
Chapter 2
Overview of Patient Data Anonymization

2.1 Anonymizing Demographics

2.1.1 Anonymization Principles

Protecting demographics can be achieved using perturbative methods, such as noise
addition and data swapping [1], as mentioned in the Introduction. However, these
methods fail to preserve data truthfulness (e.g., they may change the age of a patient
from 50 to 10), which can severely harm the usefulness of the published patient data.
Non-perturbative methods preserve data truthfulness, and thus are more suitable
for anonymizing patient demographics. We will discuss these methods later in this
chapter, but, for now, note that they can be used to enforce anonymization principles,
such as k-anonymity [17, 18, 58, 59], which is illustrated below.

Definition 2.1 (k-Anonymity). k-Anonymity is satisfied when each tuple in a table
T (a1, . . . ,ad), where ai, i = 1, . . . ,m are quasi-identifiers (QIDs), is indistinguish-
able from at least k− 1 other tuples in T w.r.t. the set {a1, . . . ,am} of QIDs.

This principle requires each tuple in a table T to contain the same values in the
set of quasi-identifier attributes (QIDs) with at least k− 1 other tuples in T . Recall
from Introduction that the set of quasi-identifiers contains, typically innocuous,
attributes that can be used to link external data sources with the published table.
Satisfying k-anonymity offers protection against identity disclosure, because the
probability of linking an individual to their true record, based on QIDs, is no more
than 1

k . The parameter k controls the level of offered privacy and is set by data
publishers, usually to five in the context of patient demographics [17]. We also note
that not all attributes in T need to be QIDs (i.e., it may be that m < d), and that an
individual may not be willing to be associated with some of these attributes. The
latter attributes are referred to as sensitive attributes (SAs), and we will examine
them shortly. The process of enforcing k-anonymity is called k-anonymization, and
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Table 2.1 (a) Original dataset, and (b), (c) two different four-anonymous versions of it

Id Postcode Expense (K) Id Postcode Expense (K) Id Postcode Expense (K)

t1 NW10 10 t1 * 10 t1 NW[10–15] 10
t2 NW15 10 t2 * 10 t2 NW[10–15] 10
t3 NW12 10 t3 * 10 t3 NW[10–15] 10
t4 NW13 10 t4 * 10 t4 NW[10–15] 10
t5 NW20 20 t5 * 20 t5 NW[20–30] 20
t6 NW30 40 t6 * 40 t6 NW[20–30] 40
t7 NW30 40 t7 * 40 t7 NW[20–30] 40
t8 NW25 30 t8 * 30 t8 NW[20–30] 30

(a) (b) (c)

Table 2.2 Summary of
privacy principles for
guarding against sensitive
information disclosure

Reference
Type of sensitive
information disclosure

[11, 47, 63, 66, 67] Value disclosure
[37] Semantic disclosure
[32, 35, 44, 45, 67] Range disclosure

it can be performed by partitioning T into groups of at least k tuples, and then
transforming the QID values in each group, so that they become indistinguishable
from one another. Formally, k-anonymization is explained below.

Definition 2.2 (k-Anonymization). k-Anonymization is the process in which a
table T (a1, . . . ,ad), where ai, i = 1, . . . ,m are quasi-identifiers (QIDs), is partitioned
into groups {g1, . . . ,gh} s.t. |g j| ≥ k, j = 1, . . . ,h, where |g j| denotes the size of g j

(i.e., number of tuples contained in g j), and tuples in each g j are made identical
w.r.t. QIDs.

Table 2.1b and c, for example, are both 4-anonymous; Postcode is a QID and
Expense is an SA. These tables were derived by forming two groups of tuples,
one containing {t1, . . . , t4} and another containing {t5, . . . , t8}, and then assigning
the same value in Postcode to all tuples in each group. Specifically, the Postcode
values in Table 2.1b have been replaced by a value ∗, which is interpreted as “any
postcode value”, while, in Table 2.1c, by a new value formed by taking the range of
all Postcode values in a group.

Note that an individual’s sensitive information may be disclosed, even when data
are anonymized using a “large” k [47]. Specifically, we can distinguish among three
types of sensitive information disclosure, which are summarized in Table 2.2. These
types of disclosure have not been examined by the medical informatics community,
partly because they have not led to reported privacy breaches [16]. However, we
report these types of disclosure, for completeness.

Value disclosure involves the inference of an individual’s value in a sensitive
attribute (SA), such as Expense in Table 2.1c. As an example, consider Table 2.1c
and an attacker, who knows that an individual lives in an area with Postcode =
NW10. This allows the attacker to infer that this individual’s expense is 10 K.
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To prevent value disclosure, an anonymization principle, called l-diversity, was
proposed in [47]. This principle requires each anonymized group in T to contain
at least l “well represented” SA values [47]. The simplest interpretation of “well
represented” is “distinct” and leads to a principle called distinct l-diversity [37],
which requires each anonymized group to contain at least l distinct SA values. Other
principles that guard against value disclosure by limiting the number of distinct
SA values in an anonymized group are (a,k)-anonymity [66] and p-sensitive-k-
anonymity[63]. However, all these principles still allow an attacker to conclude that
an individual is likely to have a certain sensitive value, when that value appears
much more frequently than others in the group.

A principle, called recursive (c, l)-diversity [47], addresses this limitation, as
explained in Definition 2.3.

Definition 2.3 (Recursive (c, l)-diversity). Assume that a table T (a1, . . . ,am,sa),
where {a1, . . . ,am} are QIDs and sa is an SA, is partitioned into groups
{g1,g2, . . . ,gh}, such that |g j| ≥ k, j = 1, . . . ,h, and tuples in g j will have the same
values in each QID after anonymization. Given parameters c, l, which are specified
by data publishers, a group g j is (c, l)-diverse when r1 < c× (rl + rl+1 + . . .+ rn),
where ri, i ∈ {1, . . . ,n} is the number of times the i-th frequent SA value appears in
g j, and n is the domain size of g j. T is (c, l)-diverse when every g j, j = 1, . . . ,h is
(c, l)-diverse.

