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Mach’s Principle

So strongly did Einstein believe at that time in the relativity of inertia that in 1918 he stated as being
on an equal footing three principles on which a satisfactory theory of gravitation should rest:

1. The principle of relativity as expressed by general covariance.

2. The principle of equivalence.

3. Mach’s principle (the first time this term entered the literature):. . .that the g,, are completely
determined by the mass of bodies, more generally by T,.

In 1922, Einstein noted that others were satisfied to proceed without this [third] criterion and added,
“This contentedness will appear incomprehensible to a later generation however.”
....It must be said that, as far as I can see, to this day Mach’s principle has not brought physics
decisively farther. It must also be said that the origin of inertia is and remains the most obscure
subject in the theory of particles and fields. Mach’s principle may therefore have a future — but not
without the quantum theory.
—Abraham Pais, Subtle is the Lord: the Science and the Life of Albert Einstein, pp. 287-288.
(Quoted by permission of Oxford University Press, Oxford, 1982)

BACKGROUND

Recapitulating, we have seen that when the implications of the principle of relativity for
space and time were understood in the early twentieth century, Einstein quickly
apprehended that the quantity of interest in the matter of inertia was not (rest) mass
per se, rather it was the total non-gravitational energy contained in an object (isolated
and at rest). This followed from Einstein’s second law, which says:
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where m is now understood as the total inertial mass, not just the rest mass of an object, and
E is the total non-gravitational energy. If one restricts oneself to Special Relativity Theory
(SRT), this is about all one can say about inertial mass. It was Einstein’s hope that he could
go farther in identifying the origin of inertia in General Relativity Theory (GRT), as is
evident in the quote from Pais’s biography of Einstein above.

J.F. Woodward, Making Starships and Stargates: The Science of Interstellar Transport 29
and Absurdly Benign Wormholes, Springer Praxis Books, DOI 10.1007/978-1-4614-5623-0_2,
© James F. Woodward 2013



30 Mach’s principle

As we have seen in the previous chapter, Einstein didn’t need “Mach’s principle” to
create GRT. Shortly after publishing his first papers on GRT, he did try to incorporate the
principle into his theory. He did this by adding the now famous “cosmological constant”
term to his field equations. Those equations, as noted in Chapter 1, without the cosmologi-
cal constant term, are:
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where G, is the Einstein tensor that embodies the geometry of spacetime, R, is the
“contracted” Ricci tensor (obtained by “contraction” from the Riemann curvature tensor
which has four “indexes,” each of which can take on values 14 for the four dimensions of
spacetime), g, is the “metric” of spacetime, and T, is the “stress-energy-momentum”
tensor, that is, the sources of the gravitational field. The cosmological term gets added to
G,y Thatis,G,, — G + /lgm, where 4 is the so-called cosmological constant. We need
not worry about the details of these tensor equations. But it’s worth remarking here that the
coefficient of T',, with factors of Newton’s constant of gravitation G in the numerator and
the speed of light ¢ to the fourth power in the denominator, is exceedingly small. This
means that the sources of the field must be enormous to produce even modest bending of
spacetime. That is why a Jupiter mass of exotic matter is required to make wormholes and
warp drives.

Ostensibly, Einstein added the cosmological constant term to make static cosmological
solutions possible by including a long-range repulsive force. But he also hoped that the
inclusion of the cosmological constant term would render his field equations solutionless
in the absence of matter. Willem deSitter quickly showed that Einstein’s new equations
had an expanding, asymptotically empty solution, one with full inertial structure. And a
vacuum solution, too. So Einstein’s attempt to include Mach’s principle in this way was
deemed a failure.

The chief reason for his failure seems to have been the way he defined the principle:
that the inertial properties of objects in spacetime should be defined (or caused) by the
distribution of matter (and its motions) in the universe. Put a little differently, Einstein
wanted the sources of the gravitational field at the global scale to determine the inertia of
local objects. He called this “the relativity of inertia.” The problem Einstein encountered
was that his GRT is a local field theory (like all other field theories), and the field equations
of GRT admit global solutions that simply do not satisfy any reasonable formulation of, as
he called it, Mach’s principle. Even the addition of the “cosmological constant” term to his
field equations didn’t suffice to suppress the non-Machian solutions.

Alexander Friedmann and Georges Lemaitre worked out cosmological solutions for
Einstein’s field equations in the 1920s, but cosmology didn’t really take off until Edwin
Hubble, very late in the decade, showed that almost all galaxies were receding from Earth.
Moreover, they obeyed a velocity-distance relationship that suggested that the universe is
expanding. From the 1930s onward work on cosmology has progressed more or less
steadily. The cosmological models initiated by Friedman, predicated on the homogeneity
and isotropy of matter at the cosmic scale, were developed quickly by Robertson and
Walker. So now cosmological models with homogeneity and isotropy are called
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Friedmann, Robertson, Walker (FRW) cosmologies. One of them is of particular interest:
the model wherein space is flat at cosmological scale.

Spatial flatness corresponds to “critical” cosmic matter density —2 x 10~2° g per cubic
centimeter — and has the unfortunate tendency to be unstable. Small deviations from this
density lead to rapid evolution away from flatness. Since flatness is the observed fact of
our experience and the universe is more than 10 billion years old, how we could be in a
spatially flat universe so long after the primeval fireball was considered something of a
problem. The advent of “inflationary”” cosmologies 20 or so years ago is widely thought to
have solved this problem. As we will see shortly, spatial flatness and critical cosmic matter
density figure into the answer to the question of the origin of inertia. But we are getting
ahead of the story.

MACH’S PRINCIPLE

As the Equivalence Principle makes clear, gravity defines local inertial frames of reference
as those in a state of free fall in the vicinity of a local concentration of matter. Moreover,
gravity is the only truly “universal” interaction in that gravity acts on everything. For these
reasons Einstein was convinced that GRT should also account for inertial phenomena,
for inertia, like gravity, is a universal property of matter, though it is normally “inert.”
(Good historical articles on his attempts to incorporate Mach’s principle in GRT can be
found in: Mach’s Principle: From Newton’s Bucket to Quantum Gravity, Brikhauser,
Boston, 1995, edited by Julian Barbour and Herbert Pfister.)

Notwithstanding that Willem deSitter shot down his early efforts to build Mach’s
principle into GRT by adding the “cosmological constant” term to his field equations,
Einstein persisted. When he gave a series of lectures on GRT at Princeton in 1921, he
included extended remarks on the principle and the issue of inertia in GRT. (These
remarks can be found in The Meaning of Relativity, 5t ed., Princeton University Press,
Princeton, 1955, pp. 99-108). In his words:

[T]he theory of relativity makes it appear probable that Mach was on the right road in his thought
that inertia depends upon a mutual action of matter. For we shall show in the following that,
according to our equations, inert masses do act upon each other in the sense of the relativity of
inertia, even if only very feebly. What is to be expected along the line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses are piled up in its neighborhood.

2. A body must experience an accelerating force when neighbouring masses are accelerated, and,
in fact, the force must be in the same direction as that acceleration.

3. A rotating hollow body must generate inside of itself a “Coriolis field,” which deflects moving
bodies in the sense of the rotation, and a radial centrifugal field as well.

We shall now show that these three effects, which are to be expected in accordance with Mach’s
ideas, are actually present according to our theory, although their magnitude is so small that
confirmation of them by laboratory experiments is not to be thought of.. ..

The first of Einstein’s criteria is the idea that when “spectator” matter is present in the
vicinity of some massive object, the spectator matter should change the gravitational
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potential energy of the object. And since E = mc?, that gravitational potential energy
should contribute to E and change the mass of the object.

It turns out that Einstein was wrong about this. Only non-gravitational energies
contribute to E when it is measured locally. But the reason why E, locally measured,
doesn’t include gravity involves a subtlety about the nature of gravity and inertia that is
easily missed. The second criterion is the prediction of, as it is now known, “linear
accelerative frame dragging,” though Einstein states it as the production of a force by
the accelerating spectator matter on the body in question, rather than the dragging of local
spacetime by the accelerating matter. This, when the action of the universe is considered,
turns out to be the nub of Mach’s principle. If the universe is accelerated in any direction, it
rigidly drags inertial frames of reference along with it in the direction of the acceleration.
Consequently, only accelerations relative to the universe are detectable; and inertia is
“relative.”

Einstein didn’t consider the cosmological consequences of this term. But he showed that
this term and its effects depends on gravity being at least a vector field theory (analogous to
Maxwell’s theory of electrodynamics). The effect is not to be found in Newtonian gravity, a
scalar field theory (as the field equation can be written in terms of a scalar “potential” alone
with the direction and magnitude of gravitational forces recovered using the “gradient
operator”). The third criterion is just the Lens-Thirring effect and Gravity Probe B prediction.'

Solving the full tensor field equations of GRT exactly is notoriously difficult, so
Einstein did a calculation in the “weak field” approximation (where the metric tensor g,
is approximated by 7),,, + A,y with 1, the Minkowski tensor of the flat spacetime of SRT
and ,,, the tensor that represents the field) and put his results into vector formalism. Suffice
it to say, he found results that seemed to support each of his three criteria. (The formal
predictions can be found in an excerpt from a paper by Carl Brans on the localization of
gravitational energy at the end of this chapter.) His predicted effects are indeed very small
when one considers even quite large local concentrations of matter (other than black holes
in the vicinity of event horizons, of course).

Why didn’t Einstein see that the sort of force that, because of the universality of gravity,
is equivalent to frame dragging in his second prediction could explain Mach’s principle?
At least part of the problem here seems to be that he wasn’t thinking cosmologically when
looking for predicted quantitative effects — and so little was understood about the structure
and size of the universe in the 1920s that there was no plausible basis, other than the most
general sorts of considerations, to make inferences about the action of cosmic matter on
local objects.

Shortly after Einstein gave his Princeton lectures, he found out, through
posthumously reported remarks made by Mach shortly before his death in 1916, that
Mach had disavowed any association with Einstein’s ideas on relativity and inertia.

! Initially conceived of by George Pugh and Leonard Schiff in the 1960s, Gravity Probe B was a collection
of high precision gyroscopes flown in a satellite in polar orbit intended to detect the dragging of spacetime
caused by the rotation of Earth. The project, which flew several years ago, spanned decades and cost nearly
a billion dollars. One noted relativist, queried by the press on the launch of the satellite, was reported to
have remarked, “never was so much spent to learn so little.” The history of this project is yet to be written.
But it will doubtless prove fascinating.
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Einstein, not long thereafter, asserted that any correct cosmological model should be
spatially closed so that its geometry (the left hand side of his field equations) would be
completely determined by its sources (the right hand side of his field equations) without
the stipulations of additional boundary conditions and abandoned further work on
Mach'’s principle.

If you are an expert, you may also be thinking, Einstein’s calculation was done in the
weak field approximation where gravitational effects are small. In cosmological
circumstances one can expect gravitational potentials to be very large; indeed, even as
large as the square of the speed of light — as is the case near the event horizon of a black
hole. Well yes. But the universe isn’t like the region of spacetime near to the event
horizon of a stellar mass black hole. The sort of curvature encountered there is simply
absent in the universe considered at cosmic scale. At cosmic scale, the universe is
spatially flat. And absent local concentrations of matter, spacetime looks Minkowskian,
notwithstanding that the gravitational potential approaches the square of the speed of
light. So using the weak field approximation to compute lowest order gravimagnetic
effects is perfectly okay.

THE MACH’S PRINCIPLE REVIVAL

By the early 1950s, the cosmological situation had changed. Significant theoretical work
on cosmology had taken place, for example, that of Roberston and Walker in the 1930s and
1940s. Thomas Gold, Herman Bondi, and Fred Hoyle had proposed “steady state”
cosmology, and Walter Baade had shown that there were two populations of stars,
dramatically increasing the age of the universe for FRW cosmological models. So when
Dennis Sciama, one of the very few doctoral students trained by Paul Dirac, came along in
the early 1950s, tackling the “problem of the origin of inertia” seemed a reasonable
thing to do.

Sciama’s approach was to ignore GRT and write down a vector theory of gravity
analogous to Maxwell’s theory of electrodynamics. He initially thought his vector theory
different from GRT. But eventually it was found to be just an approximation to GRT.
This, by the way, is an exceedingly important point. Sciama’s calculations are not
optional. They are the exact predictions of GRT when conditions make the vector
approximation valid and the idealizations he adopted reasonable.

