
Chapter 2
MotionCast: General Connectivity
in Clustered Wireless Networks

Abstract We propose a novel concept of (k, m)-connectivity in mobile clustered
wireless networks, in which there are n mobile cluster members and nd static cluster
heads. (k, m)-connectivity signifies that in each time period consisting of m time
slots, there exist at least k time slots, during any one of which every cluster mem-
ber can directly communicate with at least one cluster head. We investigate the
critical transmission range of asymptotic (k, m)-connectivity when cluster mem-
bers move according to random walk or i.i.d. mobility model. Under random walk
model, we propose two general heterogeneous velocity models which characterize
an inherent property of many applied wireless networks that cluster members move
with different velocities. We define weak and strong parameters conditions under
both mobility models and analyze the probability that the network is asymptotically
(k, m)-connected, denoted as P(C ). For both mobilities, under weak parameters
condition, we provide bounds on P(C ) and derive the critical transmission range
for (k, m)-connectivity. For random walk mobility and i.i.d. mobility, under strong
parameters condition, we present a precise asymptotic probability distribution of
P(C ) in terms of the transmission radius. Our results provide fundamental insights
and theoretical guidelines on design of large-scale wireless networks.

Keywords General connectivity · Critical transmission range · Mobility ·
Heterogeneous velocities · Precise probability distribution

2.1 System Model

2.1.1 Network Topology

Assume n cluster members and nd cluster heads are both initially independently
and uniformly placed in a unit square S , where n is a positive integer and d is a
positive constant. All cluster members have the same uniform transmission radius

X. Wang, MotionCast for Mobile Wireless Networks, SpringerBriefs in Electrical 35
and Computer Engineering, DOI: 10.1007/978-1-4614-5635-3_2, © The Author(s) 2013



36 2 MotionCast: General Connectivity in Clustered Wireless Networks

denoted as r(n), where r(n) is a function of n. Each cluster member is capable of
communicating with a node (a cluster member or a cluster head) within r(n). In some
places of this chapter, we use r to stand for r(n) for simplicity. The unit square S is
assumed to be a torus.

2.1.2 Mobility Models

In both random walk and i.i.d. mobility models, all cluster heads remain static after
the initial deployment. Each time slot has the same length T, and each time period
consists of m time slots, where T and m are both positive constants.

2.1.2.1 Random Walk Mobility Model

At the beginning of each time period, each cluster member chooses a velocity. The
selection of velocity by each cluster member is characterized by velocity models
illustrated later. In the meantime, each cluster member independently and uniformly
selects a random direction in [0, 2π) and moves along this direction with its velocity
during the time slot. As the unit square is assumed as a torus, cluster members do not
bounce off the border. Note that in all the m time slots of a given time period, each
cluster member only changes its direction and does not change its velocity. However,
in different time periods, a cluster member can move with different velocities. Also,
in a time slot, different cluster members may move with different velocities.

In our model, there are u groups of cluster members in the network denoted as
G1, G2, . . . , Gu, where u is a positive constant integer. For each y = 1, 2, . . . , u,
group Gy consists of My cluster members. We have My ∼ cynαy and

∑u
y=1 My = n,

where αy, cy are both positive constants and αy < 1. At the beginning of each
time period, each cluster member in group Gy independently selects a velocity vo

according to a distribution f (y)
v (v) and then moves with vo in all the m time slots of

this time period, where f (y)
v (v) are different for different group Gy. We present two

heterogeneous velocity models as follows.

• Velocity Model with Constant Number of Values (Simple
V- Model)—for each y = 1, 2, . . . , u, f (y)

v (v) is a single value distribution. Specif-
ically, a random variable vo following the distribution f (y)

v (v) is equal to v(y) with
probability 1, where v(y) is a positive function of n and y.

• Velocity Model with Constant Number of Intervals (General
V- Model)—for each y = 1, 2, . . . , u, f (y)

v (v) is a continuous uniform distrib-
ution in Δy = [v(y), v(y)

a ], where v(y) and v(y)
a are positive functions of n and y, and

v(y) < v(y)
a . A simple illustration is given in Fig. 2.1.

Under both velocity models, we further define that v� = min{ v(y)

αy
|y = 1, 2, . . . , u}

and assume
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Fig. 2.1 Illustration of random walk mobility with velocity model with constant number of intervals
in a simple network consisting of 5 cluster members and 3 cluster heads. A time period has 4 time
slots here

⎧
⎪⎨

⎪⎩

v(y)

αy
= v�, for y = y1, y2, . . . , yz,

v(y)

αy
> v�, for other y.

where y1, y2, . . . , yz ∈ {1, 2, . . . , u}.
Under random walk mobility model, we define weak and strong parameters con-

ditions as follows.

• Weak Parameters Condition—all velocities in the network are of the same
order w

(√
log n
nd

)
and less than 1/T .

• Strong Parameters Condition—all velocities in the network are of the same
order w

(√
log n
nd

)
and o(n−1); we require d > 2.

The condition that all velocities are w
(√

log n
nd

)
ensures that the distance that a

cluster member travels in a time slot is greater than its critical transmission range in
the order sense while the condition that all velocities are less than 1/T constraints
the above distance to be less than 1, the side length of the unit square.

2.1.2.2 i.i.d. Mobility Model

At the beginning of each time slot, each cluster member independently and uniformly
chooses a point as its new position in the unit square S and remains static at the
new position during the rest of the time slot. Note that the position of each cluster
member in each time slot is uniformly distributed in the unit square. The position of
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each cluster member in a future time slot is independent with its position in a past
time slot.

