
Chapter 2

Heat Transfer Through a Porous Medium

2.1 Energy Equation: Simple Case

In this chapter we focus on the equation that expresses the first law of thermodynamics

in a porousmedium.We start with a simple situation in which the medium is isotropic

and where radiative effects, viscous dissipation, and the work done by pressure

changes are negligible. Very shortly we shall assume that there is local thermal

equilibrium so that Ts ¼ Tf ¼ T, where Ts and Tf are the temperatures of the

solid and fluid phases, respectively. Here we also assume that heat conduction in

the solid and fluid phases takes place in parallel so that there is no net heat transfer

from one phase to the other. More complex situations will be considered in Sect. 6.5.

The fundamentals of heat transfer in porous media are also presented in Bejan et al.

(2004) and Bejan (2004a).

Taking averages over an elemental volume of the medium we have, for the solid

phase,

ð1� ’ÞðrcÞ s
@Ts
@t

¼ ð1� ’Þr � ðksrTsÞ þ ð1� ’Þq000s (2.1)

and, for the fluid phase,

’ ðr cPÞ f
@Tf
@t

þ ðr cPÞ f v � rTf ¼ ’r � ðkf r TfÞ þ ’ q000f : (2.2)

Here the subscripts s and f refer to the solid and fluid phases, respectively, c is the
specific heat of the solid, cP is the specific heat at constant pressure of the fluid, k is
the thermal conductivity, and q000(W/m3) is the heat production per unit volume.

In writing Eqs. (2.1) and (2.2) we have assumed that the surface porosity is equal

to the porosity. This is pertinent to the conduction terms. For example, �ks∇Ts is
the conductive heat flux through the solid, and thus∇·(ks∇Ts) is the net rate of heat
conduction into a unit volume of the solid. In Eq. (2.1) this appears multiplied by
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the factor (1 � ’), which is the ratio of the cross-sectional area occupied by solid to
the total cross-sectional area of the medium. The other two terms in Eq. (2.1) also

contain the factor (1 � ’) because this is the ratio of volume occupied by solid to

the total volume of the element. In Eq. (2.2) there also appears a convective term,

due to the seepage velocity. We recognize that V·∇Tf is the rate of change of

temperature in the elemental volume due to the convection of fluid into it, so this,

multiplied by (rcP)f, must be the rate of change of thermal energy, per unit volume

of fluid, due to the convection. Note further that in writing Eq. (2.2) use has been

made of the Dupuit-Forchheimer relationship v ¼ ’V.
Setting Ts ¼ Tf ¼ T and adding Eqs. (2.1) and (2.2) we have

ðr cÞm
@T

@ t
þ ðr cÞ f v � rT ¼ r � ðkm rTÞ þ q000m; (2.3)

where

ðr cÞm ¼ ð1� ’Þ ðr cÞ s þ ’ ðr cPÞ f ; (2.4)

km ¼ ð1� ’Þ ks þ ’ kf ; (2.5)

q000m ¼ ð1� ’Þ q000s þ ’ q000f (2.6)

are, respectively, the overall heat capacity per unit volume, overall thermal con-

ductivity, and overall heat production per unit volume of the medium.

2.2 Energy Equation: Extensions to More Complex Situations

2.2.1 Overall Thermal Conductivity of a Porous Medium

In general, the overall thermal conductivity of a porous medium depends in a

complex fashion on the geometry of the medium. As we have just seen, if the

heat conduction in the solid and fluid phases occurs in parallel, then the overall

conductivity kA is the weighted arithmetic mean of the conductivities ks and kf:

kA ¼ ð1� ’Þ ks þ ’ kf : (2.7)

On the other hand, if the structure and orientation of the porous medium is such

that the heat conduction takes place in series, with all of the heat flux passing

through both solid and fluid, then the overall conductivity kH is the weighted

harmonic mean of ks and kf:

1

kH
¼ 1� ’

ks
þ ’

kf
: (2.8)
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In general, kA and kH will provide upper and lower bounds, respectively, on the

actual overall conductivity km. We always have kH � kA, with equality if and only

if ks ¼ kf. For practical purposes, a rough and ready estimate for km is provided by

kG, the weighted geometric mean of ks and kf, defined by

kG ¼ k1�’
s k’f : (2.9)

This provides a good estimate so long as ks and kf are not too different from each

other (Nield 1991b). More complicated correlation formulas for the conductivity of

packed beds have been proposed. Experiments by Prasad et al. (1989b) showed that

these formulas gave reasonably good results provided that kf was not significantly
greater than ks. The agreement when kf � ks was not good, the observed conduc-

tivity being greater than that predicted. This discrepancy may be due to porosity

variation near the walls. Since km depends on ’ there is an effect analogous to the

hydrodynamic effect already noted in Sect. 1.7. Some of the discrepancy may be

due to the difficulty of measuring a truly stagnant thermal conductivity in this case

(Nield 1991b).

