Chapter 2
Heat Transfer Through a Porous Medium

2.1 Energy Equation: Simple Case

In this chapter we focus on the equation that expresses the first law of thermodynamics
in a porous medium. We start with a simple situation in which the medium is isotropic
and where radiative effects, viscous dissipation, and the work done by pressure
changes are negligible. Very shortly we shall assume that there is local thermal
equilibrium so that Ty = Ty = T, where T and T; are the temperatures of the
solid and fluid phases, respectively. Here we also assume that heat conduction in
the solid and fluid phases takes place in parallel so that there is no net heat transfer
from one phase to the other. More complex situations will be considered in Sect. 6.5.
The fundamentals of heat transfer in porous media are also presented in Bejan et al.
(2004) and Bejan (2004a).

Taking averages over an elemental volume of the medium we have, for the solid
phase,

8Tq "
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and, for the fluid phase,
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Here the subscripts s and f refer to the solid and fluid phases, respectively, c is the
specific heat of the solid, cp is the specific heat at constant pressure of the fluid, & is
the thermal conductivity, and ¢”’(W/m?) is the heat production per unit volume.
In writing Egs. (2.1) and (2.2) we have assumed that the surface porosity is equal
to the porosity. This is pertinent to the conduction terms. For example, —k;V T is
the conductive heat flux through the solid, and thus V-(k;V T) is the net rate of heat
conduction into a unit volume of the solid. In Eq. (2.1) this appears multiplied by
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the factor (1 — (), which is the ratio of the cross-sectional area occupied by solid to
the total cross-sectional area of the medium. The other two terms in Eq. (2.1) also
contain the factor (1 — () because this is the ratio of volume occupied by solid to
the total volume of the element. In Eq. (2.2) there also appears a convective term,
due to the seepage velocity. We recognize that V-V T; is the rate of change of
temperature in the elemental volume due to the convection of fluid into it, so this,
multiplied by (pcp)s, must be the rate of change of thermal energy, per unit volume
of fluid, due to the convection. Note further that in writing Eq. (2.2) use has been
made of the Dupuit-Forchheimer relationship v = V.
Setting Ty = Tf = T and adding Eqgs. (2.1) and (2.2) we have

(po), %—l—(pc)fv-VT:V-(kaT)—f—qig, (2.3)
where
(00 = (1 = 9) (0), + 2 (per) .4
km = (1 — @) ks + @k, (2.5)
G =(1=9) 4 +paqf (2.6)

are, respectively, the overall heat capacity per unit volume, overall thermal con-
ductivity, and overall heat production per unit volume of the medium.

2.2 Energy Equation: Extensions to More Complex Situations

2.2.1 Overall Thermal Conductivity of a Porous Medium

In general, the overall thermal conductivity of a porous medium depends in a
complex fashion on the geometry of the medium. As we have just seen, if the
heat conduction in the solid and fluid phases occurs in parallel, then the overall
conductivity k, is the weighted arithmetic mean of the conductivities &, and kg

ka = (1 — @) ks + k. 2.7

On the other hand, if the structure and orientation of the porous medium is such
that the heat conduction takes place in series, with all of the heat flux passing
through both solid and fluid, then the overall conductivity ky is the weighted
harmonic mean of k¢ and k¢
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(2.8)



2.2 Energy Equation: Extensions to More Complex Situations 33

In general, k4 and ky will provide upper and lower bounds, respectively, on the
actual overall conductivity k,,. We always have ky < ka, with equality if and only
if ks = k¢. For practical purposes, a rough and ready estimate for &, is provided by
kg, the weighted geometric mean of kg and k¢, defined by

ke = k!¢ k. (2.9)

This provides a good estimate so long as ks and k¢ are not too different from each
other (Nield 1991b). More complicated correlation formulas for the conductivity of
packed beds have been proposed. Experiments by Prasad et al. (1989b) showed that
these formulas gave reasonably good results provided that ks was not significantly
greater than k. The agreement when k¢ > k; was not good, the observed conduc-
tivity being greater than that predicted. This discrepancy may be due to porosity
variation near the walls. Since k,, depends on ¢ there is an effect analogous to the
hydrodynamic effect already noted in Sect. 1.7. Some of the discrepancy may be
due to the difficulty of measuring a truly stagnant thermal conductivity in this case
(Nield 1991b).

In the case when the fluid is a rarefied gas and the Knudsen number has a large
value, temperature slip occurs in the fluid at the pore boundaries. In these
circumstances one could expect that the fluid conductivity would tend to zero as
the Knudsen number increases. Then in the case of external heating the heat would
be conducted almost entirely through the solid matrix. In the case of just internal
heating in the fluid, the situation is reversed as the fluid phase becomes thermally
isolated from the solid phase.