What Sciama noticed was that when you write out the equation for the gravity field that
is the analog of the electric field in electrodynamics, in addition to the commonplace term
involving the gradient of a scalar potential, there is a term that is the rate of change of the
“vector potential.” In electrodynamics, the vector potential is associated with the magnetic
field, and the term involving the rate of change of the vector potential that appears in the
equation for the electric field means that when the magnetic field changes, it contributes to
the electric field, causing it to change, too. Sciama noted that in the analogous case for
gravity, the rate of change of the vector potential leads to a term in the “gravelectric” field
that depends on acceleration of an object relative to the (on average) uniform bulk of the
matter in the universe. That is,
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where E, is the gravelectric field strength, ¢ the vacuum speed of light, and ¢ and A, the
scalar and three-vector gravitational potentials respectively produced by all of the “mat-
ter” in the causally connected part of the universe. Matter is in quotes because what counts
as matter is not universally agreed upon. We take “matter” to be everything that gravitates.
This includes things such as zero-restmass energetic radiation and “dark energy,” which
are sometimes excluded as matter. The “del” in front of the scalar potential is the
“gradient” operator, which returns the rate of change of the potential in space and its
direction. The relationship that allows one to write the change in A, terms of the scalar
potential and velocity is the fact that A, is just the sum over all matter currents in the
universe. That is,
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where p is the matter density in the volume element dV, v the relative velocity of the
object and volume element, and r the radial distance to the volume element. The factor of
¢ in the denominator appears because Gaussian units are employed.” Sciama assumed
that gravity, like electromagnetism, propagates at speed ¢, so normally this integration
would involve a messy calculation involving retarded Green’s functions and other
mathematical complications. But because of the extremely simple, idealized conditions
Sciama imposed, he saw that he could sidestep all of that messiness by invoking a
little trick.

Sciama noted that in the case of an object moving with velocity v with respect to the
rest of the universe, one could change reference frame to the “instantaneous frame of rest”
of the object; and in that frame the object is at rest and the rest of the universe moves past it
— apparently rigidly — with velocity — v. Since, in this special frame of reference everything
in the universe, as detected by the object, is moving with the same velocity — v — the
velocity in the integration of Eq. 2.4 can be removed from the integration, and Eq. 2.4
becomes:
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The result of this trick is to transform an integration over matter current densities into
an integration over matter densities per se. Anyone familiar with elementary electrody-
namics will instantly recognize this integration as that which gives the scalar potential of

N owadays in some quarters so-called SI units are used. They make the magnitudes of many things normally
encountered in field theory unintuitively large or small. I use the traditional Gaussian units of field theory
because there was a good reason why they were adopted decades ago by those who work in this area.
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the field — but in this case, it returns the scalar potential of the gravitational field. As a
result, for the simple case considered by Sciama, Eq. 2.5 becomes:

1 \4 v vGM v

Vv \4

where we have taken r as the radial distance from the local object to a spherical volume
element (of thickness dR), G is Newton’s constant of gravitation, and M and R are the mass
and radius of the universe respectively.

R was taken by Sciama as the radius of the “Hubble sphere,” that is, the product of the
speed of light and the age of the universe. A more accurate calculation would have employed
the “particle horizon,” the sphere centered on Earth within which signals traveling at the
speed of light can reach Earth. The particle horizon encompasses considerably more material
than the Hubble sphere. Sciama also neglected the expansion of the universe.

These issues notwithstanding, Sciama’s work triggered an at times intense debate about
the origin of inertia. Why? Because when we put the result of the integration in Eq. 2.6
back into Eq. 2.3, we get:
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Now, we return to the consideration of our object moving with velocity v with respect
to the homogenous and isotropic universe that we can envisage as moving rigidly with
velocity — v past the object which is taken as (instantaneously) at rest. In this case the
gradient of the scalar potential vanishes. And if v is constant or zero, so, too, does the
second term — and there is no gravelectric field felt by the object.

However, if the object is accelerating with respect to the rest of the universe (due to the
application of some suitable “external” force), then the second term does not vanish as
0v/0t = a, the acceleration, is not zero. More importantly, from the point of view of the
origin of inertia — and inertial reaction forces — if ¢/ ¢*> = 1, then the gravelectric field
exactly produces the “equal and opposite” inertial reaction force the accelerating agent
experiences. That is, inertial reaction forces are exclusively gravitational in origin. The
reason why this was so intriguing is that the condition ¢/ ¢> = 1 has special cosmological
significance, as we will consider presently.

Clearly, Sciama’s calculation is an approximation. In particular, it is a vector approxi-
mation to a field theory that was known to require tensor form in order to be completely
general. And it is an idealization. Sciama’s assumptions about the distribution and motion
of the “matter” sources of the gravelectric field at the object considered are much simpler
than reality, even in the early 1950s, was known to be. Nevertheless, Sciama’s theory is
not a “toy model.” Toy models are created by physicists when they can’t formulate their
theory in tractable form in the full four dimensions of real spacetime. To make their
theories tractable, they generate them with one or two spatial dimensions where the math
is simple enough to be managed. Sciama’s theory is four-dimensional. And the above
calculation returns an answer for inertial reaction forces that is essentially correct despite
the approximation and idealizations adopted. The part of Sciama’s paper “On the Origin of



36 Mach’s principle

Inertia” where he calculates this expression is reproduced as Addendum #1 at the end of
this chapter.

It is worth noting here that an important feature of inertial reaction forces is present in
Eq. 2.7, and it was noted by Sciama. The two terms on the right hand side of the equation have
different dependencies on distance. The scalar potential depends on the inverse first power of
the distance. The gradient of the scalar potential, when you are far enough away from a body
of arbitrary shape so that it can be approximated as a sphere, depends on the inverse second
power of the distance. That is, Newtonian gravitational force exerted by a body on another
sufficiently distant goes as the inverse square of the distance separating them.’

When you are calculating the effect of distant matter on a local object, inverse square
dependence applies for the gradient of the scalar potential. And it drops off fairly quickly.
The term arises from the time-derivative of the vector potential scales with the scalar
potential, not its gradient. So the distance dependence of this term is inverse first power.
When the distances involved in a situation are small, this difference between the terms
may be unimportant. When the distances are large, the difference is crucial. The term
arising from the vector potential dominates because it doesn’t decrease nearly as rapidly as
the Newtonian term does for large distances. This is the reason why the inertia of local
objects is due almost exclusively to the action of distant matter.

The inverse first power of the distance dependence of the term from the vector potential
that causes inertial forces also signals that the interaction is “radiative.” That is, the
interactions that arise from this term involve propagating disturbances in the gravity
field. They do not arise from instantaneously communicated effects or the passive action
of a pre-existing field. So inertial forces would seem to be gravity “radiation reaction”
effects. This poses a problem, for an inertial reaction force appears at the instant an
accelerating force is applied to an object. How can that be true if the inertial reaction
force involves an active communication with chiefly the most distant matter in the
universe, and communication with the stuff out there takes place at the speed of light?

If reaction forces were produced by the interaction with a passive, locally present pre-
existing field, this would not be a problem. But that is not what is calculated in Sciama’s
treatment. The trick of using the instantaneous frame of rest where the universe very
obviously appears to be moving rigidly past the accelerating object not only sidesteps a
messy calculation involving Green’s functions; it blurs the issue of instantaneity of
reaction forces. This is arguably the most difficult aspect of coming to grips with the
origin of inertia.

You may be wondering, if this sort of thing happens with gravity, why don’t we see the
same sort of behavior in electromagnetism? After all, if we accept Sciama’s theory as the
vector approximation to GRT that it is, they are both vector field theories with essentially

3 Newton is routinely credited with the discovery of the inverse square law of universal gravitation. But his
contemporary Robert Hooke claimed to have independently discovered the inverse square law before
Newton made public his claim. Newton refused the presidency of the Royal Society until shortly after
Hooke’s death. Shortly thereafter, the Royal Society moved to new quarters, and Hooke’s papers from the
1680s were lost in the move. Whether Hooke actually discovered the inverse square nature of gravity,
absent his papers, is a matter of conjecture. It seems unlikely, though, that he discovered the universal
nature of the interaction.
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the same field equations. Ironically, as it turns out, the problems of the origin of inertia —in
the form of electrical “self-energy” — and “radiation reaction” have plagued electrody-
namics for years, too. It just hasn’t been discussed much in recent years. But infinite“self-
energies” of point particles was the motivation, for example, for the invention the
“renormalization” program of quantum field theory, and of string theory.

We’ll be looking at these issues in later chapters in some detail. Here we note that
although the vector field formalisms for gravity and electromagnetism are essentially the
same, this type of gravitational force from the action of cosmic matter does not arise in
electrodynamics — because on average the universe is electric charge neutral, so cosmic
electric charge currents sum to zero everywhere. More specifically, since on average there
is as much negative electric charge as positive in any region of spacetime, the total charge
density is zero. So, in the calculation of the vector potential — as in Eq. 2.5 — since p is zero,
the integral for the potential vanishes. This means that in everyday electrodynamics you
never have to deal with the action of distant electric charge and currents of any signifi-
cance. But in gravity, you do.

Sciama’s calculation is not optional. It is a prediction of GRT providing that ¢/ ¢> = 1.
Is ¢/ c?* =1 true?

Yes. When is ¢p/c? = 1? When “critical cosmic matter density” is reached, and space at
the cosmic scale is flat. Sciama didn’t know if this were true. Indeed, even in the 1950s it
was thought that the amount of luminous matter in the universe was not sufficient to be
“critical.” So Sciama did not make a bald-faced claim that he could fully account for
inertial reaction forces. But space at the cosmic scale sure looked pretty flat. And it was
known that if cosmic scale space deviated from flatness, it would quickly evolve to far
greater distortion. As the universe was at least billions of years old and still flat, most
cosmologists assumed that space really was flat, and that critical cosmic matter density
was obtained. And the fact that luminous matter was less than 10% of the critical value
came to be called the “missing mass” problem.* Only after the turn of the century was
space at the cosmic scale measured — by the Wilkinson Microwave Anisotropy Probe
(WMAP) about a decade ago. So we know whether or not cosmic scale space is flat. It is.

You may be wondering, if we know that space at the cosmic scale is flat, why isn’t it
common knowledge that inertial reaction forces are caused by the gravitational interac-
tion of local accelerating objects with chiefly cosmic matter? Well, two issues figure into
the answer to this question. One is the consequence of an analysis done by Carl Brans in
the early 1960s. (Excerpts from Brans’ paper are to be found at the end of this chapter.)
And the other, related to Brans’ argument, is the business about there being no “real”
gravitational forces. Brans showed that if the presence of “spectator” matter
(concentrations of matter nearby to a laboratory that shields the stuff in it from all
external influences except gravity, which cannot be shielded) were to change the
gravitational potential energies of objects in the shielded laboratory, you could always

4Actually, the “missing mass” problem was first identified in the 1930s by Fritz Zwicky by applying the
“virial theorem” to clusters of galaxies. The virial theorem says that on average, the kinetic and potential
energies of galaxies in clusters should be the same. So, by measuring the motions of galaxies in a cluster,
you can estimate the mass of the cluster. It leads to galaxy cluster mass estimates 10—100 times greater than
the light emitted suggests is present. Only later was it extended to encompass cosmology, too.
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tell whether you were in a gravity field or an accelerating lab in deep space by
performing only local experiments.

In particular, the gravitationally induced changes in the masses of elementary particles
in the lab would change their charge to mass ratios, and this would be locally detectable.
No such changes in charge to mass ratios would occur in an accelerated reference frame in
deep space. As a result, a gravity field could always be discriminated from an acceleration
with local experiments. Since this would be a violation of the Equivalence Principle, Brans
asserted that gravitational potential energy cannot be “localized.” That is, the scalar
gravitational potential must have exactly the same value, whatever it might be, everywhere
in the laboratory, no matter where the lab is located or how it is accelerating. As Brans
noted, this condition on gravitational potential energy reveals Einstein’s first prediction
quoted above as wrong. Evidently, it appears that the distribution of matter outside of the
lab cannot have any identifiable effect on the contents of the lab. Mach’s principle,
however, would seem to suggest the opposite should be the case. And it was easy to
infer that Mach’s principle was not contained in pristine GRT.

The inference that Mach’s principle is not contained in GRT, however, is mistaken. If
you take account of the role of the vector potential in Sciama’s gravelectric field equation,”
it is clear that should spectator matter outside the lab be accelerated, it will have an effect
on the contents of the lab, changing what are perceived to be the local inertial frames of
reference. This is the action of Mach’s principle. But as the accelerating spectator matter
will act on all of the contents of the lab equally, for inertial forces are “fictitious,” they
produce the same acceleration irrespective of the mass of the objects acted upon. So, using
local measurements in the lab it will not be discernible either as a force of gravity or a
change in the acceleration of the lab. And it will not change the gravitational potential
energies of the contents of the lab.