In the case when the fluid is a rarefied gas and the Knudsen number has a large

value, temperature slip occurs in the fluid at the pore boundaries. In these

circumstances one could expect that the fluid conductivity would tend to zero as

the Knudsen number increases. Then in the case of external heating the heat would

be conducted almost entirely through the solid matrix. In the case of just internal

heating in the fluid, the situation is reversed as the fluid phase becomes thermally

isolated from the solid phase.

Further models for stagnant thermal conductivity have been put forward by Hsu

et al. (1994, 1995), Cheng et al. (1999), and Cheng and Hsu (1998, 1999). In

particular, Cheng et al. (1999), and also Hsu (2000), contain comprehensive reviews

of the subject. Volume averaging was used by Buonanno and Carotenuto (1997) to

calculate the effective conductivity taking into account particle-to-particle contact.

Experimental studies have been made by Imadojemu and Porter (1995) and Tavman

(1996). The former concluded that the thermal diffusivity and conductivity of the

fluid played the major role in determining the effective conductivity of the medium.

Hsu (1999) presented a closure model for transient heat conduction, while Hsiao and

Advani (1999) included the effect of heat dispersion. Hu et al. (2001) discussed

unconsolidated porous media, Paek et al. (2000) dealt with aluminum foam

materials, and Fu et al. (1998) studied cellular ceramics. Boomsma and Poulikakos

studied the effective thermal conductivity of a three-dimensionally structured fluid-

saturated metal foam. Carson et al. (2005) obtained thermal conductivity bounds for

isotropic porous materials.

A unified closure model for convective heat and mass transfer has been

presented by Hsu (2005). He notes that r.e.v. averaging leads to the introduction

of new unknowns (dispersion, interfacial tortuosity, and interfacial transfer) whose

determination constitutes the closure problem. More experiments are needed to

determine some of the coefficients that are involved. His closure relation for the
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interfacial force contains all the components due to drag, lift, and transient inertia to

the first-order approximation. He concludes that the macroscopic energy equations

are expected to be valid for all values of the time scale and Reynolds number, for

the case of steady flows. Further investigations are needed for unsteady flows.

So far we have been discussing the case of an isotropic medium, for which the

conductivity is a scalar. For an anisotropic medium km will be a second-order

tensor. Lee and Yang (1998) modeled a heterogeneous anisotropic porous medium.

A fundamental issue has been raised by Merrikh et al. (2002, 2005a, b) and

Merrikh and Lage (2005). This is the question of how the internal regularity of a

solid/fluid physical domain affects global flow and heat transfer. These authors

have considered a situation (a regular distribution of rectangular solid obstacles in a

rectangular box) that is sufficiently simple for a comparison to be made between the

results of numerical modeling involving a treatment of the fluid and solid phases

considered separately (“continuum model”) and a standard r.e.v.-averaged porous

medium (“porous continuum model”). The results for the two models can be

substantially different. In other words, the internal regularity can have an important

effect. The authors considered situations where the obstacles were separated from

the boundary walls, and thus some of the difference is due to a channeling effect.

Further contributions have been made by Braga and de Lemos (2005a, b).

The effective thermal conductivity of rough spherical packed beds was studied

by Bahrami et al. (2006). Two effective conductivity models for porous media

composed of hollow spherical agglomerates were proposed by Yu et al. (2006a).

A collocated parameter model was employed by Reddy and Karhikeyan (2009) to

estimate the effective thermal conductivity of two-phase materials, a subject also

studied by Samantray et al. (2006).

Works on the effective thermal conductivity of saturated porous media have

been surveyed by Aichlmayr and Kulacki (2006).

The analogy between dual-phase-lagging and porous-medium conduction was

discussed by Wang et al. (2008d). The analogy permits existence, uniqueness, and

structural stability results established for the former to be applied to the latter.

A comprehensive review of various models for the effective conductivity was

made by Singh (2011), who pointed out that this quantity was dependent not only on

the conductivities and volume fractions of the constituents, the morphology of the

constituent particles, and the structure of the material but also on interphase

interactions. Qu et al. (2012a) introduced an octet-truss lattice unit cell model.

2.2.2 Effects of Pressure Changes and Viscous Dissipation

If the work done by pressure changes is not negligible (i.e., the condition bT(gb/cPf)
L � 1 is not met), then a term �bT(∂P/∂t + v·∇P) needs to be added to the left-

hand side of Eq. (2.3). Here b is the coefficient of volumetric thermal expansion,

defined by
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b ¼ � 1

r
@r
@T

� �
P

: (2.10)

Viscous dissipation is negligible in natural convection if (gb/cPf)L � 1, which

is usually the case. If it is not negligible, another term must be added to the right-

hand side of Eq. (2.3), as noted first by Ene and Sanchez-Palencia (1982). If Darcy’s

law holds, that term is (m/K)v·v in the case of an isotropic medium, and mv·K�1·v if

the medium is anisotropic. To see this, note that the average of the rate of doing

work by the pressure, on a unit volume of an r.e.v., is given by the negative of div

