this means that the equation is εz′′0 = −z′0.
The general solution is z0 = a(ε) + b(ε) exp(−x/ε). Imposing the boundary
condition z0 = 0 at x = 1 yields

z0 = b(ε)
(
e−x/ε − e−1/ε

)
.

It remains to match the expansions. Introducing the intermediate layer
variable xη = x/εβ, where 0 < β < 1, (2.53) then becomes

youter ∼ −1 + 2xηε
β + · · ·+ b(ε)

(
e−xη/ε

1−β − e−1/ε
)
+ · · · ,

and the boundary-layer expansion (2.52) takes the form

yinner ∼ A0

(
1− e−xη/ε

1−β
)
+ ε

[
2xη/ε

1−β +A1

(
1− e−xη/ε

1−β
)]

+ . . . .

(2.54)

Matching these expressions, it follows that A0 = −1 and b = −A0 = 1. With
this, we have that

z0 = e−x/ε − e−1/ε. (2.55)

It is not hard to show that this term is transcendentally small compared
to the power functions for any given value of x satisfying 0 < x ≤ 1. The
resulting outer expansion is therefore

y ∼ 2x− 1 + · · ·+ e−x/ε − e−1/ε + · · · . (2.56)

As you would expect, the transcendentally small terms contribute very little
to the numerical value of the outer solution. To illustrate, if ε = 0.01 and
x = 3/4, then y0 = 1/2 while z0 ≈ 2.6× 10−33. This is why we have ignored
this portion of the outer expansion in the earlier sections of this chapter. The
fact that you cannot always do this is demonstrated in the next example. �

The matching in the preceding example helps explain the reason for the
transcendentally small terms in the outer expansion. In particular, the first
transcendentally small term in the boundary-layer expansion (2.54) is what
generates the need for z0. In other words, the boundary layer causes our
having to include z0 in the outer expansion. Actually, information flows in
both directions. If you calculate the higher terms in the expansions, you will
find that it is also necessary to include transcendentally small terms in the
boundary-layer expansion. This is explored in more depth in Exercise 2.27.
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The expansion (2.53) is not very specific about how the zi depend on ε,
and we determined this dependence in the reduction of the problem. Some
prefer a more explicit form of the expansion and make specific assumptions
about the zi. For example, an assumption often used to construct a composite
expansion is that z0 = A(x)e−g(x)/ε (Latta, 1951). This will not produce the
result in (2.55), and so the assumption must be modified to account for
transcendentally small terms. Examples can be found in MacGillivray (1997)
and Howls (2010). A somewhat different approach is explored in Exercise 2.30.

Example 2

Consider the problem of solving

εy′′ − xy′ + εxy = 0 for − 1 < x < 1, (2.57)

where y(−1) = yL and y(1) = yR are assumed to be specified. There are
boundary layers at both ends, and the analysis is very similar to Example 1
in Sect. 2.3. For the outer expansion one assumes y ∼ y0 + · · · , and from
the differential equation it follows that y0 = c (i.e., the first term is just a
constant). For the boundary layer at the left end, one lets x̄ = (x + 1)/ε
and from this finds that Y ′′

0 + Y ′
0 = 0. Solving this, imposing the boundary

condition Y0(0) = yL, and then matching one finds that Y0 = c+(yL− c)e−x̄.
For the boundary layer at the right end, where x̃ = (x− 1)/ε, one finds that

Ỹ0 = c+ (yR − c)ex̃. Putting the results together we have that

y ∼
⎧
⎨
⎩

c+ (yL − c)e−x̄ boundary layer at x = −1,
c outer region,
c+ (yR − c)ex̃ boundary layer at x = 1.

(2.58)

What is unusual about this problem is that we have carried out the boundary-
layer analysis but still have an unknown constant (i.e., c). How to deal with
this depends on the problem. For some problems it is enough to look at the
second term in the expansion (e.g., Exercise 2.57), for other linear problems
a WKB type argument can be used (see Chap. 4), and for still others one
can use a symmetry property (e.g., Sect. 2.5). What is going to be shown
here is that the transcendentally small terms in the outer region can be
used to determine c. This approach has the disadvantage of being somewhat
more difficult mathematically but has the distinct advantage of being able to
work on a wide range of linear and nonlinear problems (e.g., we will use this
approach when studying metastability in Chap. 6).

The remedy is to use (2.53) instead of the regular power series expansion.
In this case the differential equation becomes

ε(y′′0 + · · ·+ z′′0 + · · · )− x(y′0 + · · ·+ z′0 + · · · ) + εx(y0 + · · ·+ z0 + · · · ) = 0.
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The problem for y0 is unaffected, and we only need to concentrate on z0.
In the previous example we used the dictum that everything involving z0 is
retained, which in this case means that εz′′0 − xz′0 + εxz0 = 0. However, in
this problem it is wise to think about what terms are actually needed in this
equation. In fact, our construction will mimic the procedure used for (1.36),
where the form of the expansion was determined in the derivation. Retaining
εz′′0 and xz′0 is reasonable because it is very possible that a transcendentally
small term of the form e−x/ε will occur, just as it did in the previous example.
On the other hand, it is expected that εxz0 is higher order than the other
two terms and for this reason contributes to the higher-order equations (e.g.,
the problem for z1). This ad hoc reasoning is necessary because we have not
yet determined the order for z0, and the resulting reduction helps to simplify
the analysis. What is going to be necessary, once z0 is determined, is to check
that these assumptions are correct.

Solving the equation εz′′0 − xz′0 = 0, one obtains the general solution

z0 = b(ε) + a(ε)

∫ x

−1

es
2/(2ε)ds.

The matching proceeds in the usual manner using intermediate variables.

Matching at Left End
The intermediate variable is xη = (x + 1)/εβ, where 0 < β < 1. The
boundary-layer approximation becomes

yinner ∼ c+ (yL − c)e−xη/ε
1−β

+ · · · . (2.59)

Before writing down the outer expansion, note that the integral in z0 is
going to take the form

∫ −1+εβxη

−1

es
2/(2ε)ds.

The expansion of this integral can be obtained using integration by parts
by writing

es
2/(2ε) =

ε

s

d

ds
es

2/(2ε).

In this case, setting q = εβxη, we have that

∫ −1+q

−1

es
2/(2ε)ds =

ε

s
es

2/(2ε)
∣∣∣
−1+q

s=−1
+

∫ −1+q

−1

ε

s2
es

2/(2ε)ds

=
ε

s

(
1 +

ε

s2

)
es

2/(2ε)
∣∣∣
−1+q

s=−1
+

∫ −1+q

−1

3ε2

s4
es

2/(2ε)ds
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=
ε

s

(
1 +

ε

s2
+

3ε2

s4
+ · · ·

)
es

2/(2ε)

∣∣∣∣
−1+q

s=−1

∼ εe1/(2ε)
(
1− e−q/ε

)
.

In the last step it is assumed that the β interval is reduced to 1/2 < β < 1.
With this the outer expansion becomes

youter ∼ c+ · · ·+ b(ε) + εa(ε)e1/(2ε)
(
1− e−q/ε

)
+ · · · . (2.60)

Matching (2.59) and (2.60) it follows that εa(ε)e1/(2ε) = c − yL and
b(ε) = −εa(ε)e1/(2ε).

Matching at Right End
The intermediate variable is xη = (x − 1)/εβ, where 0 < β < 1. The
boundary-layer approximation becomes

youter ∼ c+ (yR − c)exη/ε
1−β

+ · · · . (2.61)

Using an integration by parts argument similar to what was done for the
layer at the left end, one finds that

yinner ∼ c+ · · ·+ b(ε) + εa(ε)e1/(2ε)
(
1 + eq/ε

)
+ · · · , (2.62)

where q = εβxη. Matching (2.61) and (2.62) it follows that εa(ε)e1/(2ε) =
yR − c and b(ε) = −εa(ε)e1/(2ε).

The condition we are seeking comes from the matching conditions, which
require that εa(ε)e1/(2ε) = c− yL and εa(ε)e1/(2ε) = yR − c. Equating these
conditions it follows that

c =
1

2
(yL + yR) . (2.63)

As an example, if y(−1) = 2 and y(1) = −2, then c = 0 and the outer expan-
sion (2.51) becomes simply y ∼ 0. We will obtain such an approximation in
some of the other examples and exercises in this chapter. This does not mean
the solution is zero. Rather, it means that the solution is transcendentally
small compared to the power functions. �

The last example is interesting because it shows that what appear to be
inconsequential terms in an expansion can affect the value of the first-order
approximation. Although this situation is not rare, it is not common. There-
fore, in the remainder of this text we will mostly use power functions for the
scale functions. If something remains underdetermined, as it did in Exam-
ple 2, we will then entertain the idea that transcendentally small terms are
needed.



Exercises 91

Exercises

2.27. This problem concerns the higher terms in the expansions from
Example 1.

(a) Verify (2.52), and, by matching with (2.51), show that A0 = 1 and A1 =
A2 = 0.

(b) Explain why your result from part (a) does not match with (2.56).
(c) The result from part (b) shows that the outer expansion is the reason

transcendentally small terms must also be included in the boundary-layer
expansion. Assume that

Y ∼ Y0(x̄) + εY1(x̄) + · · ·+ Z0(x̄, ε) + Z1(x̄, ε) + · · · ,

where Zj � Zi, ∀i < j, and zi � εn, ∀i, n (with x̄ fixed). Show that
Z0 = B(ε) (1− e−x̄). From matching show that B = −e−1/ε.

(d) Explain why Z0 is the reason z1 is needed in the outer expansion.

2.28. This problem completes some of the details in the derivation of
Example 2.

(a) Use Laplace’s approximation (Appendix C) to show that

∫ 1

−1

es
2/(2ε)ds ∼ 2εe1/(2ε).

(b) Use part (a) to help derive (2.62).
(c) The matching shows that b = 1

2 (yL − yR), which appears to contradict
the assumption that z0 is transcendentally small compared to the power
functions. Explain why there is, in fact, no contradiction in this result.

(d) Show that the assumption that εxz0 can be ignored compared to εz′′0 and
xz′0 holds for the function z0.

2.29. Consider the problem of solving

εy′′ − xy′ = 0 for a < x < b,

where y(a) = yL and y(b) = yR. Also, assume that a < 0 and b > 0.
(a) Using the usual boundary-layer arguments show that

y ∼
⎧⎨
⎩

c+ (yL − c)e−x̄ boundary layer at x = a,
c outer region,
c+ (yR − c)ex̃ boundary layer at x = b,

where c is an arbitrary constant, x̄ = (x− a)/ε, and x̃ = (x − b)/ε.
(b) Find the exact solution of the problem.
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(c) Using the result from part (b) and Laplace’s approximation (Appendix C)
show that

c =

⎧
⎨
⎩

yL if |a| < b,
1
2 (yL + yR) if |a| = b,

yR if b < |a|,
Comment on what happens to the assumed boundary layers in the
problem.

(d) Sketch (by hand) the solution when a = −2, b = 1, yL = 1, and yR = 3.
Comment on whether you used part (a) or part (b), and why.

2.30. There is a question whether it is possible to account for the transcen-
dentally small terms without having to use the zi in (2.53). One possibility
is to modify the boundary layer method by first constructing a composite
expansion, as described in Sect. 2.2, and then imposing the boundary condi-
tions (Exercise 2.14). This is what is done when using the WKB method, and
one of the reasons WKB has had some success in handling transcendentally
small terms.

(a) Show that reversing the order for (2.50), with y(0) = 0 and y(1) = 1,
results in the approximation

y ∼ 2x+
1

1− e−1/ε

(−1 + e−x̄
)
.