Recursive (c, l)-diversity requires each group in T to contain a large number of
distinct SA values, none of which should appear “too” often. Observe, for example,
that the second group of Table 2.1c satisfies recursive (2,2)-diversity. This is
because it contains three distinct values, whose frequencies in descending order are
r1 = 2,r2 = 1 and r3 = 1, and we have r1 < 2× (r2 + r3).

More recently, an anonymization principle, called privacy skyline, that can
prevent attackers with three different types of background knowledge to infer
individuals’ sensitive values was proposed in [11]. Privacy skyline considers
attackers with knowledge about SA values that an individual I does not have,
knowledge about SA values belonging to another individual, and knowledge that a
group of individuals, in which I is included, has a certain SA value. We believe that
this principle is well-suited to achieve protection of datasets that contain familial
relationships. However, we do not consider such datasets in this book.

Semantic disclosure occurs when an attacker can make inferences, related to SA
values in an anonymous group, that they cannot make by observing the SA values
in the entire dataset [37]. Consider, for example, the distribution of Expense values
in the first group in Table 2.1c, and observe that it differs from the distribution of all
values in the same attribute in Table 2.1c. This group risks semantic disclosure,
because it reveals information that cannot be inferred from the entire dataset.
Semantic disclosure can be thwarted by t-closeness, a principle that calls for limiting
the distance between the probability distribution of the SA values in an anonymized
group and that of SA values in the whole dataset [37]. The smaller the distance, the
higher the level of protection achieved.
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Range disclosure occurs when sensitive information is inferred in the form of
sensitive values [32, 35, 44, 45, 67]. Consider, for example, that a ten-anonymous
group contains three distinct values 10, 11, and 12 K in Expense, which is an
SA. Knowing that an individual’s tuple is contained in this group, an attacker
can infer the range (10–12 K) for this individual’s expense. Clearly, when this
range is “small”, the disclosure may be considered as sensitive. Anonymization
principles to guard against range disclosure by limiting the maximum range of SA
values in a group of tuples have been proposed by Loukides et al. [44] and Koudas
et al. [32], while LeFevre et al. [35] proposed limiting the variance of sensitive
values instead. Xiao et al. [67] assumed that sensitive ranges are determined by
individuals themselves and proposed, personalized privacy. This principle forestalls
range disclosure by limiting the probability of associating an individual with
their specified range, and is enforced through generalizing SA values. This may
be inappropriate for medical analysis tasks in which SAs should remain intact.
A principle, called Worst Group Protection (WGP), which prevents range disclosure
and can be enforced without generalization of SA values was proposed in [45].
WGP measures the probability of disclosing any range in the least protected group
of a table, and captures the way SA values form ranges in a group, based on their
frequency and semantic similarity.

2.1.2 Anonymization Algorithms

Most anonymization algorithms to protect patient demographics work in two steps;
first, they form groups of tuples in a way that optimizes data utility and/or privacy
protection, and then transform QID values to enforce an anonymization principle.
In the following, we review existing algorithms in terms of search strategies,
optimization objectives, and value recoding models.

Search strategies Achieving k-anonymization with minimum information loss is
an NP-hard problem [4, 8, 49, 68], thus many methods employ heuristic search
strategies to form k-anonymous groups. Samarati [58] proposed a binary search on
the height of DGHs, LeFevre et al. [33] suggested a search similar in principle to
the Apriori [5] used in association rule mining, and Iyengar [31] used a genetic
algorithm. Partitioning has also been used to form groups in k-anonymization.
LeFevre et al. [34,35] examined several partitioning strategies including techniques
originally proposed for kd-tree construction [22], while Iwuchukwu et al. [30]
developed a set of heuristics inspired from R-tree construction [25]. Several k-
anonymization algorithms are based on clustering [2, 36, 44, 51, 68]. The main
objective of these methods is to form groups that optimize a particular objective
criterion. In order to do so, they perform greedy search constructing groups in a
bottom-up [2, 36, 44, 51] or a top-down fashion [68]. Figure 2.1 provides a classi-
fication of heuristic search strategies according to the type of search they adopt.
Furthermore, approximation algorithms for the problem of optimal k-anonymity
under (simple) information loss measures have been proposed in [4, 49, 53].



2.1 Anonymizing Demographics 13

Fig. 2.1 A classification of heuristic search strategies

Table 2.3 Summary of existing grouping strategies w.r.t. their objectives

Reference Optimization objective Utility Sens. inf. protection

[6, 33, 34] Group-size
constrained

Optimal No guarantee

[8, 35, 68]
[19] Utility constrained Guarantee No guarantee
[32, 37, 47, 67] Privacy constrained Optimal Guarantee
[44] Trade-off based Traded-off with

privacy
Traded-off with

utility
[46] Utility-and-privacy

constrained
Guarantee Guarantee

Optimization objectives Anonymization algorithms fall into five categories with
respect to their optimization objectives, as can be seen in Table 2.3. Group-size
constrained algorithms attempt to achieve a maximum level of data utility, subject
to a minimum anonymous group size requirement, expressed as k [6, 8, 33–35, 68].
Other algorithms bound the level of information loss incurred during anonymization
to ensure that data remain useful for applications, and are referred to as utility
constrained. However, both group-size and utility constrained algorithms may result
in an unacceptably low level of privacy protection from sensitive information dis-
closure [47]. In response, privacy constrained algorithms [32, 37, 47, 67] introduce
additional protection constraints (e.g., a minimum level in l-diversity) that released
data must satisfy. Another way to deal with utility and privacy is to treat both of them
as optimization objectives and attempt to achieve a desired trade-off between them.
This trade-off based approach, was investigated in [44]. It should be noted, however,
that none of the aforementioned approaches can guarantee that data publishers’ data
utility and privacy protection requirements are satisfied in the anonymized data. In
response, a utility-and-privacy constrained approach, which allows the specification
and enforcement of utility and privacy requirements, was proposed in [46].