Similar to random walk mobility model, under i.i.d. mobility, we also define weak
and strong parameters conditions as follows.

• Weak Parameters Condition—d > 1
m−k+1 .

• Strong Parameters Condition—d > 2.

2.1.3 Definition of (K, M)-Connectivity

Let X1, X2, . . . , Xn denote the n cluster members in the network. Xi can directly
communicate with a cluster head if and only if the distance between Xi and a cluster
head is no greater than Xi’s transmission range r. For i = 1, 2, . . . , n, We say the
cluster member Xi is (k, m)-connected if in any given time period consisting of m
time slots, there exist at least k time slots for Xi and in any one of these k time slots,
Xi can directly communicate with at least one cluster head, where k and m are both
positive constant integers and we have k ≤ m. Otherwise, Xi is not (k, m)-connected
and we use Ei to denote this event. Then1 P(Ei) is the disconnected probability of
cluster member Xi. If the probability that n cluster members are all (k, m)-connected
goes to 1 as n → ∞, we say the network is asymptotic (k, m)-connected and let C
denote this event. For simplicity, we refer asymptotic (k, m)-connectivity as (k, m)-
connectivity.

2.1.4 Definition of Critical Transmission Range

The definition of critical transmission range is quite straightforward and is presented
as follows.

Definition 1 For clustered networks, r� is the critical transmission range if the
following two properties both hold, where c1 and c2 are both constants.

lim
n→+∞ P(C ) < 1, if r ≤ c1r�, for any 0 < c1 < 1; (2.1)

lim
n→+∞ P(C ) = 1, if r ≥ c2r�, for any c2 > 1. (2.2)

1 For a event E, we use P(E) to denote the probability that E happens, and use E to denote its
complementary event.
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2.2 Main Results

1. Under random walk mobility model:

(1-a) with either simple or general V-model, in presence of the weak parameters
condition, the critical transmission range is r = log n

2(m−k+1)v�Tnd ;

(1-b) with simple V-model, in presence of the strong parameters condition, if the
transmission range is r = log n+w

2(m−k+1)v�Tnd , where w is a constant, we have,
as n → +∞,

P(C ) ∼ exp

[

−
z∑

j=1

(
m

k − 1

)

cyj e
− v

(yj )

v�
w
]

.

2. Under i.i.d. mobility model:

(2-a) in presence of the weak parameters condition, the critical transmission

range is r =
√

log n
(m−k+1)πnd ;

(2-b) in presence of the strong parameters condition, if the transmission range is

r =
√

log n+w
(m−k+1)πnd , where w is a constant, we have, as n → +∞,

P(C ) ∼ exp

[

−
(

m

k − 1

)

e−w
]

.

2.3 The Disconnected Probability of a Cluster Member

In this section, we present a general evaluation on P(Ei), the disconnected probability
of cluster member Xi. This general evaluation holds for both random walk and i.i.d.
mobility models.

Let Tj denote the m time slots in a given time period, where j = 1, 2, . . . , m. We
define the indicator function

Iij =
⎧
⎨

⎩

1, if Xi can directly communicate with at least
one cluster head in time slot Tj,

0, otherwise.

Let pij and qij be P(Iij = 0) and P(Iij = 1), respectively. The covered transmission
area of cluster member Xi at a time instant is a circle centered at Xi with radius r.
We use Sij to denote the area covered by cluster member Xi within time slot Tj. Note
that Sij and Si,j+1 may have overlapped areas, which will be discussed in the proof
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Fig. 2.2 The two red solid points represent positions of cluster member Xi at the beginning of and
at the end of a time slot. The arrowed line between them is the moving track of Xi and the arrow
on the line indicates the moving direction. Xi moves with velocity vi in this time slot. The dotted
area Si is the area covered by Xi within this time slot. Clearly, Si = πr2 + 2rviT

of Lemma 14 in detail. Clearly, pij is the probability that none of the nd cluster heads

is in Sij. Thus, pij = (1 − Sij)
nd

, qij = 1 − (1 − Sij)
nd

.

Under random walk mobility with simple or general V-model, if Xi moves with
velocity vi in all time slots of a time period, Sij = πr2 + 2rviT for 1 ≤ j ≤ m. An
illustration is given in Fig. 2.2. Under random walk mobility, when Xi’s velocity is vi,
for clarity, we use P(E, vi) instead of P(Ei) to denote the disconnected probability
of cluster member Xi. Under i.i.d. mobility, Sij = πr2. Thus, under both mobility
models, for each particular cluster member Xi, Sij are equal for 1 ≤ j ≤ m. Therefore,
for simplicity, we use Si, pi and qi to denote Sij, pij and qij, respectively. Then we

have pi = (1 − Si)
nd

, qi = 1 − (1 − Si)
nd

.

Now we present three lemmas used to evaluate P(Ei).

Lemma 13 For any positive number H and any number h with 1 ≤ h ≤ H, if

P(Ii1j1 = 0, Ii2j2 = 0, . . . , Iihjh = 0)

∼ P(Ii1j1 = 0)P(Ii2j2 = 0) · · · P(Iihjh = 0),

then we have

P(Ii1j1 = βi1j1, Ii2j2 = βi2j2 , . . . , Iihjh = βihjh)∼ P(Ii1j1 = βi1j1)P(Ii2j2 = βi2j2) · · · P(Iihjh = βihjh),

where βi1j1, βi2j2 , . . . , βihjh ∈ {0, 1}.
Proof. The basic idea is that h-wise independence for the values 0 easily and induc-
tively implies h-wise independence for values 0,1. Due to space limitation, we omit
the details.