Brans’ argument about the localizability of gravitational potential energy has an even
more radical consequence — one found in the excerpt from Misner, Thorne, and Wheeler
on energy localization in the gravitational field found in the previous chapter. If you can
eliminate the action of the gravitational field point by point throughout the laboratory by a
careful choice of geometry that, for us external observers, has the effect of setting inertial
frames of reference into accelerated motion with respect to the walls, floor and ceiling of
the lab, it seems reasonable to say that there is no gravitational field, in the usual sense of
the word, present in the lab. This is what is meant when people say that GRT
“geometrizes” the gravitational field. In this view there are no gravitational forces. Gravity
merely distorts spacetime, and objects in inertial motion follow the geodesics of the
distorted spacetime. The only real forces in this view are non-gravitational. Inertia, of
course, is a real force. But if you believe that there aren’t any real gravitational forces, then
the origin of inertia remains “obscure” — as Abraham Pais remarked in the quote at the
outset of this chapter — for it isn’t a result of the electromagnetic, weak, or strong
interactions (and can’t be because they are not universal), and that leaves only gravity.

> Or Einstein’s vector approximation equation for the force exerted by spectator matter that is accelerating
on other local objects.
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But we’ve excluded gravity because we know that there aren’t any gravitational forces.
And the origin of inertia remains a mystery.

There may not be any “real” gravitational forces in GRT, but there is “frame dragging.”
That is, in the conventional view, matter can exert a force on spacetime to produce frame
dragging, but it can’t act directly on the matter in the possibly dragged spacetime. If this
sounds a bit convoluted, that’s because it is. Let’s illustrate this point.

About the time that Thorne and his graduate students were introducing the rest of us to
traversable wormholes, a committee of the National Academy of Sciences was doing a
decadal review of the state of physics, producing recommendations on the areas of
physics that should be supported with real money. One of their recommendations was
that Gravity Probe B should be supported because, allegedly, no other test of
“gravitomagnetism” was contemplated, and this was an important, if difficult and expen-
sive, test of GRT.

Ken Nordtvedt, a physicist with impeccable credentials who had proposed the
“Nordtvedt effect,”® then being tested by ranging the distance of the Moon with a laser,
but who had not been a member of the decadal survey committee, pointed out that the claim
was just wrong. He noted that even in doing routine orbit calculations, unless care was
taken to use special frames of reference, one had to take account of gravimagnetic effects to
get reasonable results. Using “parameterized post Newtonian” (PPN) formulation of
gravity, a formalism that he and others had developed as a tool to investigate a variety of
theories of gravity some 20 years earlier, he showed explicitly how this came about.

In the course of his treatment of orbital motion, Nordtvedt drew attention to the fact that
gravity predicts that linearly accelerated objects should drag the spacetime in their
environs along with themselves since the gravitational vector potential does not vanish.’
Nordtvedt’s 1988 paper on the “Existence of the Gravitomagnetic Interaction” where he
discussed all this is excerpted in Addendum #3 at the end of this chapter. In effect,
he recovered the same basic result as Einstein and Sciama, only where they had talked
about gravitational forces acting on local objects, Nordtvedt put this in terms of “frame
dragging.”®

Are they the same thing? Well, yes, of course they are. The reason why you may find
this confusing is because in the case of everything except gravity, one talks about the
sources of fields, the fields the sources create, and the actions of fields in spacetime on
other sources. That is, spacetime is a background in which sources and fields exist and
interact. In GRT spacetime itself is the field. There is no background spacetime in which
the gravitational field exists and acts. Since there is no background spacetime, GRT is
called a “background independent” theory.

6 The Nordtvedt effect proposes that gravitational potential energies do contribute to the mass-energy of
things and predicts (small) deviations from the predictions of GRT that would follow. Such effects have
not been observed.

"He also predicted that the masses of things should vary as they are accelerated, an effect of the sort that
we’ll be looking at in the next chapter.

8 Nordtvedt considered only a rigid sphere of uniform density of modest dimensions. He did not extend the
argument to the case where the sphere is the entire universe, as did Sciama.
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It is this background independence that makes gravity and GRT fundamentally differ-
ent from all other fields. And it is the reason why “frame dragging” is fully equivalent to
the action of a gravitational force. If you want to preserve the configuration of a system
before some nearby objects are accelerated, when the nearby objects begin to accelerate
you have to exert a force that counteracts the effect of the frame dragging produced by the
acceleration of the nearby objects. When you do that, what do you feel? An inertial
reaction force — the force produced by the action of the dragged spacetime, which is
produced by the gravitational action of the accelerated nearby objects. By interposing
frame dragging we’ve made it appear that no gravitational force is acting. But of course
gravity is acting, notwithstanding that we’ve introduced the intermediary of frame drag-
ging to make it appear otherwise.

When only nearby objects are accelerated to produce frame dragging, as Einstein noted
for the equivalent force he expected, the predicted effects are quite small. When it is the
universe that is accelerated, it is the full normal inertial reaction force that is felt if you
constrain some object to not accelerate with the universe. Why the difference? Because when
the entire universe is “rigidly” accelerated, the interior spacetime is rigidly dragged with it,
whereas nearby objects, even with very large masses, produce only small, partial dragging.

You may be thinking, yeah, right, rigidly accelerating the whole universe. That would
be a neat trick. Getting the timing right would be an insuperable task. The fact of the
matter, nonetheless, is that you can do this. We all do. All the time. All we have to do is
accelerate a local object. Your fist or foot, for example. The principle of relativity requires
that such local accelerations be equivalent to considering the local object as at rest with the
whole universe being accelerated in the opposite direction. And the calculation using the
PPN formalism for frame dragging (with GRT values for the coefficients in the equation
assumed) bears this out. At the end of his paper on gravimagnetism Nordtvedt showed that
a sphere of radius R and mass M subjected to an acceleration a drags the inertial space
within it as:

sa(r,f) = — (2 F2y 4 %) U(Crz ) a 2.8)

where the PPN coefficients have the values y = 2 and o) = 0 for the case of GRT and
U(r,1) is the Newtonian scalar potential, that is, U = GM/R. So we have four times ¢
(changing back to the notation of Sciama’s work on Mach’s principle) equal to ¢? to make
da = ain Eq. 2.8; that is, if the universe is accelerated in any direction, spacetime is rigidly
dragged with it, making the acceleration locally undetectable.

You may be concerned by the difference of a factor of 4 between the Nordtvedt result
and Sciama’s calculation. Factors of 2 and 4 are often encountered when doing
calculations in GRT and comparing them with calculations done with approximations
in, in effect, flat spacetime. In this case, resolution of the discrepancy was recently
provided by Sultana and Kazanas, who did a detailed calculation of the contributions to
the scalar potential using the features of modern “precision” cosmology (including things
like dark matter and dark energy, and using the particle horizon rather than the Hubble
sphere), but merely postulating the “Sciama force,” which, of course, did not include the
factor of 4 recovered in Nordtvedt’s calculation. They, in their relativistically correct
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calculation, found ¢ to have only a quarter of the required value to make the coefficient of
the acceleration equal to one. Using the general relativistic calculation, with its factor of 4
in the coefficient, makes the full coefficient of the acceleration almost exactly equal to one
— as expected if Mach’s principle is true.’

You might think that having established the equivalence of frame dragging by the
universe and the action of inertial forces, we’d be done with the issue of inertia. Alas, such
optimism is premature. A few issues remain to be dealt with. Chief among them is that if
¢ = GM /R, since at least R is changing (because of the expansion of the universe), it
would seem that ¢p = ¢?> must just be an accident of our present epoch. However, if the laws
of physics are to be true everywhere and during every time period, and inertial reaction
forces are gravitational, then it must be the case that ¢ = ¢? everywhere and at all times if
Newton’s third law of mechanics is to be universally valid.

Well, we know that the principle of relativity requires that ¢, when it is locally
measured, has this property — it is a “locally measured invariant.” So, perhaps it is not
much of a stretch to accept that ¢ is a locally measured invariant, too. After all, GM/R has
dimensions of velocity squared. No fudging is needed to get that to work out right. But
there is an even more fundamental and important reason to accept the locally measured
invariance of ¢: it is the central feature of the “Einstein Equivalence Principle” (EEP) that
is required to construct GRT. As is universally known, the EEP prohibits the “localization”
of gravitational potential energy. That is, it requires that whenever you make a local
determination of the total scalar gravitational potential, you get the same number, what-
ever it may happen to be (but we know in fact to be equal to ¢?). Note that this does not
mean that the gravitational potential must everywhere have the same value, for distant
observers may measure different values at different places — just as they do for the speed of
light when it is present in the gravity fields of local objects. Indeed, this is not an accident,
because ¢ and c are related, one being the square of the other.

Should you be inclined to blow all of this off as some sort of sophistry, keep in mind
that there is a compelling argument for the EEP and the locally measured invariance of ¢ —
the one constructed by Carl Brans in 1962 that we’ve already invoked. If you view the
gravitational field as an entity that is present in a (presumably flat) background spacetime —
as opposed to the chief property of spacetime itself (as it is in GRT) — it is easy to believe
that gravitational potential energies should be ‘“localizable” — that is, gravitational
potentials should have effects that can be detected by local measurements. Brans pointed
out that were this true, it would be a violation of the principle of relativity as contained in
the Equivalence Principle. Why? Because, as mentioned above, you would always, with
some appropriate local experiment, be able to distinguish a gravitational field from
accelerated frames of reference.

°See: J. Sultana and D. Kazanas, arXiv:1104.1306v1 (astro-ph.CO, later published in the Journal of
Modern Physics D). They find that the “Sciama” force is one quarter of that needed for an exact inertial
reaction force. The factor of 4 discrepancy arises from the fact that Sultana and Kazanas simply assumed
the “Sciama” force without deriving it from GRT, and Sciama’s calculation is not exactly equivalent to a
general relativistic calculation like Nordtvedt’s. The difference is the factor of 4 that when multiplied
times their result returns 1 almost exactly.
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Brans’ way was to measure the charge to mass ratios of elementary particles. An even
simpler, cruder way to make the discrimination between gravity field and accelerated
reference frame is to drop stuff. You won’t be able to tell the difference between a gravity
field and accelerated frame of reference by the way things “fall” since they all “fall” with
the same acceleration in both cases, irrespective of their masses or compositions. But you
will be able to tell by how big a dent in the floor they make — because their masses are
presumably different when gravity is present, versus when it is not, and bigger masses
make bigger dents. Brans’ argument makes clear that the EEP must be correct if the
principle of relativity is correct — and that Einstein was wrong in 1921 when he assumed
that the piling up of spectator matter would change the masses of local objects. Notwith-
standing that the non-localizability of gravitational potential energies, however, the fact
that inertial reaction forces are independent of time and place requires that the masses of
things be equal to their total gravitational potential energies. That is, E = mc? and Egqy
=m¢,s0if E = Eggyand ¢ = ¢? as Mach’s principle demands, we have a simple identity.

ANOTHER EXAMPLE

To bring home the full import of the foregoing discussion of GRT and Mach’s principle,
we briefly consider a slightly more complicated example than that used so far. Instead of
considering a test body in an otherwise uniform universe, we look at the behavior of a test
object (with negligible mass) in the vicinity of Earth. In Newtonian physics we say that the
mass of Earth produces a gravitational field in its vicinity that exerts a force on the test
object. If the test object is unconstrained, it falls toward the center of Earth with an
acceleration of one “gee.” We can arrest this motion by applying an upward force with
equal magnitude, balancing the “force” of gravity. The agent applying the upward
balancing force, of course, experiences the downward force which he or she attributes to
Earth’s gravity. This is the commonplace explanation of these circumstances that even
relativists intuitively recognize.

The general relativistic explanation of the circumstances of our test body in proximity
to Earth, however, is fundamentally different. Earth does not produce a gravity field that
acts to produce a force on the test body. Earth does produce a local distortion of spacetime
(which is the gravity field), changing the local inertial structure of spacetime from the
otherwise flat character it would have (as measured by the WMAP project). As a result, if
our test body engages in unconstrained motion, it responds inertially and finds itself in a
state of free fall. Despite the fact that the test body appears to us to be accelerating, and we
intuitively assume that accelerations are the consequence of the application of forces, no
forces act on the falling test body.