Explain why this reduces to (2.56).
(b) Explain why this modified boundary-layer method does not solve the

unknown-constant problem that appears in (2.58).

2.31. Consider the problem

ε2y′′ + 2εy′ + 2(y − xg)2 = εh(x) for 0 < x < 1,

where y(0) = sech2(1/(2ε)) and y(1) = 1+sech2(1/(2ε)). Also, g(x) = eε(x−1)

and h(x) = [ε2 + (2 + ε2)(1 + εx)]g(x).
(a) Suppose one were to argue that the exponentially small terms in the

boundary conditions can be ignored and the usual power series expansion
of the solution can be used. Based on this assumption, find the first two
terms of a composite expansion of the solution.

(b) The exact solution of the problem is

y(x) = xeε(x−1) + sech2
(
2x− 1

2ε

)
.

Discuss this solution in connection with your expansion from part (a).
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2.5 Interior Layers

The rapid transitions in the solution that are characteristic of a boundary
layer do not have to occur only at the boundary. When this happens, the
problems tend to be somewhat harder to solve simply because the location
of the layer is usually not known until after the expansions are matched.
However, the expansion procedure is essentially the same as in the previous
examples. To understand how the method works, consider the problem

εy′′ = yy′ − y, for 0 < x < 1, (2.64)

where
y(0) = 1 (2.65)

and

y(1) = −1. (2.66)

2.5.1 Step 1: Outer Expansion

The appropriate expansion in this region is the same as it usually is, in other
words,

y(x) ∼ y0(x) + · · · . (2.67)

From (2.64) one finds that

y0y
′
0 − y0 = 0, (2.68)

and so either y0 = 0 or else

y0 = x+ a, (2.69)

where a is an arbitrary constant. The fact that we have two possible solu-
tions means that the matching might take somewhat longer than previously
because we will have to determine which of these solutions matches to the
inner expansion.

2.5.2 Step 1.5: Locating the Layer

Generally, when one first begins trying to solve a problem, it is not known
where the layer is, or whether there are multiple layers. If we began this
problem like the others and assumed there is a boundary layer at either one
of the endpoints, we would find that the expansions do not match. This is a
lot of effort for no results, but fortunately there is a simpler way to come to
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1

1

1

Figure 2.11 Schematic of solution if there is a (convex) boundary layer at x = 0
and the linear function in (2.69) is the outer solution

1

1

1

Figure 2.12 Schematic of solution if there is a concave boundary layer at x = 1 and
the linear function in (2.69) is the outer solution

1
1

1

Figure 2.13 Schematic of linear functions that make up outer expansion and interior
layer solution connecting them

the same conclusion. To illustrate how, suppose it is assumed that there is
a boundary layer at x = 0 and (2.69) is the outer solution. This situation is
shown in Fig. 2.11. If the solution behaves like the other example problems,
then in the boundary layer it is expected that y′′ is positive (i.e., y is concave
up), y′ is negative, and y is both positive and negative. In other words, in
such a boundary layer, the right-hand side of (2.64) is positive while the left-
hand side can be negative. This is impossible, and so there is not a boundary
layer as indicated in Fig. 2.11.

It is possible to rule out a boundary layer at x = 1 in the same way. In
particular, as illustrated in Fig. 2.12, in the boundary layer y′′ and y′ − 1 are
negative, while y is both positive and negative. Using a similar argument one
can rule out having boundary layers at both ends.

Another possibility is that the layer is interior to the interval, and this is
illustrated in Fig. 2.13. To check, in the layer region to the left of x0, y

′ − 1
is negative, y is positive, and y′′ is negative. This is consistent with (2.64).
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Similarly, to the right of x0, both y′−1 and y are negative, and y′′ is positive.
This too is consistent with (2.64). It also indicates that y(x0) = 0, a result
we will need later to complete the derivation of the interior layer solution.

It should be pointed out that these are only plausibility arguments and
do not prove anything. What they do is guide the analysis and, hopefully,
reduce the work necessary to obtain the solution. A more expanded version
of this analysis is explored in Exercise 2.34.

2.5.3 Steps 2 and 3: Interior Layer and Matching

Based on the preceding observations, we investigate the possibility of an
interior layer. This is done by introducing the interior-layer coordinate

x̄ =
x− x0

εα
, (2.70)

where 0 < x0 < 1. The location of the layer, x = x0, is not known and will
be determined subsequently. Actually, the possibilities of either x0 = 0 or
x0 = 1 could be included here, but we will not do so. Also, note that since
0 < x0 < 1, there are two outer regions, one for 0 ≤ x < x0, the other for
x0 < x ≤ 1 (Fig. 2.13). Now, substituting (2.70) into (2.64) yields

ε1−2αY ′′ = ε−αY Y ′ − Y. (2.71)

The distinguished limit here occurs when α = 1 (i.e., the first and second
terms balance). Also, as in the previous examples, we are using Y to designate
the solution in the layer. Expanding the interior-layer solution as

Y (x̄) ∼ Y0(x̄) + · · · (2.72)

it follows from (2.71) that

Y ′′
0 = Y0Y

′
0 . (2.73)

Integrating this one obtains

Y ′
0 =

1

2
Y 2
0 +A.

There are three solutions of this first-order equation, corresponding to A’s
being positive, negative, or zero. The respective solutions are

Y0 = B
1−DeBx̄

1 +DeBx̄
, (2.74)

Y0 = B tan(C −Bx̄/2),
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and

Y0 =
2

C − x̄
,

where B, C, and D are arbitrary constants. The existence of multiple so-
lutions makes the problem interesting, but it also means that the matching
procedure is not as straightforward as it was for the linear equations studied
earlier. This is because for the linear problems we relied on being able to
find the general solution in each region and then determining the constants
by matching. For nonlinear problems the concept of a general solution has
little meaning, and because of this it can sometimes be difficult to obtain a
solution that is general enough to be able to match to the outer expansion(s).

Of the solutions to (2.73), the one given in (2.74) is capable of matching
to the outer expansions as x̄ → ±∞. Again it should be remembered that
the working hypothesis here is that 0 < x0 < 1. Thus, the outer expansion
for 0 ≤ x < x0 should satisfy y(0) = 1. From this it follows that

y0 = x+ 1, for 0 ≤ x < x0. (2.75)

Similarly, the outer region on the other side of the layer should satisfy the
boundary condition at x = 1, and this yields

y0 = x− 2, for x0 < x ≤ 1. (2.76)

Now, for (2.74) to be able to match to either (2.75) or (2.76) it is going
to be necessary that both B and D in (2.74) be nonzero (in fact, without
loss of generality, we will take B to be positive). The requirements imposed
in the matching are very similar to those obtained for boundary layers. In
particular, we must have that Y0(∞) = y0(x

+
0 ) and Y0(−∞) = y0(x

−
0 ). From

(2.74) and (2.75) we get that

B = x0 + 1,

and from (2.74) and (2.76) we have that

−B = x0 − 2.

Solving these equations one finds that B = 3
2 and x0 = 1

2 .

2.5.4 Step 3.5: Missing Equation

From matching we have determined the location of the layer and one of the
constants in the layer solution. However, the matching procedure did not
determine D in (2.74). Fortunately, from the discussion in Step 1.5, we are
able to determine its value. In particular, we found that y(x0) = 0, and for
this to happen it must be that D = 1. Therefore,
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Figure 2.14 Graph of numerical solution of (2.64)–(2.66) and composite expansion
given in (2.78) in the case where ε = 10−1 and where ε = 10−2

Y (x̄) ∼ 3

2

1− e3x̄/2

1 + e3x̄/2
. (2.77)

Having an undetermined constant left after matching also occurred in the
previous section (Example 2). Unlike that earlier example, we were able to
determine D using the properties of the differential equation and boundary
conditions. Our argument was heuristic, and those who prefer a more math-
ematical proof that D = 1 should consult Exercise 2.42. Another approach
to evaluating the undetermined constant is given in Exercise 2.37.

2.5.5 Step 4: Composite Expansion

It can be more difficult to construct a composite expansion when the outer
solutions are discontinuous across the interior layer like they are in this prob-
lem. What is done is to find one for the interval 0 ≤ x ≤ x0 and then another
for x0 ≤ x ≤ 1. As it turns out, for this example the expansions on either
side are the same, and the result is

y ∼ x+ 1− 3

1 + e−3(2x−1)/4ε
for 0≤x≤1. (2.78)

This composite expansion is graphed in Fig. 2.14 to illustrate the nature of
the interior layer and how it appears as ε decreases. The rapid transition
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from one outer solution to the other is typical of what is sometimes called
a shock solution. Also shown in Fig. 2.14 is the numerical solution, and it is
clear that the composite and numerical solutions are in good agreement.

2.5.6 Kummer Functions

Interior layers can arise in linear problems. To understand this, consider the
problem of solving

εy′′ + (3x− 1)y′ + xy = 0 for 0 < x < 1, (2.79)

where y(0) = 1 and y(1) = 2. A tip-off that this might have an interior layer
is the fact that the coefficient of y′ is zero at a point in the interval. For the
moment, this observation is more of a curiosity, but it is worth pointing out
that the interior layer of the last example was also located at the point where
the coefficient of y′ in (2.64) is zero.

There is nothing particularly unusual about this problem, so we will as-
sume a regular expansion for the outer solution. In particular, assuming
y ∼ y0(x) + εy1(x) + · · · , the O(1) equation is (3x− 1)y′0 + xy0 = 0. Solving
this one finds that

y0 =
a

(3x− 1)1/9
e−x/3. (2.80)

Given that the denominator is zero at x = 1/3, it should not come as a
surprise that there is an interior layer located at x = 1/3. This means there
are two outer solutions, and we have that

y0(x) =

⎧
⎪⎨
⎪⎩

al
(1 − 3x)1/9

e−x/3 for 0 ≤ x < 1
3 ,

ar
(3x− 1)1/9

e−x/3 for 1
3 < x ≤ 1.

(2.81)

Satisfying the boundary conditions, one finds that al = 1 and ar = 210/9e1/3.
We will use the interior-layer coordinate given in (2.70), with x0 = 1/3

and α = 1/2. The problem in this case becomes

Y ′′ + x̄Y ′ +
(
1

3
+ ε1/2

)
Y = 0, for −∞ < x̄ < ∞. (2.82)

The O(1) equation coming from this is

Y ′′
0 + 3x̄Y ′

0 +
1

3
Y0 = 0, for −∞ < x̄ < ∞. (2.83)
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This equation is why this subsection is titled “Kummer Functions”; it also
provides the motivation for the next paragraph.

What we have shown is that to determine the solution in the interior layer,
we must be able to solve an equation of the form

y′′ + αxy′ + βy = 0, for −∞ < x < ∞,

where α and β are nonzero constants. This equation can be solved using a
power series expansion or the Laplace transform. Doing this shows that the
general solution can be written as

y(x) = A0 M

(
β

2α
,
1

2
,−1

2
αx2

)
+B0 xM

(
α+ β

2α
,
3

2
,−1

2
αx2

)
, (2.84)

where M(a, b, z) is Kummer’s function and its definition and basic properties
are given in Appendix B. As an example, if α = β, then the solution is

y(x) = A0e
−αx2/2 +B0

1

x

∫ x

0

eα(s
2−x2)/2 ds.