Lemma 14 Under i.i.d. mobility model with

r ≤ c
√

log n
(m−k+1)πnd or under random walk mobility model with r ≤ c log n

2(m−k+1)v�Tnd ,

where c is a positive constant, we have, as n → +∞,
(1) under weak parameters condition,

(1-a) P(Iij1 = βij1 , Iij2 = βij2 , . . . , Iijh = βijh)

∼ P(Iij1 = βij1)P(Iij2 = βij2) · · · P(Iijh = βijh),
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where 1 ≤ i ≤ n, 1 ≤ h ≤ m, 1 ≤ j1 < j2 < · · · < jh ≤ m, and βij1 , βij2 , . . . , βijh ∈
{0, 1}.

(1-b) P(Ii11 = βi11, Ii12 = βi12, . . . , Ii1h = βi1h,

Ii21 = βi21, Ii22 = βi22, . . . , Ii2h = βi2h)

∼ P(Ii11 = βi11)P(Ii12 = βi12) · · · P(Ii1h = βi1h)

P(Ii21 = βi21)P(Ii22 = βi22) · · · P(Ii2h = βi2h),

where 1 ≤ i1 < i2 ≤ n, 1 ≤ h ≤ m, and βi11, βi12, . . . , βi1h, βi21, βi22, . . . , βi2h ∈
{0, 1}.

(1-c)P(Ei1 , Ei2) ∼ P(Ei1)P(Ei2), 1 ≤ i1 < i2 ≤ n.

(1-d)

n∑

i=1

P(Ei) −
( n∑

i=1

P(Ei)
)2 ≤ P(C ) ≤

n∑

i=1

P(Ei).

(1-e) P(C ) ≥
n∑

i=1

P(Ei)

/(

1 + 2
n∑

i=1

P(Ei)

)

.

(2) under strong parameters condition,

P(C ) ∼
n∏

i=1

P(Ei).

Proof. Refer to appendix.

Lemma 15 x and y are both positive functions of n. If x, x2y → 0 as n → +∞,
then (1 − x)y ∼ e−xy.

Proof. Proof is provided in [42].

Then, we have the following proposition.

Proposition 1 Given that Si, S2
i nd, e−Sind → 0 as n → +∞, then under both

mobility models, in presence of the weak parameters condition, we have

P(Ei) ∼
(

m

k − 1

)

e−Sind(m−k+1).

Proof. If cluster member Xi is not (k, m)-connected in a time period, this means that
the number of time slots that Xi can directly communicate with at least one cluster
head can be 0, 1, 2, . . . , k − 1. Therefore,
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P(Ei) =
k−1∑

x=0

P

( m∑

j=1

Iij = x

)

(2.3)

=
k−1∑

x=0

∑

∑m
j=1 βij=x

P(Ii1 = βi1, Ii2 = βi2, . . . , Iim = βim).

In P(Ei), the number of items P(Ii1 = βi1, Ii2 = βi2, · · · , Iim = βim) is
∑k−1

x=0

(m
x

) ≤
2m = Θ(1). According to property (1-a) of Lemma 14, we obtain

P(Ei) ∼
k−1∑

x=0

(
m

x

)

pi
m−xqi

x. (2.4)

Since Si, S2
i nd → 0 as n → +∞, from Lemma 15, pi = (1−Si)

nd ∼ e−Sind → 0

as n → +∞. Therefore, qi → 1 as n → +∞. Applying pi ∼ e−Sind
and qi → 1

into (2.4), we acquire

P(Ei) ∼
(

m

k − 1

)

pi
m−(k−1)qi

k−1. (2.5)

Using pi ∼ e−Sind
and qi → 1 again in (2.5), the result follows.

Remark 1 This proposition shows that if Si, S2
i nd and e−Sind

all go to 0 as n →
+∞, the dominant part of P(Ei), which is the disconnected probability of cluster
member Xi, is that in a time period consisting of m time slots, there exist exactly k −1
time slots for Xi and in any one of these k −1 time slots Xi can directly communicate
with at least one cluster head while in the other m − k + 1 time slots, Xi can not
directly communicate with any cluster head.

2.4 (K, M)-Connectivity Under Random Walk Mobility Model

2.4.1 Disconnected Probability of a Cluster Member Under
Random Walk Mobility Model

Under random walk mobility, we use Proposition 1 given before to evaluate P(E, vi).
Afterwards, under weak parameters condition, we provide bounds on P(C ) and
derive the critical transmission range. Under strong parameters condition, we present
precise asymptotic evaluation on P(C ).
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Proposition 2 Under random walk mobility, if cluster member Xi moves with
velocity vi in all time slots of a time period, under weak parameters condition,

(a) if r = log n+w
2(m−k+1)v�Tnd , where w is a constant, then

P(E, vi) ∼
(

m

k − 1

)

n− vi
v� e− vi

v�
w
,

(b) if r = c log n
2(m−k+1)v�Tnd , where c is a constant, then

P(E, vi) ∼
(

m

k − 1

)

n− cvi
v� ,

where v� = min{ v(y)

αy
|y = 1, 2, . . . , u}.

Proof. (a) If r = log n+w
2(m−k+1)v�Tnd , we obtain

Si = 2rviT + πr2 ∼ (log n + w)vi

(m − k + 1)v�nd
. (2.6)

Considering that all velocities in the network are of the same order and the definition

of v�, we have vi
v�

= Θ(1). Using this and v� = w
(√

log n
nd

)
, we can derive Si, S2

i nd

and e−Sind
all go to 0 as n → +∞. Thus, using (2.6) in Proposition 1, the result

follows.
(b) If r = c log n

2(m−k+1)v�Tnd , we acquire

Si = 2rviT + πr2 ∼ cvi log n

(m − k + 1)v�nd
. (2.7)

Using vi
v�

= Θ(1) and v� = w
(√

log n
nd

)
, we can derive Si, S2

i nd, e−Sind → 0 as

n → +∞. Therefore, using (2.7) in Proposition 1, the result follows.