Further models for stagnant thermal conductivity have been put forward by Hsu
et al. (1994, 1995), Cheng et al. (1999), and Cheng and Hsu (1998, 1999). In
particular, Cheng et al. (1999), and also Hsu (2000), contain comprehensive reviews
of the subject. Volume averaging was used by Buonanno and Carotenuto (1997) to
calculate the effective conductivity taking into account particle-to-particle contact.
Experimental studies have been made by Imadojemu and Porter (1995) and Tavman
(1996). The former concluded that the thermal diffusivity and conductivity of the
fluid played the major role in determining the effective conductivity of the medium.
Hsu (1999) presented a closure model for transient heat conduction, while Hsiao and
Advani (1999) included the effect of heat dispersion. Hu et al. (2001) discussed
unconsolidated porous media, Paek et al. (2000) dealt with aluminum foam
materials, and Fu et al. (1998) studied cellular ceramics. Boomsma and Poulikakos
studied the effective thermal conductivity of a three-dimensionally structured fluid-
saturated metal foam. Carson et al. (2005) obtained thermal conductivity bounds for
isotropic porous materials.

A unified closure model for convective heat and mass transfer has been
presented by Hsu (2005). He notes that r.e.v. averaging leads to the introduction
of new unknowns (dispersion, interfacial tortuosity, and interfacial transfer) whose
determination constitutes the closure problem. More experiments are needed to
determine some of the coefficients that are involved. His closure relation for the
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interfacial force contains all the components due to drag, lift, and transient inertia to
the first-order approximation. He concludes that the macroscopic energy equations
are expected to be valid for all values of the time scale and Reynolds number, for
the case of steady flows. Further investigations are needed for unsteady flows.

So far we have been discussing the case of an isotropic medium, for which the
conductivity is a scalar. For an anisotropic medium &, will be a second-order
tensor. Lee and Yang (1998) modeled a heterogeneous anisotropic porous medium.

A fundamental issue has been raised by Merrikh et al. (2002, 2005a, b) and
Merrikh and Lage (2005). This is the question of how the internal regularity of a
solid/fluid physical domain affects global flow and heat transfer. These authors
have considered a situation (a regular distribution of rectangular solid obstacles in a
rectangular box) that is sufficiently simple for a comparison to be made between the
results of numerical modeling involving a treatment of the fluid and solid phases
considered separately (“continuum model”) and a standard r.e.v.-averaged porous
medium (“porous continuum model”). The results for the two models can be
substantially different. In other words, the internal regularity can have an important
effect. The authors considered situations where the obstacles were separated from
the boundary walls, and thus some of the difference is due to a channeling effect.
Further contributions have been made by Braga and de Lemos (2005a, b).

The effective thermal conductivity of rough spherical packed beds was studied
by Bahrami et al. (2006). Two effective conductivity models for porous media
composed of hollow spherical agglomerates were proposed by Yu et al. (2006a).
A collocated parameter model was employed by Reddy and Karhikeyan (2009) to
estimate the effective thermal conductivity of two-phase materials, a subject also
studied by Samantray et al. (2006).

Works on the effective thermal conductivity of saturated porous media have
been surveyed by Aichlmayr and Kulacki (2006).

The analogy between dual-phase-lagging and porous-medium conduction was
discussed by Wang et al. (2008d). The analogy permits existence, uniqueness, and
structural stability results established for the former to be applied to the latter.

A comprehensive review of various models for the effective conductivity was
made by Singh (2011), who pointed out that this quantity was dependent not only on
the conductivities and volume fractions of the constituents, the morphology of the
constituent particles, and the structure of the material but also on interphase
interactions. Qu et al. (2012a) introduced an octet-truss lattice unit cell model.

2.2.2 Effects of Pressure Changes and Viscous Dissipation

If the work done by pressure changes is not negligible (i.e., the condition BT(gB/cpr)
L < 1 is not met), then a term —BT(OP/0t + v-V P) needs to be added to the left-
hand side of Eq. (2.3). Here J is the coefficient of volumetric thermal expansion,
defined by
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Viscous dissipation is negligible in natural convection if (gB/cpr)L < 1, which
is usually the case. If it is not negligible, another term must be added to the right-
hand side of Eq. (2.3), as noted first by Ene and Sanchez-Palencia (1982). If Darcy’s
law holds, that term is (u/K)v-v in the case of an isotropic medium, and pv-K~"-v if
the medium is anisotropic. To see this, note that the average of the rate of doing
work by the pressure, on a unit volume of an r.e.v., is given by the negative of div
(PpV) = div(Pv) = v.grad P, since div v = 0. The Forchheimer drag term, dotted
with the velocity vector, contributes to the dissipation, despite the fact that the
viscosity does not enter explicitly. This apparent paradox was resolved by Nield
(2000). The contribution of the Brinkman drag term is currently a controversial
topic. Nield (2004b) proposed that the Brinkman term be treated in the same way as
the Darcy and Forchheimer terms, so that the total viscous dissipation remains
equal to the power of the total drag force. Thus the viscous dissipation ¢ would then
be modeled by

