
Chapter 2

Fission Reactor Physics

Michael Natelson

Glossary

Fissile Fissile isotopes are fissionable by the capture of neutrons of any

energy, but are especially easily fissioned by the capture of slow

neutrons, for example, U233, U235, Pu239, and Pu241.

Fertile Fertile isotopes may be transmuted into fissile isotopes by neutron

capture. The naturally occurring fertile isotopes are Th232 and U238.

Critical A critical fission reactor is in a steady state, with its neutron

population sustained by a chain reaction.

Reactivity Reactivity is a dimensionless parameter, which characterizes how

far from critical a fission reactor is. If zero, the reactor is critical; if

positive, the reactor is supercritical and its neutron population is

increasing; if negative, the reactor is subcritical.

Microscopic

cross section

A microscopic cross section is a parameter, with dimensions of

area, that is a measure of the probability of a particular reaction

resulting from an incident particle on a target nucleus. The mac-
roscopic cross section for this “particular” reaction is the micro-

scopic cross section times the number density of the target

nucleus.
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Definition of Subject

At the end of the nineteenth century and through the first half of the twentieth

century, revolutionary discoveries were made in physics, and the laws of physics

and our understanding of them were greatly expanded. In addition, tragic historical

events led to an unprecedented concentration of intellectual talent and economic

resources (the Manhattan Project) that allowed the new physics to be applied to the

engineering of nuclear (fission) reactors. This entry will describe the advances in

physics, which are key to fission reactor design, and how they enable this engineer-

ing practice.

Introduction

In 1900, Lord Kelvin (William Thomson) reportedly told the British Association

for the Advancement of Science that “there is nothing new to be discovered in

physics now. All that remains is more and more precise measurements.” Whether

he actually said this or not, it is reasonable to believe that many scientists and

engineers of his day would have concurred. Newton’s definitions and laws of

mechanics and optics had long been successfully applied. Maxwell’s equations,

Ohm’s law, etc. seemed to describe electricity and magnetism. Boltzmann and

Gibbs had provided the foundations of statistical mechanics and thermodynamics.

And chemists had been busy developing atomic theory, identifying 92 elements, the

laws of chemical combination, the weights and sizes of atoms and molecules, and

the periodic system.

With hindsight it is clear, however, that in 1900 there were many intriguing

questions outstanding in the physical sciences, and there was an historically large

cohort of scientists, being produced by the major universities of the day, ready to

address them. The questions (and their resolutions) of prime importance to “fission

reactor physics” are:

1. Does a theory of relativity apply to Maxwell’s equations, and is there a unique

frame of reference (ether) for the propagation of light?

2. Why are the heaviest naturally occurring elements unstable, giving off various

forms of “radiation” and transmuting to different elements?

3. What does the quantization of electromagnetic radiation (required to describe

black body radiation energy spectra and the photoelectric effect) mean to the

laws of physics on the atomic scale?

The resolution of each of these questions will be discussed in this entry, as they are

the starting points for the accumulation of knowledge needed to characterize

the workings of fission reactors.

Clearly, Einstein’s Theory of Relativity addressing question (1), and its identifi-

cation of mass as a form of energy (1905) would, excuse the bad pun, energize
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the whole effort. Already in 1914, H. G. Wells in his novel “The World Set Free”

envisioned industrial atomic energy and atomic bombs used in a catastrophic

world war.

At the end of the nineteenth century, electrochemists looking for heavy elements

(heavier than lead and bismuth) found that “radiation” was given off by the

materials they were investigating. Becqueral (1896) observed g rays (penetrating

electromagnetic radiation similar to x-rays) from uranium salts. The Curies

(1898) observed a and b rays from polonium and radium. Rutherford showed that

the positively charged as were doubly ionized helium atoms. The bs are negatively
charged electrons, the same particles as the cathode rays that Thomson

characterized and named (1897). These “radiations” proved to be key tools for

determining the structure of atoms. The a particle was shown by Rutherford

(1911) and his coworkers to scatter from gold foil in a manner inconsistent with

the atomic model of the day, Thomson’s raisins (electrons) in the pudding (positive
charge medium) model. To explain the a scattering results, an atom’s positive

charge and its mass, minus that of its electrons, needed to be concentrated in a small

nucleus (radius �10�12 cm), with its electrons distributed over a much larger

volume (radius �10�8 cm), that of the whole atom. Niels Bohr, inspired by

Rutherford’s work, took to determining the distribution of atomic electrons.

His success, building off Question (3) above, led to quantum mechanics.

A complete model for the atom, however, still required an explanation for the

mass of the nucleus. Again bombardment of various atoms (elements) with a
particles led to the answer. Chadwick (1932) proved that the “rays” produced by

as striking beryllium nuclei were neutral particles with mass slightly greater than

the hydrogen nucleus, the proton. These neutral particles are the neutrons that had

been hypothesized by Rutherford 12 years earlier. Heisenberg (1932) produced

a detailed model of the atomic nucleus where the mass number A is the total number

of elementary particles, protons plus neutrons, making up a nucleus, and the nuclear

charge is Z, the number of protons. Thus, there can be various isotopes for a given
element, more than one A for a given Z.

The discovery of the neutron marked the start of furious activity, culminating in

the operation of the first fission reactor only 10 years later. Leo Szilard in 1933

recognized that a neutral neutron with modest kinetic energy could penetrate an

atomic nucleus and cause a reaction releasing nuclear (mass) energy, and if, as part

of the “reaction,” additional neutrons were produced, a chain reaction could result.

Szilard produced a patent for a reactor based on this idea and assigned it to the

British Government in 1936 (before fission was discovered). In 1934, Fermi was

using neutron bombardment (with neutrons of various energies) to produce nuclear

transformations in many elements. Of special interest was the production of trans-

uranic elements, Z greater than 92. Fermi won the 1938 Nobel Prize for this work.

However, unknown at the time, he had also fissioned uranium. This was determined

by electrochemical analysis of the products of neutron bombardment of uranium

by Hahn and Strassmann. Subsequently, the process was identified as fission by

Meitner and Frisch. Bohr recognized that the ease with which low energy neutrons

could cause fission of uranium was due to the existence of the naturally occurring,
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but low atom percent (0.72%), isotope 92U
235 [1] (Various notations have been used

to designate a particular isotope, for example, for uranium with mass number (A)

235; 92U
235, U235, and 235

92 U. The latter is in common use today. For ease of

composition and for consistency with most of the references used in this entry the

older standard, A as a right superscript, is used.). He and Wheeler, from their

Theory of Fission [2], also recognized that the not yet produced isotope 94Pu
239,

would also be readily fissioned by slow neutrons [3]. This was in early 1939. Bohr

still did not think production of a fission bomb to be feasible.