2.4.2 The Critical Transmission Range Under Random Walk
Mobility Model with Simple V-Model

We have a theorem on the critical transmission range.

Theorem 11 Under random walk mobility model with simple V-model, in presence
of the weak parameters condition, for (k, m)-connectivity in clustered wireless net-
works, the critical transmission range is

r� = log n

2(m − k + 1)v�Tnd
,
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where v� = min{ v(y)

αy
|y = 1, 2, . . . , u}.

To derive the critical transmission range, from its definition, we prove the neces-
sary and sufficient conditions, respectively.

2.4.2.1 Necessary Condition of Theorem 11

Proposition 3 Under random walk mobility with simple V-model, if r(n) =
log n+w

2(m−k+1)v�Tnd , where w is a constant, defining Φ as

Φ =
z∑

j=1

(
m

k − 1

)

cyj e
− v

(yj )

v�
w
,

then we have, as n → +∞,

(a) in presence of the weak parameters condition,

Φ − Φ2 ≤ P(C ) ≤ Φ;

(b) in presence of the strong parameters condition,

P(C ) ∼ e−Φ.

Proof. By Proposition 2 (a), we obtain that

MyP(E, v(y)) ∼ cy

(
m

k − 1

)

nαy− v(y)
v� e− v(y)

v�
w
.

Due to v(y)

v�
= αy for y = y1, y2, . . . , yz and v(y)

v�
> αy for other y, then we obtain

MyP(E, v(y)) = O(1) for 1 ≤ y ≤ u, and as n → +∞,

n∑

i=1

P(Ei) =
u∑

y=1

MyP(E, v(y)) ∼ Φ.

Using the above result in Lemma 14 (1-d), we acquire property (a).
For 1 ≤ y ≤ u, owing to MyP(E, v(y)) = O(1), then P(E, v(y)) and P2(E(y))My

both go to 0 as n → +∞. Thus, according to Lemma 15,

(
1 − P(E, v(y))

)My ∼ exp
( − MyP(E, v(y))

)
. (2.8)

Under strong parameters condition, from Lemma 14 (2), P(C ) ∼ ∏u
y=1

(
1 − P

(E, v(y))
)My . Then
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P(C ) ∼ exp
(

−
u∑

y=1

MyP(E, v(y))
)

∼ e−Φ.

Hence, we have also proved property (b).

2.4.2.2 Sufficient Condition of Theorem 11

Proposition 4 Under random walk mobility model with simple V-model, if r(n) =
c log n

2(m−k+1)v�Tnd , where c is a constant and c > 1, then in presence of the weak para-
meters condition, we have

P(C ) → 1, as n → +∞.

Proof. From Proposition 2 (b), we have

MyP(E, v(y)) ∼ cyCk−1
m nαy− cv(y)

v� .

Due to c > 1, v(y)

v�
= αy for y = y1, y2, . . . , yz and v(y)

v�
> αy for other y, we get as

n → +∞, for 1 ≤ y ≤ u, MyP(E, v(y)) → 0. Thus

n∑

i=1

P(Ei) =
u∑

y=1

MyP(E, v(y)) → 0, as n → +∞. (2.9)

Using (2.9) in Lemma 14 (1-d), the result follows.

2.4.3 The Critical Transmission Range Under Random Walk
Mobility Model with General V-Model

We have a theorem on the critical transmission range.

Theorem 12 Under random walk mobility model with general V-model, in pres-
ence of the weak parameters condition, for (k, m)-connectivity in clustered wireless
networks, the critical transmission range is

r� = log n

2(m − k + 1)v�Tnd
,

where v� = min
{ v(y)

αy
|y = 1, 2, . . . , u

}
.
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2.4.3.1 Necessary Condition of Theorem 12

Proposition 5 Under random walk mobility model with general V-model, if r(n) =
c log n

2(m−k+1)v∗Tnd , where c is a constant and 0 < c < 1, then in presence of the weak
parameters condition,

P(C ) ≤ 1/2 , as n → +∞.

Proof. We define v(y)
� = v(y)(1 + 1

log n ). For each cluster member in Gy, we denote

the probability that its velocity lies in [v(y), v(y)
� ] as p�. Then considering v(y) and v(y)

a

are of the same order, we acquire

p� = v(y)
� − v(y)

v(y)
a − v(y)

= v(y)

(v(y)
a − v(y)) log n

= Θ
( 1

log n

)
.

We assume the number of cluster members in Gy with velocities in [v(y), v(y)
� ] is

Ny. Then we can obtain for any number A with 1 ≤ A ≤ My,

P(Ny ≤ A) =
A∑

j=0

(
My

j

)

pj
�(1 − p�)

(My−j).

From Hoeffding’s inequality[43], when A ≤ Myp�,

P(Ny ≤ A) ≤ exp

[

− 2(Myp� − A)2

My

]

.

Let A = Myp�/2. Due to p� = Θ
( 1

log n

)
, we get

P
(

Ny ≤ Myp�

2

)
≤ exp

(
− cynαy p2

�

2

)
→ 0.