_k cp - 2
gaf?vv—{—ﬁ\vh,v-v—uv'v -V. (2.11)

Al-Hadhrami et al. (2003) prefer a form that remains positive and reduces to that
for a fluid clear of solid material in the case where the Darcy number tends to
infinity. Accordingly, they would add the usual clear fluid term to the Darcy and
Forchheimer terms. Nield (2004b) suggested that the Brinkman equation may break
down in this limit. In most practical situations the Brinkman term will be small
compared with the Darcy term, and so the form of the Brinkman term is then not
important. Additional discussion of viscous dissipation in porous media and the
validity of the Brinkman equation can be found in Salama (2011a), who included an
additional term involving the gradient of the porosity. Salama et al. (2012) com-
pared the effects of various terms on boundary layer flow on a vertical wall.

Nield (2000) noted that scale analysis, involving the comparison of the magni-
tude of the viscous dissipation term to the thermal diffusion term, shows that
viscous dissipation is negligible if N < 1, where N = pU?L*/Kk, AT = Br/Da,
where the Brinkman number is defined by Br = pU*/k,AT = EcPr, where the
Eckert number Ec is defined by Ec = U?/cpAT. For most situations the Darcy
number K/L? is small, so viscous dissipation is important at even modest values
of the Brinkman number. For forced convection the choice of the characteristic
velocity is obvious. For natural convection, scale analysis leads to the estimate
U ~ (kn/pcpL)Ra'? and the condition that viscous dissipation is negligible
becomes Ge = 1, where Ge is the Gebhart number defined by Ge = gBL/cp. The
above comments on forced convection are made on the assumption that the Péclet
number Pe = pcp UL/k,, is not large. If it is large, then the proper comparison is
one between the magnitudes of the viscous dissipation term and the convective
transport term. This ratio is of order Ec/DaRe, where the Reynolds number
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Re = pUL/p. Further aspects of the effects of viscous dissipation on the flow in
porous media are discussed in the survey by Magyari et al. (2005b).

The question of how the viscous dissipation relates to the pressure work and
other non-Boussinesq effects has been the subject of considerable discussion by
Costa (2009, 2010), Nield (2007b, 2009a), Barletta (2008), and Nield and Barletta
(2010a). Costa argued that the first law of thermodynamics required that the
contributions of viscous dissipation and pressure work had to be in balance. Nield
and Barletta argued that Costa had misapplied the first law to an unsteady problem
which he treated as a steady-state one, and that there are physical situations where
the viscous dissipation is significant and the pressure work is not significant.

2.2.3 Absence of Local Thermal Equilibrium

Usually it is a good approximation to assume that the solid and fluid phases are in
thermal equilibrium but there are situations, such as highly transient problems and
some steady-state problems (Nield 1998a), where this is not so. Now this is
commonly referred to as local thermal nonequilibrium (LTNE), though Vadasz
(20054, b) prefers the expression lack of thermal equilibrium.

If one wishes to allow for heat transfer between solid and fluid (that is, one no
longer has local thermal equilibrium), then one can, following Combarnous (1972)
and Bories (1987), replace Egs. (2.1) and (2.2) by

oT,
(L—=)(pc) E =1 =)V (kVTs) + (1 - ) q;” +h (Tt —Ts), (2.12)
T "
ga(pcP)f—at + (pep)v - VTy = oV (keVTe) + pq;’ + h(Ts — Tt), (2.13)

where 4 is a heat transfer coefficient. See also Egs. (2.12a) and (2.13a) later in this
section. A critical aspect of using this approach lies in the determination of the
appropriate value of 4. Experimental values of 4 are found in an indirect manner;
see, e.g., Polyaev et al. (1996). According to correlations for a porous bed of
particle established in Dixon and Cresswell (1979),

h = agh", (2.14)
where the specific surface area (surface per unit volume) as is given by
ags = 6(1 — @) /dp, (2.15)

and
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where d,, is the particle diameter and f = 10 if the porous bed particles are of
spherical form. The fluid-to-solid Nusselt number Nug is, for Reynolds numbers
(based on d,) Re, > 100, well correlated by the expression presented in Handley
and Heggs (1968):

Nug, = (0.255/¢)Pr'/3Re, >3, (2.17)

while for low values of Re,, the estimates of Nug, vary between 0.1 and 12.4, these
being based on Miyauchi et al. (1976) and Wakao et al. (1976, 1979). As an
alternative to Eq. (2.17), Wakao and Kaguei (1982) proposed the correlation

Nug, = 2.0 + 1.1Pr'PRe, " (¢d, /)™ (2.17a)

Here d is the pore-scale hydraulic diameter.