What happens, then, when we apply a constraining force to the test body to stop its free
fall acceleration? Does this somehow turn on Earth’s gravity force to balance the
constraining force we have applied? No. You can’t turn gravity off and on (yet). The
balancing force that you feel is the inertial reaction force that arises in response to the
“arresting” force that you have applied to the test object. Your arresting force has actually
produced acceleration of the test object — with respect to local inertial frames of reference



Another Example 43

that are in free fall. The force that we normally ascribe to the gravitational action of Earth,
which is quite real, is not produced by Earth. It is produced chiefly by the distant matter in
the universe. The reason why we associate it with the action of Earth is because
Earth determines the extent of the local distortion of inertial spacetime, and thus the
amount of acceleration required to arrest the inertial motion of objects in the vicinity of
Earth’s surface.

One may ask: is it really necessary to adopt this arguably very odd way of looking at the
circumstances that seem to make such intuitive sense when viewed from the Newtonian
point of view? That is, can we in some sense accept GRT, but take the above description as
an “equivalent representation” to the Newtonian viewpoint with its objective gravity field
that produces forces on nearby objects? No. The representations are in no sense equivalent.
The reason why is the EEP. The geometrization of the gravitational field in GRT
depends on the complete indistinguishability of accelerated reference frames from the
local action of gravity fields.

There are those who argue that the presence of tidal effects in all but (unphysical)
uniform gravity fields always allow us to distinguish gravity fields from accelerated
reference frames, but this is a red herring. We can always choose our local Lorentz frame
sufficiently small so as to reduce tidal effects to insignificant levels, making the two
types of frames indistinguishable. Were gravitational potential energies localizable,
however, we would be faced with a real violation of the indistinguishability condition
that would vitiate field geometrization. Using either Brans’ charge to mass ratios, or the
cruder dents criterion, no matter how small we make the region considered, we can
always make determinations that tell us whether we are dealing with a gravity field or an
accelerated reference frame, because, unlike tidal forces, charge to mass ratios and dents
don’t depend on the size of the region considered. They are so-called “first” or “lowest”
order effects.

The foregoing considerations are sufficient in themselves to reject attempts to “objec-
tify” static gravity fields. But they are attended by an even stronger argument. If local
gravitational potential energies really did contribute to locally observable phenomena,
then ¢/c* = 1 everywhere and at all times would not in general be true. Consequently,
inertial reaction forces would not always equal “external” applied forces, and Newton’s
third law would be false. That would open the way to violations of the conservation of
energy and momentum. If you’re trying to make revolutionary spacecraft, you may not
think this necessarily bad. It is.

As we have now seen, the principle of relativity has present within it a collection of
interlocking principles — one of which is Mach’s principle, which says both that inertial
reaction forces are the gravitational action of everything in the universe, and the inertia
of objects is just their total gravitational potential energy (divided by c¢?). Objects are to
be understood as including everything that gravitates (including things we do not yet
understand in detail like dark matter and dark energy). Are these principles ones that can
be individually rejected if we don’t like them without screwing up everything else? No.
If the principle of relativity is correct, then the EEP and Mach’s principle follow
inexorably. If either the EEP or Mach'’s principle is false, then so, too, is the principle
of relativity — and Newton’s laws of mechanics. That’s a pretty high price to pay for
rejecting a principle you may not care for.
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Two issues remain to be addressed in a little detail. One is the instantaneity of inertial
reaction forces. The other is how Mach’s principle squares with traditional gravity wave
physics. We address inertial reaction forces and how they relate to gravity wave
physics first.

INERTIAL REACTION FORCES AND GRAVITY WAVE PHYSICS

It has been known since Einstein created GRT in 1915 that his theory predicted
propagating disturbances in the gravitational field, that is, it predicted “gravitational
waves.” The whole business of gravity waves and how they are generated by and interact
with matter sources, however, was at times quite contentious. Should you want to know
the details of how all of this developed, Dan Kennefick has written an outstanding
history of the subject: Traveling at the Speed of Thought: Einstein and the Quest for
Gravitational Waves.

Most, if not all, of the issues of debate were settled many years ago now. One of the
issues was the manner in which the prediction is calculated. As noted above, exact
solutions of the full non-linear Einstein field equations are few and far between. One of
the standard techniques for dealing with this is to invoke the “weak field approximation,”
where you assume that the Einstein tensor (describing the geometry of spacetime) can be
written as the “Minkowski” metric of flat spacetime with an added “perturbation” metric
field that accounts for gravity, as mentioned earlier in this chapter. Since the flat spacetime
metric in this approach is effectively a “background” spacetime unaffected by the presence
of matter and gravity fields, Einstein’s theory is effectively “linearized” by this procedure.
With a few further assumptions, Einstein’s field equations can be put in a form that closely
resemble Maxwell’s equations for the electromagnetic field — as Einstein himself did in his
discussion of Mach’s principle mentioned above, and Sciama and Nordtvedt (among many
others) subsequently did.

Solutions of Maxwell’s equations have been explored in great detail in the roughly
century and a half since their creation. The standard techniques include classification
according to the disposition of the sources of the fields and their behavior (how they
move). This leads to what is called a “multipole expansion” of the field, each component
of the field being related to a particular aspect of the distribution and motion of its sources.
The simplest part of the field in this decomposition is the so-called “monopole” compo-
nent, where the sources can be viewed as consisting of a single “charge” located at one
point in spacetime.

In electromagnetism the next least complicated source distribution is the so-called
“dipole” component. Electrical charges come in two varieties: positive and negative, and
the dipole component of a multipole expansion consists of the part that can be
characterized by a positive charge located at one point and a negative charge located
somewhere else in spacetime. The measure of this charge distribution is called its dipole
“moment,” defined as the product of the charges times the separation distance between
them. If the dipole moment of the dipole component of the field is made to change, the
changes in the surrounding field are found to propagate away from the charges at the speed
of light. The propagating disturbance in the field is the “radiation” field. Non-propagating
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fields are called “induction” fields, as they are induced by the presence of sources of the
field and do not depend on their moments changing.

The next term in the multipole expansion for source distributions and their associated
field components is the so-called “quadrupole” term. It is the part of the field that takes into
account the simplest charge distribution for sources of the same sign (positive or negative
in the case of electromagnetism) that cannot be covered by the monopole term.
It corresponds to two charges of the same sign separated, like the dipole distribution, by
some distance in spacetime. Just as there is a dipole moment, so, too, is there a quadrupole
moment. And if the quadrupole moment changes, like the dipole term, a propagating
disturbance in the field is produced.

Since there are no negative masses (yet), and the vector approximation of GRT is a
vector theory analogous to Maxwell’s equations for electrodynamics, it is found that the
“lowest order” radiative component of the gravitational field is that produced by sources
with time-varying quadrupole moments. An example is a dumbbell spinning about the axis
of symmetry that passes perpendicularly through the bar separating the bells. Another
more fashionable example is a pair of black holes in orbit around each other. An example
that does not involve spinning stuff is two masses separated by a spring that are set into
oscillatory motion along their line of centers. Even in the case of orbiting black holes, the
amount of momenergy involved in the gravitational radiation is exceedingly minute. (This
is the stuff being sought with the Laser Interferometer Gravitational wave Observatory,
with a price tag now approaching a gigabuck.) Laboratory scale gravitational quadrupoles,
even operating at very high frequencies, produce hopelessly undetectable amounts of
gravitational radiation.'’

What does all this have to do with inertial reaction forces? Well, as Sciama was at pains
to point out, his calculation of those forces show two things: one, they depend on the
acceleration of sources; and two, their dependence on distance in his gravelectric field
equation goes as the inverse first power, not inverse square. These are the well-known
signatures of radiative interactions. It would seem then that inertial reaction forces should
involve radiation, and that they should be called radiation reaction forces. But there is a
problem. The quadrupole radiation given off by an accelerating massive object is incredi-
bly minute. And the monopole component of the field in electrodynamics is non-radiating.
How can this be squared with the fact that inertial reaction forces are, by comparison,
enormous, decades of orders of magnitude larger than quadrupole radiation reaction? To
answer this question we must first tackle the instantaneity of inertial reaction forces.

'The field strength of gravitational radiation depends on the frequency at which it is emitted. Gravita-
tional waves, all other things held constant, depend on the fifth power of the emission frequency. This
strong frequency dependence has led some to speculate that very high frequency gravitational waves might
be used for propulsive purposes. Since the momenergy in gravity waves produced by human scale sources
is so hopelessly minute, even allowing for unrealistically high frequency sources, gravity waves hold out
no promise of practical scale effects.
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THE INSTANTANEITY OF INERTIAL REACTION FORCES

The immediate fact of inertial reaction forces is that they respond to applied forces
instantaneously. Why? Well, if you believe, as Newton and legions after him have, that
inertia is an inherent property of material objects needing no further explanation, then this
question needs no answer. The problem with this view, of course, is the fact noted
famously by Mach that inertial frames of reference seem to be those in inertial motion
with respect to the “fixed stars.” Today we would say inertial motion with respect to the
local cosmic frame of rest, and that, remarkably, isn’t rotating. This suggests that the stuff
out there has something to do with inertia. But it is so far away, typically billions of light-
years distant. How can that produce instantaneous effects?

The easy answer to this question is to assert that the distant stuff produces a gravity
field, which we know to be spacetime in GRT, here, and when we try to accelerate
anything in spacetime, spacetime pushes back. Since the local spacetime is the gravity
field of the distant stuff, obviously we should expect local inertia to be related to the distant
stuff. This is the “local pre-existing field” argument.

Sounds good, doesn’t it? It is, however, a flawed view of things, as was made evident by
Sciama’s argument back in the early 1950s. As we’ve noted already, Sciama used a little
trick to avoid a tedious calculation involving Lienard-Wiechert potentials, Green’s
functions, and a lot of associated mathematical machinery. To calculate the effect of
very distant matter on a local accelerating body, he noted that from the perspective of the
local body, the entire universe appears to be accelerating rigidly in the opposite direction.
The apparent rigid motion provides the justification for removing the velocity from the
integral for the vector potential. Sciama, of course, knew that this was just a trick to avoid a
messy integration, for, as already mentioned, he was quick to point out that distance
dependence of the scalar gravitational potential was inverse first power, rather than the
inverse second power of Newtonian gravity. Those familiar with the process of radiation
immediately recognize the inverse first power as the signature of a radiative interaction.
What Sciama’s calculation (and those of Einstein, Nordtvedt, and others) shows is that
inertial reaction forces are conveyed by a radiative process. Inertial forces are not the
simple passive action of a pre-existing field that acts when local objects are accelerated.

A way to visualize what’s going on here is to consider what happens to the spacetime
surrounding a local object that is given a quick impulsive acceleration. Before the
acceleration, its gravity field is symmetrically centered on it. The same is true shortly
after the impulse. But the impulse displaces the center of symmetry of the field from the
prior center of symmetry. That produces a “kink” in the gravity field, like that shown in
Fig. 2.1. The radiative nature of the interaction means that the kink induced in the field by
the impulsive acceleration'' propagates outward from the object during the acceleration at
the speed of light.

It is the production of the kink in the field by the source, not the field itself, that
produces the inertial reaction force on the source and accelerating agent. In electrodynam-
ics, this is known as the problem of “radiation reaction.” Should you trouble yourself to

1 . P .
The technical term for such an acceleration is a “jerk.”
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Fig. 2.1 The “kink” diagram. When a source of the gravitational field is in a state of inertial
motion, it carries its field, represented by the /ines radiating from the source’s location, along
with it without distortion. If the source is sharply accelerated, and then decelerated, so that it
moves after the “jolt” as it did before, a “kink” is introduced into the field lines. The kink does
not move to infinity at once. It propagates outward at the speed of light

read up on this in, say, Feynman’s Lectures on Physics, or pretty much any advanced text
on electrodynamics, you’ll find that this is a messy problem with some very curious
features, for example, “pre-acceleration,” where an object starts to accelerate before the
force producing the acceleration acts (as Dirac showed in a classic paper on electromag-
netic radiation reaction published in 1938). All those problems carry over to the gravity
case if inertial reaction forces are forces of radiative reaction — as seems to be the case now
that the WMAP results are known.

Now, there are two problems here. The first is that the kink in the field is normally taken
as due to the monopole term in the multipole expansion, and it is allegedly non-radiative.
We will deal with this issue presently. The second problem is that if the coupling between
the test object and the distant matter in the universe is carried by the kink in the field
propagating at the speed of light, it will take billions of years for the kink to reach the
distant matter, and billions of years for a return signal to get back to the accelerating
object. Inertial reaction forces, however, are instantaneous. Push something and it pushes
back immediately. How can the distant matter in the universe act instantly on an object
when it is accelerated by an external force without violating the speed limit, ¢, of SRT?