Value recoding models After deriving groups of tuples that attempt to optimize
their objectives, anonymization algorithms recode QID values using suppression
[59], microaggregation [13, 14], or generalization [58, 58]. Suppression suggests
eliminating specific QID values, or entire records from the published data [33],
while microaggregation involves replacing a group of QID values using the group
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SingleGeneralization models

     

Single-dimensional Multi-dimensional

Global Local

Fig. 2.2 Summary of
generalization models

centroid [13] or median value [14] for numerical and categorical QIDs, respec-
tively. Both of these techniques, however, may cause high information loss [33].
Generalization suggests replacing QID values by more general but semantically
consistent ones [58, 59]. Thus, suppression can be thought of as the special case of
generalization, where all values in a QID are generalized to the most general value
(i.e., a value that can be interpreted as any value in the domain of the QID) [4].

Generalization models can be classified into global and local. Global generaliza-
tion models involve mapping the domain of QIDs into generalized values [6, 33],
and are further grouped into single and multi-dimensional. In the former models,
the mapping of a QID value to a generalized value is performed for each QID
separately, whereas in the latter ones, the multi-attribute domain of QID values is
recoded. On the other hand, in local models, QID values of individual tuples are
mapped into generalized values on a group-by-group basis [68]. The different types
of generalization models that have been proposed are summarized in Fig. 2.2. For
an excellent discussion of these models and formal definitions, we refer the reader
to [33, 38].

2.2 Anonymizing Diagnosis Codes

Electronic medical records contain clinical data, such as patients’ diagnoses,
laboratory results, active medication, and allergies, as discussed in Introduction.
While publishing any patient information could, in principle, breach patient privacy,
it is important to recognize that publishing different types of information poses
different levels of privacy risk. To estimate the level of risk, the principles of
replication (i.e., the frequency an attribute value appears in an individual’s electronic
medical record), resource availability (i.e., the number and accessibility of datasets,
that are external to an individual’s electronic medical record and contain the
individual’s attribute value), and distinguishability (i.e., the extent to which one
or more attribute values can be used to re-identify an individual) can be used as
a guide. These principles build on those defined by the Federal Committee on
Statistical Methodology [20] and are acknowledged by health privacy experts [48].
Based on these principles, it can be seen that diagnosis codes have high replication,
because an electronic medical record contains all diagnosis codes a patient has been
assigned to during multiple hospital visits, and high resource availability, as they
are contained in publicly available hospital discharge summaries. Furthermore, as
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Fig. 2.3 An example of: (a) original dataset, and (b), (c) two anonymized versions of it

we will explain in the next chapter, diagnosis codes are highly distinguishable. Thus,
publishing diagnosis codes may lead to the disclosure of patients’ identity [40], and
anonymization of diagnosis codes can be employed to eliminate this threat.

2.2.1 Anonymization Principles

Anonymizing diagnosis codes is a challenging computational problem, because
only a small number out of thousands of possible diagnosis codes are assigned
to a patient. In fact, high-dimensional and sparse data are notoriously difficult to
anonymize [3], because, intuitively, it is difficult to find values that are sufficiently
similar as to be anonymized with “low” information loss. At the same time, the
number of diagnosis codes that are associated to a patient may vary significantly.
Due to these reasons, it is difficult to anonymize diagnosis codes by employing the
anonymization principles and algorithms that have been designed for demographics
and were discussed in Sect. 2.1.1. At the same time, somewhat surprisingly,
the medical informatics community has focused on anonymizing demographics
[17, 52, 59], but not diagnosis codes. In fact, due to their semantics, a patient-level
dataset containing diagnosis codes can be modeled as a transaction dataset. That is,
data in which a record (also called transaction) corresponds to a different patient
and contains the set of diagnosis codes that have been assigned to the patient, as
shown in Fig. 2.3a.

To describe transaction data, we employ the terminology of the frequent itemset
mining framework [5]. Specifically, diagnosis codes are represented as items that
are derived from a finite set I = {i1, . . . , iM}, such as the set of all ICD-9 codes.1

A subset I of I is called an itemset, and is represented as the concatenation of the
items it contains. An itemset that has m items, or equivalently a size of m, is called
an m-itemset and its size is denoted with |I|. For instance, the set of diagnosis codes
{a,b,c}, in the first record of Fig. 2.3a is a three-itemset. A dataset D = {T1, . . . ,TN}

1ICD-9 codes are described in the International Classification of Diseases, Ninth Revision –
Clinical Modification, http://www.cdc.gov/nchs/icd/icd9cm.htm

http://www.cdc.gov/nchs/icd/icd9cm.htm
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is a set of N records, called transactions, and each transaction Tn in D corresponds to
a unique patient. A transaction is a pair Tn = 〈tid, I〉, where tid is a unique identifier,2

and I is the itemset. A transaction Tn = 〈tid,J〉 supports an itemset I, if I ⊆ J. Given
an itemset I in D , we use sup(I,D) to represent the number of transactions Tn ∈D
that support I. For example, the support of the itemsets {a,b} and {a,b,c} in the
dataset of Fig. 2.3a is 3 and 1, respectively.

Using the above notation, we review anonymization principles for publishing
patients’ diagnosis codes, starting from the most specific to the more general ones.

Complete k-anonymity A k-anonymity-based principle, called complete
k-anonymity, for anonymizing transaction datasets was proposed by He et al. [28].
This principle assumes that any itemset (i.e., combination of diagnosis codes) in a
transaction can lead to identity disclosure and requires each transaction to be
indistinguishable from at least k− 1 other transactions, based on any of these
combinations. The following definition explains the concept of complete k-
anonymity.