(P’V) ¼ div(Pv) ¼ v.grad P, since div v ¼ 0. The Forchheimer drag term, dotted

with the velocity vector, contributes to the dissipation, despite the fact that the

viscosity does not enter explicitly. This apparent paradox was resolved by Nield

(2000). The contribution of the Brinkman drag term is currently a controversial

topic. Nield (2004b) proposed that the Brinkman term be treated in the same way as

the Darcy and Forchheimer terms, so that the total viscous dissipation remains

equal to the power of the total drag force. Thus the viscous dissipation ’would then

be modeled by

’ ¼ m
K
v � vþ cP

K1=2
jvjPv � v� ~mv � r2 � v: (2.11)

Al-Hadhrami et al. (2003) prefer a form that remains positive and reduces to that

for a fluid clear of solid material in the case where the Darcy number tends to

infinity. Accordingly, they would add the usual clear fluid term to the Darcy and

Forchheimer terms. Nield (2004b) suggested that the Brinkman equation may break

down in this limit. In most practical situations the Brinkman term will be small

compared with the Darcy term, and so the form of the Brinkman term is then not

important. Additional discussion of viscous dissipation in porous media and the

validity of the Brinkman equation can be found in Salama (2011a), who included an

additional term involving the gradient of the porosity. Salama et al. (2012) com-

pared the effects of various terms on boundary layer flow on a vertical wall.

Nield (2000) noted that scale analysis, involving the comparison of the magni-

tude of the viscous dissipation term to the thermal diffusion term, shows that

viscous dissipation is negligible if N � 1, where N ¼ mU2L2/KkmDT ¼ Br/Da,

where the Brinkman number is defined by Br ¼ mU2/kmDT ¼ EcPr, where the

Eckert number Ec is defined by Ec ¼ U2/cPDT. For most situations the Darcy

number K/L2 is small, so viscous dissipation is important at even modest values

of the Brinkman number. For forced convection the choice of the characteristic

velocity is obvious. For natural convection, scale analysis leads to the estimate

U ~ (km/rcPL)Ra
1/2 and the condition that viscous dissipation is negligible

becomes Ge ¼ 1, where Ge is the Gebhart number defined by Ge ¼ gbL/cP. The
above comments on forced convection are made on the assumption that the Péclet

number Pe ¼ rcP UL/km is not large. If it is large, then the proper comparison is

one between the magnitudes of the viscous dissipation term and the convective

transport term. This ratio is of order Ec/DaRe, where the Reynolds number
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Re ¼ rUL/m. Further aspects of the effects of viscous dissipation on the flow in

porous media are discussed in the survey by Magyari et al. (2005b).

The question of how the viscous dissipation relates to the pressure work and

other non-Boussinesq effects has been the subject of considerable discussion by

Costa (2009, 2010), Nield (2007b, 2009a), Barletta (2008), and Nield and Barletta

(2010a). Costa argued that the first law of thermodynamics required that the

contributions of viscous dissipation and pressure work had to be in balance. Nield

and Barletta argued that Costa had misapplied the first law to an unsteady problem

which he treated as a steady-state one, and that there are physical situations where

the viscous dissipation is significant and the pressure work is not significant.

2.2.3 Absence of Local Thermal Equilibrium

Usually it is a good approximation to assume that the solid and fluid phases are in

thermal equilibrium but there are situations, such as highly transient problems and

some steady-state problems (Nield 1998a), where this is not so. Now this is

commonly referred to as local thermal nonequilibrium (LTNE), though Vadasz

(2005a, b) prefers the expression lack of thermal equilibrium.

If one wishes to allow for heat transfer between solid and fluid (that is, one no

longer has local thermal equilibrium), then one can, following Combarnous (1972)

and Bories (1987), replace Eqs. (2.1) and (2.2) by

ð1� ’Þ ðr cÞs
@Ts
@ t

¼ ð1� ’Þr � ðksrTsÞ þ ð1� ’Þ q000s þ h ðTf � TsÞ; (2.12)

’ðrcPÞf
@Tf
@t

þ ðrcPÞv � rTf ¼ ’r kfrTfð Þ þ ’q000f þ hðTs � TfÞ; (2.13)

where h is a heat transfer coefficient. See also Eqs. (2.12a) and (2.13a) later in this

section. A critical aspect of using this approach lies in the determination of the

appropriate value of h. Experimental values of h are found in an indirect manner;

see, e.g., Polyaev et al. (1996). According to correlations for a porous bed of

particle established in Dixon and Cresswell (1979),

h ¼ afsh
�; (2.14)

where the specific surface area (surface per unit volume) af s is given by

afs ¼ 6 ð1� ’Þ=dp; (2.15)

and
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1

h�
¼ dp

Nufskf
þ dp
b ks

(2.16)

where dp is the particle diameter and b ¼ 10 if the porous bed particles are of

spherical form. The fluid-to-solid Nusselt number Nufs is, for Reynolds numbers

(based on dp) Rep > 100, well correlated by the expression presented in Handley

and Heggs (1968):