ACTION AT A DISTANCE AND “ADVANCED” WAVES

The simplest, most elegant way to deal with the problems just mentioned was worked out
for electrodynamics by John Wheeler and Richard Feynman in the 1940s. Their theory,
intended to deal with the problems attending classical electron theory (infinite self-
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energies,'” radiation reaction, and so forth), goes by the name “action-at-a-distance” or
“absorber” electrodynamics. It is a scheme designed to account for seemingly instanta-
neous radiation reaction forces that are produced by an interaction with a distant
“absorber.” To do this, Wheeler and Feynman noted that the propagating solutions to
“classical” wave equations can either be “retarded” — that is, propagate forward in time —
or “advanced” — that is, propagate backward in time.

Physically and mathematically, there is no discernible difference between the two
classes of solutions. Since it appears to us that waves propagate into the future, we just
ignore the solutions that propagate backward in time. After all, we do not appear to be
constantly buffeted by waves coming back from the future.

The business of advanced waves can be a bit confusing, so we make a brief foray into
this topic to ensure that we are all on the same page. The usual story about the role of time
in the laws of physics is that the laws of physics possess a property called “time reversal
symmetry.” That is, you can replace the time 7 with —¢ everywhere in your equations, and
the processes described by the time-reversed equations are just as valid as the original
equations. Another way this is sometimes illustrated is to film some process running
forward in time, and then point out that if the film is run backward, the processes depicted
also obey the laws of physics, albeit the time-reversed laws.

The fact that the laws of physics are time-reversal invariant has led to endless
speculations on “the arrow of time,” and how time could be asymmetric given the
symmetry of the underlying laws. Philosophers, and physicists with a philosophical bent,
seem to be those most prone to delving into the mysteries of time. We’ll be concerned here
with a much more mundane problem: How exactly do advanced waves work?

A commonplace example used to illustrate advanced waves is the spreading of ripples on a
pond when a rock is thrown into the middle. When the rock hits the water, it sets up a series of
waves that propagate from the point of impact in symmetrical circles toward the shoreline. If
we make a film of this sequence of events and run it backward, we will see the waves forming
near the shoreline, and then moving in concentric circles of decreasing diameters toward the
center. And when the waves arrive at the center, the rock will emerge from the water as though
thrust from the depths by the waves. This wave behavior is illustrated in Fig. 2.2 as sequences
of time-lapsed pictures of waves, with time proceeding from left to right. The normal view of
things is shown in the upper strip of pictures, and the reversed in the lower strip.

The problem with this picture is that when we run the movie backward to supposedly
reverse the direction of time, what we really do — since we can only run the movie forward
in time, regardless of which end of the movie we start with — is run the waves backward in
space as the movie runs forward in time. A true advanced wave starts in the future at the
shoreline and propagates backward in time toward the center of the pond, something we

12 Self energy in electrodynamics arises because the parts of an electric charge repel the other parts of the
charge, and work must be done to compress the parts into a compact structure. The energy expended to
affect the assembly is stored in the field of the charge. When the electron was discovered by J. J. Thomson
in 1897, it was not long until H. A. Lorentz and others suggested that the electron’s mass might be nothing
more than the energy stored in its electric field (divided by A. They used this conjecture to calculate the
so-called “classical electron radius” that turns out to be about 10~'* cm. But should you assume that the
size of the electron is zero, the energy of assembly turns out to be infinite.
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Fig. 2.2 The top set of frames, reading left to right, show waves propagating forward in time and
space as they spread from a rock being thrown into a pond. When people talk about “advanced”
waves, they often remark that waves propagating backward in time are those seen by running a
movie of the waves in reverse, producing the sequence of pictures in the bottom row. However,
the bottom row shows waves propagating backward in space as time goes forward

cannot actually see from the present. So, when we watch a movie running backward, we
must imagine that we are running backward in time, notwithstanding that we are actually
“moving” forward in time.

What we do see, moving forward in time, when and advanced wave comes back from
the future is a wave that appears to be propagating away from the impact of the rock
toward the shoreline of the pond. That is, the advanced wave looks exactly like a retarded
wave. As long as the advanced wave coming back from the future didn’t propagate farther
into the past than the rock hitting the water that initiated all of the waves, neither you nor I
could tell whether the waves in the pond had any advanced component. So, using retarded
and advanced waves to get distant objects to “instantaneously” affect local objects
becomes finding a solution for wave action that cancels the advanced waves at the source
(the rock hitting the water) to keep them from traveling farther into the past.

What Wheeler and Feynman noted was that if a forward in time propagating wave in
the electromagnetic field was eventually absorbed by enough material out there in the
distant universe, and as it was absorbed it produced an “advanced” wave propagating
backward in time, all of the contributions from all of the parts of the absorber would just
get back to the source at exactly the right time to produce the apparent force of radiative
reaction. And as they passed the origin of the waves into the past, if the waves were half
advanced and half retarded, they would cancel out the “advanced” wave propagating from
the source into the past. So future events would not indiscriminately screw up the past (and
our present). But the half-advanced waves coming back from the future provide a way for
arbitrarily distant objects to affect events in the present seemingly instantaneously. In the
case of gravity, this allows the whole universe to act on any object that’s accelerated by an
external (non-gravitational) force with an equal and opposite force. This solution to the
problems of radiation reaction is so neat it almost has the appearance of a cheap tourist
trick, too good to be true. But it actually works.
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Some exceedingly important features of action-at-a-distance electrodynamics must be
mentioned, as they figure critically into the understanding of inertial reaction forces when
the theory is extended to include gravity. Of these, far and away the most important is the
fact that there is no radiation as understood in conventional electrodynamics in the action-
at-a-distance version. It has not been mentioned yet, but in addition to acceleration
dependence and inverse first power of the distance dependence of the “amplitude” or
field strength13 of the radiation field, there is another condition that a radiation field must
satisfy: it must have a “freely propagating” non-vanishing energy density as it approaches
“asymptotic infinity.” This property gives the field “independent degrees of freedom.”

What this means, in simple physical language, is that once a radiation field has been
launched by the acceleration of some charges of the field, the radiation is “decoupled”
from both the source (which can no longer affect it) and the sinks (just sources soaking up
the field), if any, that ultimately absorb it. Note that the launching of the radiation does not
depend on it ever being absorbed by sinks out there somewhere in the future. That’s what
“freely propagating at asymptotic infinity”’ means. Note, too, that there are no classical
radiation fields in action-at-a-distance electrodynamics, for no electromagnetic
disturbances (that might be considered radiation in classical theory) are ever launched
without the circumstances of their eventual absorption being established before they are
launched. That is, there are no field “modes” with “independent degrees of freedom,” no
loose radiation that might make it to “asymptotic infinity.”

Why is this the case? Because the theory only works if the eventual absorption of all
disturbances is guaranteed so that the requisite “advanced” disturbances, needed to
combine with the “retarded” disturbances, are present to yield the world as we see it.
What this means it that if your field theory is an action-at-a-distance theory, you can have
“monopole” propagating disturbances in the field that carry energy and momentum — as
the “kink” diagram suggests ought to be possible — and that they can have the acceleration
and inverse first power of the distance characteristics of classical radiation, but they will
not be considered “radiation” by those ignorant of action-at-a-distance theory.

You may ask at this point, how can such radically different results be obtained from
action-at-a-distance and classical field theory? The answer is really quite simple. Michael
Faraday, the pre-eminent experimental physicist of the nineteenth century, hated action-at-
a-distance. In his day, it was the chief feature of Newtonian gravitation, and even Newton
himself had thought that instantaneous action of gravity over arbitrarily large distances
stupid.'* Indeed, Newton’s famous “hypotheses non fingo” [I make no hypotheses {about

'3 The “amplitude” (for an oscillatory field) or “field strength” (the magnitude of the scalar potential or
field vector) is not the same as the “intensity” of the field. The intensity is proportional to the square of the
field strength. So, a field whose strength decreases as 1/r has an intensity that decreases as 1/r%, as does
electromagnetic radiation (light), for example. When the intensity decreases at this rate, some energy just
barely makes it to “asymptotic infinity.” If the intensity decreases faster than 1/72, as it does for any field
whose strength decreases more quickly than 1/r, then no freely propagating energy makes it to asymptotic
infinity.

'4 As Faraday discovered in the early 1840s when Newton’s “third letter to Bentley” was first published.
Hitherto, Newton’s true views on action-at-a-distance were not generally known. After reading Newton’s
letter, it is said that Faraday became positively boorish regaling everyone with the news that Newton
rejected action-at-a-distance.
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the mechanism of gravity}] remark was his response to critics who assailed him about
action-at-a-distance.

Faraday, despite repeated attempts, never found a way to rid gravity of action-at-a-
distance. But he invented the field concept for electrodynamics to head off a similar fate
for electrical and magnetic phenomena. Maxwell incorporated Faraday’s concept into his
elaboration of the equations of electrodynamics. If you look at reality through “local”
eyes, this approach makes eminent good sense. After all, you can wiggle some electric
charges and launch an electromagnetic wave without giving any thought at all to what
eventually happens to the wave. For all you know, it may well end up propagating freely at
asymptotic infinity. If all you know about the totality of reality is emerging astronomical
knowledge of the galaxy, as was the case through the early twentieth century, this is
perfectly reasonable. But when you know more about cosmology, the know-nothing
strictly local view is not so obviously reasonable.

How can the classical “local” view be squared with the action-at-a-distance picture?
Well, we can’t just take some source distribution with a quadrupole moment, say, a
dumbbell, create a time varying quadrupole moment by spinning the dumbbell or making
the masses of the dumbbell accelerate along their line of centers with respect to each other.
That will just give us back the idiotically small radiation calculated by gravity wave
physicists. What’s missing in the dumbbell picture? The rest of the universe. How can we
include it? By taking note of the fact that it acts seemingly instantaneously, so we can
imagine that some non-negligible part of the whole universe is located in very close
proximity to one (or the other) of our dumbbell masses.

The dumbbell mass, if you will, anchors the local system in the universe. And this
anchoring mass must be present in any real system in order to accelerate the primary mass
to produce the “monopole” kink in the field depicted in Fig. 2.1. That is, the idealization of
a single mass that is accelerated is unrealizable, as there must always be a second reaction
mass against which the accelerating agent acts to produce the acceleration of the primary
mass. So all real accelerations necessarily involve quadrupoles.'® But when we are talking
about the monopole kink in the field of one of the masses, the second mass of the
equivalent quadrupole is a significant part of the mass of the universe. We can consider
the mass of the universe effectively present at the second dumbbell mass because of the
instantaneous action-at-a-distance character of inertial effects. The radiation produced by
this quadrupole is decades of orders of magnitude larger than that for the local dumbbell
quadrupole taken by itself. The reaction to the quadrupole radiation produced by the
effective universe-dumbbell system is the inertial reaction force that acts on the dumbbell
mass being accelerated.

There are obvious problems with carrying through a calculation of the sort just
sketched. Concentrating a large fraction of the mass of the universe at a point in proximity
to anything will recreate the initial singularity, and so on. But the point nonetheless

'S Two exceptions to this rule should be noted. First, a spherical object whose parts are undergoing a
uniform radial acceleration does not radiate as the quadrupole moment is and remains zero. While such an
expansion changes the radial tension in the field, it produces no “kink” in the field of the sort shown in
Fig. 2.1. Second, there are those who hope to find a way to couple an object directly to the distant matter in
the universe and produce accelerations without the need for an anchoring local mass. Such speculations are
sometimes referred to as “field effect” propulsion. Hope springs eternal.



52 Mach’s principle

remains that if you insist on doing a standard quadrupole calculation, you’ve got to get the
right quadrupole if you expect to get reasonable results. When you are considering inertial
reaction forces, the right quadrupole always includes the effective universe, and it acts
immediately and as if it were very, very nearby.

Wheeler and Feynman’s elegant solution to the problem of radiation reaction is the only
apparent way to get seemingly instantaneous reaction forces that depend on distant matter
without screwing up the dictum of the principle of relativity that limits signal propagation
velocities to the speed of light. Feynman may have harbored similar views, for he devoted
the first part of his Nobel address to absorber electrodynamics.'® In electrodynamics you can
hold either view, for the two are fully equivalent. But when you come to grips with Mach’s
principle, you find that this is the only convincing way to deal with inertial reaction
forces while preserving the finite signal velocity required by the principle of relativity.