Definition 2.4 (Complete k-anonymity). Given a parameter k that is specified
by data publishers, a transaction dataset D satisfies complete k-anonymity when
sup(I j,D) ≥ k, for each itemset I j of a transaction Tj = 〈tid j, I j〉 in D , with
j ∈ [1,N].

Observe that satisfying complete k-anonymity guarantees that an attacker cannot
link a patient’s identity to fewer than k transactions of the anonymized dataset. For
instance, consider the dataset in Fig. 2.3b, in which items a to d have been replaced
by a generalized item (a,b,c,d), interpreted as any non-empty subset of abcd. This
dataset satisfies complete six-anonymity, hence a patient’s identity cannot be linked
to fewer than six transactions, based on any combination of the diagnosis codes a
to d. The authors of complete k-anonymity implicitly assume that attackers may
know all the diagnosis codes contained in a patient’s transaction. However, this
assumption is considered as too strict in most diagnosis code publishing scenarios
[41], because, typically, only certain combinations of diagnosis codes of a patient
are published [40]. For instance, an attacker who attempts to link the published
dataset to hospital discharge records, can only use sets of diagnosis codes that were
assigned to a patient during a single hospital visit [40, 41]. Thus, anonymizing a
dataset to satisfy complete k-anonymity may result in unnecessary information loss.

km-anonymity Terrovitis et al. [60] assume that, due to the semantics of transaction
data, it may be difficult for an attacker to learn more than a certain number of a
patient’s diagnosis codes. Based on this assumption, the authors of [60] proposed
km-anonymity, which thwarts attackers who know any combination of at most m
diagnosis codes. This principle is explained in Definition 2.5, and it ensures that no
m itemset can be used to associate an individual with fewer than k transactions in
the published dataset.

2The identifier is used only for reference and may be omitted, if this is clear from the context.
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Fig. 2.4 An example of: (a) original dataset containing public and sensitive items, (b) a (0.5,6,2)-
coherent version of it, and (c) a generalization hierarchy

Definition 2.5 (km-anonymity). Given parameters k and m, which are specified by
data publishers, a dataset D satisfies km-anonymity when sup(I,D) ≥ k, for each
m-itemset I in D .

The dataset shown in Fig. 2.3a, for example, does not satisfy 22-anonymity,
because the combination of diagnosis codes ac appears only in one transaction. As
an example of a dataset that satisfies 22-anonymity, consider the dataset shown in
Fig. 2.3c. In the latter dataset, items a to c have been replaced by a generalized item
(a,b,c), which is interpreted as any non-empty subset of abc, while items d to f
have been replaced by (d,e, f ). Thus, the dataset of Fig. 2.3c contains at least two
transactions that can be associated with any pair of diagnosis codes a to e.

So far, we have discussed how to prevent identity disclosure, which is essential to
comply with data sharing regulations [12, 50]. However, ensuring that patients will
not be associated with sensitive diagnosis codes (i.e., diagnoses that can socially
stigmatize patients) is also important. Examples of sensitive diagnosis codes are
sexually transmitted diseases and drug abuse, as they are specified in related policies
[62]. To see how sensitive information disclosure can be performed, consider
Fig. 2.4a, in which the diagnosis codes e to g are sensitive and are denoted with
bold letters. An attacker, who knows that a patient is diagnosed with a and b, can
associate the patient with the sensitive diagnosis code e with a probability of 2

3 .
Clearly, this may not be acceptable when a healthcare provider’s policy requires the
maximum probability of inferring a patient’s sensitive diagnosis to be 1

2 .
Guarding against sensitive information disclosure has been the focus of two

recent works in the data management community [43, 69].

(h, k, p)-coherence Xu et al. [69] introduced (h,k, p)-coherence, which treats
diagnosis codes that can lead to identity disclosure (i.e., non-sensitive diagnosis
codes) similarly to km-anonymity and additionally limits the probability of inferring
sensitive diagnosis codes using a parameter h. Specifically, the function of parameter
p is the same as m in km-anonymity, while h is expressed as a percentage. This
anonymization principle is explained below.
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Definition 2.6 ((h,k, p)-coherence). Given parameters h, k, and p, which are
specified by data publishers, a dataset D satisfies (h,k, p)-coherence when
sup(I,D) ≥ k, for each p-itemset I comprised of public items in D , and
sup(I∪ j,D)

sup(I,D)
× 100%≤ h.

Thus, (h,k, p)-coherence can forestall both identity and sensitive information
disclosure. To see this, observe that the dataset in Fig. 2.4b satisfies (0.5,6,2)-
coherence, and, as such, it prevents an attacker, who knows any pair of diagnosis
codes a to d, to infer any of the sensitive codes e to g, with a probability of more
than 0.5. This principle assumes that all combinations of p non-sensitive diagnosis
codes can lead to identity disclosure and that every diagnosis code needs protection
from either identity or sensitive information disclosure. Thus, applying (h,k, p)-
coherence in medical data publishing applications, in which only certain diagnosis
codes are linkable to external data sources and specific diagnosis codes are sensitive,
may unnecessarily incur a large amount of information loss.

ρ-uncertainty Another principle to guard against sensitive information disclosure,
called ρ-uncertainty, was introduced by Cao et al. [43]. As can be seen from the
definition below, ρ-uncertainty limits the probability of associating a patient with
any of their sensitive diagnosis codes, using a threshold ρ .

Definition 2.7 (ρ-uncertainty). Given parameter ρ , which is specified by data
publishers, a dataset D satisfies ρ-uncertainty when sup(I∪ j,D)

sup(I,D) < ρ , for each

I-itemset in I , where j is a sensitive item in I such that j /∈ I.