Therefore, Ny ≥ Myp�

2 almost surely.
From Proposition 2 (b), we have

P(E, vi) ∼
(

m

k − 1

)

n− cvi
v� . (2.10)

Hence, P(E, vi) is monotonically decreasing for vi. Then we can further obtain

∑

i∈Gy

P(Ei) ≥ P(E, v(y)
� )Myp�/2. (2.11)
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Considering that all velocities in the network are of the same order, we acquire that
v(y)

v�
= Θ(1). From v(y)

v�
= Θ(1), v(y)

� = v(y)(1 + 1
log n ) and (2.10),

P(E, v(y)
� )

P(E, v(y))
∼ n− c(v

(y)
� −v(y))

v� = e− cv(y)
v� = Θ(1). (2.12)

Since v(y)

v�
= αy(y = y1, y2, . . . , yz), we have αy − cv(y)

v�
> 0 for 0 < c < 1. Note

that p� = Θ
(

1
log n

)
, we have for y = y1, y2, . . . , yz, as n → +∞,

P(E, v(y))Myp� ∼
(

m

k − 1

)

n− cv(y)
v� · cynαy p�

∼ cy

(
m

k − 1

)

nαy− cv(y)
v� p�

→ +∞. (2.13)

Combining (2.12) and (2.13), for y = y1, y2, . . . , yz,

P(E, v(y)
� )Myp∗ → +∞, as n → +∞. (2.14)

Applying (2.14) in (2.11), for y = y1, y2, . . . , yz, we obtain that
∑

i∈Gy
P(Ei) → +∞

as n → +∞. Thus,

n∑

i=1

P(Ei) =
u∑

y=1

∑

i∈Gy

P(Ei) → +∞, as n → +∞. (2.15)

Using (2.15) in Lemma 14 (1-e), the result follows.

2.4.3.2 Sufficient Condition of Theorem 12

Proposition 6 Under random walk mobility model with general V-model, if r(n) =
log n+w

2(m−k+1)v�Tnd , where w is a constant, then in presence of the weak parameters con-
dition,

P(C ) → 1, as n → +∞.

Proof. We define v(y)
� = v(y)

(
1+ 1√

log n

)
. For each cluster member in Gy, we denote

the probability that its velocity lies in [v(y), v(y)
� ] as p�. Similar to the proof of neces-

sary condition, we acquire p� = Θ
(

1√
log n

)
.

We also assume the number of cluster members in Gy with velocities in [v(y), v(y)
� ]

is Ny. For any number A with 1 ≤ A ≤ My,
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P(Ny ≥ A) =
My−A∑

j=0

(
My

j

)

p
(My−j)
� (1 − p�)

j.

Following Hoeffding’s inequality [43] and several similar steps, we can obtain that
Ny ≤ 2Myp� almost surely.

From Proposition 2 (a), we have

P(E, vi) ∼
(

m

k − 1

)

n− vi
v� e− vi

v�
w
. (2.16)

Hence, P(E, vi) is monotonically decreasing for vi. Then, we can further obtain

∑

i∈Gy

P(Ei) ≤ P(E, v(y))Ny + P(E, v(y)
� )(My − Ny)

≤ 2P(E, v(y))Myp� + P(E, v(y)
� )My. (2.17)

From
v(y)

v�

= Θ(1), v(y)
� = v(y)(1 + 1√

log n
) and (2.16),

P(E, v(y)
� )/P(E, v(y)) ∼ n− v

(y)
� −v(y)

v� e− v
(y)
� −v(y)

v�
w

∼ e
− v(y)

v�
√

log n
(log n+w) → 0. (2.18)

From (2.16), we have

P(E, v(y))My ∼ cy

(
m

k − 1

)

nαy− v(y)
v� e− v(y)

v�
w
. (2.19)

Due to v(y)

v�
= αy for y = y1, y2, . . . , yz and v(y)

v�
> αy for other y, we obtain

P(E, v(y))My = O(1) for 1 ≤ y ≤ u. Using this and (2.18), we obtain for 1 ≤
y ≤ u,

P(E, v(y)
� )My → 0, as n → +∞. (2.20)

From P(E, v(y))My = O(1) and p� = Θ( 1√
log n

),

P(E, v(y))Myp� → 0, as n → +∞. (2.21)

Applying (2.20) and (2.21) into (2.17), then we acquire for 1 ≤ y ≤ u,∑
i∈Gy

P(Ei) → 0 as n → +∞. Thus,
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n∑

i=1

P(Ei) =
u∑

y=1

∑

i∈Gy

P(Ei) → 0, as n → +∞. (2.22)

Using (2.22) in (1-d) of Lemma 14, the result follows.

2.4.4 The Critical Transmission Range Under Random
Walk Mobility Model with Homogeneous Velocity
Model

By the term of homogeneous velocity model, we mean all cluster members have a
same velocity at any time and in addition, any cluster member doesn’t change its
velocity in all the m time slots of any particular time period. Therefore, there is only
one value of velocity in the network and we denote it as v.

Under random walk mobility model, we can regard homogeneous velocity model
as a special case u = 1 of velocity model with constant number of values. Conse-
quently, now the values of the parameters defined in velocity model with constant
number of values are as follows: M1 = n, c1 = 1, α1 = 1, z = 1, y1 = 1, v� = v.
Hence, we obtain

1. the critical transmission range is r = log n
2(m−k+1)vTnd ;

2. if r = log n+w
2(m−k+1)vTnd , where w is a constant, we have, as n → +∞,

(2-a) in presence of the weak parameters condition,
( m

k−1

)
e−w −

[( m
k−1

)
e−w

]2 ≤ P(C ) ≤ ( m
k−1

)
e−w;

(2-b) in presence of the strong parameters condition,

P(C ) → exp
[
−( m

k−1

)
e−w

]
;

3. if r = c log n
2(m−k+1)vTnd , where c is a constant and c > 1, under weak parameters

condition, as n → +∞,
P(C ) → 1.