When Mach’s principle was hotly debated in the 1960s, Fred Hoyle and Jayant Narlikar
figured this out and wrote papers and a book on the subject. No one paid much attention, it
seems.'’ Their contemporaries may have been influenced by Hoyle’s support for the “steady
state” cosmology, which was then losing credibility. Wheeler’s last book in the mid-1990s
was an attempt to evade action-at-a-distance by invoking “constraint” equations on “initial
data” that have instantaneous propagation (because they are “elliptic” rather than “hyper-
bolic””). Wheeler had abandoned the action-at-a-distance theory that he and Feynman had
developed 50 years earlier. However, this should be evaluated keeping in mind that the
propagating kink in the field is the field response to the acceleration of sources. Inertia is not
just the action of the pre-existing gravity field on sources as they accelerate.

In the 1980s, John Cramer adapted the Wheeler-Feynman theory to quantum mechanics
to explain “entanglement,” another instance of seemingly instantaneous signal propaga-
tion that is customarily explained away in less than completely convincing ways. Cramer’s
“transactional interpretation” of quantum mechanics has not yet attracted widespread
adherents. The culture of “shut up and calculate” has softened over the years. But serious
examination of alternate interpretations of quantum mechanics has yet to make it into the
mainstream of physics pedagogy.

Before Hoyle, Narlikar, and Cramer were others who saw the writing on the wall. Herman
Weyl, the father of “gauge theory,” famously remarked shortly after the first of the Wheeler-
Feynman papers on action-at-a-distance electrodynamics, “Reality simply is, it does not
happen.” And Olivier Costa de Beauregard made early attempts to apply it to quantum theory.

The reason why the action-at-a-distance view of radiation reaction meets such stiff
resistance is captured in Weyl’s remark just quoted. The passage of time is an illusion.

1o When I read it as a grad student in the 1960s, I thought he was nuts. But Feynman knew what he was
doing. Frank Wilczek recounts (in The Lightness of Being, pp. 83—84) a conversation with Feynman in
1982 about fields: “. .. He had hoped that by formulating his theory directly in terms of paths of particles in
space-time — Feynman graphs — he would avoid the field concept and construct something essentially new.
For a while, he thought he had. Why did he want to get rid of fields? ‘I had a slogan, ... The vacuum
doesn’t weigh anything [dramatic pause] because nothing’s there! ...”” Feynman initially thought that his
path integral approach captured the chief feature of the action at a distance theory: no freely propagating
radiation in spacetime.

'7 Paul Davies, author of many popular books on physics, however, recounts in his About Time that it was
attendance at one of Hoyle’s lectures on this topic that set him on his early research career.
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Indeed, “persistent illusion” was exactly the way Einstein characterized our notions of
past, present, and future and the passage of time to the relatives of his lifelong friend
Michel Besso after Besso’s death, shortly before his own. The past and the future are really
out there. Really. Not probably. You may think that this must all be a lot of nonsense
dreamed up by people who don’t have enough real work to fill their time. But let me point
out that if absurdly benign wormholes are ever to be built and actually work, then this
worldview must be correct. The past and the future must really “already” be out there. How
can you travel to a past or future that doesn’t “already” exist?

THE “RELATIONAL” AND “PHYSICAL” VERSIONS OF MACH’S PRINCIPLE

Should you find the forgoing confusing and contentious, you’ll doubtless be disappointed
to learn that we haven’t yet covered the full range of arguments involving Mach’s
principle. As arguments about Mach’s principle developed over the decades of the
1950s, 1960s, and 1970s, two distinct ways of “interpreting” the principle emerged. One
came to be called the “relationalist” view, and the other we shall call the “physical” view.

Serious arguments about Mach’s principle ceased to be fashionable in the mid-1970s.
A few hardy souls wrote about the principle in the late 1970s and 1980s, but no one paid them
much mind. Mach’s principle became fashionable again in the early 1990s, and Julian
Barbour and Herbert Pfister organized a conference of experts in the field held in Tiibingen
in the summer of 1993. The proceedings of the conference were published as volume six of
the Einstein Studies series with the title: Mach’s Principle: From Newton's Bucket to
Quantum Gravity (Birkhauser, Boston, 1994). This is an outstanding book, not least because
the questions, comments, and dialog were published, as well as the technical papers presented.

Both the relationalist and physical positions on Mach’s principle were on display at the
conference. Many of the attendees seem to have been convinced relationalists. The
essence of the relationalist position is that all discussion of the motion of massive objects
should be related to other massive objects; that relating the motion of objects to spacetime
itself is not legitimate. This probably doesn’t sound very much like our discussion of
Mach’s principle here. That’s because it isn’t. The relationalist approach says nothing at
all about the origin of inertial reaction forces. The physical view of Mach’s principle,
however, does. After the conference, one of the leading critics of Mach’s principle, Wolfgang
Rindler, wrote a paper alleging that Mach’s principle was false, for it led to the prediction
of the motion of satellites in orbit around planets that is not observed — that is, the motion
was in the opposite direction from that predicted by GRT. It was 3 years before Herman
Bondi and Joseph Samuel’s response to Rindler was published. They pointed out that
while Rindler’s argument was correct, it was based on the relationalist interpretation of
Mach’s principle. They argued that the physical interpretation that they took to be
exemplified by GRT and Sciama’s model for inertia gave correct predictions. Therefore,
Mach’s principle could not be dismissed as incorrect on the basis of satellite motion, as
Rindler had hoped to do. It seems that Einstein was right in 1922, and Pais in 1982, when
they remarked that Mach’s principle was a missing piece of the puzzle of the origin of
inertia. We should now know better. After all, the WMAP results show that as a matter of
fact space is flat, and it is certainly not empty, so if the principle of relativity, introduced by
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Galileo, is right, then Mach’s principle is correct, too. And we should simply drop all of
the arguments and assumptions that distract us from this conclusion.'®

MACH’S PRINCIPLE, STARSHIPS, AND STARGATES

You may be thinking that all of this Mach’s principle stuff is just too confusing and
contentious to take seriously. There must be another way — one with simple principles that
no one argues about — to make starships and stargates. Sorry. No such luck. The only way
to build starships and stargates is by making traversable absurdly benign wormholes. That
can only happen when we understand the role of inertia in gravity. It might seem to you, if
this is true, that we are doomed never to build such devices. It’s now a 100 years since
Einstein first tried to model Mach’s ideas in a vector theory of gravity, and we seem no
closer to getting a version of Mach’s principle that might collect a consensus.

The problem here is that Mach’s principle has been understood from the first days of
general relativity to be essentially a cosmological problem. Look at Einstein’s statement of
the principle in the quote at the beginning of this chapter. The geometry must be fully
specified in terms of the sources — that is, no solutions of the field equations should exist
when there are no sources, or when other “non-Machian” conditions (like rotation of the
universe) exist. The fact of the matter is that non-Machian, self-consistent solutions of
Einstein’s equations do exist. This has led some to the view that the principle should be
taken to be a boundary condition on the cosmological solutions of Einstein’s equations.
But even this approach yields equivocal results.

Let’s look at an example of what we’re talking about. In the years before Alan Guth and
others proposed the cosmological models containing the process of “inflation,” one of the
outstanding issues of cosmology was the so-called “flatness” problem. The then prevailing
preferred cosmological models — Friedman-Robertson-Walker (FRW) cosmologies —
could be classified as “open” [expands forever] or “closed” [expands to some finite radius
and then collapses] separated by a model that expands forever, but tends to zero expansion
at temporal asymptotic infinity. The separating model is characterized by spatial flatness
(and “critical” cosmic matter density) at all times. Even then (and now more so given the
WMAP results), the universe looked very flat at cosmological scale. As noted above, the
problem with the spatially flat model is that it is unstable. The slightest deviation from
exact flatness produces very rapid evolution away from flatness — but the universe has been
around for billions of years. The inflationary scenario invented by Guth and others, in fact,
was intended to address precisely this problem.

®1n this connection, Paul Davies relates an apposite story: “... I ventured: “What is the origin of the
random phase assumption?” To my astonishment and dismay, [David] Bohm merely shrugged and
muttered: “Who knows?”

“But you can’t make much progress in physics without making that assumption,” I protested.

“In my opinion,” replied Bohm, “progress in science is usually made by dropping assumptions!”

This seemed like a humiliating put-down at the time, but I have always remembered these words of
David Bohm. History shows he is right. ...
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Most cosmologists accept the inflationary model. But it doesn’t have the status of a
paradigm, not yet anyway. Other cosmological models are offered for other reasons. And
there is a camp that argues that the consensus cosmology is wrong for other reasons.
Hoping for a consensus to emerge on Mach’s principle in such circumstances is simply not
realistic. Frankly, the technical details of fashionable cosmological models are not impor-
tant here. If we want to build starships and stargates, do we need to wait until cosmologists
decide on some model and then see if it includes Mach’s principle? No! Whatever that
model, if it is ever found, turns out to be, it will be one with spatial flatness. Why? Because
spatial flatness is measured to be the fact of our reality. Spatial flatness in FRW cosmolo-
gies guarantees “critical” cosmic matter density obtains, and that guarantees ¢ = c>.
We know that for the EEP, Mach’s principle, and Newton’s third law to be true,
this condition must be true everywhere and at every time in local measurements. And
this must be true no matter what cosmological model you choose to believe in.

Now, building starships and stargates is not a matter of cosmology. It is a matter of
using the law of gravity and inertia at the local level. We want to find a way to manipulate
stuff we can lay our hands on and figure out how to make it produce effects that will make
it possible to effectively induce outrageous amounts of exotic matter. We may have to pay
attention to cosmological scale effects in some circumstances. But whether the fashionable
cosmological model is explicitly Machian is really irrelevant to what we are up to. So we
accept the physical version of Mach’s principle — the assertion that inertial reaction forces
are gravitational, and mass is just the total gravitational potential energy divided by the
square of the speed of light — and ask: does the principle lead to any effects that we might
be able to use to make starships and stargates? We address the answer to this question in
the next chapter. Here, to sum up, we note that one way to suppress the confusion
surrounding Mach’s principle is to codify the principle in the form of a simple law or
two. Imagine trying to do mechanics without Newton’s laws, or electrodynamics without
Maxwell’s equations, or relativity without Einstein’s laws. Therefore let’s propose the
adoption of the Mach-Einstein-Sciama laws of inertia:

First law: ¢ = ¢? locally always; or, inertial reaction forces are due to the gravitational
action of causally connected “matter”, where matter is understood as everything that
gravitates.

Second law: m = E/¢, or the mass of an entity (isolated and at rest) is equal to its non-
gravitational energy divided by the locally measured total gravitational potential.

A zeroth law might be added: Inertial reaction forces are instantaneous. But that is
arguably belaboring the obvious. The first and second laws, in contradistinction, are not
obvious. We will use these laws, and mostly ignore cosmology, to derive some interesting
local effects that may make stargates possible. Cosmology will only come back into our
consideration after those effects have been derived and some experimental work aimed at
detecting them has been presented.

ADDENDA

Addendum #1: On the Origin of Inertia Article



It is convenient to begin by calculating the potential at a test-particle that is
at rest in a universe containing no irregularities. Since our field equations have
the same form as Maxwell’s, we can use electrodynamic formulae to calculate
the potential, and to bring out the analogy with electrodynamics we use a similar
notation and terminology, but we emphasize that in this paper we shall be
concerned with purely gravitational phenomena.

Retardation effects are taken to arise in the same way as in electrodynamics,
so that the contribution of any region of the universe to the potential at a
point P at time ¢ is computed by ascribing to that region just the properties that
are observed at P at time .

We thus have for the scalar potential (8)

P
O=— j ie @

We use the minus sign in (1) because inertial mass then turns out to be positive,
but in fact either sign can be used (Section 4(vii)). The vector potential A
vanishes by symmetry.

We shall assume that matter receding with velocity greater than that of light
makes no contribution to the potential, so that the integral in (1) is taken over
the spherical volume of radius ¢7. An assumption of this sort is necessary since
we have naively extrapolated the Hubble law without considering relativistic
effects, and should give the correct order of magnitude. A relativistic treatment
is given in II.

Since the density is supposed uniform, (1) gives

D= —27p£2T2. (2)

Owing to our assumptions, the numerical factor 27 is only approximate.

We now calculate the potentials for the simple case when the particle moves
relative to the smoothed-out universe with the small rectilinear velocity —v(z).
In the rest-frame of the particle the universe moves rectilinearly with velocity v(z).
Now at time ¢ there will be observable at the particle, in addition to the Hubble
effect, a Doppler shift corresponding to v(¢) from all parts of the universe.
Hence, in computing the potential in the rest-frame of the particle at time 2,
we must ascribe to every region of the universe the velocity that is observed at
time ¢, that is, v(¢) +r/+.