Nufs ¼ ð0:255=’ÞPr1=3Rep2=3; (2.17)

while for low values of Rep the estimates of Nufs vary between 0.1 and 12.4, these

being based on Miyauchi et al. (1976) and Wakao et al. (1976, 1979). As an

alternative to Eq. (2.17), Wakao and Kaguei (1982) proposed the correlation

Nufs ¼ 2:0þ 1:1Pr1=3Rep
0:6ð’dp=dhÞ0:6 (2.17a)

Here d is the pore-scale hydraulic diameter.

Other authors have used alternative expressions for h* and afs and some of these

were considered by Alazmi and Vafai (2000), who found that the various models

give closely similar results for forced convection channel flow when the porosity is

high or the pore Reynolds number is large or the particle diameters are small.

Theoretical and experimental results reported by Grangeot et al. (1994) indicate

that h* depends weakly on the Péclet number of the flow. This subject is discussed

further in Sects. 6.5 and 6.9.2. The topic in the context of turbulence has been

discussed by Saito and de Lemos (2005). An experimental study for a metallic

packed bed was reported by Carrillo (2005). The effect of different packings was

investigated experimentally by Yang et al. (2012b). They found that the formula in

Eq. (2.17a) over-predicted their results unless the coefficients 2.0 and 1.1 were

replaced by smaller values.

A discussion of further aspects of the two-medium approach to heat transfer in

porous media is given by Quintard et al. (1997) and Quintard and Whitaker (2000).

Nield (2002a) noted that Eqs. (2.12) and (2.13) are based on the implicit assumption

that the thermal resistances of the fluid and solid phases are in series. For the case of

a layered medium in a parallel plate channel with fluid/solid interfaces parallel to

the x-direction, he suggested that the appropriate equations in the absence of

internal heating are

ð1� ’Þ ðr cÞs
@Ts
@ t

¼ ð1� ’Þ @

@x
k0s
@Ts
@x

� �
þ @

@y
ks
@Ts
@y

� �� �
þ h ðTf � TsÞ;

(2.12a)
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’ðrcPÞf
@Tf
@t

þ ðrcPÞv � rTf ¼ ’
@

@x
k0f
@Tf
@x

� �
þ @

@y
kf
@Tf
@y

� �� �
þ hðTs � TfÞ;

(2.13a)

where k0f ¼ k0s ¼ kH with kH given by Eq. (2.8). Equations (2.12) and (2.13) have to

be solved subject to certain applied thermal boundary conditions. If a boundary is at

uniform temperature, then one has Tf ¼ Ts on the boundary. If uniform heat flux is

imposed on the boundary, then there is some ambiguity about the distribution of

flux between the two phases. Nield and Kuznetsov (1999) argued that if the flux is

truly uniform, then it has to be uniform with respect to the two phases, and hence the

flux on the r.e.v. scale has to be distributed between the fluid and solid phases in the

ratio of the surface fractions; for a homogeneous medium that means in the ratio of

the volume fractions, that is in the ratio ’: (1 �’ ). This distribution allows the

conjugate problem considered by them to be treated in a consistent manner. The

consequences of other choices for the distribution were explored by Kim and Kim

(2001) and Alazmi and Vafai (2002). The Nield and Kuznetsov (1999) approach is

equivalent to Model 1D in Alazmi and Vafai (2002) and is not equivalent to either

approach used in Kim and Kim (2001).

The particular case of LTNE in a steady process is discussed by Nield (1998a).

Petit et al. (1999) have proposed an LTNE model for two-phase flow. A numerical

study of the interfacial convective heat transfer coefficient was reported by

Kuwahara et al. (2001). Their results were modified by Pallares and Grau (2010)

to produce agreement between the theoretical results for the Nusselt number and

experimental data. An application of the method of volume averaging to the

analysis of heat and mass transfer in tubes was made by Golfier et al. (2002). An

alternative two-equation model for conduction only was presented by Fourie and

Du Plessis (2003a, b). Vadasz (2005a) demonstrated that, for heat conduction

problems, local thermal equilibrium applies for any conditions that are a combina-

tion of constant temperature and insulation. He also questioned whether a linear

relationship between the average temperature difference between the phases and the

heat transferred over the fluid–solid surface was appropriate in connection with

conditions of LTNE. The exclusion of oscillations in the context of conduction with

LTNE and an associated paradox were discussed by Vadasz (2005b, 2006b, 2007).

(The apparent paradox arises in trying to trying to reconcile the results from two

alternative mathematical approaches to modeling the problem.) This work is

surveyed by Vadasz (2008b), who also shows the relevance of LTNE to the study

of nanofluids and bi-composite media, as well as to the experimental measurement

of the effective thermal conductivity of a porous medium via the transient hot wire

method.