Leo Szilard was, however, not deterred. He persuaded his friend Albert Einstein

to write President Roosevelt (8/2/1939), urging government support of fission

research and the stock piling of uranium. This ultimately led to the Manhattan

Project. In 1940, Seaborg and McMillan synthesized the readily fissionable isotope

of plutonium, 94Pu
239, which is produced by neutron capture in the dominant

uranium isotope 92U
238. Wheeler credited Louis Turner [3] with pointing out that

kilogram quantities of 94Pu
239 could be produced in a large fission chain reaction

reactor. Fermi and Szilard [4] designed and built the prototype for such a reactor,

a “pile” of graphite blocks containing an array of natural uranium pellets. It was

constructed in a squash court under a grand stand of the University of Chicago’s

Stagg Field, and went critical (sustained a chain reaction) on December 2, 1942.

The Manhattan Project built large reactors of this type for weapons material

production, and also successfully pursued means of enriching uranium in 92U
235.

Enriched uranium allows more compact, higher power density, reactor designs.

The Manhattan Project brought together extraordinary scientific and engineering

talent, and immense resources to produce the weapons that ended the Second World

War. It also provided the foundation for all fission reactor development that has

followed. The subsequent advances in “physics,” which have contributed to this

development, are principally:

1. The full understanding of the interaction of neutrons with nuclei: scattering

(elastic and inelastic), and capture (simple absorption, transmutation, and fis-

sion), including measuring the parameters that characterize the probabilities of

these “interactions”

2. The formulation of methods to solve the neutron transport (Boltzmann) equation,

which governs the behavior of the dilute “gas” of neutrons in a fission reactor

This entry will discuss the topics, pre- and post-Manhattan Project, which

encompass the physics of fission reactors.

Mass–Energy Relationship

In his initial paper [5] on the theory of relativity, Einstein confronted the problem of

guaranteeing that the laws of electromagnetism (Maxwell’s equations) apply in all

inertial reference frames, just as the laws of mechanics do. In an inertial reference
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frame, an object, which is at rest, remains at rest and an object traveling with

a particular velocity will maintain that velocity. Einstein asserted that there is no

preferred reference frame (like stationary ether in space, as postulated years

earlier), and that the speed of light c, in vacuum, 2.998 � 108 m/s, is the same in

all inertial reference frames. From these assertions, Einstein derived

transformations for various variables in the laws of physics from one inertial

reference frame to another. This solved the “electromagnetism” problem and

provided a firm grounding (theory) for phenomena observed when velocities

approach the speed of light. For examples of the latter, see Kaplan, “Nuclear

Physics” on the charge-to-mass ratio of the electron as a function velocity, and

Mermin, “It’s About Time,” on the half-life of unstable particles as a function of

their velocity. Our interest here is specifically on the relationship between mass and

energy resulting from the special (not applying to gravity) theory of relativity. What

is meant by the ubiquitous formula.

E ¼ Mc2? (2.1)

For application to fission, an inelastic collision between two particles will be

treated for relativistic conditions. The approach presented by Mermin in “It’s About

Time” will be used.

In an elastic collision, total momentum, P = p1+ p2, mass, M = m1 + m2, and

kinetic energy, K = k1 + k2 are all conserved, where the mass, m, is an inherent

property of a particle and is a measure of how it resists a change in its velocity. In an

inelastic collision, only total momentum, P needs to be conserved. It needs to be

conserved, however, in all inertial frames of reference. For relativistic conditions,

one defines a particle’s momentum (a vector [in bold face]) as

p ¼ mu=ð1� u2=c2Þ1=2; (2.2)

where u is the particle velocity. As is required for consistency between relativistic

and nonrelativistic laws of mechanics, Eq. 2.2 is effectively the nonrelativ-

istic definition of momentum for the particle speed, u << c. Now to find p0, the
particle momentum, in a frame moving with velocity v relative to the frame in

which the particle has velocity u, one applies the relativistic translation law for

velocities:

u0 ¼ ðu� vÞ=ð1� uv=c2Þ: (2.3)

Substituting for u0 in the expression for p0 (Eq. 2.2 with p and u primed), one

obtains the relativistic translation law for momentum

p0 ¼ ðp� p0vÞ=ð1� v2=c2Þ1=2; (2.4)

where

p0 ¼ m=ð1� u2=c2Þ1=2: (2.5)
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Now, if total momentum is to be conserved in our two-particle inelastic collision

in both the primed and unprimed frames, then P0 = p01 + p02 must also be

conserved. Again, using the relativistic translation law for velocities (Eq. 2.3) and

the definition p0 (Eq. 2.5), we find that

p0
0 ¼ ðp0 � pv=c2Þ=ð1� v2=c2Þ1=2: (2.6)

And so for the total quantities we want to be conserved we have

P0¼ ðP� P0vÞ=ð1� v2=c2Þ1=2 and (2.7)

P00 ¼ ðP0 � Pv=c2Þ=ð1� v2=c2Þ1=2: (2.8)

Examining these expressions, it is clear that if P and P0 are not changed after an

inelastic (or elastic) collision, then neither is P0 and P0 0
.

In the limit of the speed u being much smaller than c, the difference between p0

and m, (p0 – m), approaches mu2/2c2. This result leads to a definition of relativistic

kinetic energy, k, for a particle

k ¼ p0c2 �mc2; (2.9)

which has the required property of reducing to the nonrelativistic form, mu2/2, in

the limit of u much smaller than c.