Neglecting terms of order v2/c?, we have

DO = —27pcr?

as before. The vector potential no longer vanishes, but has the value

—— | Y
A= j,, 2 av. ®)
Since v is independent of 7, we can take it outside the integral. We then
ubtain
D
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Since the change of p with time is very small, the gravelectric part of the
field is approximately

A
E=—grad®—£c%?
_ Oov
=~ a

while the gravomagnetic field is
H=curlA=o.

“On the Origin of Inertia” by D.W. Sciama, Monthly Notices of the Royal Astronomical
Society, vol. 113, pp. 34-42. Reprinted under Wiley’s fair dealing policy.
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It has been conjectured that a “Mach’s principle” might lead to a dependence of the local Newtonian
gravitational constant, K, on universe structure, K-~ /R. Einstein and others have suggested that
general relativity predicts such a result. A closer analysis, however, including the carrying out of the
geodesic equations to second order, seems to indicate that this is not true and that the apparent “Mach’s
principle” terms involving total universe structure are really only coordinate effects. Further, the measure
of gravitating mass obtained in a local, proper Newtonian gravitational experiment is compared in a
coordinate-free way to an experimentally measurable inertial mass and found to be related to it in a way
independent of the rest of the universe. A generalization of these results is given. It is based on the fact
that in general relativity the only way the universe can influence experiments done in an electrically
shielded laboratory is through the metric and that this can be “transformed away”” to any degree of accuracy
for a sufficiently small laboratory. Consequences of this are summarized in Dicke’s “strong principle of
equivalence.” It is noted, however, that there are other statements which might be called “Mach’s

principles” which are satisfied in general relativity.

I. INTRODUCTION

HE principal idea which guided Einstein in

formulating the general theory of relativity was
the local equivalence of gravitational and inertial
effects, that is, the equivalence of a uniform gravita-
tional force field and a constant acceleration of the
reference frame. Another idea relating gravity and
inertia is Mach’s principle. This is less precisely
formulated but suggests that the inertial properties
of a body are determined by the distribution of matter
in the universe. Since the gravitational field interacts
with all matter, one could hope to see the Mach
principle relationship between inertial and distant
matter described in terms of the gravitational field.
To state this in a way independent of units, consider
the ratio of the inertial mass of a body to its active
gravitational mass.!

In particular, let us see that this ratio might be in a
static universe consisting only of a mass shell of radius
R and inertial mass M together with a relatively small
body of inertial mass 7 at its center. If we probe the
gravitational field of m with a small test particle, we
might expect from the E6tvés experiment that the
acceleration of the test particle is independent of its
mass. It certainly depends, however, on m and r and
conceivably on M and R. The fact that the Newtonian
theory of gravity is valid to a high degree of accuracy
suggests that for m<CM, <R, the acceleration is

a=—[m/rF(M,R)], (8Y)

where F is a function of dimensions mass over length
(velocity of light ¢=1). Dimensional analysis then

suggests
F=AM/R, (1.2)

*Based on part of a multilithed Ph.ID. thesis submitted to
Princeton University.

T National Science Foundation Predoctoral Fellow, 1957-1960.
Now at Loyola University, New Orleans, Louisiana.

1H. Bondi, Revs. Modern Phys. 29, 423 (1957).

where A is a constant dimensionless number. For a
more general type of universe with masses m, at
distances 7, from some point «, this might be extended to

F(x)=A4 30 ma/7. (1.3)

Until recently, experimental determinations of #
from (1.1) were possible only on the earth. The value
found is not inconsistent with (1.3), a positive value of
A in the neighborhood of 10° or 10!, and present astro-
nomical knowledge of m. and 7.. It is clear that in a
uniform universe, 7,~7,%, so that the dominant contri-
bution to the sum on the right side of (1.3) comes from
distant matter and the resulting F(x) is fairly constant
in space and time. This also is consistent with present
observations.

A comparison of (1.1) with the standard classical
Newtonian theory of gravity shows that F~! plays the
role of Newton’s “universal gravitational constant.”
However, if (1.3) is true, this number is not a universal
constant but depends on the distribution of mass in the
universe about the point where it is measured. To
investigate possible resulting changes in value of this
number, it is convenient to introduce a standard value
and refer variations to it. Specifically, let Ko/8r be
defined as the presently observed terrestrial value of
F(x)™. Ko/8m is thus a constant number of dimensions
length over mass. Then rewrite (1.1) as

Ko (81rm
a=——/—).
8rr? KDF)
This equation is identical with Newton’s if the quantity
in parentheses, m,=8mm/KF, is taken to be the active
gravitational mass! associated with m. Notice that by
definition of K, this gives m,=m at the present time
on earth. However, if (1.3) is true, a Cavendish-type
experiment interpreted in the context of a Newtonian
theory with fixed gravitational constant Ko/8r would
give a measurement of active gravitational mass s,

(1.4)

388
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yielding a ratio
m Koma
—=A4Y ,

my e 8mrg

1.5)

which would not necessarily always be unity.

Einstein? claims to find such a result in general
relativity. In order to study this problem, consider the
creation of relatively small masses m.’, at distances 74,
from the present standard laboratory in which, prior
to the creation of m.’, m/m,=1 by definition of Ko.
With .’ present, however, (1.5) then yields

Kom,

m
—=1+4

Mg

z

“new matter”

(1.6)
8wrd

If it is assumed that each Kom,'/8n7, is small compared
to unity, the weak-field equations might be used to
check (1.6). Einstein does this and arrives at

Komg Kogm
(1+ " )
“new matter” 8774 8mr?
Thus
m Komq
—=1+ X > (1.8)
My “new matter” 877,

which is identical with (1.6) if 4=1. Einstein argued
from this that since some matter contributes to the
ratio, m/m,, all the universe probably does (Sec. IT).
There has been some discussion?® of what the numerical
coefficient 4 of the sum in the right side of (1.8)
should be, and indeed the first approximation procedure
seems inadequate to resolve this. Consequently, the
equations of motion through second order will be
applied to this problem in Sec. II.

This result (1.8), or its corrected form (2.11), is
clearly coordinate dependent, however. Hence the
relationship between its numerical description of the
path of a particle and the actually observed path is
not defined without further analysis. The usual interpre-
tation of general relativity is based on the identification
of the imvariant theoretical measure of an interval,
proper time, with time experimentally measured in
some fundamental way, e.g., on an atomic clock. An
invariant measure of distance and thus acceleration
can be obtained from this by setting the velocity of
light equal to one. When this is done, the invariant
description of the path of a test particle relative to a
central mass is found to be approximately Newtonian
with coefficients independent of the rest of the universe.
(See Sec. IIIL.)

However, the number # appearing in the left side of
(1.5) has not yet been related to an experimentally
measured inertial mass. To remedy this, a description
of a process for invariantly studying the acceleration
of charged bodies in a known electric field is given. The

2 A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1955), 5th ed., pp. 99-108.

3 W. Davidson, Monthly Notices Roy. Astron. Soc. 117, 212
(1957).

GENERAL RELATIVITY

resultant ratio of “force” to acceleration is defined as
the inertial mass. For a simple theory of matter #ziners
is found to be just the m appearing in (1.5) (Sec. IV).
This procedure assumes given standards of charge and
time interval.

The independence of the relationship between the
two numbers, 7, and 7;ner, from the rest of the universe
is more generally true than the above special case
might indicate. In fact, assume that the space in the
neighborhood of an electrically shielded laboratory is
sufficiently flat that in a certain coordinate system the
differences between the metric components and those of
the Minkowskian, together with the first two derivatives
of these differences, are negligible over the laboratory.
Then, according to general relativity, if small masses,
charged or uncharged, are introduced into the labora-
tory, the description of their motions and interactions in
this coordinate system is independent of the rest of the
universe. This is due to the fact that once the laboratory
is shielded, the only way the rest of the universe could
influence it, according to general relativity, is through
the metric. If this is sensibly flat within, its influence
can be transformed away by a coordinate transforma-
tion, thus eliminating any effects from the rest of the
universe. This is Dicke’s “strong principle of equiv-
alence.” (See Sec. V.)

There are, however, other statements which might be
considered Mach’s principles. These are based on the
fact that in general relativity gravitational and inertial
forces have the same formal origin. (See Sec. V.)

II. EINSTEIN’S RESULTS

Gravity and general relativity being largely concerned
with the interaction between masses as masses, Einstein
was naturally interested in whether or not Mach’s
principle as discussed in Sec. I above was satisfied in
general relativity. Specifically, is the attraction and
resultant relative motion of two gravitating bodies
influenced by the rest of the universe?

Einstein investigated this in the weak-field approxi-
mation.? The metric he found to represent the gravita-
tional field due to a distribution of small masses corre-
sponding to a “density” o and having small velocities,
dx*/ds, can be written as

K fodV
go=1—— | —,
y
a(dx‘/ds)
go.=— —dV, (2.1)
27 7

K [odV
em—afi [57).

4R. H. Dicke, Science 129, 621 (1959). See also Revs. Modern
Phys. 29, 355 (19 7); J. Wash. Acad. Sci. 48, 213 (1958); Am. J.
Phys. 28, 344 (1960).
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on replacing Einstein’s imaginary time x* by the real
%= —ix* Here K is just the constant introduced in the
Einstein field equations and thus not yet related to Ko
or other observed numbers. Equation (2.1) is correct
only to first order in K/ odV/7, and dx'/ds. The
geodesic equation for a test particle in this field becomes

L (4avI=ve oA VXA 2.2
E[( +o)vl= a+a—xo+( XA)Xv, (22

where
v=dx/ds,

K [odV

f=— [ —
8w 7
K [ov
=— / —dV.
27 7

For simplicity, consider the application of these
results to the case of the motion of a test particle near
a small mass m at rest at the origin, all inside a static,
spherical shell of mass M, and radius R,,5 (2.2) now

becomes
d KM, Km Km 9 /1
) oo
da® 8rRs 8mr 8r dx\r.

Thus, (1+KM,/8wR,+Km/8nr) times the coordinate
acceleration of the test particle is just the Newtonian
term, to this approximation. Einstein interpreted this
by saying that the “inert mass is proportional to
14,2 or in (2.4) to 14 (K/8x)(M./R+-m/r). How-
ever, an equivalent statement, more convenient for
this discussion and in keeping with that of Sec. I, can
be made. Specifically, dividing (2.4) by [14-(K/8r)
X (M,/Rs+m/r)] gives, for v; instantaneously zero,

4 Km

—i

P () es
dx®  8w[14(K/8m)(M,/Rs+m/r)] dxi\r

(2.3)

This, in keeping with Einstein’s interpretation above,
would suggest that the locally measured Newtonian
active gravitational mass of m is

mo=m/[1+ (K/8x) (Ms/Retm/r)],  (2.6)

or that the effective, locally measured Newtonian
gravitational constant is

Kp=K/[1+ (K/87) (M /Rtm/D)].  @.7)

If this is true, a comparison of (2.6) with (1.5) would
show that a Mach’s principle in the sense of Sec. I
would be satisfied in general relativity, since the
number Kz in (2.7) measuring the attraction of # for

5 This example, while admittedly rather specialized, is sufficient
to illustrate the ideas under consideration. It should also be noted
that here KM,/R,&1 so that this does not correspond to the

total “universe mass shell” discussed in Sec. I and for which
KM/R~1.

Addenda

BRANS

test particles would depend on the mass distribution
M /R, in the rest of the universe. To clarify the relation
of (2.6) and (2.7) to the discussion in Sec. I, it is
necessary to consider M, and m as small additions to a
background universe [i.e., as the m,” were in the discus-
sion preceding (1.6) above]. For the background
universe assume that K has been chosen equal to K.
Thus, (2.6) will coincide with (1.6) if A=1 in the latter.

V. SUMMARY AND GENERALIZATION

This section will be mainly concerned with investigat-
ing some of the consequences of the fact that in general
relativity the entire gravitational interaction between
masses is carried by the metric tensor which can be
“transformed away”’ to any desired degree of accuracy
over a sufficiently small neighborhood of any point.
This fact leads naturally to the following definition
relating a standard physical laboratory to a mathema-
tical “coordinate patch.” A locally almost Minkowskian
coordinate system is one in which test particles of any
velocity experience no observable acceleration when
there is no matter or radiation present in the laboratory.
The description of experiments done in a standard
physical laboratory is assumed to correspond to the
mathematical description given by such a coordinate
system.