2.5 (K, M)-Connectivity Under i.i.d. Mobility Model

Theorem 13 Under i.i.d. mobility model with weak parameters condition, for
(k, m)-connectivity in clustered wireless networks, the critical transmission range is

r(n) =
√

log n
(m−k+1)πnd .
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2.5.1 Necessary Condition of Theorem 13

Proposition 7 Under i.i.d. mobility model, if r =
√

log n+w
(m−k+1)πnd , where w is a

constant, as n → +∞,

(a) under weak parameters condition,
( m

k−1

)
e−w −

[( m
k−1

)
e−w

]2 ≤ P(C ) ≤ ( m
k−1

)
e−w

(b) under strong parameters condition,

P(C ) → exp
[
−( m

k−1

)
e−w

]

Proof. We have that

Si = πr2 = log n + w

(m − k + 1)nd
.

Then we can derive Si, S2
i nd , e−Sind → 0 as n → +∞. P(Ei) are equal for i =

1, 2, . . . , n, so we use P(E) to denote P(Ei). From Proposition 1, we have

P(E) ∼
(

m

k − 1

)

n−1e−w.

Using this in Lemma 14 (1-d), property (a) follows.
Under strong parameters condition, from Lemma 14 (2), we acquire P(C ) ∼[

1 − P(E)
]n. Since P(E), nP2(E) → 0 as n → +∞, then from Lemma 15,

P(C ) ∼ e−nP(E) → exp
( −

(
m

k − 1

)

e−w)
, as n → +∞.

Thus, we have proved property (b).

2.5.2 Sufficient Condition of Theorem 13

Proposition 8 Under i.i.d. mobility model, if

r = c
√

log n
(m−k+1)πnd , where c is a constant and c > 1, then under weak parameters

condition,
P(C ) → 1, as n → +∞.

Proof. P(Ei) are equal for i = 1, 2, . . . , n, so we use P(E) to denote P(Ei). We
obtain P(E) ∼ ( m

k−1

)
n−c2

by similar steps in Proposition 7. Using this in property
(1-d) of Lemma 14, the result follows.
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2.6 Discussion

In this section, we discuss our results in some aspects.

2.6.1 Explanation on the Expression of the Critical
Transmission Range

When r is equal to the critical transmission range, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, the
covered transmission area of cluster member Xi in time slot Tj, i.e., Sij, is vi log n

(m−k+1)v�nd

under random walk mobility and is log n
(m−k+1)nd under i.i.d. mobility model. Note as

shown in Sect. 2.4, under both mobility models, for each particular cluster member
Xi, Sij are equal for 1 ≤ j ≤ m. Therefore, for simplicity, we use Si to denote
Sij. Below we explain the common part in the expression of Si under both mobility
models. Since the density of cluster head is nd , an item nd exists in the denominator
of Si. The log n in the nominator of Si is due to the randomness caused by the
distribution of the nd cluster heads in the unit square. From Proposition 1, we have
P(Ei) ∼ ( m

k−1

)
e−Sind(m−k+1), the intuition of which has already been discussed in

Remark 3 and is now explained again for clarity. The above result shows that the
dominant part of P(Ei), which is the disconnected probability of cluster member Xi,
is that in a period consisting of m time slots, there exist exactly k −1 time slots for Xi

and in any one of these k −1 time slots Xi can directly communicate with at least one
cluster head while in the other m − k +1 time slots, Xi can not directly communicate
with any cluster head. Therefore, after derivation, there is an item (m − k + 1) in the
denominator of the critical transmission range.

Note that we have Si = Θ(
log n
nd ) under both mobility models. Owing to Si =

πr2+2rviT ∼ 2rviT under random walk mobility and Si = πr2 under i.i.d. mobility,
therefore, if all velocities are constants, the critical transmission range is Θ

( log n
nd

)

under random walk mobility and is Θ
(√

log n
nd

)
under i.i.d. mobility.

2.6.2 Random Walk Mobility Model with Different
Velocity Models

Under random walk mobility with general V-model, only the lower boundary v(y) of
the interval [v(y), v(y)

a ] affects the critical transmission range and the upper boundary
v(y)

a has no impact on it, which we call as dominant phenomenon of minimum velocity
in a group. If the item log n in the critical transmission range is replaced with log n+w,
where w is a constant, the probability of (k, m)-connectivity goes to 1 as n → +∞.
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However, under random walk mobility with simple V-model, when the item log n
in the critical transmission range is replaced with log n + w, the probability that the
network does not have (k, m)-connectivity is bounded away from zero as n → +∞.
The reason of different results for the two velocity models is that for general V-model,
velocities are continuously distributed in intervals. The intuition is that in this case,
most cluster members in the network travel with velocities greater than the lower
boundary of the velocities interval, i.e., v(y), so they are (k, m)-connected when the
item log n in the critical transmission range is replaced with log n + w.

Under random walk mobility model, from the expression of the critical transmis-
sion range, the impact on (k, m)-connectivity by groups and velocities in the network

is embodied in the form of v�, where v� is defined as min{ v(y)

αy
|y = 1, 2, . . . , u}. For

each y, we call v(y)

αy
as the velocity-number index of cluster member group Gy. Then

we know that only groups with minimum values of velocity-number indexes exert
impact on the critical transmission range. The effect of group Gy on the (k, m)-
connectivity of the network is decided by both αy and v(y). The factor αy corresponds
to the number of nodes My in the group, where My ∼ cynαy . The constant cy has
no influence on the critical transmission range. The factor v(y) is related with the
velocities in group Gy. Smaller αy and greater v(y) mean less impact of the group
Gy on (k, m)-connectivity of the network. Clearly, if the velocities of groups with
minimum values of velocity-number indexes all increase, then v∗ increases. If so,
the critical transmission range decreases, so we can reduce the energy and power
for communication. Thus, in some sense, mobility increases (k, m)-connectivity in
clustered wireless networks.