Different from the aforementioned anonymization principles, ρ-uncertainty can
be used to thwart attackers who can use any combination of items (either public or
sensitive) to infer an individual’s sensitive item. Also, due to the monotonicity of
support, we have that sup(I ∪ J,D) ≤ sup(I ∪ j,D), for every J such that j ⊆ J.
This implies that ρ-uncertainty ensures that any combination of sensitive items
that are not known to an attacker will receive protection as well. For instance,
the dataset in Fig. 2.4b does not satisfy 0.5-uncertainty, because an attacker, who
knows that an individual is associated with abcd and the sensitive item f , can infer
that the individual is associated with another sensitive item e with a probability
of 0.5. Unfortunately, however, enforcing ρ-uncertainty does not prevent identity
disclosure. This implies that this principle is unsuited for being used in scenarios
in which preventing identity disclosure is a legal requirement [12, 54, 64], such as
those involving the publishing of diagnosis codes.

2.2.2 Generalization and Suppression Models

To enforce the aforementioned anonymization principles, generalization and sup-
pression of items can be applied. The models that have been developed to perform
these operations bear some similarity to those that have been proposed for relational
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data [33,38], and they can be classified into global and local models. Global models
require generalizing or suppressing all instances (i.e., occurrences) of an item in
a transaction dataset in the same way, whereas local models do not impose this
requirement. The dataset shown in Fig. 2.4b, for example, has been anonymized
by applying a global generalization model to the dataset of Fig. 2.4a. Note that all
instances of the items a to d have been generalized to (a,b,c,d). While local models
are known to reduce information loss, they may lead to the construction of datasets
that are difficult to be used in practice. This is because data mining algorithms and
analysis tools cannot work effectively on these datasets [23].

A hierarchy-based model, which is similar to the full-subtree generalization
model introduced by Iyengar [31] for relational data, was proposed by Terrovitis
et al. [60]. This model assumes the existence of a generalization hierarchy, such
as the one shown in Fig. 2.4c, and requires entire subtrees of original items (i.e.,
leaf-level nodes in the hierarchy) to be replaced by a unique internal node in the
hierarchy. Consider, for example, the hierarchy in Fig. 2.4c. According to the model
proposed in [69], a can be generalized to (a,b) or (a,b,c,d), but not to (a,c), as
(a,c) is not represented as an internal node in the hierarchy. This model is not
suitable for generalizing diagnosis codes, for two reasons. First, it unnecessarily
restricts the number of possible generalizations, which may harm data utility [42].
Second, it is based on hierarchies, which, in the case of diagnosis codes, are either
not well-designed (e.g., “too” coarse) or non-existent [56]. He et al. [28] applied the
hierarchy-based model in a local manner, allowing different occurrences of the same
item to be replaced by different generalized items. In a different line of research, Xu
et al. [60] proposed applying global suppression to non-sensitive items, and pointed
out that the latter operation has the important benefit of preserving the support of
original non-suppressed items. Cao et al. [9] proposed a global suppression model
that can be applied to both sensitive and not-sensitive items. Overall, generalization
typically incurs a lower amount of information loss than suppression, and global
generalization models are preferred due to their ability to preserve data utility in
data analysis and mining applications.

2.2.3 Anonymization Algorithms

Similarly to the problem of k-anonymizing demographic data, applying the afore-
mentioned principles to anonymize transaction data is NP-hard, when one needs to
minimize information loss [42, 60]. Thus, a number of heuristic algorithms have
been proposed to deal with this problem, and they can be classified based on the
privacy principle they adopt, as illustrated in Table 2.4. In the following, we present
these algorithms, reviewing the search and data transformation strategies they adopt.

Partition algorithm He et al. [28] proposed Partition, a top-down algorithm to
enforce complete k-anonymity. As can be seen in the simplified version of Partition,
shown in Algorithm 1, the algorithm gets as input an anonymized dataset D̃ ,
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Table 2.4 Summary of algorithms for preventing identity disclosure in transaction data publishing

Algorithm Principle Search strategy Transformation

Partition [28] Complete k-anonymity Top-down partitioning Local generalization
Apriori [60] km-anonymity Bottom-up traversal Global generalization
LRA [61] km-anonymity Horizontal partitioning Local generalization
VPA [61] km-anonymity Vertical partitioning Global generalization
Greedy [24] (h,k, p)-coherence Greedy search Global suppression

(non-sensitive items)
SuppressControl [42] ρ-uncertainty Greedy search Global suppression

(any item)

Algorithm 1 Partition(D̃ ,C ,H ,k) [28]

input: Dataset D̃ , hierarchy cut C , generalization hierarchy H , parameter k
output: Complete k-anonymous dataset D̃ ′

1. Start with the most generalized dataset D̃
2. if complete k-anonymity is not satisfied
3. return D̃
4. else
5. Find the node u in H that incurs minimum information loss when replaced by its

immediate ascendants in H
6. Update C by replacing u with its immediate ascendants
7. Update D̃ based on C
8. Create subpartitions of D̃ ′ such that each of them contains all transactions

in D̃ ′ that have exactly the same generalized items
9. Balance the subpartitions so that each of them has at least k transactions
10. for each subpartition D̃ ′′
11. Execute Partition(D̃ ,C ,H ,k)

a generalization hierarchy H , and a parameter k. D̃ initially contains a single
generalized item that appears in the root of the generalization hierarchy H and
replaces all items. More specifically, D̃ is constructed based on a hierarchy cut C ,
i.e., a set of nodes in H , such that every item in the domain I can be replaced by
exactly one node in the set, according to the hierarchy-based generalization model.
A hierarchy cut, for example, contains the nodes a, b, and (c,d) in the hierarchy
of Fig. 2.4c. The algorithm proposed in [28] works by recursively partitioning D̃ ,
as long as complete k-anonymity is satisfied. In each execution, Partition is applied
to a subpartition of at least k transactions in D̃ , which have the same generalized
items, and the generalized items in these transactions are replaced by less general
ones, in a way that reduces information loss. After Algorithm 1 terminates, all the
constructed subpartitions satisfy complete k-anonymity and constitute a partition
of the initial anonymized dataset. Thus, these subpartitions are combined into a
publishable dataset (this process is straightforward and omitted from Algorithm 1,
for clarity).