Other authors have used alternative expressions for #* and a¢; and some of these
were considered by Alazmi and Vafai (2000), who found that the various models
give closely similar results for forced convection channel flow when the porosity is
high or the pore Reynolds number is large or the particle diameters are small.
Theoretical and experimental results reported by Grangeot et al. (1994) indicate
that #* depends weakly on the Péclet number of the flow. This subject is discussed
further in Sects. 6.5 and 6.9.2. The topic in the context of turbulence has been
discussed by Saito and de Lemos (2005). An experimental study for a metallic
packed bed was reported by Carrillo (2005). The effect of different packings was
investigated experimentally by Yang et al. (2012b). They found that the formula in
Eq. (2.17a) over-predicted their results unless the coefficients 2.0 and 1.1 were
replaced by smaller values.

A discussion of further aspects of the two-medium approach to heat transfer in
porous media is given by Quintard et al. (1997) and Quintard and Whitaker (2000).
Nield (2002a) noted that Egs. (2.12) and (2.13) are based on the implicit assumption
that the thermal resistances of the fluid and solid phases are in series. For the case of
a layered medium in a parallel plate channel with fluid/solid interfaces parallel to
the x-direction, he suggested that the appropriate equations in the absence of
internal heating are

ar, 9 ( 01N 9 [ O
(=000, G = (=0 [ (0 5) + 55 (65| + 0= 70
(2.12a)
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or, 0 (0T L0 (O]
w(pcp); o + (pep)v- VT = [8){ (kf 8x> + By (kf 8}))} +h(T, = Ty),
(2.13a)

where k; = k. = kg with ky given by Eq. (2.8). Equations (2.12) and (2.13) have to
be solved subject to certain applied thermal boundary conditions. If a boundary is at
uniform temperature, then one has Ty = T on the boundary. If uniform heat flux is
imposed on the boundary, then there is some ambiguity about the distribution of
flux between the two phases. Nield and Kuznetsov (1999) argued that if the flux is
truly uniform, then it has to be uniform with respect to the two phases, and hence the
flux on the r.e.v. scale has to be distributed between the fluid and solid phases in the
ratio of the surface fractions; for a homogeneous medium that means in the ratio of
the volume fractions, that is in the ratio ¢: (1 —¢ ). This distribution allows the
conjugate problem considered by them to be treated in a consistent manner. The
consequences of other choices for the distribution were explored by Kim and Kim
(2001) and Alazmi and Vafai (2002). The Nield and Kuznetsov (1999) approach is
equivalent to Model 1D in Alazmi and Vafai (2002) and is not equivalent to either
approach used in Kim and Kim (2001).

The particular case of LTNE in a steady process is discussed by Nield (1998a).
Petit et al. (1999) have proposed an LTNE model for two-phase flow. A numerical
study of the interfacial convective heat transfer coefficient was reported by
Kuwahara et al. (2001). Their results were modified by Pallares and Grau (2010)
to produce agreement between the theoretical results for the Nusselt number and
experimental data. An application of the method of volume averaging to the
analysis of heat and mass transfer in tubes was made by Golfier et al. (2002). An
alternative two-equation model for conduction only was presented by Fourie and
Du Plessis (2003a, b). Vadasz (2005a) demonstrated that, for heat conduction
problems, local thermal equilibrium applies for any conditions that are a combina-
tion of constant temperature and insulation. He also questioned whether a linear
relationship between the average temperature difference between the phases and the
heat transferred over the fluid—solid surface was appropriate in connection with
conditions of LTNE. The exclusion of oscillations in the context of conduction with
LTNE and an associated paradox were discussed by Vadasz (2005b, 2006b, 2007).
(The apparent paradox arises in trying to trying to reconcile the results from two
alternative mathematical approaches to modeling the problem.) This work is
surveyed by Vadasz (2008b), who also shows the relevance of LTNE to the study
of nanofluids and bi-composite media, as well as to the experimental measurement
of the effective thermal conductivity of a porous medium via the transient hot wire
method.

Rees and Pop (2005) surveyed studies of LTNE with special attention to natural
and forced convection boundary layers and on internal natural convection. Their
survey complements that by Kuznetsov (1998e) for internal forced convection. The
effect of LTNE on conduction in channels with a uniform heat source was
investigated by Nouri-Borujerdi et al. (2007b). Several causes of LTNE were
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discussed by Virtol et al. (2009). Some microscopic modeling of conduction with
LTNE was carried out by Rees (2010).