Rees and Pop (2005) surveyed studies of LTNE with special attention to natural

and forced convection boundary layers and on internal natural convection. Their

survey complements that by Kuznetsov (1998e) for internal forced convection. The

effect of LTNE on conduction in channels with a uniform heat source was

investigated by Nouri-Borujerdi et al. (2007b). Several causes of LTNE were
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discussed by Virtol et al. (2009). Some microscopic modeling of conduction with

LTNE was carried out by Rees (2010).

The topic of LTNE was reviewed by Haji-Sheikh and Minkowycz (2008). They

cite references to a number of engineering applications, such as nuclear devices,

fuel cells, electronic systems, and micro devices, in the context of rapid transport of

heat. They include a discussion of the development of the thermal field with a

moving fluid. They summarize experimental results obtained by Nnanna et al.

(2004, 2005) which conform to the observation by Vadasz (2005b, 2006b, 2007)

that the physical conditions for thermal waves to materialize are not obtainable in a

porous slab subject to a combination of constant heat flux and temperature bound-

ary conditions.

When one examines LTNE at the boundary of a porous medium, or at an

interface with a fluid clear of solid material, the solution of the differential equation

system that arises is undetermined until further information is available to deter-

mine how the total heat flux is split between the two phases. Two second order

differential equations are involved and so at an interface one needs four boundary

conditions, two involving the temperature and two involving the heat flux.

The conservation of energy imposes just one heat flux condition, and hence another

condition must be sought. For this Yang and Vafai (2010, 2011a, b, c) and Vafai and

Yang (2012) introduced five models for what they called “heat flux bifurcation,”

but they did not clearly distinguish between them. Nield (2012) argued that this

approach was not satisfactory. Rather, one should distinguish between the heat

transfer in the bulk of the porous medium (which depends on the interphase heat

transfer coefficient) and the heat transfer across the interface (which is affected by

what happens on the other side of the interface, i.e., outside the porous medium).

For example, if the porous medium is bounded by a solid with high thermal

conductivity (effectively a constant-temperature boundary), then one has LTNE

at the boundary and one can use the formulation employed by Nield and Kuznetsov

(2012c). Much the same is true if the neighboring region is a fluid of high

conductivity. If the region is a solid of very low conductivity (an insulating

boundary) then there is essentially no boundary flux to be divided between the

two phases. More generally, if the solid boundary is controlled by an imposed

constant flux, then the natural assumption is that just across the interface in the

porous medium the flux is also constant. Thus the splitting occurs so that the flux in

the fluid phase is the same as in the solid phase. This means that the interfacial heat

transport is divided between the fluid and solid phases in the ratio of ’ to (1_’).
This was the model employed by Nield and Kuznetsov (1999).

2.2.4 Thermal Dispersion

A further complication arises in forced convection or in vigorous natural convec-

tion in a porous medium. There may be significant thermal dispersion, i.e., heat

transfer due to hydrodynamic mixing of the interstitial fluid at the pore scale. In
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addition to the molecular diffusion of heat, there is mixing due to the nature of the

porous medium. Some mixing is due to the obstructions; the fact that the flow

channels are tortuous means that fluid elements starting a given distance from each

other and proceeding at the same velocity will not remain at the same distance

apart. Further mixing can arise from the fact that all pores in a porous medium may

not be accessible to a fluid element after it has entered a particular flow path.

Mixing can also be caused by recirculation caused by local regions of reduced

pressure arising from flow restrictions. Within a flow channel mixing occurs

because fluid particles at different distances from a wall move relative to one

another. Mixing also results from the eddies that form if the flow becomes turbu-

lent. Diffusion in and out of dead-end pores modifies the nature of molecular

diffusion. For details, see Greenkorn (1983, p. 190).

Dispersion is thus a complex phenomenon. Rubin (1974) took dispersion into

account by generalizing Eq. (2.3) so that the term∇·(am∇T ), where am¼ km/(rc)m
is the thermal diffusivity of the medium, is replaced by ∇·E·∇T where E is a

second-order tensor (the dispersion tensor). In an isotropic medium the dispersion

tensor is axisymmetric and its components can be expressed in the form

Eij ¼ F1 � dij þ F2ViVj; (2.18)

where Vi (¼ vi/’) is the i
th component of the barycentric (intrinsic) velocity vector,

and F1 and F2 are functions of the pore size and the Péclet and Reynolds numbers of

the flow.

At any point in the flow field it is possible to express E with reference to a

coordinate system in which the first axis coincides with the flow direction; when

this is done we have

E11 ¼ �1Uþ am;

E22 ¼ E33 ¼ �2Uþ am; (2.19)

Eij ¼ 0 for i 6¼ j;

where E11 is the longitudinal dispersion coefficient, E22 and E33 are the lateral

dispersion coefficients, and U is the absolute magnitude of the velocity vector.