Returning to our two-particle inelastic collision, as P is conserved so is P 0c2 and
thus from Eq. 2.9

DMc2 ¼ DK; (2.10)

where ΔM is the change in the masses of the inputs and outputs of the collision

participants, and ΔK is the change in the kinetic energies of these “inputs and

outputs.” Thus, Eq. 2.10 provides insight into the meaning of “E = Mc2” for the

fission process. For n + 92U
235 7! fission products + 202.7 MeV (the ΔK of Eq. 2.10

in unit of millions of electron volts) the percent change in mass can be estimated by

dividing 202.7 MeV by the energy equivalents of the inputs (i.e., 236 amu, where

1 amu = 931.141 MeV). The result is�0.1%, which may not appear to be large until

one makes a comparison with a chemical reaction. For example, O2 + C ! CO2 +

4.1 eV. A similar calculation indicates a 1 � 10�8% conversion of mass to kinetic

energy. Since one could not measure such a small change in total input and output

masses in chemical reactants, it is not surprising that the full impact of “E = Mc2”

had to await demonstration in a nuclear reaction like fission. However, as will be

discussed in the next three sections, the large energy release in fission, while

conforming to Eq. 2.10, is due to the strength of the forces that hold a nucleus

together and the charge repulsion forces that will accelerate two smaller nuclei as

they are formed in the fissioning of a larger “parent” nucleus.
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Heavy Elements

The “heavy elements” of particular importance to fission reactors are the radioac-

tive nuclei, which are characterized by systematic chains of decay. In nature, there

are three chains (series). In a given series, each nucleus has a mass number, A,
governed by a simple formula with the variable the integer n (see Table 2.1), and is

identified with its longest lived isotope, that is, Thorium, Uranium, and Actinium

(U235 had not been discovered when the 4n + 3 series was identified). These longest
half-lives are not surprisingly comparable to the age of the earth, 4.5 � 109 years.

Half-life is one of three related parameters of radioactive decay processes, T1/2, l,
and t. The fundamental equation of radioactive decay is

� dNðtÞ=dt ¼ lNðtÞ; (2.11)

where l is the decay constant, and N(t) is the number of decaying nuclei at time t.

The solution of Eq. 2.11 is

NðtÞ ¼ Nð0Þe�lt: (2.12)

The time when an original inventory of decaying nuclei, N(0), is halved is

T1=2 ¼ ln 2=l ¼ 0:693=l: (2.13)

And as the decay process is statistical the mean life-time, t, of a decaying

nucleus is

t ¼ ð1=Nð0ÞÞ
Z1
0

Nð0Þlte�lt dt¼ 1=l; (2.14)

the reciprocal of the decay constant.

With the search for transuranic elements through the bombardment of the

heaviest natural elements, primarily with neutrons, a fourth decay series was

identified, the Neptunium (A = 4n + 1) series whose radioactive members are not

found in nature (see Table 2.1).

Table 2.1 Heavy element decay series

Series name Type

Final stable

nucleus

Longest lived

nucleus

Longest half-life

(years)

Thorium 4na Pb208 Th232 1.41 � 1010

Uranium 4n + 2 Pb206 U238 4.47 � 109

Actinium 4n + 3 Pb207 U235 7.04 � 108

Neptunium, not in nature 4n + 1 Bi209 Np237 2.14 � 106

an is an integer
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Of the “heavy elements,” the isotope U235 is key to fission reactor design. It is the

only naturally occurring isotope which readily fissions when bombarded with

neutrons of all energies. While its atomic percent abundance, 0.72%, is small, it

is large enough to support chain reactions in reactors where neutrons born in fission

are slowed down (moderated) by graphite (carbon) or by heavy water (deuterium

oxide). When Uranium is enriched in U235 (�3–5%), it can fuel reactor designs

where ordinary water moderates fission neutrons (today’s pressurized water and

boiling water reactors). Having U235 available as a reactor fuel makes it possible to

exploit the two abundant fertile “heavy elements,” U238 and Th232. The term

“fertile” refers to the fact that when these elements absorb a neutron they can be

transmuted to fissile isotopes (Pu239 and U233 respectively), which like U235 readily

fission when bombarded by neutrons of all energies. The transmutation processes

are shown in Fig. 2.1. It is important to note that only one neutron capture is

required in each of these transmutations. In a reactor design, neutron economy is the

key to maintain a chain reaction and, as will be discussed in the section on Future

Directions, expending one neutron with a reasonable probability of obtaining an

additional fissile nucleus is a winner.

The heavy element radioactive decay series are also important to safety in fission

reactor design. Each of the decay processes, a and b� emissions and associated gs, is
favorable to energy release. So any heavy elements, particularly transuranics, in

a reactor’s fuel system will contribute to the decay heat load that must be dissipated

when a reactor shuts down. As will be discussed in the next section, the major short-

term contributors to decay heat are fission products.A power reactor that shuts down

following a sustained run at full rating will initially produce�7% of that rating from

decay heat, even if the chain reaction and nearly all fissioning has ceased.

For a full discussion of the radioactive decay series and the particulars of a, b�,
b+ and g emission, see Kaplan, and Krane, “Introductory Nuclear Physics.”

Fission and Its Products

As noted in the “Introduction,” fission was discovered accidentally during the

search for transuranic elements. This work by Fermi and others was part of an

extensive effort to understand the atomic nucleus and to duplicate the great success

of quantum mechanics and the Pauli exclusion principle in providing a fully

U 238 + n → U 239 →  Np 239 + b − + n

2.3d → Pu 239 +  b − + n

Th 232 + n →Th 233 → Pa 233 +  b − + n

27d → U 233 +  b − + n

23 min 

22 min 

−

−

−

−

Fig. 2.1 Transmutation of

fertile to fissile nuclei. (n is the
antineutrino, the chargeless,

�zero mass particle that

accompanies b emission)
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predictive Theory of atomic electron structure. A comparable theory for the nucleus

has not been developed, but several models (e.g., shell and liquid drop) provide

insight into the trends and correlations found in the data provided by the extensive

experimentation performed on the nuclei of the various elements and their isotopes.

Measurements of atomic mass (m(XA)), and the mass of the electron, proton, and

neutron, yields the binding energy, B, of a nucleus, ZX
A, the work (energy) required

to disassemble a nucleus into its neutrons and protons:

B ¼ Zmp þ Nmn � ðmðXAÞ � ZmeÞ
� �

c2; (2.15)

where Z is the atomic number (the number of protons) and N = A – Z is the number

on neutrons. (The binding energy of atomic electrons is ignored as negligible

compared to the other factors in Eq. 2.15.)

Plotting the ratio of measured binding energies B to corresponding mass number

A (Fig. 2.2) immediately makes evident the potential of energy release from fission

of heavy element. Note the B/A versus A “curve” has a flat maximum in the

middling A range �50 ! �150, and falls off (decreases) as A increases. Thus,

there is a potential energy excess if a heavy element (isotope) can be disassembled

and reassembled as two mid-range isotopes (preserving total A, Z, and N). (The

behavior of the B/A curve for light elements shows the potential energy release

from fusion.) Obviously fission (nor fusion) does not take occur “naturally” on earth
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Fig. 2.2 Binding energy per nucleon (Krane)
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today (There is convincing evidence that a naturally occurring chain reaction

took place in a uranium deposit in Gabon about 2 � 109 years ago, when the

abundance of U235 would have been �3%, high enough for a water-moderated

“reactor” to operate. The higher earlier abundance is due to the shorter half-life of

U235 (7.0 � 108 y) relative to that of U238 (4.4 � 109 y). See Krane for an excellent

discussion of the Gabon reactor). The remainder of this section is devoted to

particular requirements for fission to take place and to the discussion of the

resulting fission products and their energies.