The topic of LTNE was reviewed by Haji-Sheikh and Minkowycz (2008). They
cite references to a number of engineering applications, such as nuclear devices,
fuel cells, electronic systems, and micro devices, in the context of rapid transport of
heat. They include a discussion of the development of the thermal field with a
moving fluid. They summarize experimental results obtained by Nnanna et al.
(2004, 2005) which conform to the observation by Vadasz (2005b, 2006b, 2007)
that the physical conditions for thermal waves to materialize are not obtainable in a
porous slab subject to a combination of constant heat flux and temperature bound-
ary conditions.

When one examines LTNE at the boundary of a porous medium, or at an
interface with a fluid clear of solid material, the solution of the differential equation
system that arises is undetermined until further information is available to deter-
mine how the total heat flux is split between the two phases. Two second order
differential equations are involved and so at an interface one needs four boundary
conditions, two involving the temperature and two involving the heat flux.
The conservation of energy imposes just one heat flux condition, and hence another
condition must be sought. For this Yang and Vafai (2010, 2011a, b, ¢) and Vafai and
Yang (2012) introduced five models for what they called “heat flux bifurcation,”
but they did not clearly distinguish between them. Nield (2012) argued that this
approach was not satisfactory. Rather, one should distinguish between the heat
transfer in the bulk of the porous medium (which depends on the interphase heat
transfer coefficient) and the heat transfer across the interface (which is affected by
what happens on the other side of the interface, i.e., outside the porous medium).
For example, if the porous medium is bounded by a solid with high thermal
conductivity (effectively a constant-temperature boundary), then one has LTNE
at the boundary and one can use the formulation employed by Nield and Kuznetsov
(2012c). Much the same is true if the neighboring region is a fluid of high
conductivity. If the region is a solid of very low conductivity (an insulating
boundary) then there is essentially no boundary flux to be divided between the
two phases. More generally, if the solid boundary is controlled by an imposed
constant flux, then the natural assumption is that just across the interface in the
porous medium the flux is also constant. Thus the splitting occurs so that the flux in
the fluid phase is the same as in the solid phase. This means that the interfacial heat
transport is divided between the fluid and solid phases in the ratio of ¢ to (1_¢).
This was the model employed by Nield and Kuznetsov (1999).

2.2.4 Thermal Dispersion

A further complication arises in forced convection or in vigorous natural convec-
tion in a porous medium. There may be significant thermal dispersion, i.e., heat
transfer due to hydrodynamic mixing of the interstitial fluid at the pore scale. In
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addition to the molecular diffusion of heat, there is mixing due to the nature of the
porous medium. Some mixing is due to the obstructions; the fact that the flow
channels are tortuous means that fluid elements starting a given distance from each
other and proceeding at the same velocity will not remain at the same distance
apart. Further mixing can arise from the fact that all pores in a porous medium may
not be accessible to a fluid element after it has entered a particular flow path.

Mixing can also be caused by recirculation caused by local regions of reduced
pressure arising from flow restrictions. Within a flow channel mixing occurs
because fluid particles at different distances from a wall move relative to one
another. Mixing also results from the eddies that form if the flow becomes turbu-
lent. Diffusion in and out of dead-end pores modifies the nature of molecular
diffusion. For details, see Greenkorn (1983, p. 190).

Dispersion is thus a complex phenomenon. Rubin (1974) took dispersion into
account by generalizing Eq. (2.3) so that the term V-(o,,, VT'), where o, = kpn/(0C)m
is the thermal diffusivity of the medium, is replaced by V-E-VT where E is a
second-order tensor (the dispersion tensor). In an isotropic medium the dispersion
tensor is axisymmetric and its components can be expressed in the form

Eij =F 5ij —I—FzViVj, (2.18)

where V; (= v;/p) is the i component of the barycentric (intrinsic) velocity vector,
and F; and F, are functions of the pore size and the Péclet and Reynolds numbers of
the flow.

At any point in the flow field it is possible to express E with reference to a
coordinate system in which the first axis coincides with the flow direction; when
this is done we have

E]] = 771U+ocm,
Ex = Ez3 = U + o, (2.19)
Eij:() for i %J,

where E;; is the longitudinal dispersion coefficient, E,, and E;3 are the lateral
dispersion coefficients, and U is the absolute magnitude of the velocity vector.

If the Péclet number of the flow is small, then 1; and 1, are small and the
molecular thermal diffusivity o, is dominant. If the Péclet number of the flow is
large, then 1 and n, are large and almost constant. It is found experimentally that
N2 = N1/30, approximately.