Partition starts by an anonymized dataset D̃ , in which all items are replaced by
the most generalized item (step 1). If D̃ does not satisfy complete k-anonymity, the



2.2 Anonymizing Diagnosis Codes 21

Fig. 2.5 Subpartitions created during the execution of Partition

Fig. 2.6 An example of (a)
complete two-anonymous
dataset, created by Partition,
and (b) 22-anonymous
dataset, created by Apriori

algorithm returns this dataset (steps 2 and 3). Otherwise, it revises the hierarchy
cut C that corresponds to D̃ , by replacing a single node u in H (the one whose
replacement incurs minimum information loss) with its immediate ascendants (steps
5 and 6). After that, Partition updates the transactions in D̃ , so that their generalized
items are all contained in the updated hierarchy cut (step 7). This process creates a
number of transactions in D̃ that contain exactly the same generalized items with
others. These transactions are identified by the Partition algorithm, which adds them
into a subpartition (step 8). Subsequently, the resultant subpartitions are balanced,
so that they contain at least k transactions (step 9). This involves redistributing
transactions from subpartitions that have more than k transactions to others with
fewer than k transactions, and potentially further generalization. Last, Partition is
executed using each of these subpartitions as input (steps 10 and 11).

For example, consider applying Partition to anonymize the dataset in Fig. 2.4a,
using k = 2, and assume that only non-sensitive items are generalized, based on
the hierarchy shown in Fig. 2.4c. Initially, Partition is applied to a dataset D̃ in
which all transactions have the most general item (a,b,c,d), and the hierarchy cut
contains only (a,b,c,d). The dataset D̃ satisfies complete three-anonymity, and
Parition replaces (a,b,c,d) with (a,b) and (c,d). This results in the three sub-
partitions, shown in Fig. 2.5a–c. Since the last two subpartitions contain fewer than
k transactions, they are merged into the subpartition shown in Fig. 2.5d. Then, the
algorithm is executed recursively, first for the subpartition of Fig. 2.5a and then for
that of Fig. 2.5d. However, splitting any of these subpartitions further would violate
complete two-anonymity, so the algorithm stops. The complete two-anonymous
dataset in Fig. 2.6a, which is constructed by combining the subpartitions, can thus
be safely released.

The Partition algorithm is efficient and effective for enforcing complete
k-anonymity [28]. However, it is not particularly suited for anonymizing diagnosis
codes with “low” information loss. This is because, in this setting, applying
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Algorithm 2 Apriori(D̃ ,H ,k,m) [60]

input: Original dataset D , generalization hierarchy H , parameters k and m
output: km-anonymous dataset D̃

1. D̃ ← D
2. for j = 1 to m
3. for each transaction T in D
4. Consider all the j-itemsets of T (generalized or not)
5. S← Find every j-itemset I that is supported by fewer than k transactions in D
6. Construct all possible ways to generalize the itemsets in S according to H
8. D̃ ′ ← find the k j-anonymous dataset that incurs minimum information loss
9. return D̃

complete k-anonymity and hierarchy-based, local generalization may incur
excessive information loss, as discussed above.

Apriori algorithm An iterative, bottom-up algorithm for enforcing km-anonymity,
called Apriori, was proposed by Terrovitis et al. [60]. Since any superset of an
itemset I has a support that is at most equal to that of I, it is possible for itemsets
that need protection to be examined in a progressive fashion; from single items to m
itemsets. Thus, Apriori generalizes larger itemsets, based on the way their subsets
have been generalized [60]. Generalization is performed by traversing the hierarchy
in a bottom-up, breadth-first way, using the hierarchy-based, global generalization
model that was discussed above. The replacement of the items in an itemset with
more general items (i.e., those in the upper levels of H ) can increase its support.
This helps the enforcement of km-anonymity, but increases the level of information
loss. Thus, Apriori starts from leaf-level nodes in the hierarchy and then examines
the immediate ascendants of these items, one at a time. This is reminiscent to the
strategy followed by the Apriori association rule algorithm [5].

An overview of Apriori is provided in Algorithm 2. The algorithm starts with
the original dataset D , which is assigned to D̃ , and performs m iterations (steps 1
and 2). In the j-th iteration, it identifies all possible j-itemsets that are not protected
in D̃ and then constructs a k j-anonymous version D̃ of D that incurs minimum
information loss (steps 3–8). This is achieved with the use of a data structure, which
stores the non-protected itemsets and their generalized counterparts and allows
efficient itemset retrieval and support counting [60]. Subsequently, Apriori proceeds
into the next iteration, and, after m iterations, it returns a km-anonymous dataset
(step 10).

To exemplify, we discuss how Apriori can be applied to the dataset shown
in Fig. 2.4a to enforce 22-anonymity (assume that only non-sensitive items are
generalized). Given the hierarchy of Fig. 2.4c, Apriori considers original items first,
but the dataset in Fig. 2.4a violates 22-anonymity. Thus, the algorithm attempts the
generalization of a and b to (a,b) and that of c and d to (c,d). However, neither of
these generalizations suffice to protect privacy, and Apriori eventually generalizes
all non-sensitive items to (a,b,c,d). The resultant dataset, shown in Fig. 2.6b, is
22-anonymous and can be safely published.
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LRA and VPA algorithms Terrovitis et al. [61] also proposed two efficient algo-
rithms that are based on Apriori. The first of these algorithms, called Local Recoding
Anonymization (LRA), splits D horizontally, so that the transactions in each
subpartition share a large number of items and have a similar number of m-itemsets.
Specifically, the transactions in D are sorted based on Gray ordering [26] and then
grouped into subpartitions of approximately equal size. This strategy brings together
transactions that will incur “low” information loss when anonymized. After that, a
km-anonymous dataset is constructed by applying Apriori with the same k and m
values, in each subpartition separately. LRA scales better with the size of dataset
than Apriori, but still much time is spent to anonymize subpartitions that contain
large transactions.