If the Péclet number of the flow is small, then Z1 and Z2 are small and the

molecular thermal diffusivity am is dominant. If the Péclet number of the flow is

large, then Z1 and Z2 are large and almost constant. It is found experimentally that

Z2 ¼ Z1/30, approximately.

For an account of the treatment of dispersion in anisotropic media in the context

of convection, the reader is referred to Tyvand (1977). In the particular case when

heat conduction is in parallel, Catton et al. (1988) conclude on the basis of their

statistical analysis that the effective thermal conductivity k�zz, for mass and thermal

transport in the z-direction through a bed of uniform spherical beads, is given by
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k�z z ¼ ð1� ’Þ ks þ ’
2B

p

� �
Pe kf (2.20)

In this expression B is a constant introduced by Ergun(empirically, B ¼ 1.75)

and Pe is the Péclet number defined by Pe ¼ vdp/af ð1� ’Þ , where dp is the

spherical particle diameter and af is the thermal diffusivity of the fluid, defined

by af ¼ kf/(rcP)f.
Thermal dispersion plays a particularly important role in forced convection in

packed columns. The steep radial temperature gradients that exist near the heated or

cooled wall were formerly attributed to channeling effects, but more recent work

has indicated that thermal dispersion is also involved. For a nearly parallel flow at

high Reynolds numbers, the thermal dispersivity tensor reduces to a scalar, the

transverse thermal dispersivity. Cheng and his colleagues [see Hsu and Cheng

(1990) and the references given in Sect. 4.9] assumed that the local transverse

thermal dispersion conductivity k0T is given by

k0T
kf

¼ DTPedl
u

um
: (2.21)

In this equation Ped is a Péclet number defined by Ped ¼ um dp/af, in terms of the

mean seepage velocity um, the particle diameter dp, and fluid thermal diffusivity af,
while DT is a constant and l is a dimensionless dispersive length normalized with

respect to dp. In recent work the dispersive length is modeled by a wall function of

the Van Driest type:

l ¼ 1� expð�y=odpÞ: (2.22)

The empirical constants o and DT depend on the coefficients N and C in the wall

porosity variation formula [Eq. (1.28)]. The best match with experiments is given

by DT ¼ 0.12 and o ¼ 1, if N ¼ 5 and C ¼ 1.4. The theoretical results based on

this ad hoc approach agree with a number of experimental results.

A theoretical backing for this approach has been given by Hsu and Cheng

(1990). This is based on volume averaging of the velocity and temperature

deviations in the pores in a dilute array of spheres, together with a scale analysis.

The thermal diffusivity tensor D is introduced as a multiplying constant which

accounts for the interaction of spheres. For the case of high pore Reynolds number

flow, Hsu and Cheng (1990) found the thermal dispersion conductivity tensor k0 to
be given by

k0 ¼ Dkf
1� ’

’
Ped (2.23)
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The linear variation with Ped is consistent with most of the existing experimental

correlations for high pore Reynolds number flow. At low pore Reynolds number

flow, they found

k0 ¼ D�kf
1� ’

’2
Pe2d (2.24)

where D* is another constant tensor. The quadratic dependence on Ped has not yet
been confirmed by experiment.

Kuwahara et al. (1996) and Kuwahara and Nakayama (1999) have studied

numerically thermal diffusion for a two-dimensional periodic model. A limitation of

their correlation formulas as the porosity tends to unity was discussed by Yu (2004)

and Nakayama and Kuwahara (2004). A similar model was examined by Souto

andMoyne (1997a, b). The frequency response model was employed by Muralidhar

and Misra (1997) in an experimental study of dispersion coefficients. The role of

thermal dispersion in the thermally developing region of a channel with a sintered

porous metal was studied by Hsieh and Lu (2000). Kuwahara and Nakayama (2005)

have extended their earlier numerical studies to the case of three-dimensional flow in

highly anisotropic porous media. Niu et al. (2006) reported direct measurements of

eddy transport and thermal dispersion in a high-porosity matrix. An equation for

thermal dispersion-flux transport was introduced by Nakayama et al. (2006).

For further information about dispersion in porous media, the reader is referred

to the review by Liu and Masliyah (2005), which deals with the dispersion of mass,

heat, and momentum. Rudraiah and Ng (2007) have reviewed dispersion in porous

media with and without reaction.

2.2.5 Cellular Porous Media

Cellular porous media have the property that to a good approximation the effect of

radiation can be modeled using a temperature-dependent thermal conductivity

(Viskanta 2009). For a few situations an analytical solution can be obtained. This

was done by Nield and Kuznetsov (2010a, c) and Nield and Kuznetsov (2010b) for

paradigmatic forced convection, external natural convection, and internal natural

convection problems.