For an account of the treatment of dispersion in anisotropic media in the context
of convection, the reader is referred to Tyvand (1977). In the particular case when
heat conduction is in parallel, Catton et al. (1988) conclude on the basis of their
statistical analysis that the effective thermal conductivity £;,, for mass and thermal

zz’°

transport in the z-direction through a bed of uniform spherical beads, is given by
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k,=0—=p)k+ (2—B> Pe ke (2.20)
T

In this expression B is a constant introduced by Ergun(empirically, B = 1.75)
and Pe is the Péclet number defined by Pe = vd, /o (1 — ), where d, is the
spherical particle diameter and oy is the thermal diffusivity of the fluid, defined
by oy = ke/(pcp)s.

Thermal dispersion plays a particularly important role in forced convection in
packed columns. The steep radial temperature gradients that exist near the heated or
cooled wall were formerly attributed to channeling effects, but more recent work
has indicated that thermal dispersion is also involved. For a nearly parallel flow at
high Reynolds numbers, the thermal dispersivity tensor reduces to a scalar, the
transverse thermal dispersivity. Cheng and his colleagues [see Hsu and Cheng
(1990) and the references given in Sect. 4.9] assumed that the local transverse
thermal dispersion conductivity &% is given by

k/
T — DrPegi—. 2.21)
kf Um

In this equation Pe, is a Péclet number defined by Pe; = uy, dp/oL, in terms of the
mean seepage velocity u.,, the particle diameter d,, and fluid thermal diffusivity oy,
while Dy is a constant and 4 is a dimensionless dispersive length normalized with
respect to dp. In recent work the dispersive length is modeled by a wall function of
the Van Driest type:

A=1—exp(—y/wdp). (2.22)

The empirical constants ® and Dy depend on the coefficients N and C in the wall
porosity variation formula [Eq. (1.28)]. The best match with experiments is given
by Dy = 0.12 and w = 1, if N = 5 and C = 1.4. The theoretical results based on
this ad hoc approach agree with a number of experimental results.

A theoretical backing for this approach has been given by Hsu and Cheng
(1990). This is based on volume averaging of the velocity and temperature
deviations in the pores in a dilute array of spheres, together with a scale analysis.
The thermal diffusivity tensor D is introduced as a multiplying constant which
accounts for the interaction of spheres. For the case of high pore Reynolds number
flow, Hsu and Cheng (1990) found the thermal dispersion conductivity tensor k' to
be given by

l _
k' =Dk — Pe, (2.23)
¢
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The linear variation with Pe, is consistent with most of the existing experimental
correlations for high pore Reynolds number flow. At low pore Reynolds number
flow, they found

1 _
K — D*kf?"" Pe? (2.24)

where D" is another constant tensor. The quadratic dependence on Pe, has not yet
been confirmed by experiment.

Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) have studied
numerically thermal diffusion for a two-dimensional periodic model. A limitation of
their correlation formulas as the porosity tends to unity was discussed by Yu (2004)
and Nakayama and Kuwahara (2004). A similar model was examined by Souto
andMoyne (1997a, b). The frequency response model was employed by Muralidhar
and Misra (1997) in an experimental study of dispersion coefficients. The role of
thermal dispersion in the thermally developing region of a channel with a sintered
porous metal was studied by Hsieh and Lu (2000). Kuwahara and Nakayama (2005)
have extended their earlier numerical studies to the case of three-dimensional flow in
highly anisotropic porous media. Niu et al. (2006) reported direct measurements of
eddy transport and thermal dispersion in a high-porosity matrix. An equation for
thermal dispersion-flux transport was introduced by Nakayama et al. (2006).

For further information about dispersion in porous media, the reader is referred
to the review by Liu and Masliyah (2005), which deals with the dispersion of mass,
heat, and momentum. Rudraiah and Ng (2007) have reviewed dispersion in porous
media with and without reaction.

2.2.5 Cellular Porous Media

Cellular porous media have the property that to a good approximation the effect of
radiation can be modeled using a temperature-dependent thermal conductivity
(Viskanta 2009). For a few situations an analytical solution can be obtained. This
was done by Nield and Kuznetsov (2010a, c) and Nield and Kuznetsov (2010b) for
paradigmatic forced convection, external natural convection, and internal natural
convection problems.

2.3 Oberbeck-Boussinesq Approximation

In studies of natural convection we add the gravitational term p; g to the right-hand
side of the Darcy equation (1.4) or its appropriate extension. [Note that in Eq. (1.4)
the term V P denotes an intrinsic quantity, so we add the gravitational force per unit
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volume of the fluid]. For thermal convection to occur, the density of the fluid must
be a function of the temperature, and hence we need an equation of state to
complement the equations of mass, momentum, and energy. The simplest equation
of state is

pie = poll = B(T = To)], (2.25)

where pg is the fluid density at some reference temperature T, and f§ is the
coefficient of thermal expansion.