To address this issue and further improve efficiency, the authors of [61] pro-
posed Vertical Partitioning Algorithm (VPA), which applies hierarchy-based, global
generalization and works in two phases. In the first phase, the domain of items I
is split into subpartitions I1, . . . ,Il that contain items whose common ancestor
lies at a certain level in the hierarchy. For example, partitioning together items
whose common ancestor lies at the second level of the hierarchy that is shown in
Fig. 2.4c, yields the subpartitions (a,b) and (c,d). This process creates a number of
datasets D1, . . . ,Dl , each containing one subpartition of I . Then, Apriori is applied
with the same k and m values to each of the latter datasets. However, the entire
dataset may not be km-anonymous, if there are item combinations that span multiple
subpartitions of I . Thus, in the second phase, VPA constructs a km-anonymous
dataset by applying Apriori in the dataset that contains all generalized items created
during the previous phase.

LRA and VPA are significantly faster than Apriori and achieve a comparable
result in terms of information loss [61]. However, they enforce km-anonymity, using
hierarchy-based generalization, which makes them unsuited for being applied to
anonymize diagnosis codes, as mentioned in Sects. 2.2.1 and 2.2.2, respectively.

We now review two suppression-based algorithms, which provide protection
from sensitive information disclosure.

Greedy algorithm Xu et al. [69] proposed Greedy, an algorithm that employs
suppression to enforce (h,k, p)-coherence. Central to this algorithm is the notion
of mole, which is defined below.

Definition 2.8 (Mole). Given an original dataset D , and values for the parameters
h, k, and p, a mole is defined as an itemset I, comprised of public items in I , such
that sup(I,D)< k and sup(I∪ j,D)

sup(I,D) > h, for each sensitive item j in I .

Clearly, no (h,k, p)-coherent dataset contains a mole, and item suppression helps
the elimination of moles. At the same time, suppression incurs information loss,
which needs to be kept at a minimum to preserve the utility of the published data.
Thus, Greedy works by iteratively removing public items from a dataset, until the
resultant dataset satisfies (h,k, p)-coherence.

As can be seen in the simplified version of Greedy that is presented in
Algorithm 3, this algorithm starts by assigning D to a dataset D̃ and then suppresses
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Algorithm 3 Greedy(D ,h,k, p) [69]

input: Original dataset D , parameters h, k, and p
output: (h,k, p)-coherent dataset D̃

1. D̃ ← D
2. for each 1-itemset I in D̃ that is a mole
2. D̃ ← D̃ \ I
3. while there exists a mole I in D̃
4. for each public item i in D̃
5. MM(i)← the number of moles in D̃ that contain item i
6. IL(i)← information loss of i

7. find public item i in I with the maximum MM(i)
IL(i)

8. suppress i from all transactions in D̃
9. return D̃

Fig. 2.7 An example of (a) (0.5,2,2)-coherent dataset produced by Greedy [69], (b) SARs used
by SuppressControl [9], (c) intermediate dataset produced by SuppressControl [9], and (d) 0.5-
uncertain dataset produced by SuppressControl

all moles of size 1 from D̃ (steps 1 and 2). Next, Greedy iterates over all public items
in D̃ , and suppresses the item i with the largest ratio between MM(i), the number
of items that contain i, and IL(i), the amount of information loss that suppressing
i incurs (steps 3–8). Finding i is performed efficiently using a data structure that
organizes moles similarly to the way frequent itemsets are stored in an FP-tree
[27]. As for the score IL for an item, it is either determined by data publishers, or
set to sup(i,D). The process of suppressing items ends when D̃ satisfies (h,k, p)-
coherence, and, after that, Greedy returns D̃ (step 9).

To see how Greedy works, consider applying it to the dataset of Fig. 2.4a using
h = 0.5, k = 2, and p = 2, when IL = sup(i,D), for each of the public items a to
d. The algorithm starts by suppressing d, as it is supported by a single transaction.
Then, it suppresses c, because MM(c)

IL(c) = 3
2 is larger than the corresponding fractions

of as all other public items. This suffices to satisfy (0.5,2,2)-coherence, hence
Greedy returns the dataset shown in Fig. 2.7a.

However, Greedy may incur significant information loss if applied to protect
diagnosis codes for two reasons. First, it employs (h,k, p)-coherence, which does
not take into account detailed privacy requirements that are common in medical
data publishing (see Sect. 2.2.1). Second, Greedy uses suppression, which is a rather
drastic operation compared to generalization. For instance, enforcing (0.5,6,2)-
coherence using Greedy requires suppressing all public items. On the other hand,
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there are generalized datasets, such as the one in Fig. 2.4b, that satisfy (0.5,6,2)-
coherence, while incurring much lower information loss.

SuppressControl algorithm Cao et al. [9] have proposed SuppressControl, a
greedy, suppression-based algorithm to enforce ρ-uncertainty. Central to this
algorithm is the notion of Sensitive Association Rule (SAR) that is defined below.

Definition 2.9 (Sensitive Association Rule (SAR)). Given an original dataset D ,
and a value for the parameters ρ , a sensitive association rule is defined as an
implication I→ j, where I is an itemset in I , called the antecedent of I→ j, and j
is a sensitive item in I such that j /∈ I, called the consequent of I→ j.

Given a dataset D and a set of SARs, the dataset satisfies ρ-uncertainty when,
for every SAR I → j, we have sup(I∪ j,D)

sup(I,D)
≤ ρ , as can be seen from Definition 2.7.

Thus, SuppressControl considers each SAR that can be constructed from the items
in D and suppresses one or more items in the SAR, from all transactions in the latter
dataset, until D satisfies ρ-uncertainty.