2.3 Oberbeck-Boussinesq Approximation

In studies of natural convection we add the gravitational term rf g to the right-hand
side of the Darcy equation (1.4) or its appropriate extension. [Note that in Eq. (1.4)

the term∇P denotes an intrinsic quantity, so we add the gravitational force per unit
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volume of the fluid]. For thermal convection to occur, the density of the fluid must

be a function of the temperature, and hence we need an equation of state to

complement the equations of mass, momentum, and energy. The simplest equation

of state is

rf ¼ r0 1� b T � T0ð Þ½ �; (2.25)

where r0 is the fluid density at some reference temperature T0 and b is the

coefficient of thermal expansion.

In order to simplify the subsequent analysis, one employs the Boussinesq

approximation whenever it is valid. Strictly speaking, one should call this the

Oberbeck-Boussinesq approximation, since Oberbeck (1879) has priority over

Boussinesq (1903), as documented by Joseph (1976). The approximation consists

of setting constant all the properties of the medium, except that the vital buoyancy

term involving b is retained in the momentum equation. As a consequence the

equation of continuity reduces to ∇·v ¼ 0, just as for an incompressible fluid. The

Boussinesq approximation is valid provided that density changes Dr remain small

in comparison with r0 throughout the flow region and provided that temperature

variations are insufficient to cause the various properties of the medium (fluid and

solid) to vary significantly from their mean values. Johannsen (2003) discussed the

validity of the Boussinesq approximation in the case of a bench mark problem

known as the Elder problem.

2.4 Thermal Boundary Conditions

Once the thermal conductivity in the porous medium has been determined, the

application of thermal boundary conditions is usually straightforward. At the

interface between two porous media, or between a porous medium and a clear

fluid, we can impose continuity of the temperature (on the assumption that we have

local thermodynamic equilibrium) and continuity of the normal component of the

heat flux. We note that two conditions are required because the equation of energy

(2.3) contains second-order derivatives.

The heat flux vector is the sum of two terms: a convective term (rcP)fT v and a

conductive term –k∇T. The normal component of the former is continuous because

both T and the normal component of rf v are continuous. It follows that the normal

component of k∇T also must be continuous. At an impermeable boundary the usual

thermal condition appropriate to the external environment can be applied, e.g., one

can prescribe either the temperature or the heat flux, or one can prescribe a heat

transfer coefficient.

Sahraoui and Kaviany (1993, 1994) have discussed the errors arising from the

use of approximations of the effective conductivity near a boundary, due to

nonuniformity of the distributions of the solid and fluid phases there. They have
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introduced a slip coefficient into the thermal boundary condition to adjust for this,

for the case of two-dimensional media.

Ochoa-Tapia and Whitaker (1997, 1998) have developed flux jump conditions

applicable at the boundary of a porous medium and a clear fluid. These are based on

a nonlocal form of the volume-averaged thermal energy equations for fluid and

solid. The conditions involve excess surface thermal energy and an excess nonequi-

librium thermal source. Min and Kim (2005) have used the special two-dimensional

model of Richardson (1971) in order to obtain estimates of the coefficients that

occur in the thermal and hydrodynamic jump conditions. The jump conditions were

further analyzed by d’Hueppe et al. (2011). Valdes-Parada et al. (2009b) included

the effects of adsorption and a chemical reaction. Betchen et al. (2006) considered a

nonequilibrium model. d’Hueppe et al. (2012) discussed the coupling of a two-

temperature model with a one-temperature model at a fluid-porous interface.

An analogous mass transfer jump condition was formulated by Valencia-López

et al. (2003). The thermal interaction at the interface between a porousmedium and an

impermeable wall was studied by Kim and Kim (2001). The role of particle–particle

contact on effective thermal properties in the interfacial region was examined by

Aguilar-Madera et al. (2011b).

2.5 Hele-Shaw Analogy

The space between two plane walls a small distance apart constitutes a Hele-Shaw

cell. If the gap is of thickness h and the walls each of thickness d, then the governing
equations for gap-averaged velocity components (parallel to the plane walls) are

identical with those for two-dimensional flow in a porous medium whose perme-

ability K is equal to h3/[12(h þ 2d)], for the case where the heat flow is parallel to

the plane walls (Hartline and Lister 1977). The Hele-Shaw cell thus provides a

means of modeling thermal convection in a porous medium, as in the experiments

by Elder (1967a).

For the analogy to hold, the three quantities h/d, Uh2/nd, and Uh2/afdmust all be

small compared with unity. Here U is the velocity scale and d the smallest length

scale of the motion being modeled, while n and af are the kinematic viscosity and

thermal diffusivity of the fluid. These conditions ensure that there is negligible

advection of vorticity and rapid diffusion of vorticity and heat across the flow.

The experimental temperature profiles found by Vorontsov et al. (1991) were in

good agreement with the theory. Schöpf (1992) extended the comparison to the case

of a binary mixture. Specific studies of convection in a Hele-Shaw cell were

reported by Cooper et al. (1997), Goldstein et al. (1998), and Gorin et al. (1998).