Insights provided by examining binding energies, and by additional experiments to

determine nucleon–nucleon forces have led to the Shell and Liquid Drop models of the

nucleus. Features of these models are incorporated in the semiempirical mass formula
(Eq. 2.16). While a thorough discussion of the nuclear models is beyond the scope of

this entry (see Kaplan or Krane), the mass formula provides key information on fission,

energy release, and the relative likelihood for various nuclei.

In the semiempirical mass formula, the binding energy has five terms, which will

be discussed below.

m ZX
A

� � ¼ Zmp þ Nmn � ½B0 þ B1 þ B2 þ B3 þ B4�=c2: (2.16)

B0 = avA is the volume energy. Note in Fig. 2.2 that B/A saturates, thus B0 has

a linear dependence on A. The attractive nuclear forces between nucleons (n–n, n–p

and p–p) are all equal and short range, smaller than the radius of the nucleus, r =
r0A

1/3 where r0�1.2� 10�12 cm. If the range were larger, there would be attraction

between each nucleon pair and B0 would depend on A(A – 1).

B1 = –asA
2/3, is the negative surface decrement. As the nucleon–nucleon forces

are “short range,” neutrons and protons on the surface of a nucleus are less tightly

bound.

B2 = –acZ(Z�1)/A1/3, is the coulomb repulsion decrement. While the nuclear

forces are strong enough to overcome coulomb forces, the protons in the nucleus do

repel and reduce binding energy. Assuming a uniform distribution of protons in

a liquid drop model of a spherical nucleus, an electrostatics calculation yields the

dependence of B2 the number of proton pair, Z(Z�1), and a measure of their

spacing, A1/3.

B3 = –aa|N–Z||N–Z|/A, is the neutron–proton population asymmetry decrement.

As nuclei become heavier, more neutrons than protons are needed to overcome

coulomb repulsion. However, as the shell model of the nucleus demonstrates when

nucleons, neutrons and/or protons, are added to form heavier elements and their

isotopes, they fill shells of successively higher energy and are thus less tightly

bound. This is analogous to the case of atomic electrons. Neutrons and protons have

half-integral spin like the electrons, and therefore no two neutrons (or protons) can

occupy the same state in a nucleus in conformance with the Pauli exclusion

principle. So B3 is negative and proportional to the neutron excess and the fraction

of the nucleus the excess represents.
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B4 = +dA�3/4 for even Z even N nuclei, = 0 for odd A nuclei, = –dA�3/4 for odd

Z odd N nuclei, is the pairing energy. As nucleons are added and fill shells, they are
more tightly bound as spin up and spin down pairs. B4 is important in determining

the relative binding of isotopes of a given element and their propensity to fission.

A set of parameters for B which best fit the B/A curve (Fig. 2.2) is provided by

Krane; av = 15.5 MeV, as = 16.8 MeV, ac = 0.72 MeV, aa = 23 MeV, and d = 34 MeV.

The potential for, and magnitude of, energy release from fission, whether as

spontaneous decay or induced by particle or gamma ray capture, can be assessed

with the semiempirical mass formula. As for an estimate of the magnitude of energy

release, the B/A curve, as noted earlier, can be used directly. For example, the B/A

for U238 is�7.6 MeV. If it fissioned into two approximately equal mass nuclei (A =

119), their B/A would be �8.5 MeV when in a ground state, and being more tightly

bound than their parent (U238) 214 MeV (= 2 � 119 � 8.5 � 238 � 7.6) will be

available through conservation of energy as kinetic energy of the daughter nuclei

and of other fission products (neutrons, bs, gs, and neutrinos). That this energy is

available does not mean that there is a significant probability that fission occurs.

In this example, which represents spontaneous fission of U238, one finds in nature

that this mode of U238 decay competes poorly with a decay (Spontaneous fission is

a significant mode of decay for some transuranic isotopes found in depleted reactor

fuel, particularly Pu240 and Pu241.). For fission fragments, daughter nuclei, to

separate in spontaneous or induced fission, a potential barrier must be overcome.

The height of the barrier relative to the ground state of a fission parent nucleus is

called the fission activation energy (Ea). It can be estimated with the liquid drop

model by calculating the change in the parent nucleus binding energy (B1 and B2)

between the ground-state spherical configuration and a volume-conserving dumb-

bell configuration (ref. [2] and [6]). Table 2.2 contains values of Ea for the

compound nuclei formed by neutron capture in the fissile and fertile isotopes of

primary interest in reactor design. These are compared with the excitation energy
(Ee) provided in forming the compound nucleus.

Ee ¼ m ZX
A

� �þmn

� ��m ZX
Aþ1

� �� �
c2: (2.17)

Note that Ee does not include any kinetic energy contribution from the captured

neutron. For the fertile target nuclei (U238 and Th232), Ee < Ea and neutron kinetic

energy will be required to overcome or quantum mechanically penetrate (with high

Table 2.2 Heavy nuclei fission

Target nucleus Compound nucleus

Ee, Excitation

energy (MeV)

Ea, Activation

energy (MeV)

U233 [U234] 6.6 4.6

U235 [U236] 6.4 5.3

Pu239 [Pu240] 6.4 4.0

U238 [U239] 4.9 5.5

Th232 [Th233] 5.1 6.5
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probability) the potential barrier to fission. For the fissile targets, Ee > Ea and thus

“slow” neutrons can initiate fission.

The high values of Ee for the fissile targets are due to the positive “pairing”

contribution, B4, to the binding energy of the compound nucleus ground states. Note

92U
234, 92U

236, and 94Pu
240 are all even Z even N nuclei and the corresponding target

nuclei are even Z oddN. So, the second term in Eq. 2.17 is decreased by d(A + 1)�3/4,

and B4 is zero in the first term. Thus, an increase in Ee relative to the result if pairing

is ignored is achieved. For fertile targets (even Z even N), roles are reversed. It is the

first term in Eq. 2.17 that is decreased and B4 is zero in the last term. Thus, Ee is lower

than if pairing is ignored.