2.7 Conclusion

We investigate (k, m)-connectivity in mobile clustered wireless networks which
means that in a time period consisting of m time slots, there exist at least k time
slots for each cluster member and in each of these k time slots the cluster member
can directly communicate with at least one cluster head. For random walk mobil-
ity model with simple V-model and i.i.d. mobility model, under strong parameters
condition, we present a precise asymptotic distribution of the probability that the
network has (k, m)-connectivity in terms of the transmission radius. For both mobil-
ity models, under weak parameters condition, we provide bounds on the probability
that the network has (k, m)-connectivity and derive the critical transmission range
for (k, m)-connectivity.
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Appendix: Proof of Lemma 14

Proof of property (1-a):
We define Pa1 and Pa2 as follows:

Pa1 = P(Iij1 = 0, Iij2 = 0, . . . , Iijh = 0)

Pa2 = P(Iij1 = 0)P(Iij2 = 0) · · · P(Iijh = 0)

From Lemma 13, to prove property (1-a), we only have to show Pa1 ∼ Pa2.
Under both mobility models, for 1 ≤ j ≤ m, we have P(Iij = 0) = (1 − Si)

nd
, so

we get Pa2 = (1 − Si)
ndh.

Recall that Sij is the covered transmission area of cluster member Xi in time slot
Tj. We use S∗

i to denote the union of the areas that Sij1 , Sij2 , . . . , Sijh cover. Note that
Sij1 , Sij2 , . . . , Sijh may have overlapped areas, under random walk mobility model
due to the change of direction and the intersection of the segments of the track, and
under i.i.d. mobility model due to the factor of randomness.

(1o) under random walk mobility with weak parameters condition

From the result in [37], we get S∗
i ∼ hSi. Then as Si and Sindh both go to 0 as

n → +∞, from Lemma 15,

Pa1

Pa2
= (1 − S∗

i )nd

(1 − Si)ndh
∼ e−S∗

i nd

e−hSind → 1, as n → +∞.

(2o) under i.i.d. mobility with weak parameters condition

Clearly, property (1-a) holds for h = 1. Now we prove property (1-a) for h = 2.
As Sij is a circle with radius r, we use Oij1 and Oij2 to denote the centers of Sij1 and
Sij2 , respectively. Let δ stand for the distance between Oij1 and Oij2 . As given in [37],
it is easy to prove that P(δ > 2r) ≤ 4πr2. Then from Lemma 15,

Pa1 ≤ (1 − πr2)nd
πr2 + (1 − 2πr2)nd ∼ e−2πr2nd

Pa1 ≥ (1 − 2πr2)nd
(1 − 4πr2) ∼ e−2πr2nd

Thus, Pa1 ∼ e−2πr2nd
. Due to Pa2 ∼ e−2Sind = e−2πr2nd

, therefore, we have
Pa1 ∼ Pa2 for h = 2. Using similar technique, we can also easily show the result
for 3 ≤ h ≤ m. Due to space limitation, we omit the details. Finally, under both
mobility models, we obtain property (1-a).
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Proof of property (1-b):
We define Pb1 and Pb2 as follows:

Pb1 = P(Ii11 = 0, Ii12 = 0, . . . , Ii1h = 0,

Ii21 = 0, Ii22 = 0, . . . , Ii2h = 0)

Pb2 = P(Ii11 = 0)P(Ii12 = 0) · · · P(Ii1h = 0)

× P(Ii21 = 0)P(Ii22 = 0) · · · P(Ii2h = 0)

From Lemma 13, to prove property (1-b), we only have to present that Pb1 ∼ Pb2.
Note that Si11, Si12, . . . , Si1h, Si21, Si22, . . . , Si2h may have overlap areas, under

random walk mobility model due to the change of direction and the intersection
of the segments of the track, and under i.i.d. mobility model due to the factor of
randomness.

Below we will prove that for 1 ≤ i1 < i2 ≤ i2 ≤ n, 1 ≤ j1 ≤ h, 1 ≤ j2 ≤ h, we
have

P(Ii1j1 = 0, Ii2j2 = 0) ∼ P(Ii1j1 = 0)P(Ii2j2 = 0) (2.23)

Clearly, setting j1 = j2 = 1 in (2.23), then property (1-b) holds for h = 1. Since
property (1-a) holds and m is a constant, using (2.23), we can also easily prove
property (1-b) for 2 ≤ h ≤ m. Due to space limitation, we omit the details. Now we
focus on proving (2.23).

(1o) under random walk mobility with weak parameters condition

Due to v = w
(√ log n

nd

)
and r = O(

log n
vnd ) = o(

√
log n
nd ), we have vT = Ω(r).

As shown in Fig. 2.3, for simplicity, we regard Sixjx (x = 1, 2) as the rectangle with
length vixjx T and width 2r in it, denoted as Rixjx . Let Oi2j2 be the center of Ri2j2 and
Sϕ be the area that Oi2j2 covers when Ri1j1 and Ri2j2 have overlapped areas. Assume

vi1j1 ≥ vi2j2 and then Si1j1 ≥ Si2j2 . Let ξ = arcsin 2r
vi2 j2 T and Pb = e−2r(vi1j1+vi2 j2 )Tnd

.