The Hele-Shaw cell experiments are especially useful for revealing streamline

patterns when the walls are made of transparent material. The analogy has obvious

limitations. For example, it cannot deal with the effects of lateral dispersion or

instabilities associated with three-dimensional disturbances. The discrepancies

44 2 Heat Transfer Through a Porous Medium



associated with these effects have been examined by Kvernvold (1979) and

Kvernvold and Tyvand (1981).

Hsu (2005) has compared the governing equations for the averaged flows and

heat transfer in Hele-Shaw cells with those of porous media and he observed

the following differences: (a) the averaged Hele-Shaw cell is two-dimensional,

(b) the interfacial force in the averaged Hele-Shaw flows is contributed entirely

from the shear force, and (c) there exists no thermal tortuosity for the averaged

Hele-Shaw flows. Thus the Hele-Shaw analogy is good for viscous dominated two-

dimensional flow with negligible thermal tortuosity. However, these simplifications

help in the verification of closure modeling. Furthermore, a three-dimensional

numerical simulation of the convection heat transfer in Hele-Shaw cells may reveal

some detailed physics of heat transfer in porous media that are impossible to tackle

due to the randomness and the complexity of the microscopic solid geometry. Hsu

(2005) illustrates this with results for the case of oscillating flows past a heated

circular cylinder. Babuskin and Demin (2006) reported an experimental and theo-

retical investigation of transient convective regimes. Backhaus et al. (2011)

investigated the convective instability and mass transport of diffusion layers.

Abdelkareem et al. (2009) performed an experimental study on oscillatory convec-

tion in a Hele-Shaw cell due to an unstably heated side.

2.6 Bioheat Transfer and Other Approaches

Convective heat transfer in biological tissues involves a special situation. In some

cases applications of porous media theory are appropriate (see for example, the

surveys by Khanafer et al. (2008a) and Khanafer and Vafai (2009).) Some aspects

relevant to biological tissues were discussed by Khanafer et al. (2003), Khaled and

Vafai (2003), Yao and Gu (2007), Wood et al. (2007), Mahjoob and Vafai (2009,

2010, 2011), and Wang and Fan (2011) A feature of bioheat transfer is that in many

situations there is counterflow. For example, blood flows in adjacent arteries and

veins in opposite directions. Nield and Kuznetsov (2008a, 2009a, 2010b) and

Kuznetsov and Nield (2009a, b) have modeled forced convection in a porous

medium with counterflow. A general set of bioheat transfer equations based on

volume averaging theory has been obtained by Nakayama et al. (2011), who applied

the bioheat equation to cryoablation therapy for the treatment of malignant cancers.

Direct numerical simulation of heat and fluid flow, using the full Navier–Stokes

equations at the pore scale, for regularly spaced square or circular rods or spheres has

been conducted by Kuwahara et al. (1994). A direct numerical simulation was

applied by He and Georgiadis (1992) to the study of the effect of randomness on

one-dimensional heat conduction. Direct numerical simulation has also been

employed by Rahimian and Poushaghagy (2002), Yu et al. (2006b), Pourshaghaghy

et al. (2007), Narasimhan and Raju (2007), Gamrat et al. (2008), andMa and Zabaras

(2008), Lattice gas cellular automata simulations were performed by McCarthy

(1994) for flow through arrays of cylinders, and by Yoshino and Inamura (2003)
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for flow in a three-dimensional structure. Buikis and Ulanova (1996) have modeled

nonisothermal gas flow through a heterogeneous medium using a two-media

approach. A diffuse approximation has been applied by Prax et al. (1996) to natural

convection. Martins-Costa et al. (1992, 1994), Martins-Costa et al. (1994), and

Martins-Costa (1996) have applied the continuous theory of mixtures to the

modeling and simulation of heat transfer in various contexts. Modeling of convec-

tion in reservoirs having fractal geometry has been conducted by Fomin et al. (2002).

Spaid and Phelan (1997) applied lattice Boltzmann methods to model microscale

flow in fibrous porous media.

A general discussion of the dynamic modeling of convective heat transfer in

porous media was provided by Hsu (2005). Further simulation studies with a lattice

Boltzmann model have been reported by Guo and Zhao (2005a, b) (with the

viscosity independent or dependent on the temperature), Zhou et al. (2010b)

(a problem involving double diffusion), Seta et al. (2006), Rong et al. (2010a),

Shokouhmand et al. (2009), Xu et al. (2005, 2008), Wang et al. (2007a), Yan et al.

(2006), Zhao et al. (2010a, b), Roussellet et al. (2011), and Vishnampet

Ramanathan et al. (2011). Visser et al. (2008a, b) have introduced an artificial

compressibility method for buoyancy-driven flow.

Petrasch et al. (2008) described a tomography-based determination of the inter-

facial heat transfer coefficient in reticulate porous dynamics.

Radiative heat transfer is beyond the scope of this book, but we mention that a

review of this subject was made by Howell (2000) and a combined radiation and

convection problem was studied by Talukdar et al. (2004).
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