For us to be able to match with the outer solutions, we need to know what
happens to (2.84) when x → ±∞. This depends on whether α is positive or
negative. Using the formulas in Appendix B, for x2 → ∞,

y(x) ∼ √
π

[
A0

Γ
(
1
2 − κ

) ± B0√
2αΓ (1− κ)

]
η−κ if α > 0 (2.85)

and

y(x) ∼ √
π

[
A0

Γ (κ)
± B0√−2αΓ

(
1
2 + κ

)
]
(−η)κ−

1
2 e−η if α < 0, (2.86)

where κ = β/(2α) and η = 1
2αx

2. In the preceding expressions, the + is
taken when x > 0 and the − when x < 0. Also, the arguments of the Gamma
functions are assumed not to be nonpositive integers. What happens in those
cases is interesting and discussed toward the end of Sect. 2.6.

Based on the preceding discussion, the general solution of the interior-layer
Eq. (2.83) can be written as

Y0 = A0 M

(
1

18
,
1

2
,−3

2
x̄2

)
+B0 x̄M

(
5

9
,
3

2
,−3

2
x̄2

)
. (2.87)

The constants in this expression are determined by matching to the outer
solution. To do this we use the intermediate variable xη = (x−x0)/ε

γ , where
0 < γ < 1/2. Introducing this into the outer solution (2.81) yields
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Figure 2.15 Graph of numerical solution of (2.79) and interior-layer solution given
in (2.87) in the case where ε = 10−4

youter ∼

⎧
⎪⎨
⎪⎩

al
(3e)1/9

(εγ |xη|)−1/9 for xη < 0,

ar
(3e)1/9

(εγ |xη|)−1/9 for 0 < xη.
(2.88)

For the interior-layer solution (2.87) we use (2.85) to obtain

y(x) ∼ √
π

[
A0

Γ
(
4
9

) ± B0√
6Γ

(
17
18

)
](

2ε

3

)1/18

(εγ |xη|)−1/9, (2.89)

where the + is taken if xη > 0 and the − if xη < 0. Matching the inner and
outer approximations, it follows that

A0 =
1

2
√
π
(ar + al)Γ

(
4

9

)(
6εe2

)−1/18

and

B0 =

√
3

2π
(ar − al)Γ

(
17

18

)(
6εe2

)−1/18
.

The coefficients have ended up depending on ε. What this means is that the
original assumption that Y ∼ Y0+· · · should have been Y ∼ ε−1/18(Y0+· · · ).
Because this problem is linear, the need for the multiplicative factor ε−1/18

does not affect the validity of the asymptotic approximation.
To give a sense of how well this approximation does, the numerical solution

and the interior layer approximation are plotted in Fig. 2.15. It is evident that
the latter is asymptotic to the exponential functions that make up the outer
solution (2.81), and it gives a very accurate approximation of the solution in
the layer. What is also interesting is that, unlike the other layer examples
considered so far, the interior-layer solution is not monotone. An analysis of
more complex nonmonotone interior layers can be found in DeSanti (1987).
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Exercises

2.32. Find a first-term expansion of the solution of each of the following
problems. It should not be unexpected that for the nonlinear problems the
solutions are defined implicitly or that the transition layer contains an unde-
termined constant.

(a) εy′′ = −(x2 − 1
4 )y

′ for 0 < x < 1, where y(0) = 1 and y(1) = −1.
(b) εy′′ + 2xy′ + (1 + εx2)y = 0 for −1 < x < 1, where y(−1) = 2 and

y(1) = −2.
(c) εy′′ = yy′ − y3 for 0 < x < 1, where y(0) = 3

5 and y(1) = − 2
3 .

(d) 3εy′′ + 3xy′ + (1 + x)y = 0 for −1 < x < 1, where y(−1) = 1 and
y(1) = −1.

(e) εy′′ + y(1 + y2)y′ − 1
2y = 0 for 0 < x < 1, where y(0) = −1 and y(1) = 1.

(f) εy′′ + y(y′ + 3) = 0 for 0 < x < 1, where y(0) = −1 and y(1) = 2.

2.33. Consider the problem

εy′′ = yy′ for 0 < x < 1,

where y(0) = a and y(1) = −a. Also, a is positive.
(a) Prove that y(12 ) = 0. (Hint: Use the method described in Exercise 2.42.)
(b) Find a composite expansion of the solution.
(c) Show that the exact solution has the form

y = A
1−BeAx/ε

1 +BeAx/ε
,

where, for small ε, A ∼ a(1 + 2e−a/(2ε)) and B ∼ e−a/(2ε). Comment on
how this compares with your result from part (b).

2.34. This problem explores various possibilities for the layer solutions of
(2.64). You do not need to derive the expansions to answer these questions,
but you do need to know the general forms for the outer solutions as well as
the general form of the layer solution (2.74).
(a) The plausibility argument used to rule out boundary layers (e.g., Fig. 2.11)

did not consider the other possible outer solution, namely, y0 = 0. If this
is the outer solution, then there must be a boundary layer at both ends.
Explain why this cannot happen.

(b) To examine how the position of the interior layer depends on the boundary
conditions, suppose that y(0) = a and y(1) = b, where −1 < a + b < 1
and b < 1 + a. What is the value of x0 in this case? Also, state how you
use the stated inequalities on a and b.

(c) What happens to the layer(s) if the boundary conditions are y(0) =
y(1) = a?

(d) Suppose y(0) = −1/2 and y(1) = 1/4. Use the plausibility argument to
show that there are multiple possible solutions.
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Figure 2.16 Solution of problem in Exercise 2.35

2.35. Consider the problem

εy′′ + y(1− y)y′ − xy = 0 for 0 < x < 1,

where y(0) = 2 and y(1) = −2. The numerical solution is shown in Fig. 2.16
in the case where ε = 10−3. This will prove useful when deriving a first-term
approximation of the solution.
(a) Find the first term in the expansion of the outer solution. Assume that

this function satisfies the boundary condition at x = 0.
(b) Assume there is a boundary layer at x = 1. After finding a first-term

approximation in the boundary layer show that it does not match with
the outer solution you found in part (a).

(c) Assuming there is an interior layer across which the solution jumps from
one outer solution to another, find a first-term approximation in the layer.
From the matching show that the layer is located at x0 =

√
3/2. Note

that your layer solution will contain an undetermined constant.
(d) Correct the boundary-layer analysis in part (b) based on your result from

part (c).

2.36. This problem examines the solution of the boundary-value problem

εy′′ = −f(x)y′ for 0 < x < 1,

where y(0) = a and y(1) = −b. Assume that a and b are positive constants.
Also, assume that f(x) is smooth with f ′(x) > 0 and f(x0) = 0 for 0 < x0 < 1.

(a) Explain why there must be at least one point in the interval 0 < x < 1
where y(x) = 0.

(b) Find the exact solution of the problem and then write down the equation
that must be solved to determine where y(x) = 0. From this explain why
there is exactly one solution of y(x) = 0.

(c) Using your result from part (b), find a two-term expansion of the solution
of y(x) = 0. The second term will be defined implicitly and involves
solving an equation of the form
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erf(μ0

√
f ′(x0)/2) =

a− b

a+ b

for μ0. Note that Laplace’s approximation (Appendix C) will be
useful here.

(d) Find a two-term expansion of the solution of y(x) = 0 by first constructing
an asymptotic expansion of the solution of the boundary-value problem.

2.37. One way to resolve the problem of having an undetermined constant
after matching is to use a variational principle. To understand this approach,
consider the problem

εy′′ + p(x, ε)y′ + q(x, ε)y = 0 for 0 < x < 1,

where y(0) = a and y(1) = b. Associated with this is the functional

I(v) =

∫ 1

0

L(v, v′)dx, where L =
1

2
[ε(v′)2 − qv2]e

1
ε

∫

x
0

p(s,ε)ds.

In this variational formulation L is a Lagrangian for the equation.
(a) Show that if d

dr I(y + ru) = 0, at r = 0, for all smooth functions u(x)
satisfying u(0) = u(1) = 0, then y(x) is a solution of the preceding differ-
ential equation. In other words, an extremal of the functional is a solution
of the differential equation.

(b) Consider the problem

εy′′ − (2x− 1)y′ + 2y = 0 for 0 < x < 1,

where y(0) = 1 and y(1) = −3. The solution of this problem has a bound-
ary layer at each end of the interval. Find a composite expansion of the
solution for 0 ≤ x ≤ 1. Your solution will contain an arbitrary constant
that will be designated as k in what follows.

(c) From your result in part (b) derive an expansion for the Lagrangian L.
(d) Explain why the constant k should be such that d

dk I(y) = 0. From this
determine k.

2.38. In the Langmuir–Hinshelwood model for the kinetics of a catalyzed
reaction the following problem appears:

ε
dy

dx
= 1− 1

x
F (y) for 0 < x < 1,

where F (y) = 2(1 − y)(α + y)/y and y(1) = 0. Also, 0 < α < 1. In this
problem ε is the deactivation rate parameter and y(x) is the concentration
of the reactant (Kapila, 1983).
(a) For small ε, find a first-term expansion of the solution in the outer region

and in the boundary layer.
(b) Find a composite expansion of the solution for 0 < x ≤ 1.
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Figure 2.17 Graph of solution for Exercise 2.40 for two slightly different values of
a. In this calculation, b = 0.75 and ε = 10−4

2.39. This problem examines a differential-difference equation. The specific
problem is (Lange and Miura, 1991)

ε2y′′(x) − y(x) + q(x)y(x − 1) = f(x) for 0 < x < 3/2,

where y(x) = 0 for −1 ≤ x ≤ 0 and y(3/2) = 1. The functions q(x) and f(x)
are assumed smooth. What is significant here is that the solution is evaluated
at x− 1 in one of the terms of the equation. To answer the questions below,
keep in mind that y(x) and y′(x) are continuous for 0 ≤ x ≤ 3/2.
(a) There is a layer at x = 0+, at x = 1±, and at x = 3/2. Use this information

to find a first-term approximation of the solution. To do this, you should
consider x < 1 and 1 < x separately and then require smoothness at
x = 1. Also, you will have to find the first two terms in the layer at x = 1
to get the expansions to match.

(b) Find the exact solution of the problem in the case where f(x) = 0, and
compare the result with the expansion from part (a).

2.40. For some problems, locating the layer(s) can be difficult. To understand
this, consider the following problem:

εy′′ + (x− a)(x− b)(4y′ − 1) = 0 for 0 < x < 1,

where y(0) = −2 and y(1) = 3. Also, 0 < a < b < 1. The graph of the
solution of this problem is shown in Fig. 2.17.
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(a) Using the plausibility argument given in the discussion for Fig. 2.11,
explain why there is no boundary layer at x = 1 but there might be
one at x = 0.

(b) Interior layers can appear at points where the coefficient of y′ is zero.
Using the plausibility argument explain why there is no layer at x = a
but there might be one at x = b.

(c) Assuming the layer is at x = 0, calculate the first term in the expansions.
Also, assuming the layer is at x = b, calculate the first term in the ex-
pansions. Explain why it is not possible to determine the position for the
layer from these expansions.

(d) Find the exact solution. Use this to show that the layer is at x = 0 if
b
3 ≤ a < b and at x = b if 0 < a < b

3 . Note that Appendix C will be
helpful here.

2.41. In the study of explosions of gaseous mixtures one finds a model where
the (nondimensional) temperature T (t) of the gas satisfies (Kassoy, 1976;
Kapila, 1983)

T ′ = ε(T∞ − T )n exp

(
T − 1

εT

)

for T (0) = 1. Here T∞ > 1 is a constant known as the adiabatic explosion
temperature. Also, n is a positive integer (it is the overall reaction order).
Assuming a high activation energy, the parameter ε is small.
(a) What is the steady-state temperature?
(b) Find the first two terms in a regular expansion of the temperature. This

expansion satisfies the initial condition and describes the solution in what
is known as the ignition period. Explain why the expansion is not uniform
in time. Also, toward the end of the ignition period the solution is known
to undergo a rapid transition to the steady state. Use your expansion to
estimate when this occurs.