The semiempirical mass formula and the shell and liquid drop models are limited

in predicting the fission process. This is best illustrated by the mass distribution of

the major fission fragments (see Fig. 2.3). In the vast majority of cases, fission

yields two unstable (having excess neutrons) nuclei, but not of equal mass, as in the

example above used to estimate the energy available from spontaneous fission

of U238. The two humped curves in Fig. 2.3 are not predicted by nuclear models.

To quote Krane, “surprisingly, a convincing explanation for this mass distribution

has not been found.”

From the nuclear models, it is not surprising that free (prompt) neutrons are

emitted in fission as the daughter nuclei are so rich in neutrons, but the prediction

of their number (�2.5 on average) and energy spectrum (the mean �2 MeV, see

Fig. 2.4) are still an active area of study. The decay chains of the neutron-rich,

excited daughter nuclei (fission fragments) are well predicted, including the

release of (delayed) neutrons when in some cases neutron decay competes
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successfully with b-decay. The delayed neutrons are a small fraction of the total

neutron emission (0.64% for thermal fission of U235), but as will be discussed in

section “Fission Reactor Performance”, they are important to reactor control.

Total energy release from the various neutron-induced fissions of interest in

reactor design is remarkably consistent with the simple spontaneous U238 fission

calculation made above. Of course, the constituents are different, as displayed

in Table 2.3.

In a reactor design, the total energy values in Table 2.3 are not used. First, the

contribution from neutrinos is subtracted, as their range before collision is well

beyond reactor boundaries. Then, the energy release per fission from neutron

captures which produce bs and gs is added. The magnitude of this release is

design-dependent as it is a function of the materials used, and the neutron capture

rate in these materials. For plant energy balance studies, using 200 MeV/fission is

satisfactory.

The problem of decay heat was noted in the previous section. From Table 2.3, it

can be seen that fission product decay is the immediate concern when a chain

reaction is terminated. Assume full power from U235 fissioning, when this ceases,

delayed gs and bs are still being released. Thus,�6.3% (’ 100� (6.26 + 6.43)/200)

of rated power, coming from fission product decay, must still be dissipated, along

with energy from the decay of transuranic elements present in the reactor, for a total

of �7%.
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Fig. 2.4 Prompt neutron energy spectra where Pf(E’) is the probability per unit energy [32]
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Over 800 fission fragment nuclei have been identified. Their decay must be

tracked to account for decay heat in reactor shut-down safety analysis and for

the proper handling and storage of spent fuel (where both energy release and

the nature of radiation fields must be known). One hundred and two of these

nuclei are delayed neutron precursors. To simplify reactor transient (kinetics)

calculations, the precursors are collected into six effective groups, where members

of a given group have similar decay constants (see Table 2.4).

The energy spectra for a given delayed group do not vary significantly with

fissioning isotope. The spectra are much softer (with lower mean energies, < 1

MeV) than for prompt neutrons [7]. This means that a delayed neutron in a thermal

reactor is more important than a prompt neutron. It is more likely to reach the low

energies (<0.625 eV) where most fission occurs. Delayed neutrons can also result from

other reactions, for example, photon capture (g,n) (The expression (a,b) is shorthand for
a nuclear reaction with an input particle “a” and output particle “b”, where the target

and product nuclei are understood.) and neutron activation (n,p) followed by neutron

decay of the product nucleus. If important to a particular reactor design, these delayed

neutrons can be included by modifying the effective delayed group structure.

The final aspect of the �800 fission fragment nuclei that must be dealt with is

their impact on neutron balance. Each of them has a probability of capturing

neutrons and in some case of causing a transmutation into a nucleus with

a particularly large propensity for capturing neutrons. The nuclei of greatest

importance to neutron balance are listed in Table 2.5.

I135 is important as it is the direct precursor of Xe135, an especially large absorber

of thermal neutrons. The next two isotopes in the table are precursors to a decay

chain with three large absorbers, Pm147, Sm149, and Sm151. The final five, with their

precursors in parentheses, are large absorbers, but not as sensitive to neutron energy

spectrum and power level and history as the others. Clearly, data for the 800 fission

fragments must be handled through large computer files [8]. For neutron balance,

the fission fragment isotopes, which are not treated explicitly (Table 2.5), can be

lumped into an effective fission product nucleus with a yield per fission and

probability for neutron capture. How one characterizes the probability of nuclear

reactions is the subject of the next section.

Cross Sections

The nuclear reactions of importance to fission reactor design are by definition
governed by the postulates of quantum mechanics (i.e., they are on the dimen-

sional scale of the nucleus). And, thus the results of the various reactions

are probabilistic in nature. The probability of a particular result is characterized

by a parameter, the microscopic cross section, s, with, not surprisingly, the

dimensions of area, and which is quoted in units of barns. The barn,

10�24 cm2, is a reasonable measure as in some cases s is nearly the projected
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area of a target nucleus, 4pR2, and R is �10�12 cm. Thus, envisioning a target

foil of area, A, and thickness, dx (where dx is small enough to have negligible

shadowing of one nucleus by another in the target foil), the probability that an

incident particle in traveling a short distance (i.e., dx) will undergo a specific

reaction equals srAdx/A, where r is the density of target nuclei (#/cm3) in the

foil. It follows that to find the reaction rate in the foil we need the number of

impinging particles per second. Given the particles have a density N (#/cm3) and

are monoenergetic and monodirectional (normal to the face of the foil) with

speed v, the number impinging per second equals N ∙(vdt)∙ A/dt. So the total

reaction rate in the foil is (NvA)(rsdx), and the rate per cm3 is vNrs. The
parameters that make up this specific rate have been reordered to reflect conven-

tional definitions in reactor physics (In the nuclear engineering discipline, reactor
physics refers to the portion of the field addressed in this entry):

vN � Cparticle flux; and (2.18)

rs � Smacroscopic cross section: (2.19)

The flux in our simple foil example is the number of particles per cm2 per second

crossing a plan parallel to the face of the foil. Given the more general representation

of particle density (which will be used in the next section):

N(r,E,V,t)dr3dEdO � no. of particles in dr3 about r, with kinetic energies in dE

about E, and going in the solid angle dO about the unit direction vector V (see

Fig. 2.5), at time t; then the corresponding definition of flux, C(r,E,V,t)dsdEdO, is
the no. of particles with E in dE going in direction O in dO that pass through the

surface ds, which is located at r and is normal to V, per unit time, at time t.