Using this definition, Dicke’s? strong principle of
equivalence can be defined as the assertion that as far
as inertial and gravitational effects are concerned, the
numerical content of experiments described in a locally
almost Minkowskian coordinate system is independent
of any characteristics of the mass distribution in the
rest of the universe. It is important to realize that this
is a definite extension of such results of the Eétvos
experiment as generalized in the weak principle, i.e.,
the assertion that the acceleration of a test particle
instantaneously at rest relative to a small gravitating
body is independent of the mass of the test particle in
the limit as this mass goes to zero. In other words,
the E6tvés experiment suggests that the acceleration
effects of an external gravitating body on a sufficiently

59
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small laboratory can be at least approximately elim-
inated by allowing the laboratory to fall “freely” since
it seems to imply that all parts of the laboratory would
fall with very little, if any, relative acceleration.
However, it contains nothing to suggest that the only
effect of the gravitating body on the laboratory is
accelerative, which is the basis for the strong principle.

A sketch of an argument generalizing the results of
Sec. IV and suggesting the validity of a strong principle
in general relativity follows.

Consider a region having space-time dimensions, in
arbitrary but fixed units, bounded by a number e.
This region is to represent the space contained in a
laboratory in which standard experiments are to be
performed. Let the matter tensor in the laboratory be
represented by A7z (here and in the following, to avoid
unnecessary clutter, tensor indices will be suppressed
when no confusion will arise), where A is a positive
number. Further, let the matter tensor for the rest of
the universe be Ty and assume that T'y=0 within the
laboratory, while T.=0 outside it. The total matter
tensor is thus Ty-+ATy everywhere. The purpose of
the following discussion is then to show that under
certain conditions the influence of the “rest of the
universe” on real, proper experiments done in such a
laboratory can be made arbitrarily small by making e
sufficiently small. The crux of the argument is the
fact that the observable outcome of such experiments
cannot depend on the purely mathematical choice of
coordinate systems in which the calculations are
performed.

To this end, let p (again suppressing indices) stand
for all the matter variables other than the metric, pr
referring to matter in the laboratory, and py to all
other matter. Thus, AT, is a function of py and T'yisa
function of py. Assume the variables satisfy “equations

of motion”
f(p.8:8)=0, (.1

where g’ stands for all first derivatives of g. Further,
let the metric, g, be written as the sum of two parts
%+4y(A), with % independent of A and where limy(\)
=0asA—0.

Let % represent the functional form of p when A=0.
Hence, when there is no matter within the laboratory,
A=0, and % and % satisfy

FC,"e,"¢')=0, (5.2)
S()~To(’%)=0 (S¥=R,—3g*R). (5.3)

If pnun represents the form of p corresponding to the
vacuum and 7 is the Minkowski metric, then it will be
assumed that

Flowan,n,0)=0,

Ty (puan) =0.

The two most important assumptions will now be
made. Within the space of the laboratory it is assumed

(5.4)
(5.5)
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that (1) %=paun, and (2) the differences between
%-v(\) and 5 together with the first two derivatives
of %++v(\) go continuously to zero with ¢ and A. The
first assumption is simply that when A=0 there are
really no matter or fields within the laboratory. In
other words, it ensures that when the tensor for matter
in the laboratory, ATz, is zero, the matter variables, pyr,
actually correspond to the vacuum. This assumption is
probably unnecessary for the ordinary descriptions of
matter. The second assumption may seem strong in its
requirement on the second derivatives of the metric.
However, it will be used in the argument following
Eq. (5.13).

Similarly, let %z and 5+% be the matter variables
and metric describing the situation inside the laboratory
in the absence of any matter outside, ie., when py
=pnun- Thus, by definition,

FCpr, 1%, %)=0, (5.6)
S(+0%)—AT1(%)=0. (5.7)

Finally, the full field equations can be written
7o, %+, %' +7")=0, (5.8)
SCg+v)—ATr(pr)—Tu(pv)=0. (5.9)

In particular, within the laboratory,

floz, %g+, %' ++")=0, (5.10)
SCgt+v)—AT1(pz)=0. (5.11)

However, by assumption, within the laboratory %
differs from %, and its first two derivatives from zero,
only by numbers which go to zero as e— 0. Thus
(5.10) and (5.11) can be rewritten as

Floz, n+v,v)=H, (5.12)
S+v)—ATilpor)=E, (5.13)

where H— 0 as e— 0 and £ — 0 as ¢ — 0. Notice that
since S depends on the second derivatives of °g+4,
it is sufficient that these vanish as e— 0 for E— 0 as
e— 0. Actually, this condition may not also be neces-
sary, but this point is irrelevant to the main argument.

The final result is thus that the variables, pz and
7+, satisfy, within the laboratory, Egs. (5.12) and
(5.13) which differ from those, (5.6) and (5.7), satisfied
by the corresponding variables in the absence of matter
in the rest of the universe only by functions H and E
which can be made arbitrarily small by making e
sufficiently small.

Thus, it seems reasonable to expect that for each A,
the solutions with matter in the rest of the universe,
%4+ and pz, and those with matter only in the labor-
atory, 7+% and %;, can be brought arbitrarily close
together by making the laboratory sufficiently small.
Further, the outcome of proper, local experiments done
in such a laboratory can depend only on the behavior of
the metric and matter variables within it. Thus, the
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results of such experiments can be made as nearly
independent of the matter in the rest of the universe as
desired by making e sufficiently small.

Of course, the definition of quantities to be measured**
and local laws to be tested within the laboratory may
require A — 0. It might then be thought that for A
small enough the effects of the matter in the rest of the
universe would become comparable to those of matter
within the laboratory, vitiating the above argument.
To prevent this, a lower limit for A is demanded. This
limit could be determined by the lower bound of
available experimental accuracy for the measurements
requiring A — 0. That is, values of A below this limit
would not produce observable differences in measure-
ments. For this fixed A, e can then be determined as
above.

There are, however, other statements which might
possibly be called “Mach’s principles” which are valid
in general relativity. For example, inertial and gravita-
tional forces have a common formal origin in general
relativity. Specifically, for a test particle of mass m
and velocity ¥,

Fr= —mTogtwwb

might be identified with the gravitational force acting
on m. On the other hand, this-quantity transforms
just as an inertial force should, i.e., in going to a
relatively accelerated system, the acceleration enters
F*linearly. For example, in a coordinate system rotating
relatively to a Lorentz system in a flat space, F* as
defined in (5.14) contains the centrifugal and Coriolis
forces experienced by particles in this rotating system.

1 For example, inertial mass. See Eq. (4.23) and the discussion
following it.

(5.14)
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Thus, F* might also be identified with “inertial force”
acting on . Inertial coordinate systems would then
be those in which F* vanishes or equivalently, those in
which “free” uncharged test particles are unaccelerated.
This coincides with the definition of locally almost
Minkowskian coordinate systems above. Another way
of saying this is that the locally almost Minkowskian or
inertial coordinate systems are those in which the total
gravitational force vanishes.

If suitable boundary conditions could then be
exhibited for a general type of universe, the Einstein
equation would predict the over-all state of motion of
inerital frames relative to the total mass distribution in
the universe. This statement alone has been mentioned
as a “Mach’s principle.”* However, once it is required
that fundamental, standard experiments be done within
such frames, the rest of the universe cannot, in general
relativity, influence their results.

Another paper'® will discuss modifications of general
relativity violating the strong principle of equivalence
by the introduction of a variable gravitational “con-
stant” determined through field equations by the mass
distribution in the universe. . '
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The point of view expressed in the literature that gravitomagnetism has not yet
been observed or measured is not entirely correct. Observations of gravitational
phenomena are reviewed in which the gravitomagnetic interaction—a post-
Newtonian gravitational force between moving matter—has participated and
which has been measured to 1 part in 1000. Gravitomagnetism is shown to be
ubiquitous in gravitational phenomena and is a necessary ingredient in the
equations of motion, without which the most basic gravitational dynamical effects
(including Newtonian gravity) could not be consistently calculated by different
inertial observers.

1. INTRODUCTION

In the overview Physics Through the 1960s, the National Academy of
Sciences (1986) review of opportunities for experimental tests of general
relativity, they declare that “At present there is no experimental evidence
arguing for or against the existence of the gravitomagnetic effects predicted
by general relativity. This fundamental part of the theory remains untested.”
Similar points of view have been expressed elsewhere in promotion of
various experiments designed to “see” gravitomagnetism.

In this paper I make two points on this issue, which together lead to
a position contrary to the viewpoint summarized by the above statement.

1. The gravitomagnetic interaction is a consequence of the gravitational
vector potential. This vector potential pays a crucial, unavoidable role in
gravitation; without the gravitational vector potential the simplest gravita-
tional phenomena—the Newtonian-order Keplerian orbit and the deflection
of light by a central body—cannot be consistently calculated in two or more
inertial frames of observation. Gravitation without the vector potential is
an incomplete, ambiguous theory in the most fundamental sense.

'Physics Department, Montana State University, Bozeman, Montana 59717.
1395
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5. DRAGGING OF INERTIAL FRAMES AND MACH’S IDEAS

What seems to have especially caught the interest of physicists in
searching for the spin-spin interaction in gravity is that this would seem to
be a manifestation of ideas of Mach, who a century ago believed that inertia
was caused, in some sense, by the universe’s matter distribution. Lense and
Thirring later showed that, indeed, in general relativity rotating matter
would drag the inertial frame around at a slow rate which fell off with
distance from the rotating matter,

G(J-3J-F
532

CJ r3

J is the angular momentum of the spinning body and r is the distance to
the point of space in question, €¥(r) is the rotation rate and rotation axis
for the inertial space at that point of space which is induced by the spinning
source. Equation (16) follows from (12) with choice of PPN coefficients
appropriate to general relativity, and the identification

Q=—£Vxh
2

Looking at the general case, one can ask what is the complete effect
of the gravitational vector potential in dragging inertial frames? This ques-
tion can be addressed by calculating the contribution of h in establishing
the geodesic coordinate frames (inertial frames). The general formula

[x7=x{n] =[x —x{]+ 3T 2a[x* — x{o) [ xP — xfo)] (17)

in which I'}, are the Christoffel symbols produced from first derivatives of
the gravitational metric field, gives the transformation from original space-
time coordinates x” to inertial (geodesic) coordinates x” in the vicinity of
any chosen space-time point x”(0). Examining solely the vector potential
(gyi) contribution to (17) yields

1 6h , <Vxh
- (t—1)+
2at( o)

[r—ro]) =[r—rol- C[ ) X (r—r)(1— fo):l (18)

The gravitational vector potential produces in this general case a “‘dragging”
of inertial space at each locality with both an acceleration of the inertial
frame at rate

a(r, t)=—cdh/at (19a)
and a rotation of the inertial frame at angular rate and axis

Q(r,t)=—3cVxh (19b)
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If we return to the problem of light deflection by a body moving at
speed w and employ the vector potential given by (7), we find that (19a)
gives no contribution to the light ray deflection; however, (19b) produces
a rotational dragging of inertial frames at a rate

GMDw 1
ar 0 =1+ N~

Ir—wi|’
and in a counterclockwise sense. The time integral of this rotation rate over

the entire trajectory of the light ray produces the total deflection or rotation
angle

50:__00
C

which is what is needed to obtain agreement with (5) as discussed in
Section 2.

The periastron precession of the binary pulsar orbit discussed pre-
viously received contributions of inertial frame dragging from both (19a)
and (19b). The situation can be viewed this way; part of the motion of the
two bodies in the binary pulsar results from the “Coriolis” acceleration
that each body experiences because the motion of the other body is produc-
ing rotational dragging of the inertial frame at the locality of each body in
question.

Finally, the accelerated celestial body mentioned previously drags the
inertial frames through (19a), with the resulting acceleration of inertial
space being

Sa(r, t) = _<2.+27+%) U(rz, l)a
4

in which U(r) is the Newtonian potential function of that body’s mass
distribution and a is the body’s acceleration.

6. CONCLUSION

The gravitomagnetic interaction—the post-Newtonian gravitational
interaction between moving masses—has been observed and measured in
a number of different phenomena. The strength of this interaction is now
known to an accuracy of 1 part in 1000. The gravitomagnetic interaction is
also required in order to have a complete and consistent theory of gravity
at all: even static source gravitational effects when viewed in another inertial
frame require the gravitomagnetic interaction in order for basic consistency
of a theory’s equations of motion. Just as in electromagnetic theory, there
is no absolute separation of “‘electric” and *“‘magnetic” effects; such a
division is inertial frame dependent.

Ken Nordtvedt, “Existence of the Gravitomagnetic Interaction,” International Journal of
Theoretical Physics, vol. 27, pp. 1395-1404. Reprinted with permission of Springer Verlag.
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