We can obtain that

Sϕ = (vi1j1T + 2r cot(ϕ/2))(vi2j2 T + 2r cot(ϕ/2)) sin ϕ

− 4r2(1 + cos ϕ)2 cot ϕ − 4r2 cos ϕ sin ϕ

The expression of Pb1 in terms of Sϕ is

Pb1 = 4

2π

{ ∫ ξ

0
(1 − 2rvi1j1 T)nd

Sϕdϕ

+
∫ π

2

ξ

[
1 − (

2r(vi1j1 + vi2j2)T − 4r2

sin ϕ

)]nd

Sϕdϕ

+
∫ π

2

0
(1 − 2r(vi1j1 + vi2j2)T)nd

(1 − Sϕ)dϕ
}
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Fig. 2.3 Overlap of covered transmission areas Si1j1 and Si2j2 under random walk mobility model.
For simplicity, we regard Six jx (x = 1, 2) as the rectangle with length vix jx T and width 2r in it,
denoted as Rixjx . Oi2j2 is the center of Ri2j2 and Sϕ is the area that Oi2j2 covers when Ri1j1 and Ri2j2
have overlapped areas

Then we evaluate Pb1 as below.

Pb1 ≥ 2

π
(1 − 2r(vi1j1 + vi2j2)T)nd ∼ Pb (2.24)

Pb1

Pb
≤ 2

π

( ∫ π
2

ξ

e
4r2
sin ϕ

nd
Sϕdϕ −

∫ π
2

0
Sϕdϕ

)

+ 2

π
e2rvi1j1 Tnd

∫ ξ

0
Sϕdϕ + 1 (2.25)

Let X and Y denote the first and second item in the right hand side (R.H.S.) of
(2.25), respectively. For sufficiently large n,

Sϕ ≤ 2vi1j1vi2j2 T2 sin ϕ (2.26)

Below for simplicity, we place (2.26) above operator symbols when (2.26) is used
in the derivation. We acquire

X ≥ − 2

π

∫ ξ

0
Sϕdϕ

(2.26)→ 0, as n → +∞. (2.27)

Consider the function f (x) =
(

e4r2ndx − 1
) /

x. We can show that f (x) is a monoton-

ically increasing function for x > 0. Thus, as n → +∞

X
(2.26)≤ 2

π

∫ π
2

ξ

(
e

4r2
sin ϕ

nd − 1
)
2vi1j1vi2j2 T2 sin ϕdϕ

≤ 2vi1j1 vi2j2 T2f (1/sin ξ) → 0. (2.28)

From (2.27) and (2.28), we get X → 0, as n → +∞. Also Y
(2.26)→ 0, as n →

+∞. Due to space limitation, we omit the details. As X and Y both go to 0
as n → +∞, then R.H.S. of (2.25) → 1. Combining this with (2.24), Pb1 ∼
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e−2r(vi1j1+vi2 j2 )T . Finally, as shown below, Pb1 ∼ Pb2.

Pb2 =
2∏

k=1

(1 − (2rvik jk T + πr2))nd

∼ e−2r(vi1j1+vi2 j2 )T = Pb ∼ Pb1

(2o) under i.i.d. mobility with weak parameters condition

The proof is similar to that of (2o) in property (1-a).

Proof of property (1-c/d/e):
Firstly, using properties (1-a) and (1-b), we acquire property (1-c). Due to space

limitation, we omit the details. For simplicity, we define U = ∑n
i=1 P(Ei) and

V = ∑
1≤i<j≤n P(EiEj). Then from property (1-c),

V ∼
∑

1≤i<j≤n

P(Ei)P(Ej) ≤ U 2.

Since C = ⋃n
i=1 Ei, we have the following two inequalities. First, from Bon-

ferroni inequality [44], U − V ≤ P(C ) ≤ U (the right part of this inequality
is simply the union bound). In addition, from K. Chung-P. Erdös inequality [45],
P(C ) ≥ U 2

U +2V . Applying V ≤ U 2 as n → ∞ into the above two inequalities,
properties (1-d) and (1-e) directly follow, respectively.

Proof of property (2):

(1o) under i.i.d. mobility with strong parameters condition

For each i, j, the area Sij is a circle with radius r. Let P∗ be the probability that
any two of the mn circles do not overlap. For any given point X, its distance away
from another point Y no less than 2r means that Y falls outside the area of the circle
centered at X with radius 2r. Thus, for any given point, the probability that all other
u − 1 points are away from it no less than 2r is (1 − (1 − 4πr2)u−1). Then using

Lemma 15, the union bound, r ≤ c
√

log n
(m−k+1)πnd and u ≤ mn, we have

P∗ ≥ 1 − u(1 − (1 − 4πr2)u−1)

≥ 1 − u
{
1 − e−4πr2u−40π2r4u/3}

≥ 1 − u
[
4πr2u + 40π2r4u/3

] → 1, as n → +∞.

Thus, limn→+∞ P∗ = 1.

(2o) under random walk mobility with strong parameters condition

Let the center of the rectangle (Rij : 2r × vijT ) in Sij be Pij. Use Lij to denote the
length of the diagonal of Rij. The circle with center Pij and radius Lij covers Sij for
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sufficiently large n. Let P∗ be the probability that any two of the mn circles don’t
overlap. Using similar method in (1o) above, we obtain P∗ → 1, as n → +∞.

Finally, under both mobility models, in presence of the strong parameters condi-
tion, P∗ → 1 means the mn covered transmission areas do not overlap almost surely,
therefore property (2) holds.
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