The macroscopic cross section is the probability that a particle undergoes

a reaction characterized by s, per unit path (for small paths, dx) traversed by the

particle in a homogenous material with target nucleus density, r. This definition

Table 2.5 Direct yield fractions ( �100) for isotopes in the most important fission product

chains [32]

Fissile or fertile isotopea

Fission Product 232Th 238U 235U 233U 239U
135I 5.238 6.548 6.349 4.860 6.303
135Xe 0.0403 0.0150 0.255 1.337 1.152
147Nd 3.08 2.711 2.271 1.775 2.073
149Pm 0.825 1.765 1.089 0.769 1.261
99Mo (99Tc) 2.965 6.247 6.127 4.957 6.144
103Ru (103Rh) 0.164 6.336 3.137 1.707 6.991
131I (131Xe) 1.481 2.982 2.473 2.352 3.093
133I (133Cs) 3.858 6.356 6.787 5.974 6.923
143Ce (143Nd) 6.619 4.834 5.972 5.881 4.561
aThe energy of the neutron initiating the fission is in the thermal range for 235U, 233U, and 239Pu.

For 232Th and 238U, the yields are due to fissions initiated by neutrons with a spectrum of energies

typical of light water-moderated nuclear reactors.
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lends a special significance to 1/ST, where ST = rsT. sT is the total microscopic

cross section, the sum of the ss for all of the reactions that the initiating particle can
undergo with a given target isotope. So the change in flux, whereV is parallel to the

x axis of a target material sample, over a small interval dx in the sample is dC =

–CSTdx. And thus, C(x) = C(0) e�STx, where x is the distance into the “sample”

(which has its face in the y – z plane at x = 0). So, the probability of a reaction in dx

about x can be expressed as

PðxÞdx ¼ STdx � ðCðxÞ=Cð0ÞÞ ¼ STe
�STxdx: (2.20)

And thus themean free path of a particle in an incident beam (C(0)) before being

removed from the beam in a homogeneous target is

x ¼
Z1
0

dx xPðxÞ ¼ 1=ST: (2.21)

or generally the mean free path is the average distance traveled between successive
interactions.

If a homogeneous material is made up of various nuclei (elements/isotopes,

indexed by j), then the macroscopic cross section for a reaction, i, is

Si ¼
X
j

rj � sji: (2.22)

x

y

dq dφ

θ
φ z

Ω

Ωz

Neutron

Ωx

Ωy

ˆ

dŴ

Fig. 2.5 The unit direction vector V associated with neutron velocity and the differential (small)

solid angle dO which defines the range of directions
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The reactions of primary interest in fission reactor design are those initiated by

neutrons and gammas. Neutron cross sections are key to determining if a chain

reaction can be maintained, and that the neutron population can be controlled under

various transient conditions (e.g., start-ups and shutdowns, planned and accidental),

and, of course, the fission distribution in the reactor. Most of the resulting energy

release, from fission fragments, is deposited locally in the fuel elements of a given

design. However, gammas, from fission and neutron capture in reactor structures,

have large mean free paths, and their distribution and capture rates must be

determined, using gamma cross sections, to complete the knowledge of energy

deposition. The subsequent engineering problem is to assure that the reactor cooling

system can remove the deposited energy under normal and accident conditions.

Neutron and gamma cross sections are also required for the shield design of

a fission reactor.

Neutron reactions are characterized by their energy balance, the Q factor, as well

as microscopic cross sections. For the simple reaction (with the target at rest),

nþ X ! Yþ y (2.23)

the energy balance is

En þmnc
2

� �þMXc
2 ¼ EY þMYc

2
� �þ Ey þmyc

2
� �

; (2.24)

and Q is defined as the difference in the kinetic energies of the inputs (here the

neutron) and the outputs:

Q ¼ EY þ Ey � En or ¼ MX þmn �MY �my

� �
c2: (2.25)

If Q is positive, the reaction is exothermic, if negative, endothermic. For an

endothermic reaction to go, for the microscopic cross section to be nonzero, enough

kinetic energy must be supplied by the neutron to excite a compound nucleus, XA+1,

so it will decay to Y + y. As momentum must be conserved,

mnvn ¼ MX þmnð ÞVc or Vc ¼ vnmn MX þmnð Þ;= (2.26)

where Vc is the velocity of the compound nucleus. Then, the neutron energy

supplied must be such that

� Q ¼ mnvn
2=2� MX þmnð ÞVc

2=2 (2.27)

and the threshold energy, Eth, for the reaction is

Eth ¼ mnvn
2=2 ¼ ð � QÞ 1þmn=MXð Þ: (2.28)

(n, 2n) is an example of an endothermic reaction whose cross sections will exhibit

an energy dependence of zero until the neutron energy E reaches an Eth.
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The simplest, but very important, neutron reaction to be considered is a form of

elastic scattering (Q = 0), where collisions can be treated with classical mechanics as

hard sphere, billiard ball, interactions. For the energies of neutrons in fission reactors,

0–10 MeV, elastic scattering cross sections for most nuclei are constant and propor-

tional to the square of the nuclear radius,�A2/3. Assuming the target nucleus to be at

rest and applying conservation of energy and momentum in the center of mass, CM,

coordinate system, one determines the probability that the final energy of the

scattered neutron, in the laboratory coordinate, LM, system, is Ef in dEf:

PðEi ! EfÞ ¼ 1=ð1� aÞEi; for aEi 	 Ef 	 Ei

¼ 0 otherwise; (2.29)

where a = ((A�1)/(A+1))2 and Ei is the initial neutron energy. A is the mass

number of the target nucleus. And, scattering is assumed to be isotropic in the CM

coordinate system. This is a good assumption for the energy range of interest here,

and its basis will be discussed later in this section. A full derivation of Eq. 2.29 can

be found in Duderstadt and Hamilton, “Nuclear Reactor Analysis.” Examining P

(Ei)Ef) one sees that a neutron scattering off a hydrogen nucleus (A = 1) can lose

all its energy (as a = 0). On average, it loses half its initial energy as

Ef ¼
ZEi

aEi

dEfEfPðEi ! EfÞ ¼ Eið1þ aÞ=2;and (2.30)

DE ¼ Ei ! Ef ¼ Eið1� aÞ=2: (2.31)

Given P(Ei ! Ef) as in Eq. 2.29, one defines differential microscopic elastic

scattering cross sections, ses
j(Ei)P(Ei!Ef)dEf, which are particularly useful in

determining how neutrons, born in fission, are slowed down in reactors designed

to take advantage of the large fission cross sections of fissile isotopes in what is

conventionally defined as the thermal neutron energy range, less than 0.625 eV. The
superscript “j” of ses

j refers to the nuclei of the various moderators (hydrogen,

deuterium and carbon) that are employed in these thermal reactors.