(c) To understand how the solution makes the transition from the rapid rise
in the transition layer to the steady state, let

τ =
t− t0
μ(ε)

,

where t0 is the time where the transition takes place and μ(ε) is deter-
mined from balancing in the layer. Assuming that T ∼ T∞−εT1(τ)+ · · · ,
find μ and T1. Although T1 is defined implicitly, use its direction field to
determine what happens when τ → ∞ and τ → −∞.
It is worth pointing out that there is a second internal layer in this prob-
lem, and it is located between the one for the ignition region and the
layer you found in part (c). The matching of these various layers is fairly
involved; the details can be found in Kapila (1983) for the case where
n = 1. Also, it is actually possible to solve the original problem in closed
form, although the solution is not simple (Parang and Jischke, 1975).



106 2 Matched Asymptotic Expansions

2.42. This problem outlines a proof, using a symmetry argument, that D = 1
in (2.74). Basically, the proof is based on the observation that in Fig. 2.13, if
the solution were flipped around y = 0 and then flipped around x = 1/2, one
would get the solution back again. In this problem, instead of (2.64), (2.65),
suppose the boundary conditions are y(0) = a and y(1) = b. In this case the
solution can be written as y = f(x, a, b).
(a) Change variables and let s = 1−x (which produces a flip around x = 1/2)

and z = −y (which produces a flip around y = 0) to obtain

εz′′ = zz′ − z for 0 < s < 1,

where z(0) = −b and z(1) = −a.
(b) Explain why the solution of the problem in part (a) is z = f(s,−b,−a).
(c) Use part (b) to show that y = −f(1 − x,−b,−a), and from this explain

why f(x, a, b) = −f(1− x,−b,−a).
(d) Use part (c) to show that in the case where a = 1 and b = −1, y(12 ) = 0.

It follows from this that D = 1.

2.6 Corner Layers

One of the distinguishing features of the problems we have studied in this
chapter is the rapid changes in the solution in the layer regions. The problems
we will now investigate are slightly different because the rapid changes will
be in the slope, or derivatives of the solution, and not in the value of the
solution itself. To illustrate this, we consider the following problem:

εy′′ +
(
x− 1

2

)
p(x)y′ − p(x)y = 0 for 0 < x < 1, (2.90)

where

y(0) = 2 (2.91)

and

y(1) = 3. (2.92)

The function p(x) is assumed to be smooth and positive, with p(1/2) = 1.
For example, one could take p(x) = x + 1/2 or p(x) = e2x−1. It should also
be noted that the coefficient of y′ is zero at x = 1/2. Because of this, given
the observations of the previous section, it should not come as a surprise that
the layer in this example is located at x = 1/2.
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2.6.1 Step 1: Outer Expansion

The solution in this region is expanded in the usual power series as follows:

y(x) ∼ y0(x) + εy1(x) + · · · . (2.93)

From (2.90) one then finds that

y0 = a

(
x− 1

2

)
, (2.94)

where a is an arbitrary constant. As usual, we are faced with having to satisfy
two boundary conditions with only one integration constant.

2.6.2 Step 2: Corner Layer

We begin by determining whether there are boundary layers. These can be
ruled out fairly quickly using the plausibility argument presented in the pre-
vious section. For example, if there is a boundary layer at x = 0 and (2.94) is
the outer solution, then we have a situation similar to that shown in Fig. 2.11.
In the boundary layer y′′ > 0, y′ < 0, and there is a portion of the curve
where y < 0. This means that εy′′ > 0 > −(x− 1

2 )p(x)y
′ + p(x)y. It is there-

fore impossible to satisfy the differential Eq. (2.90) and have a boundary
layer as indicated in Fig. 2.11. Using a similar argument, and the fact that
the coefficient of the y′ term changes sign in the interval, one can also argue
that there is not a boundary layer at the other end.

It therefore appears that there is an interior layer. To investigate this, we
introduce the stretched variable

x̄ =
x− x0

εα
. (2.95)

With an interior layer there is an outer solution for 0 ≤ x < x0 and one
for x0 < x ≤ 1. Using boundary conditions (2.91), (2.92) and the general
solution given in (2.94), we have that the outer solution is

y ∼
{−4(x− 1

2 ) if 0 ≤ x < x0,
6(x− 1

2 ) if x0 < x ≤ 1.
(2.96)

It will make things easier if we can determine x0 before undertaking the layer
analysis. If 0 < x0 < 1

2 or if 1
2 < x0 < 1, then the outer solution (2.96) is

discontinuous at x0. Using a plausibility argument similar to that presented
in Sect. 2.5, one can show that neither case is possible (Exercise 2.46). In
other words, x0 = 1

2 . With this we get that the outer solution is continuous,
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Figure 2.18 Schematic of corner layer formed by outer solution in (2.96). The so-
lution from the corner-layer region should provide a smooth transition between these
linear functions

but it is not differentiable at x = 1
2 . This situation is shown in Fig. 2.18. It

is for this reason that we have what is called a corner region, or derivative
layer, at x0 = 1

2 .
Now, substituting (2.95) into (2.90), and letting Y designate the solution

in this region, we get

ε1−2αY ′′ + x̄ p

(
1

2
+ εαx̄

)
Y ′ − p

(
1

2
+ εαx̄

)
Y = 0. (2.97)

To determine the distinguished limit note that

p

(
1

2
+ εαx̄

)
= p

(
1

2

)
+ εαx̄p′

(
1

2

)
+ · · ·

= 1+ O(εα).

With this, from balancing the terms in (2.97) we obtain α = 1
2 . Unlike what

we assumed in previous examples, we now take

Y ∼ y0(x0) + εγY0 + · · · . (2.98)

For this example y0(x0) = 0. Also, the multiplicative factor εγ is needed to
be able to match to the outer solution (the constant γ will be determined
from the matching). Thus, substituting this into (2.97) yields

Y ′′
0 + x̄ Y ′

0 − Y0 = 0, for −∞ < x̄ < ∞. (2.99)

It is possible to solve this equation using power series methods. However, a
simpler way is to notice that Y0 = x̄ is a solution, and so using the method
of reduction of order, one finds that the general solution is

Y0 = Ax̄+B

[
ex̄

2/2 + x̄

∫ x̄

0

e−s2/2ds

]
. (2.100)
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2.6.3 Step 3: Matching

In the examples from the previous two sections, the layer analysis and
matching were carried out in a single step. This is not done here because
the matching in this problem is slightly different and is worth considering in
more detail. To do the matching, we introduce the intermediate variable

xη =
x− 1/2

εκ
, (2.101)

where 0 < κ < 1
2 . Rewriting the outer solution (2.96) in this variable yields

y ∼
{−4εκxη if xη < 0,

6εκxη if 0 < xη.
(2.102)

Also, using the fact that

∫ ∞

0

e−s2/2ds =

√
π

2
,

it follows from (2.100) that

Y ∼
{
εγ+κ−1/2xη(A−B

√
π
2 ) if xη < 0,

εγ+κ−1/2xη(A+B
√

π
2 ) if 0 < xη.

(2.103)

To be able to match (2.102) and (2.103) we must have γ = 1
2 . In this case,

A−B

√
π

2
= −4

and

A+B

√
π

2
= 6,

from which it follows that A = 1 and B = 5
√
2/π.

2.6.4 Step 4: Composite Expansion

Even though the situation is slightly more complicated than before, the con-
struction of a composite expansion follows the same rules as in the earlier
examples. For example, for 0 ≤ x ≤ 1

2 ,
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Figure 2.19 Composite expansion (2.104) and the numerical solution of (2.90)–
(2.92) when ε = 10−2 and when ε = 10−4. Also, p(x) = e5(2x−1)

y ∼ −4

(
x− 1

2

)
+ ε1/2

[
x̄+ 5

√
2

π

(
e−x̄2/2 + x̄

∫ x̄

0

e−s2/2ds

)]
+ 4εκxη

=

(
x− 1

2

)[
1 + 5 erf

(
x− 1

2√
2ε

)]
+ 5

√
2ε

π
e−(2x−1)2/(8ε), (2.104)

where erf(·) is the error function. One finds that this is also the composite
expansion for 1

2 ≤ x ≤ 1. Thus, (2.104) is a composite expansion over the
entire interval. This function is shown in Fig. 2.19, and it is clear that it is
in very good agreement with the numerical solution. In fact, when ε = 10−3,
the two curves are indistinguishable.

The equation studied in this section is related to one that has received
a great deal of attention because the solution has been found to have some
rather interesting properties. To understand the situation, consider

εy′′ −
(
x− 1

2

)
y′ + ky = 0 for 0 < x < 1, (2.105)

where k is a constant. Assume that y(0) = y(1) = 1; the solution is then

y(x) =
M

(−k
2 ,

1
2 ,

1
8ε (2x− 1)2

)

M(−k
2 ,

1
2 ,

1
8ε )

, (2.106)

where M is Kummer’s function (Appendix B). It is assumed here that the
value of ε is such that the denominator in (2.106) is nonzero. Using the known
asymptotic properties of M one finds that for small ε and x �= 1/2,
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y(x) ∼
{
e−x(1−x)/2ε for k �= 0, 2, 4, . . . ,
(2x− 1)k for k = 0, 2, 4, . . . .

This shows that there is a boundary layer at each endpoint for all but a
discrete set of values for the constant k. When there are boundary layers,
the solution in the outer region is transcendentally small and goes to zero
as ε ↓ 0. What is significant is that for k = 0, 2, 4, . . . this does not happen.
This behavior at a discrete set of points for the parameter k is reminiscent
of resonance, and this has become known as Ackerberg–O’Malley resonance.
Those interested in pursuing this topic further are referred to the original
paper by Ackerberg and O’Malley (1970) and a later study by De Groen
(1980).

Exercises

2.43. Find a composite expansion of the solutions of the following problems:

(a) εy′′ + (y′)2 − 1 = 0 for 0 < x < 1, where y(0) = 1, and y(1) = 1.
(b) εy′′ + (y′)2 − 1 = 0 for 0 < x < 1, where y(0) = 1, and y(1) = 1/2.
(c) εy′′ = 9− (y′)2 for 0 < x < 1, where y(0) = 0, and y(1) = 1.
(d) εy′′ + 2xy′ − (2 + εx2)y = 0 for −1 < x < 1, where y(−1) = 2 and

y(1) = −2.

2.44. Consider the problem

εy′′ = x2[1− (y′)2] for 0 < x < 1,

where y(0) = y(1) = 1.
(a) Assuming there is a corner-layer solution, explain why there are two pos-

sible outer solutions. Each one is piecewise linear, much like the outer
solution in (2.96). Use the plausibility argument to rule out one of them.

(b) After finding the corner-layer solution, construct a composite expansion.