Specifically, the algorithm works iteratively, as follows. In the i-th iteration, it
finds a set of SARs S whose antecedents contain exactly i items. If such a set
cannot be constructed, SuppressControl returns D̃ (steps 1–5). Otherwise, it updates
S by discarding every SAR that does not violate ρ-uncertainty (steps 6 and 7).
Next, SuppressControl iterates over all SARs in S, and suppresses items in them,
starting with the item l that has the maximum ratio between the number of SARs that
contain l and sup(l,D̃) (steps 9–12). After suppressing l, SuppressControl updates
S by removing all SARs that contain this item (steps 13 and 14), and proceeds into
considering the next SAR in S , if there is one. Otherwise, the algorithm proceeds to
the next iteration, in which SARs with antecedents larger by one item than those of
the SARs considered before, are examined. Last, when all SARs that need protection
have been considered, SuppressControl returns D̃ , which satisfies ρ-uncertainty
(step 15).

As an example, consider applying SuppressControl to the dataset of Fig. 2.4a,
using ρ = 0.5. The algorithm starts by constructing all the antecedents of SARs that
are comprised of 1 item in this dataset (i.e, a to g), and then discards the SARs
that do not need protection, which are highlighted in Fig. 2.7c (steps 1–7). Then,
SuppressControl computes the ratios between the NI and support scores for all
items, and suppresses the sensitive item f, which has the maximum ratio NI(f)

sup(f,D̃)
=

6
3 = 2. In this case, the corresponding ratio for f is also 2, and SuppressControl
breaks the tie arbitrarily. Next, the algorithm updates the set of SARs S by
discarding the SARs that contain f in Fig. 2.7b. After that, the algorithm suppresses
the item e and discards the SARs that contain this item in Fig. 2.7b. At this point, D̃
is as shown in Fig. 2.7c, and S is empty. Thus, SuppressControl proceeds into the
next iteration, in which SAR considers ab→ g, the only SAR that contains two items
in its antecedent and can be formed, based on D̃ . To protect this SAR, the algorithm
suppresses b and returns the dataset in Fig. 2.7d, which satisfies 0.5-uncertainty.
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Algorithm 4 SuppressControl(D ,ρ) [9]

input: Original dataset D , parameter ρ
output: Dataset D̃ that satisfies ρ uncertainty

1. D̃ ← D
2. for each i from 1 to |I |
3. S← the antecedents of all SARs that contain i items
4. if S =∅

5. return D̃

6. for each SAR I→ j such that sup(I∪ j,D̃)

sup(I,D̃)
≤ ρ

7. S← S\{I→ j}
8. while S 
=∅

9. for each item l contained in an SAR in S
10. NI(l)← the number of SARs in S that contain item i

11. find the item l with the maximum NI(l)
sup(l,D̃)

12. suppress l from all transactions in D̃
13. Sl ← find all SARs in S that contain the item l
14. S← S\Sl

15. return D̃

2.3 Anonymizing Genomic Data

While de-identification and anonymization of demographics and diagnosis codes
guard against linkage attacks, an individual’s record may be distinguishable with
respect to genomic data [48]. Lin et al. [39], for example, estimated that an individ-
ual is unique with respect to approximately 100 single nucleotide polymorphisms
(SNPs), i.e., DNA sequence variations occurring when a single nucleotide in the
genome differs between paired chromosomes in an individual. Meanwhile, genomic
sequences contain potentially sensitive information, including the ancestral origin of
an individual [55] or genetic information about their family members [10], which
are likely to be abused, if linked to an individual’s identity [57]. To prevent such
inferences, only aggregate statistics related to individuals’ genetic information were
deposited into the public section of dbGaP repository.

However, Homer et al. [29] have shown that such aggregate statistics may still
allow an attacker to infer whether an identified individual belongs to the case or
control group of a Genome-Wide Association Study (GWAS) (i.e., if the individual
is diagnosed with a GWAS-related disease or not). To achieve this, an attacker needs
access to an individual’s DNA and to a reference pool of DNA from individuals of
the same genetic population as the identified individual (e.g., the publicly available
data from the HapMap project.3) This allows the attacker to compare the identified
individual’s SNP profile against the Minor Allele Frequencies (MAFs) 4 of the DNA

3http://hapmap.ncbi.nlm.nih.gov/
4Minor Allele Frequencies (MAFs) are the frequencies at which the less common allele occurs in
a given population.

http://hapmap.ncbi.nlm.nih.gov/


References 27

mixture (e.g., the case group in a GWAS) and the reference population, and then to
statistically assess the presence of the individual in the “mixture”.

The NIH and Wellcome Trust responded to the findings of Homer et al. quickly,
by removing genomic summaries of case and control cohorts from the public
section of databanks, such as dbGaP [70], while further research investigated the
feasibility of Homer’s attack [7, 65, 71]. Wang et al. [65] noted that attackers may
not have access to MAFs (e.g., when other test statistics are published instead)
or to large numbers of independent SNPs from the identified individual and their
corresponding allele frequencies from the mixture, which are required for Homer’s
attack to succeed. Furthermore, Brown et al. [7] showed that many individuals can
be wrongly identified as belonging to the case group, because the assumptions about
adversarial knowledge made in [29] may not hold in practice. Wang et al. [65]
introduced two other attacks that are applicable to aggregate statistics [65]; one that
can statistically determine the presence of an individual in the case group, based
upon the r2 measure of the correlation between alleles, and another that allows the
inference of the SNP sequences of many individuals that are present in the GWAS
data, based on correlations between SNPs.

Recently, Fienberg et al. [21] examined how aggregated genomic data may be
published without compromising individuals’ privacy, based on differential privacy
[15]. The latter principle requires computations to be insensitive to changes in any
particular individual’s data and can be used to provide privacy, as mentioned in
Introduction. This is because, differentially private data do not allow an attacker
to make inferences about an identified individual that they could not make if the
individual’s record was absent from the original dataset. In [21], two methods
for releasing aggregate statistics for GWAS in a differentially private way were
proposed. The first method focuses on the publication of the χ2 statistic and p-values
and works by adding Laplace noise to the original statistics, while the second
method allows releasing noisy versions of these statistics for the most relevant SNPs.
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