Once neutrons have slowed to the thermal range the target nuclei can no longer

be assumed to be at rest. The interaction frequency will then be

v� Vjj sð vj � VjÞr; (2.32)

where jv – Vj is the relative speed of neutron and target. For elastic scattering, s(jv
– Vj) is still nearly constant and an average cross section for thermal neutrons with
speed v (=(2E/mn)1/2) is

sðvÞ ¼ ðses=vrÞ
Z

d3V v� Vjj rðVÞ; (2.33)
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where for many reactor applications the Maxwell–Boltzmann velocity distribution

for ideal gases in thermal equilibrium at absolute temperature, T, can be used to

represent the targets. Thus,

rðVÞ ¼ r � ðM=ð2pkTÞÞ3=2 expð�MV2=2kTÞ; (2.34)

where M is the mass of the target nucleus and k is the Boltzmann constant (8.6174

� 10�5 eV/K, K is degrees Kelvin).

From Eq. 2.33, one sees that for v
 V the average cross section is, as expected,
ses. And, as the neutron speed decreases and approaches zero, the average cross

section goes as one over the neutron speed.

For highly accurate calculations (As part of the process of evaluating nuclear

data sets, very accurate calculations of integral experiments are made. Zero power

mockups of reactors, with carefully recorded dimensions and inventories, are

commonly used. Monte Carlo calculations (to be discussed in the next section) of

neutron balance in the mockups are made with various data sets (e.g., cross-section

libraries) to determine a recommended set. See the CESWG web site for references

to such experiments.), more sophisticated treatments of scattering from moderator

structures (e.g., molecules in liquids, lattices for solids) are required. The excitation

of modes of vibration, and thus energy loss to phonons must be considered. This has

been a fertile field of development [9] and double differential scattering cross

sections for various moderators have been produced. They are of the form:

ssðEi ! Ef ; Oi ! OfÞdEfdOf ¼ ð1=4pkTÞ
ðEf=EiÞ1=2expð�b=2ÞsesSða; bÞdEfdOf ; (2.35)

where

a � ðEi þ Ef � 2ðEiEfÞ1=2ÞOi � Of=kT and

b � ðEi þ EfÞ=kT: (2.36)

ses is the scattering cross section of the bound “moderating” nucleus (e.g., proton,

deuteron, carbon). S(a,b), the scattering law, embodies the physics of the influence

of the moderator structure on the scattering process. Various formulations of S(a, b)
are tabulated as part of data files that document all the microscopic cross sections that

are used in fission reactor design. These files can be found on the web site of the

National Nuclear Data Center (currently, nndc.bnl.gov). The most widely used set is

ENDF/B, the latest (2009) version is VII.0. In order, however, to produce the

differential scattering cross sections (Eq. 2.35) for design calculations, material

temperatures, T, must be identified and supplied with the corresponding ENDF

files to NJOY [10], a system of computer programs which produce microscopic

cross sections for use in various design programs (which will be discussed in the next

section).
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The remaining neutron reactions of interest all involve the formation of

a compound nucleus, which will be in an excited state, (XA+1)∗, and will subse-

quently decay, yielding g or g0s (neutron capture), n (elastic neutron scattering), n+g
(inelastic scattering), two n’s (an (n,2n) reaction), p or a (charged particle produc-

tion) or fissioning. The probabilities of these various outcomes for a given isotope,

j, and incident neutron energy are characterized by the microscopic cross sections:

sc
j(E), ss

j(E), sin
j(E), s2n

j(E), sp
j(E), sa

j(E), and sf
j(E). As noted above in the

discussion of Q factors, for endothermic reactions, Q < 0, cross sections will be

zero until a threshold value of E for the initiating neutron is reached. This is the case

for inelastic scattering, (n,2n) and some (n,a) and (n,p) reactions. There is similar

threshold behavior for fertile isotope fission cross sections (see Sect. Fission and Its

Products), which when the reactions “go” are exothermic. All neutron capture

reactions (n,g) are exothermic, and thus their cross sections are nonzero over the

full range of fission reactor neutron energies.

One can view the “compound nucleus reaction” cross sections as the product of

a cross section for compound nucleus formation, sC (neutron capture by the target

nucleus), times the probability of a particular decay mode of the excited compound

nucleus. Both factors of this “product” depend on the nature of the target and

compound nuclei, XA and XA+1, and the energy available to excite the compound

nucleus, XA+1. The later is the sum of the reduced mass (i.e., center of mass) kinetic

energy of the initiating neutron:

EC ¼ EðMX=ðmn þMXÞÞ ffi EðA=ð1þ AÞÞ; (2.37)

where XA is assumed to be at rest and momentum is conserved; and the excitation

energy, Ee (see Eq. 2.17), provided by adding a neutron to XA. Ee is the binding

energy of the “added” neutron in the compound nucleus.

The magnitude of sC depends on the structure of XA. First, if neutron number

N (=A–Z) is odd, sC is larger than its counterpart for neighboring isotopes with

even neutron numbers. The opposite is true for N even. This just reflects the binding

energy advantage of pairing half-integral spin Fermions in a nucleus (see the

discussion of B4 in Sect. Fission and Its Products). Second, for nuclei of various

A’s there areMagic Numbers for both Z and N (2, 8, 20, 50, 82 and 126) which can

be thought of as closing shells of protons and neutrons, analogous to atomic

electron shells. The reduction of sc for a magic number N nucleus, relative to its

N + 1 isotope neighbor’s sC, is much larger than the pairing effect.

Excited compound nuclei have mean lifetimes, t (see Eq. 2.14) of as long as

10�14 s (Kaplan), much longer than the transit time for a neutron crossing a

target nucleus, �2R/v. Given the nuclear diameter, 2R � 10–12 cm, the transit

time for even a thermal neutron is�10�17 s (The term thermal neutron refers to the
most probable energy of the neutrons in thermal equilibrium in a zero-power reactor

(e.g., a mockup). At 20�C, this is 0.023 eV, with a corresponding neutron speed of

2,200 M/s.). Thus, the standard assumption is that the decay of an excited com-

pound nucleus is independent of all but the input energy of the initiating neutron.