2.45. Consider the problem

εy′′ + xp(x)y′ − q(x)y = 0 for − 1 < x < 1,

where y(−1) = a and y(1) = b. The functions p(x) and q(x) are continuous,
p(x) �= 0, and q(x) > 0 for −1 ≤ x ≤ 1.
(a) If p(0) < 0, then there is a boundary layer at each end. Find a composite

expansion of the solution.
(b) If p(0) > 0, then there is an interior layer. Find the approximations in

the layer and outer regions.
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a b

Figure 2.20 Schematic of situations considered in Exercise 2.46. The outer solution
(solid lines) is determined from (2.94)
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Figure 2.21 Solution of problem in Exercise 2.47

2.46. This problem demonstrates that x0 = 1
2 in (2.96).

(a) Use the plausibility argument given in Sect. 2.5 to show that it is not
possible that 0 < x0 < 1

2 . This situation is shown in Fig. 2.20a.
(b) Use the plausibility argument given in Sect. 2.5 to show that it is not

possible that 1
2 < x0 < 1. This situation is shown in Fig. 2.20b.

2.47. Consider the problem

εy′′ − (x− a)(x − b)y′ − x(y − 1) = 0 for 0 < x < 1,

where y(0) = −2 and y(1) = 2. The numerical solution is shown in Fig. 2.21
in the case where a = 1/4, b = 3/4, and ε = 10−4. Based on this information
derive a first-term approximation of the solution for arbitrary 0 < a < b < 1.

2.48. Corner layers can occur within a boundary layer. As an example of
this, consider the problem

εy′′ + tanh(y′)− y = −1 for 0 < x < 1,

where y(0) = 3 and y(1) = 5. The numerical solution of the problem is shown
in Fig. 2.22 when ε = 10−4.
(a) Find a first-term expansion of the solution. You do not need to solve the

problem for the corner layer but you do need to explain why the solution
matches with the neighboring layer solutions.
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Figure 2.22 Solution of problem in Exercise 2.48
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Figure 2.23 Solution of problem in Exercise 2.49

(b) As a test of the effectiveness of the numerical solvers currently available,
find the numerical solution and compare it to your result in part (a) in
the case where ε = 10−4.

2.49. Consider the problem (Lorentz, 1982)

εy′′ + y(1− y2)y ′ − y = 0 for 0 < x < 1,

where y(0) = α and y(1) = β. Find a first-term approximation of the solution
in the following cases.
(a) α = 1/2 and β = 2. The numerical solution of the problem is shown in

Fig. 2.23 (solid curve), when ε = 0.0008. You do not need to solve the
problem for the corner layer (which is located at x0 = 1/3).

(b) α = 3/2 and β = −3/2. The numerical solution of the problem is in
Fig. 2.23 (dashed curve), when ε = 0.08.

(c) α = 3/2 and β = 2.

2.50. This exercise concerns the shock wave produced by a cylinder that is
expanding with a constant radial velocity of εa0, where a0 is the velocity
of sound in still air (Lighthill, 1949). The velocity potential in this case has
the form φ(r, t) = a20tf(η), where r is the radial distance from the center of
the expanding cylinder, η = r/(a0t), and f(η) is determined below. Also, the
radius of the cylinder is r = εa0t, and the radius of the shock wave is r = αa0t,
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where α is a constant determined below. The problem that determines f(η)
and α is

[
1− (γ − 1)

(
f − ηf ′ +

1

2
(f ′)2

)]
(f ′ + ηf ′′)

= η(η − f ′)2f ′′ for ε < η < α,

where f ′(ε) = ε, f(α) = 0 and

f ′(α) =
2(α− 1/α)

γ + 1
.

In this problem γ is a positive constant called the adiabatic index. Show that,
for small ε, α ∼ 1 + 3

8 (γ + 1)2ε4.

2.7 Partial Differential Equations

The subject of boundary and interior layers and how they appear in the
solutions of partial differential equations is enormous. We will examine a
couple of examples that lend themselves to matched asymptotic expansions.

2.7.1 Elliptic Problem

The first example concerns finding the function u(x, y) that is the solution
of the following boundary-value problem:

ε∇2u+ α∂xu+ β∂yu+ u = f(x, y) for (x, y) ∈ Ω, (2.107)

where

u = g(x, y), for (x, y) ∈ ∂Ω. (2.108)

The domain Ω is assumed to be bounded, simply connected, and have a
smooth boundary ∂Ω. The coefficients α and β are constant with at least
one of them nonzero. The functions f(x, y) and g(x, y) are assumed to be
continuous.

To illustrate what a solution of (2.107) looks like, consider the special case
where f(x, y) = a and g(x, y) = b, where a and b are constants. Taking Ω
to be the unit disk and using polar coordinates x = ρ cosϕ, y = ρ sinϕ, the
problem can be solved using separation of variables. The resulting solution is

u(ρ, ϕ) = a+
1

F (ρ, ϕ)

∞∑
n=−∞

In(χρ)[an sin(nϕ) + bn cos(nϕ)]/In(χ), (2.109)
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Figure 2.24 Plot of solution (2.109) and its associated contour map when α = β =
a = 1, b = 0, and ε = 0.05. The domain for the problem is x2+y2 < 1, but to generate
the plot, the solution was extended to the unit square 0 ≤ x, y ≤ 1 by setting u = 0 for
x2 + y2 ≥ 1. It is apparent there is a boundary layer, and its presence is particularly
pronounced in the region of the boundary near x = y = −1/

√
2

where F (ρ, ϕ) = exp(ρ(α cosϕ+ β sinϕ)/(2ε)), χ =
√

α2 + β2 − 4ε/(2ε),
In(z) is a modified Bessel function,

an =
b− a

2π

∫ 2π

0

F (1, ϕ) sin(nϕ)dϕ,

and

bn =
b− a

2π

∫ 2π

0

F (1, ϕ) cos(nϕ)dϕ.

This solution is shown in Fig. 2.24. A few observations can be made from this
figure that will make the derivation of the asymptotic approximation easier to
follow. First, a boundary layer is clearly evident in the solution. For example,
if one starts at x = y = −1/

√
2 and then moves into the domain, then the

solution undergoes a rapid transition to what appears to be an outer solution.
It is also seen that the layer is not present around the entire boundary ∂Ω
but only over a portion of ∂Ω. Moreover, if one follows the solution around
the edge of the boundary, then it is not easy to identify exactly where the
solution switches between the boundary layer and the outer region. However,
wherever it is, the transition is relatively smooth. This latter observation will
be useful later when deciding on the importance of what are called tangency
points.

Before jumping into the derivation of the asymptotic expansion, it is worth
noting that when ε = 0, the differential equation in (2.107) reduces to a
first-order hyperbolic equation. This change in type, from an elliptic to a
hyperbolic equation, has important consequences for the analysis, and it helps
explain some of the steps that are taken below.
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2.7.2 Outer Expansion

The procedure that we will use to find an asymptotic approximation of the
solution is very similar to that used for ordinary differential equations. The
first step is to find the outer solution. To do this, assume

u ∼ u0(x, y) + εu1(x, y) + · · · . (2.110)

Substituting this into (2.107) yields the following O(1) problem:

α∂xu0 + β∂yu0 + u0 = f(x, y) in Ω, (2.111)

where

u0 = g(x, y) on ∂Ωo. (2.112)

When constructing an asymptotic approximation it is not always immediately
clear which boundary condition, if any, the outer solution should satisfy. In
(2.112) the portion of the boundary where u0 satisfies the original boundary
condition has been identified as ∂Ωo. This is presently unknown and, in fact,
could turn out to be empty (e.g., Exercise 2.52).

To solve (2.111), we change coordinates from (x, y) to (r, s) , where s is
the characteristic direction for (2.111). Specifically, we let x = αs+ ξ(r) and
y = βs+ η(r). The functions ξ and η can be chosen in a number of different
ways, and our choice is based on the desire to have a simple coordinate
system. In particular, we take

x = αs+ βr and y = βs− αr. (2.113)

With this ∂s = α∂x + β∂y , and so (2.111) becomes

∂su0 + u0 = f(αs+ βr, βs− αr). (2.114)

This is easy to solve, and the general solution is

u0 = a0(r)e
−s +

∫ s

eτ−sf(ατ + βr, βτ − αr)dτ, (2.115)

where a0(r) is arbitrary. Since we have not yet determined exactly what
portion of the boundary condition, if any, the outer solution should satisfy,
we are not yet in a position to convert back to (x, y) coordinates.

Before investigating the boundary layer, it is instructive to consider the
change of coordinates given in (2.113). Fixing r and letting s increase, one
obtains the directed lines shown in Figs. 2.25 and 2.26. So, starting at bound-
ary point P , as the variable s increases, one crosses the domain Ω and arrives
at boundary point P∗. In terms of our first-term approximation, we need to
know what value u0 starts with at P and what value it has when the point
P∗ is reached. However, we only have one integration constant in (2.115), so
there is going to be a boundary layer at either P or P∗. As we will see below,
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Ω

Figure 2.25 Schematic drawing of characteristic curves obtained from the problem
for the outer solution. These curves are determined from (2.113) and are directed
straight lines with an orientation determined by the direction of increasing s. As
drawn, the coefficients α, β are assumed positive. Also note the tangency points
Tr, TL

Figure 2.26 Schematic drawing of transformed region coming from the domain in
Fig. 2.25

for our problem, the outer solution will satisfy the boundary condition at P∗
and there will be a boundary layer of width ε at P . Based on these comments,
we will assume that the points of the boundary can be separated into three
disjoint sets:

• ∂Ωo. These are the boundary points where the characteristics leave Ω (like
P∗ in Figs. 2.25 and 2.26). In Fig. 2.26 these points make up the curve
s = ho(r) for r0 < r < r1.

• ∂Ωb. There are the boundary points where the characteristics enter Ω
(like P in Figs. 2.25 and 2.26). In Fig. 2.26 these points make up the curve
s = hb(r) for r0 < r < r1.

• ∂Ωt. There are the tangency points. In Fig. 2.25 there are two such points,
TL and TR, and in Fig. 2.26 they occur when r = r0 and r = r1. These
can cause real headaches when constructing an asymptotic approximation
and will be left until the end.

To keep the presentation simple, we will assume that the situation is
as pictured in Fig. 2.25, i.e., the domain is convex. This means that if a
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}

O( )

Figure 2.27 Schematic of solution as a function of the characteristic coordinate s
as defined in (2.113). There is a boundary layer of width O(ε) at the left end of the
interval. Note that, in connection with Fig. 2.26, the point s = hb(r) can be thought
of as corresponding to the point P , and s = ho(r) can be thought of as corresponding
to the point P∗

characteristic curve enters the domain, then the only other time it intersects
the boundary is when it leaves the domain. Moreover, ∂Ωo and ∂Ωb are
assumed to be smooth curves.

Now that we know (or think we know) where the boundary layer is located,
we are in a position to complete the specification of the outer solution given in
(2.115). To do this, assume ∂Ωo can be described as s = ho(r) for r0 < r < r1.
In this case, using (2.112), the outer solution in (2.115) becomes

u0 = g(αho+βr, βho−αr)eho−s−
∫ ho(r)

s

eτ−sf(ατ+βr, βτ−αr)dτ. (2.116)

This solution does not apply along ∂Ωb or on ∂Ωt. To be more specific,
suppose the curve s = hb(r) for r0 < r < r1 describes ∂Ωb. In this case
(2.116) holds for r0 < r < r1 and hb(r) < s ≤ ho(r).