In order to simplify the subsequent analysis, one employs the Boussinesq
approximation whenever it is valid. Strictly speaking, one should call this the
Oberbeck-Boussinesq approximation, since Oberbeck (1879) has priority over
Boussinesq (1903), as documented by Joseph (1976). The approximation consists
of setting constant all the properties of the medium, except that the vital buoyancy
term involving f is retained in the momentum equation. As a consequence the
equation of continuity reduces to V-v = 0, just as for an incompressible fluid. The
Boussinesq approximation is valid provided that density changes Ap remain small
in comparison with po throughout the flow region and provided that temperature
variations are insufficient to cause the various properties of the medium (fluid and
solid) to vary significantly from their mean values. Johannsen (2003) discussed the
validity of the Boussinesq approximation in the case of a bench mark problem
known as the Elder problem.

2.4 Thermal Boundary Conditions

Once the thermal conductivity in the porous medium has been determined, the
application of thermal boundary conditions is usually straightforward. At the
interface between two porous media, or between a porous medium and a clear
fluid, we can impose continuity of the temperature (on the assumption that we have
local thermodynamic equilibrium) and continuity of the normal component of the
heat flux. We note that two conditions are required because the equation of energy
(2.3) contains second-order derivatives.

The heat flux vector is the sum of two terms: a convective term (pcp)¢I’ v and a
conductive term —k V' T. The normal component of the former is continuous because
both T and the normal component of p; v are continuous. It follows that the normal
component of £V T also must be continuous. At an impermeable boundary the usual
thermal condition appropriate to the external environment can be applied, e.g., one
can prescribe either the temperature or the heat flux, or one can prescribe a heat
transfer coefficient.

Sahraoui and Kaviany (1993, 1994) have discussed the errors arising from the
use of approximations of the effective conductivity near a boundary, due to
nonuniformity of the distributions of the solid and fluid phases there. They have
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introduced a slip coefficient into the thermal boundary condition to adjust for this,
for the case of two-dimensional media.

Ochoa-Tapia and Whitaker (1997, 1998) have developed flux jump conditions
applicable at the boundary of a porous medium and a clear fluid. These are based on
a nonlocal form of the volume-averaged thermal energy equations for fluid and
solid. The conditions involve excess surface thermal energy and an excess nonequi-
librium thermal source. Min and Kim (2005) have used the special two-dimensional
model of Richardson (1971) in order to obtain estimates of the coefficients that
occur in the thermal and hydrodynamic jump conditions. The jump conditions were
further analyzed by d’Hueppe et al. (2011). Valdes-Parada et al. (2009b) included
the effects of adsorption and a chemical reaction. Betchen et al. (2006) considered a
nonequilibrium model. d’Hueppe et al. (2012) discussed the coupling of a two-
temperature model with a one-temperature model at a fluid-porous interface.

An analogous mass transfer jump condition was formulated by Valencia-Lopez
et al. (2003). The thermal interaction at the interface between a porous medium and an
impermeable wall was studied by Kim and Kim (2001). The role of particle—particle
contact on effective thermal properties in the interfacial region was examined by
Aguilar-Madera et al. (2011Db).

2.5 Hele-Shaw Analogy

The space between two plane walls a small distance apart constitutes a Hele-Shaw
cell. If the gap is of thickness / and the walls each of thickness d, then the governing
equations for gap-averaged velocity components (parallel to the plane walls) are
identical with those for two-dimensional flow in a porous medium whose perme-
ability K is equal to /°/[12(h + 2d)], for the case where the heat flow is parallel to
the plane walls (Hartline and Lister 1977). The Hele-Shaw cell thus provides a
means of modeling thermal convection in a porous medium, as in the experiments
by Elder (1967a).

For the analogy to hold, the three quantities 4/9, UR?/VS, and th/ocfS must all be
small compared with unity. Here U is the velocity scale and & the smallest length
scale of the motion being modeled, while v and o are the kinematic viscosity and
thermal diffusivity of the fluid. These conditions ensure that there is negligible
advection of vorticity and rapid diffusion of vorticity and heat across the flow.

The experimental temperature profiles found by Vorontsov et al. (1991) were in
good agreement with the theory. Schopf (1992) extended the comparison to the case
of a binary mixture. Specific studies of convection in a Hele-Shaw cell were
reported by Cooper et al. (1997), Goldstein et al. (1998), and Gorin et al. (1998).

The Hele-Shaw cell experiments are especially useful for revealing streamline
patterns when the walls are made of transparent material. The analogy has obvious
limitations. For example, it cannot deal with the effects of lateral dispersion or
instabilities associated with three-dimensional disturbances. The discrepancies
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associated with these effects have been examined by Kvernvold (1979) and
Kvernvold and Tyvand (1981).

Hsu (2005) has compared the governing equations for the averaged flows and
heat transfer in Hele-Shaw cells with those of porous media and he observed
the following differences: (a) the averaged Hele-Shaw cell is two-dimensional,
(b) the interfacial force in the averaged Hele-Shaw flows is contributed entirely
from the shear force, and (c) there exists no thermal tortuosity for the averaged
Hele-Shaw flows. Thus the Hele-Shaw analogy is good for viscous dominated two-
dimensional flow with negligible thermal tortuosity. However, these simplifications
help in the verification of closure modeling. Furthermore, a three-dimensional
numerical simulation of the convection heat transfer in Hele-Shaw cells may reveal
some detailed physics of heat transfer in porous media that are impossible to tackle
due to the randomness and the complexity of the microscopic solid geometry. Hsu
(2005) illustrates this with results for the case of oscillating flows past a heated
circular cylinder. Babuskin and Demin (2006) reported an experimental and theo-
retical investigation of transient convective regimes. Backhaus et al. (2011)
investigated the convective instability and mass transport of diffusion layers.
Abdelkareem et al. (2009) performed an experimental study on oscillatory convec-
tion in a Hele-Shaw cell due to an unstably heated side.

2.6 Bioheat Transfer and Other Approaches

Convective heat transfer in biological tissues involves a special situation. In some
cases applications of porous media theory are appropriate (see for example, the
surveys by Khanafer et al. (2008a) and Khanafer and Vafai (2009).) Some aspects
relevant to biological tissues were discussed by Khanafer et al. (2003), Khaled and
Vafai (2003), Yao and Gu (2007), Wood et al. (2007), Mahjoob and Vafai (2009,
2010, 2011), and Wang and Fan (2011) A feature of bioheat transfer is that in many
situations there is counterflow. For example, blood flows in adjacent arteries and
veins in opposite directions. Nield and Kuznetsov (2008a, 2009a, 2010b) and
Kuznetsov and Nield (2009a, b) have modeled forced convection in a porous
medium with counterflow. A general set of bioheat transfer equations based on
volume averaging theory has been obtained by Nakayama et al. (2011), who applied
the bioheat equation to cryoablation therapy for the treatment of malignant cancers.

Direct numerical simulation of heat and fluid flow, using the full Navier—Stokes
equations at the pore scale, for regularly spaced square or circular rods or spheres has
been conducted by Kuwahara et al. (1994). A direct numerical simulation was
applied by He and Georgiadis (1992) to the study of the effect of randomness on
one-dimensional heat conduction. Direct numerical simulation has also been
employed by Rahimian and Poushaghagy (2002), Yu et al. (2006b), Pourshaghaghy
etal. (2007), Narasimhan and Raju (2007), Gamrat et al. (2008), and Ma and Zabaras
(2008), Lattice gas cellular automata simulations were performed by McCarthy
(1994) for flow through arrays of cylinders, and by Yoshino and Inamura (2003)
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for flow in a three-dimensional structure. Buikis and Ulanova (1996) have modeled
nonisothermal gas flow through a heterogeneous medium using a two-media
approach. A diffuse approximation has been applied by Prax et al. (1996) to natural
convection. Martins-Costa et al. (1992, 1994), Martins-Costa et al. (1994), and
Martins-Costa (1996) have applied the continuous theory of mixtures to the
modeling and simulation of heat transfer in various contexts. Modeling of convec-
tion in reservoirs having fractal geometry has been conducted by Fomin et al. (2002).
Spaid and Phelan (1997) applied lattice Boltzmann methods to model microscale
flow in fibrous porous media.

A general discussion of the dynamic modeling of convective heat transfer in
porous media was provided by Hsu (2005). Further simulation studies with a lattice
Boltzmann model have been reported by Guo and Zhao (2005a, b) (with the
viscosity independent or dependent on the temperature), Zhou et al. (2010b)
(a problem involving double diffusion), Seta et al. (2006), Rong et al. (2010a),
Shokouhmand et al. (2009), Xu et al. (2005, 2008), Wang et al. (2007a), Yan et al.
(2006), Zhao et al. (2010a, b), Roussellet et al. (2011), and Vishnampet
Ramanathan et al. (2011). Visser et al. (2008a, b) have introduced an artificial
compressibility method for buoyancy-driven flow.

Petrasch et al. (2008) described a tomography-based determination of the inter-
facial heat transfer coefficient in reticulate porous dynamics.

Radiative heat transfer is beyond the scope of this book, but we mention that a
review of this subject was made by Howell (2000) and a combined radiation and
convection problem was studied by Talukdar et al. (2004).
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