2.7.3 Boundary-Layer Expansion

To find out what goes on in a boundary layer, we introduce the boundary
coordinate (Fig. 2.27)

S =
s− hb(r)

ε
. (2.117)

This coordinate, by necessity, depends on r since the boundary depends on
r. This complicates the calculations in making the change of variables from
(r, s) to (r, S). One finds using the chain rule that the derivatives transform
as follows:

∂s → 1

ε
∂S , ∂r → −h′

b

ε
∂S + ∂r,

∂2
s → 1

ε2
∂2
S , ∂2

r → (h′
b)

2

ε2
∂2
S − h′′

b

ε
∂S − 2h′

b

ε
∂S∂r + ∂2

r .
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To convert the original problem into boundary-layer coordinates, we must
first change from (x, y) to (r, s) coordinates in (2.107). This is relatively easy
since from (2.113) one finds that

∂x =
1

γ
(α∂s + β∂r) and ∂y =

1

γ
(β∂s − α∂r),

where γ = α2 + β2. With this, (2.107) becomes

ε(∂2
s + ∂2

r )u + γ∂su+ γu = γf. (2.118)

Now, letting U(r, S) denote the solution in the boundary layer, substituting
the boundary-layer coordinates into (2.118) yields

[μ∂2
S + γ∂S +O(ε)]U = εγf, (2.119)

where

μ(r) = 1 + (h′
b)

2. (2.120)

In keeping with our usual assumptions, hb(r) is taken to be a smooth function.
However, note that at the tangency points shown in Fig. 2.25, h′

b(r) = ∞.
For this reason, these points will have to be dealt with separately after we
finish with the boundary layer.

We are now in a position to expand the solution in the usual power series
expansion, and so let

U(r, S) ∼ U0(r, S) + · · · . (2.121)

Substituting this into (2.119) yields the equation

μ∂2
SU0 + γ∂SU0 = 0.

The general solution of this is

U0(r, S) = A(r) +B(r)e−γS/μ, (2.122)

where A(r) and B(r) are arbitrary. Now, from the boundary and matching
conditions we must have U0(r, 0) = g and U0(r,∞) = u0(r, hb). Imposing
these on our solution in (2.122) yields

U0(r, S) = u0(r, hb) + [g(αhb + βr, βhb − αr) − u0(r, hb)]e
−γS/μ, (2.123)

where

u0(r, hb) = g(αho + βr,βho − αr)eho−hb

−
∫ ho

hb

eτ−hb(r)f(ατ + βr, βτ − αr)dτ.
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Figure 2.28 Comparison between exact solution (2.109) and composite expansion
given in (2.125) in the case where ε = 0.05. The values of each function are given
along the line x = ρ cos(π/4), y = ρ sin(π/4) for −1 ≤ ρ ≤ 1

2.7.4 Composite Expansion

It is not difficult to put together a composite expansion that will give us
a first-term approximation of the solution in the outer and boundary-layer
regions. Adding (2.116) and (2.123) together and then subtracting their com-
mon part yields

u ∼ g(αho + βr,βho − αr)eho−s −
∫ ho

s

eτ−sf(ατ + βr, βτ − αr)dτ

+ [g(αhb + βr, βhb − αr)− u0(r, hb)] e
−γS/μ. (2.124)

This approximation holds for r0 < r < r1 and hb(r) ≤ s ≤ ho(r). This
result may not be pretty, but it does give us a first-term approximation of
the solution in the boundary layer and outer domain. It is also considerably
simpler than the formula for the exact solution, an example of which is given
in (2.109). What is interesting is that we have been able to patch together
the solution of an elliptic problem using solutions to hyperbolic and elliptic
problems. Readers interested in the theoretical foundation of the approxima-
tions constructed here are referred to Levinson (1950), Eckhaus and Jager
(1966), and Il’in (1992).

Example

To apply the result to the domain used in Fig. 2.24, note that the change of
variables in (2.113) transforms ∂Ω, which is the unit circle x2 + y2 = 1, to
the circle r2 + s2 = 1/(α2 + β2). In this case, ho(r) is the upper half of the
circle, where s > 0, and hb(r) is the lower half, where s < 0. Taking f = a
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and g = b, then (2.124) reduces to

u ∼ a+ (b− a)
[
eho−s +

(
1− eho−hb

)
e−γS/μ

]
, (2.125)

where ho =
√
1/γ − r2, hb = −ho, μ = 1 + r2/ho, and γ = α2 + β2. This

can be expressed in terms of (x, y) using the formulas r = (βx − αy)/γ and
s = (αx+ βy)/γ. With (2.125) we have a relatively simple expression that is
a composite approximation of the exact solution given in (2.109). To compare
them, let f = 1, g = 0, and α = β = 1. These are the same values used in
Fig. 2.24. The resulting approximation obtained from (2.125), along with the
exact solution given in (2.109), is shown in Fig. 2.28 for a slice through the
surface. Based on this graph, it seems that we have done reasonably well with
our approximation. However, we are not finished as (2.124) does not hold in
the immediate vicinity of the tangency points TR and TL, which are shown
in Fig. 2.25. �

2.7.5 Parabolic Boundary Layer

To complete the construction of a first-term approximation of the solution
of (2.107), it remains to find out what happens near the tangency points
shown in Figs. 2.25 and 2.26. We will concentrate on TL. To do this, let
(r0, s0) be its coordinates in the (r, s) system. Also, suppose the smooth curve
r = q(s) describes the boundary ∂Ω in this region. In this case r0 = q(s0)
and q′(s0) = 0. It will be assumed here that q′′(s0) �= 0. The boundary-layer
coordinates are now

r̃ =
r − q(s)

εα
and s̃ =

s− s0
εβ

. (2.126)

The transformation formulas for the derivatives are similar to those derived
earlier for the boundary layer along ∂Ωb, so they will not be given. The result
is that (2.118) takes the form

ε(ε−2α∂2
r̃ + ε−2β∂2

s̃ + · · · )Ũ
+ γ(ε−β∂s̃ − εβ−αs̃q′′0∂r̃ + · · · )Ũ + γŨ = γf.

Here Ũ(r̃, s̃) is the solution in this region, and we have used the Taylor series
expansion q′(s0 + εβ s̃) ∼ εβ s̃q′′0 to obtain the preceding result. There are at
least two balances that need to be considered. One is α = β = 1, the other
is 2β = α = 2/3. The latter is the one of interest, and assuming

Ũ(r̃, s̃) ∼ Ũ0(r̃, s̃) + · · · (2.127)
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one obtains the equation

(∂2
r̃ − γs̃q′′0∂r̃ + γ∂s̃)Ũ0 = 0 (2.128)

for 0 < r̃ < ∞ and −∞ < s̃ < ∞. This is a parabolic equation, and for this
reason this region is referred to as a parabolic boundary layer. The solution is
required to match to the solutions in the adjacent regions and should satisfy
the boundary condition at r̃ = 0. The details of this calculation will not
be given here but can be found in van Harten (1976). The papers by Cook
and Ludford (1971, 1973) should also be consulted as they have an extensive
analysis of such parabolic layers and how they appear in problems where the
domain has a corner. The theory necessary to establish the uniform validity
of the expansions when corners are present in the boundary, and a historical
survey of this problem, can be found in Shih and Kellogg (1987).

2.7.6 Parabolic Problem

To illustrate the application of boundary-layer methods to parabolic equa-
tions, we consider the problem of solving

ut + uux = εuxx for −∞ < x < ∞ and 0 < t, (2.129)

where u(x, 0) = φ(x). It is assumed here that φ(x) is smooth and bounded
except for a jump discontinuity at x = 0. Moreover, φ ′(x) ≤ 0 for x �= 0 and
φ(0−) > φ(0+).

As an example, suppose that

u(x, 0) =

{
1 for x < 0,
0 for 0 < x.

This type of initial condition generates what is known as a Riemann problem,
and the resulting solution is shown in Fig. 2.29. It is a traveling wave, and
the smaller the value of ε, the sharper the transition from u = 0 to u = 1.
In the limit of ε → 0, the transition becomes a jump, producing a solution
containing a shock wave.

The nonlinear diffusion equation in (2.129) is known as Burger’s equation.
It has become the prototype problem for studying shock waves and for the
use of what are called viscosity methods for finding smooth solutions to such
problems. In what follows we will concentrate on the constructive aspects
of finding asymptotic approximations to the solution. The theoretical under-
pinnings of the procedure can be found in Il’in (1992) and its extension to
systems in Goodman and Xin (1992).
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Figure 2.29 Solution of Burger’s equation (2.129) for two values of ε, showing the
traveling-wave nature of the solution as well as the sharpening of the wave as ε
approaches zero

2.7.7 Outer Expansion

The first step is to find the outer solution. To do this, assume u ∼ u0(x, t) +
· · · . Substituting this into (2.129) produces the first-order hyperbolic equation

∂tu0 + u0∂xu0 = 0. (2.130)

The characteristics for this equation are the straight lines x = x0+φ(x0)t, and
the solution u0(x, t) is constant along each of these lines (Fig. 2.30). Therefore,
given a point (x, t), then u0(x, t) = φ(x0), where x0 is determined from the
equation x = x0 + φ(x0)t. This construction succeeds if the characteristics
do not intersect and they cover the upper half-plane. For us the problem is
with intersections. As illustrated in Fig. 2.30, the characteristics coming from
the negative x-axis intersect with those from the positive x-axis. From the
theory for nonlinear hyperbolic equations it is known that this generates a
curve x = s(t), known as a shock wave, across which the solution has a jump
discontinuity (Holmes, 2009). The solution in this case is determined by the
characteristics up to when they intersect the shock. The complication here
is that the position of the interior layer is moving and centered at x = s(t).
As it turns out, the formula for s(t) can be determined from (2.130), but we
will derive it when examining the solution in the transition layer.
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Figure 2.30 The straight lines are the characteristics for the reduced prob-
lem (2.130). Because φ has a discontinuity at x = 0, and φ′ ≥ 0 for x �= 0, these
lines intersect along the shock curve x = s(t)

2.7.8 Inner Expansion

The interior layer coordinate is

x̄ =
x− s(t)

εα
.

Letting U(x̄, t) denote the solution of the problem in this layer, (2.129) takes
the form

∂tU − ε−αs′(t)∂x̄U + ε−αU∂x̄U = ε1−2α∂2
x̄U. (2.131)

Balancing the terms in this equation, one finds α = 1. Thus, the appropriate
expansion of the solution is U ∼ U0(x̄, t) + · · · , and substituting this into
(2.131) yields

− s′(t)∂x̄U0 + U0∂x̄U0 = ∂2
x̄U0.

Integrating this, one finds that

∂x̄U0 =
1

2
U2
0 − s′(t)U0 +A(t). (2.132)

The boundary conditions to be used come from matching with the outer
solution on either side of the layer. They are

lim
x̄→−∞U0 = u−

0 and lim
x̄→∞U0 = u+

0 , (2.133)

where

u±
0 = lim

x→s(t)±
u0(x, t). (2.134)

From (2.132) it follows that A(t) = − 1
2 (u

−
0 )

2 + s′(t)u−
0 and

s′(t) =
1

2
(u+

0 + u−
0 ). (2.135)
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Figure 2.31 Schematic showing a shock and two characteristics that intersect on
the shock

The differential equation in (2.135) determines the position of the shock and
is known as the Rankine–Hugoniot condition. Its solution requires an initial
condition, and, because of the assumed location of the discontinuity in φ(x),
we take s(0) = 0.

To complete the analysis of the first-order problem in the shock layer, we
separate variables in (2.132) and then integrate to obtain, for the case where
u+
0 < u−

0 ,

U0(x̄, t) =
u+
0 + b(x̄, t)u−

0

1 + b(x̄, t)
, (2.136)

where

b(x̄, t) = B(t)ex̄(u
+
0 −u−

0 )/2 (2.137)

and B(t) is an arbitrary nonzero function.
The indeterminacy in U0(x̄, t), as given by the unspecified function in

(2.137), is the same difficulty we ran into when investigating interior layers
in Sect. 2.5. However, for this nonlinear diffusion problem it is possible to
determine B(t), up to a multiplicative factor, by examining the next order
problem. To state the result, note that given a point (x, t) = (s(t), t) on the
shock, u+

0 = φ(x+) and u−
0 = φ(x−). Here x± are the initial points on the

x-axis for the two characteristics that intersect at (s(t), t) (Fig. 2.21). In this
case, one finds from the O(ε) problem that (Exercise 2.57)

B(t) = B0

√
1 + tφ′(x+)

1 + tφ′(x−)
, (2.138)

where the constant B0 is found from the initial condition.
To determine B0 in (2.138), one must match the shock layer solution with

the solution from the initial layer located near x = x0. The appropriate
coordinate transformation for this layer is x̄ = (x− s(t))/ε and τ = t/ε. The
steps involved in this procedure are not difficult, and one finds that B0 = 1
(Exercise 2.57). With this the first-term approximation of the solution in the
shock layer is determined.
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Figure 2.32 Graph of exact solution of Burger’s equation and asymptotic approxi-
mation in the case where φ(x) = 1 if x < 0 and φ(x) = 0 if x > 0. The solutions are
compared at t = 1, 15, 30, for both ε = 1 and ε = 10−1

To demonstrate the accuracy of the asymptotic approximation, in Fig. 2.32
the approximation is shown along with the exact solution at two nonzero
values of t and ε. The exact solution in this case is given in Exercise 2.56.
For ε = 0.1 the asymptotic and exact solutions are so close that they are
essentially indistinguishable in the graph. They are even in reasonable agree-
ment when ε = 1, although the differences are more apparent for the smaller
value of t.

In this section we have considered elliptic and parabolic problems. Matched
asymptotic expansions can also be applied to hyperbolic problems, and sev-
eral examples are worked out in Kevorkian and Cole (1981). However, there
are better methods for wave problems, particularly when one is interested in
the long time behavior of the wave. This topic will be taken up in Chaps. 3
and 4.

Exercises

2.51. A special case of (2.107) is the problem of solving

ε∇2u+ ∂yu = 2 in Ω,

where u = x+ y on ∂Ω. Let Ω be the unit disk x2 + y2 < 1.
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(a) Sketch the domain and characteristic curves for the outer solution
(Fig. 2.25). Identify the points TL and TR.

(b) What is the composite expansion, as in (2.124), for this problem?
(c) What is the parabolic layer equation, as in (2.128), in this case?

2.52. Find a first-term composite expansion, for the outer region and bound-
ary layers, of the solution of

ε∇2u+ u = 1 in Ω,

where u = g(x, y) on ∂Ω. Let Ω be the unit disk x2 + y2 < 1.

2.53. In this exercise, variations of the elliptic boundary-value problem
(2.107) are considered.
(a) If the coefficients α and β in (2.107) are negative, how does the composite

expansion in (2.124) change?
(b) If one of the coefficients α and β in (2.107) is negative and the other is

positive, how does the composite expansion in (2.124) change?

2.54. Consider the problem of solving

ut = εuxx − cux for 0 < x and 0 < t,

where u(0, t) = u
 and u(x, 0) = ur. Assume c, u
, and ur are constants with
c positive and ur �= u
.
(a) Find the first term in the outer expansion. Explain why this shows that

there is an interior layer located at x = ct.
(b) Find the first term in the inner expansion. From this find a first-term

composite expansion of the solution.
(c) Where is the assumption that c > 0 used in parts (a) or (b)? What about

the assumption that ur �= u
? Note that the case where c < 0 is considered
in Exercise 2.55.

(d) The exact solution is

u(x, t) = ur +
1

2
(u
 − ur)

[
erfc

(
x− ct

2
√
εt

)
+ ecx/εerfc

(
x+ ct

2
√
εt

)]
.

Verify that this satisfies the differential equation as well as the boundary
and initial conditions.

(e) Explain how your composite expansion in part (b) can be obtained from
the solution in part (d).

2.55. The equation of one-dimensional heat conduction in a material with a
low conductivity is (Plaschko, 1990)

ut = εuxx + v(t)ux for 0 < x and 0 < t,
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where u(0, t) = g(t), u(∞, t) = 0, and u(x, 0) = h(x). Assume that the
functions v(t), g(t), and h(x) are smooth with 0 < v(t) for 0 ≤ t < ∞,
g(0) = h(0), and h(∞) = 0.
(a) Find a first-term composite expansion of the solution.
(b) Find the second term in the composite expansion. Is the expansion

uniformly valid over the interval 0 ≤ t < ∞? What conditions need
to be placed on the functions h(x) and v(t)? A method for constructing
uniformly valid approximations in a case like this is the subject of Chap. 3.

2.56. Using the Cole–Hopf transformation it is possible to solve Burger’s
equation (2.129) (Whitham, 1974). In the case where

u(x, 0) =

{
u1 if x < 0,
u2 if 0 < x,

where u1 > u2 are constants, one finds u(x, t) = u2+K(x,t)u1

1+K(x,t) , where

K(x, t) =
erfc

(
x−u1t
2
√
εt

)

erfc
(
−x−u2t

2
√
εt

)e(x−v0t)(u2−u1)/2ε

and v0 = 1
2 (u1+u2). Compare this with the first-term approximation derived

for (2.129). Make sure to comment on the possible differences for small and
for large values of t.

2.57. The function B(t) in (2.137) can be found by matching the second term
in the inner and outer expansions. This exercise outlines the necessary steps.

(a) Show that the second term in the outer expansion is

u1(x, t) =
tφ′′(ξ)

(1 + tφ′(ξ))2
,

where the value of ξ is determined from the equation x = ξ + tφ(ξ).
(b) By changing variables from x̄ to z = (1 − b)/(1 + b), where b is given in

(2.137), show that the equation for U1 becomes

(1− z2)∂2
zU1 + 2U1 =

4(s′′ + r′z)
r2(1− z2)

− 2

r2

(
rB′

B
+ r′ ln

(
1− z

B(1 + z)

))
,

where r = 1
2 (u

+
0 − u−

0 ).
(c) Solve the equation in part (b), and from this obtain the first two terms

in the expansion of U1 for z → 1 and for z → −1. (Hint: Because of
the nature of this calculation, the use of a symbolic computer program is
recommended.)
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(d) To match the inner and outer expansions, introduce the intermediate
variable x̄η = (x − s(t))/εη. With this, show that the outer expansion
expands as follows:

u ∼ φ(ξ) + εη
x̄ηφ

′(ξ)
1 + tφ′(ξ)

+ ε
tφ′′(ξ)

(1 + tφ′(ξ))2
+ · · · ,

where ξ is determined from the equation s(t) = ξ+ tφ(ξ). Do the same for
the inner expansion, and by matching the two derive the result in (2.138).

(e) To find the constant B0, introduce the initial-layer coordinates x̄ = (x−
s(t))/ε and τ = t/ε. Find the first term in this layer, and then match the
result with (2.136) to show B0 = 1.

2.58. This exercise involves modifications of the expansions for Burger’s
equation.
(a) Discuss the possibility of obtaining a composite expansion for the solution

of (2.129).
(b) The center of the shock wave is where u is half-way between u+

0 and u−
0 . If

this is located at x = X(t), then find the first two terms in the expansion
of X(t). A discussion of this, and other aspects of the problem, can be
found in Lighthill (1956).

(c) Because the position of the shock is determined by the solution, then it
should, presumably, depend on ε. How do things change if one allows for
the possibility that s(t) ∼ s0(t) + εs1(t) + · · · ?

2.59. Consider the linear diffusion problem

ut + αux + βu = εuxx for −∞ < x < ∞ and 0 < t,

where u(x, 0) = φ(x). Assume that φ(x) has the same properties as the initial
condition for (2.129) and that α and β are positive constants.
(a) Find the first terms in the inner and outer expansions of the solution.
(b) Comment on the differences between the characteristics of the shock layer

for Burger’s equation and the one you found in part (a).

2.60. Find the first term in the inner and outer expansions of the solution of

ut + f(u)ux = εuxx for −∞ < x < ∞ and 0 < t,

where u(x, 0) = φ(x). Assume φ(x) has the same properties as the initial
condition for (2.129) and f(r) is smooth with f ′(r) > 0.

2.61. Consider the problem of solving

ε

r
∂r

[
1

r
∂r(r

2w)

]
= ∂tw + μw + κe−2t for 0 ≤ r < 1, 0 < t,

where w(r, 0) = 0, ∂rw(0, t) = 0, and w(1, t) = 0. Also, μ and κ are positive
constants with μ �= 2. This problem arises in the study of the rotation of a
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Figure 2.33 Schematic of air flow over an airplane wing as assumed in Exercise 2.62

cylindrical container filled with a dilute suspension (Ungarish, 1993). In this
context, w(r, t) is the angular velocity of the suspension and the boundary
layer is known as a Stewartson shear layer. For small ε, find a first-term
composite expansion of the solution.

2.62. The equation for the velocity potential φ(x, y) for steady air flow over
an airplane wing is (Cole and Cook, 1986)

(a2 − Φ2
x)Φxx − 2ΦxΦyΦxy + (a2 − Φ2

y)Φyy = 0,

where

a2 = a2∞ +
1

2
(γ − 1)(U2 − Φ2

x − Φ2
y).

Here a∞ > 0, U > 0, and γ > 1 are constants. The wing is assumed to be
described by the curve y = εf(x) for 0 < x < 1 (Fig. 2.33). In this case, the
boundary conditions are that φ = Ux as x → −∞ and

Φy =

{
εf ′(x)Φx when y = εf(x) and 0 < x < 1,
0 when y = 0 and −∞ < x < 0 or 1 < x.

(a) The thickness ε of the wing is small, and this is the basis of what is known
as small disturbance theory. The appropriate expansion for the potential
in this case has the form

Φ ∼ Ux+ εαφ1 + εβφ2 + · · · .

Find α, and then determine what problem φ1 satisfies.
(b) Find φ1 in the case where M∞ > 1, where M∞ = U/a∞.
(c) For the case where M∞ > 1, find φ2 and explain why for the expansion

to be valid it must be that ε � (M2
∞ − 1)3/2. (Hint: Use characteristic

coordinates ξ = x− y
√
M2∞ − 1, η = x+ y

√
M2∞ − 1.)

2.63. For a semiconductor to function properly, one must be concerned with
the level of impurities that diffuse in from the outer surface and occupy vacant
locations in the crystalline structure of the semiconductor. A problem for the
concentration of impurities c(x, t) and vacancies v(x, t) is (King et al., 1992)
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∂tc = ∂x(v∂xc− c∂xv)

∂tv + r∂tc = ε2∂2
xv

}
for 0 < x < ∞ and 0 < t,

where c = 0 and v = 1 when t = 0, c = 1, and v = μ when x = 0, and c → 0
and v → 1 as x → ∞. Also, r and μ are positive constants. For small ε derive
a composite expansion of the solution of this problem.

2.8 Difference Equations

Up until now, when discussing boundary-layer problems, we have dealt almost
exclusively with differential equations. We will now expand our horizons and
investigate what happens with singularly perturbed difference equations. As
will be seen, many of the ideas developed in the first part of this chapter
will reappear when analyzing difference equations, but there are subtle and
interesting differences.

Our starting point is the boundary-value problem

εyn+1 + αnyn + βnyn−1 = 0 for n = 1, 2, . . . , N − 1, (2.139)

where

y0 = a, yN = b. (2.140)

What we have here is a second-order linear difference equation with pre-
scribed values at the ends (where n = 0, N). In what follows it is assumed
that N is fixed, and we will investigate how the solution behaves for small
ε. It should also be pointed out that we will be assuming that the αn’s and
βn’s are nonzero.

There are a couple of observations about the problem that should be made
before starting the derivation of the asymptotic approximation of the solu-
tion. First, it is clear that the problem is singular for small ε since the reduced
equation αnyn + βnyn−1 = 0 is first order and cannot be expected to satisfy
both boundary conditions. The second observation can be made by consider-
ing an example. If αn = 2 and βn = a = b = 1, then the solution of (2.139),
(2.140) is

yn =

(
1−mN

1

mN
2 −mN

1

)
mn

2 −
(

1−mN
2

mN
2 −mN

1

)
mn

1 ,

where m1 = −(1 +
√
1− ε )/ε and m2 = −(1 −√

1− ε )/ε. For small ε this
reduces to

yn ∼
(
−1

2

)n

+

[
1−

(
−1

2

)N
](

−ε

2

)N−n

, for n = 1, 2, . . . , N. (2.141)
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This shows boundary-layer type of behavior near the end n = N in the sense
that if one starts at n = N and then considers the values at n = N−1, N−2,
. . ., then the O(εN−n) term in (2.141) rapidly decays. Moreover, away from
the immediate vicinity of the right end, this term is small in comparison to
the other term in the expansion.

2.8.1 Outer Expansion

We now derive an asymptotic approximation of the solution of (2.139),
(2.140). The easiest component to obtain is the outer expansion, and this
is determined by simply assuming an expansion of the form

yn ∼ ȳn + εz̄n + · · · . (2.142)

Substituting this into (2.139) and then equating like powers of ε, one
finds that

αnȳn + βnȳn−1 = 0. (2.143)

Based on the observations made earlier, we expect the boundary layer to be
at n = N . Thus, we require ȳ0 = a. Solving (2.143) and using this boundary
condition, one finds that

ȳn = κna for n = 0, 1, 2, 3, . . . , (2.144)

where κ0 = 1, and for n �= 0

κn =
n∏

j=1

(
−βj

αj

)
. (2.145)

Except for special values of αn and βn, the solution in (2.144) does not satisfy
the boundary condition at n = N . How to complete the construction of the
approximate solution when this happens is the objective of what follows.

2.8.2 Boundary-Layer Approximation

Now the question is, how do we deal with the boundary layer at the right
end? To answer this, one needs to remember that (2.144) is a first-term
approximation of the solution in the outer region. As given in (2.142), the
correction to this approximation in the outer region is O(ε). The correction
at the right end, however, is O(1). This is because the exact solution satisfies
yN = b, and (2.144) does not do this.
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Our approach to finding the boundary-layer approximation is to first
rescale the problem by letting

yn = εγ(n)Yn. (2.146)

Once we find γ(n) and Yn, the general solution of the original problem will
consist of the addition of the two approximations. Specifically, the composite
approximation will have the form

yn ∼ ȳn + εγ(n)Y n, (2.147)

where the tilde over the variables indicates the first-term approximation from
the respective region. Given that yN = b, and ȳn does not satisfy this bound-
ary condition, then from (2.147) we will require that

γ(N) = 0 (2.148)

and

Y N = b− yN . (2.149)

The exponent γ(n) is determined by balancing, and to do this we substitute
(2.146) into (2.139) to obtain

ε1+γ(n+1)Yn+1 + αnε
γ(n)Yn + βnε

γ(n−1)Yn−1 = 0. (2.150)

① ② ③

In the outer region, the balancing takes place between terms ② and ③. For
the boundary layer we have two possibilities to investigate:

(i) ① ∼ ③ and ② is higher order.
The condition ① ∼ ③ requires that γ(n+1) = γ(n−1)−1. Thus, if n = 2k,
then γ(2k) = γ(0)−k, and if n = 2k+1, then γ(2k+1) = γ(1)−k. In the
case where n = 2k, we have ①, ③ = O(ε1+γ(1)−k), ② = O(εγ(0)−k), and
if n = 2k + 1, then we have ①, ③ = O(εγ(0)−k), ② = O(εγ(1)−k). To be
consistent with the assumed balancing, we require that 1 + γ(1) ≤ γ(0)
and γ(0) ≤ γ(1). From this it follows that it is not possible to pick values
for γ(0) and γ(1) that are consistent with our original assumption that
② is higher order. Thus, this balance is not possible.

(ii) ① ∼ ② and ③ is higher order.
The condition ① ∼ ② requires that γ(n+ 1) = γ(n)− 1, and so γ(n+1)
= γ(0) − n. From this it follows that ①, ② = O(ε1+γ(0)−n) and ③ =
O(ε2+γ(0)−n). This is consistent with the original assumption, and so
this is the balancing we are looking for.

The balancing argument has shown that γ(n) = 1 + γ(0) − n. From this
and (2.148) it follows that γ(0) = N − 1, and so

γ(n) = N − n.
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Figure 2.34 Comparison between asymptotic expansion in (2.155) and the numeri-
cal solution of (2.139), (2.140) in the case where αn = −(1+ n

N
), βn = 3

2
− n

N
, a = 1,

b = −1, N = 20, and ε = 10−2

In this case, (2.150) takes the form

Yn+1 + αnYn + εβnYn−1 = 0 for n = N − 1, N − 2, . . . . (2.151)

The appropriate expansion of the boundary-layer solution is

Yn ∼ Y n + εZn + · · · . (2.152)

Introducing this into (2.151) yields the equation

Y n+1 + αnY n = 0.

The solution of this that also satisfies the boundary condition (2.149) is

Y n = λN−n(b − κNa), (2.153)

where λ0 = 1, and for k �= 0

λk =

k∏
j=1

(
− 1

αN−j+1

)
. (2.154)

Using (2.147) we have found that a composite expansion of the solution is

yn ∼ κna+ εN−nλN−n(b− κNa). (2.155)

It is possible to prove that this does indeed give us an asymptotic approx-
imation of the solution (Comstock and Hsiao 1976). A demonstration of
the accuracy of the approximation is given in Fig. 2.34. It is seen that the
numerical solution of the difference equation and the asymptotic expansion
are in very close agreement.
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2.8.3 Numerical Solution of Differential Equations

There is a very interesting connection between the difference equation in
(2.139) and the numerical solution of an associated differential equation. To
understand this, consider the boundary value problem

εy′′ + p(x)y′ + q(x)y = 0 for 0 < x < 1, (2.156)

where y(0) = a and y(1) = b. It is assumed that the functions p(x) and q(x)
are continuous. Now, if p(x) < 0 for 0 ≤ x ≤ 1, then there is a boundary
layer at x = 1 with width O(ε) (Exercise 2.10). Given this fact, suppose we
want to solve the problem numerically using finite differences. The standard
centered-difference approximation will be used for the second derivative, but
for the first derivative we will consider using either the forward difference
approximation (Holmes, 2007)

y′(xn) ≈ yn+1 − yn
h

(2.157)

or the backward difference approximation

y′(xn) ≈ yn − yn−1

h
. (2.158)

Using the backward difference we get from (2.156) that

εyn+1 + (αn − 2ε)yn + (βn + ε)yn−1 = 0, (2.159)

where αn = hpn + h2qn and βn = −hpn. Because this equation differs from
(2.139) only in the addition of higher-order terms in the coefficients, a com-
posite expansion of the solution is still given in (2.155). Thus, the difference
equation has a boundary layer in the same location as the associated differ-
ential equation. This is good if one expects the numerical solution to have
any resemblance to the solution of the original problem. What is interesting
is that the forward difference (2.157) results in a difference equation with a
boundary layer at x = 0 and not at x = 1 (Exercise 2.64). This observation
is strong evidence that one should use (2.158) rather than (2.157) to solve
this problem.

Another way to approximate the first derivative is to use a centered
difference. This would seem to be a better choice because it is a O(h2) approx-
imation while the approximations in (2.157) and (2.158) are O(h). However,
its major limitation is that it cannot delineate a boundary layer at either end
of an interval.

Before completing the discussion of the numerical solution of (2.156), it
is worth making a comment about the order of the stepsize h. Presumably
h should be relatively small for the finite difference equation to be an ac-
curate approximation of the differential equation. This introduces a second
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small parameter into the problem, and one must be careful about its size
in comparison to ε. For example, since αn = O(h) and βn = O(h), then it
should not be unexpected that one must require ε � h to guarantee the ex-
pansion is well ordered. We will not pursue this topic, but interested readers
should consult the articles by Brown and Lorenz (1987), Farrell (1987), and
Linss et al. (2000).

Exercises

2.64. (a) Find a composite expansion of the difference equation

ωnyn+1 + αnyn + εyn−1 = 0 for n = 1, 2, . . . , N − 1,

where y0 = a and yN = b. Also, the ωn are nonzero.
(b) Suppose one uses the forward difference approximation given in (2.157) to

solve (2.156). Show that you get a difference equation like the one in part
(a), and write down the resulting composite expansion of the solution.

(c) At which end does the difference equation you found in part (b) have a
boundary layer? What condition should be placed on p(x) so this numer-
ical approximation can be expected to give an accurate approximation of
the solution?

2.65. Find a composite expansion of the difference equation

εyn+1 + αnyn + εβnyn−1 = 0 for n = 1, 2, . . . , N − 1,

where y0 = a and yN = b. It is suggested that you first solve the problem
in the case where αn and βn are constants. With this you should be able to
find the expansion of the solution of the full problem.

2.66. This problem investigates the forward and backward stability of certain
difference equations. In what follows, the coefficients αn, βn, and ωn are
assumed to be nonzero and bounded.
(a) Consider the initial value problem

εyn+1 + αnyn + βnyn−1 = 0 for n = 1, 2, . . . ,

where y0 = a and y1 = b. Explain why the solution of this problem be-
comes unbounded as n increases. You can do this, if you wish, by making
specific choices for the coefficients αn and βn.

(b) Consider the initial value problem

ωnyn+1 + αnyn + εyn−1 = 0 for n = 1, 2, . . . ,
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where y0 = a and y1 = b. Explain why the solution of this problem is
bounded as n increases. You can do this, if you wish, by making specific
choices for the coefficients ωn and αn.

(c) Now suppose the problems in parts (a) and (b) are to be solved for
n = 0,−1,−2,−3, . . .. Explain why the solution of the problem in (a) is
bounded as n → −∞, but the solution of the problem from (b) is un-
bounded as n → −∞. These observations give rise to the statement that
the equation in (a) is backwardly stable, while the equation in (b) is for-
wardly stable. These properties are reminiscent of what is found for the
heat equation.

2.67. This problem examines the use of centered-difference approximations
to solve the singularly perturbed boundary value problem in (2.156).
(a) Find a first-term composite expansion of the solution of the difference

equation

(α+ ε)yn+1 + 2(β − ε)yn − (α − ε)yn−1 = 0 for n = 1, 2, . . . , N − 1,

where y0 = a, yN = b, and α �= 0. Are there any boundary layers for this
problem?

(b) Suppose one uses the centered-difference approximation of the first deriva-
tive to solve (2.156). Letting p(x) and q(x) be constants, show that you get
a difference equation like the one in part (a), and write down the result-
ing composite expansion of the solution. Which terms in the differential
equation do not contribute to the composite expansion?

(c) The solution of (2.156) has a boundary layer at x = 0 if p(x) > 0 for
0 ≤ x ≤ 1 and one at x = 1 if p(x) < 0 for 0 ≤ x ≤ 1. Comment on this
and the results from parts (a) and (b).
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