28 M. Natelson



The decay modes of a particular excited state, nuclear level, are characterized by

a level width

G � h ð2ptÞ= ; (2.38)

with dimensions of energy (h is Planck’s constant, 4.135667�10�15 eV-s), which is

based on the Heisenberg uncertainty principle. In a quantum mechanical system

like our excited compound nucleus, knowledge of energy and time is governed by

DEDt � h 2p= : (2.39)

Thus, G can be viewed as the uncertainty in energy of an excited state (level) of

a compound nucleus, and t a measure of the “uncertainty” of the lifetime of the

excited state. The microscopic neutron cross sections, which go through the com-

pound nucleus formation process, exhibit resonance behavior (peaking) when the

neutron energy and Ee (the added neutron binding energy) produce or nearly

produce a well-defined excited state (i.e., having a small G). See Fig. 2.6.
The level width G can be thought of as the probability per unit time of decay of

an excited state and thus the sum of partial “widths” (probabilities per unit time) for

each mode of decay:

G ¼ Ggþ Gn þ Gng þ Gf þ G2n þ Gp þ ::: ; (2.40)

(where Gn refers to elastic compound scattering and Gng refers to inelastic scatter-

ing, the rest being obvious).

Therefore, a “compound nucleus reaction” cross section near an isolated reso-

nance is

sðn; iÞ ¼ sCðnÞGi=G; for i ¼ g; n; ðngÞ; f; 2n; p; etc: (2.41)

smax

½ σmax

= –—–
s0Γγ

Γ

Γs γ
 (E

c)

E0 Ec

Fig. 2.6 A typical neutron

capture cross section for an

isolated (single) resonance

whose width at half maximum

is G, the total level width. Gg

is the partial width for gamma

ray emission from the excited

state (level). Ec is the center

of mass (reduced mass)

energy of the initiating

neutron (Duderstadt)
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The functional form of s (n,i), its dependence on neutron energy, was derived

with the principles of quantum mechanics by Briet and Wigner [11] in 1935. Their

“formula” for this simple case is

sðn; iÞ ¼ ðl2=4pÞGnGi= ðE� E0Þ2 þ ðG=2Þ2
h i

; (2.42)

where l is the de Broglie wavelength of the neutron, h/(2mn E)
1/2, and E0 is the

energy of the resonance peak. Figure 2.6 is an illustration of this “form” for i = g.
Breit and Wigner’ s most impressive derivation is more general than Eq. 2.42.

First, they considered neutron energies beyond what has been found pertinent to

fission reactors. When one accounts for conservation of angular momentum, the

initiating neutron has classically a magnitude of angular momentum jLj equal to pb,
where p is neutron momentum, (2mnE)

1/2, and b is the displacement of the neutron

path from a parallel axis running through the center of the target nucleus. In

a quantum mechanical treatment,

Lj j ¼ lðlþ 1Þð Þ1=2h=2p where l ¼ 0; 1; 2; 3; . . . (2.43)

Then, one can think of “b” as jLj (given by Eq. 2.43) divided by the neutron

momentum, p, and if there is going to be a significant probability of a reaction

with the target nucleus, “b” cannot be much larger than the target nucleus radius,

r ffi A1/3(1.28 � 0.05) � 10�13 cm. For this to be true for a large nucleus, for

example, for U235, and for nonzero angular momentum (e.g., l = 1), the neutron

would have to have kinetic energy 
 6.6 MeV. For smaller nuclei the required

energy would be greater. Given the spectrum of neutrons in fission reactors, where

most neutrons are born at around 2 MeV (see Fig. 2.4), an assumption of zero

angular momentum (l = 0) for the vast majority of reactions is good, and thus

equation Eq. 2.42 does not include a factor involving angular momentum or spin

quantum numbers. This assumption also means that decay products of an excited

compound nucleus will be released isotropically in the center-of-mass coordinate

system, which is reflected in the factor of 1/4p in Eq. 2.42 (the probability that the

decay product i (i = n, g, p) is released dO about any V). The quantum mechanical

treatment of angular momentum also accounts for the statement made above that

“billiard ball” elastic scattering “can be assumed to be isotropic in the center of

coordinate system.” This direct elastic scattering is referred to as potential scatter-
ing so as to be differentiated from resonance (compound nucleus) elastic scattering,

that is, i = n in equation Eq. 2.42.

Second, Breit and Wigner recognized and treated interference between potential

and resonance elastic scattering. They found that the total elastic scattering cross

section dips at energies right below the resonance peak, E0.

Finally, as they were aware that there could be multiple possible excited states of

a compound nucleus they extended their “formula” to two resonances whose Gs do
not over lap.
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Since Breit and Wigner’s original work, there has been great activity in measur-

ing cross sections, motivated principally the desire to understand the physics of the

nucleus. In the process, however, the basic parameters required for nuclear weapon

and reactor design were generated. The neutron cross sections for fission reactor

design are summarized in Table 2.6 [12].

In this table, the distinction is made between resonance cross sections with

different densities (spacing) of resonance peaks. With intermediate and heavier

nuclei the level structure grows more complex, and the number of possible excited

states of a compound nucleus greatly increases. With higher neutron energy more

finely spaced excited states can be reached and their level width, G ’s, increasingly

overlap until measurement cannot resolve individual resonances.

In parallel with the work of nuclear spectroscopy experimentalists, theoreticians

have built on Breit and Wigner’s work. Resonance cross-section models [13] are

key to creating Evaluated Nuclear Data Files. The Cross Section Evaluation Work-

ing Group, a cooperative effort of national laboratories, industry and universities in

Table 2.6 Types of neutron cross section for various target element/isotope masses pertinent to

fission reactor design

Slow
neutrons
E < 1 eV

Potential scattering

Potential scattering

Light
nuclei
A < 25

Heavy
nuclei
A < 80

Intermediate
nuclei
25 < A < 80

Separated resonances

Separated
resonances

Separated
resonances

Resonance scattering, radiative capture

Radiative capture

Inelastic scattering, (n, 2n)

Inelastic scattering

Overlapping
resonances

Overlapping
resonances

Continuum
resonances

Continuum
resonances

Resonance scattering, (n, 2n), (n, p)

Epithermal
neutrons
1 eV < E < 0.1 MeV

Fast
neutrons
0.1 MeV < E < 20 MeV
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the United States and Canada (see nndc.bnl.gov), sponsors reviews of the various

measurements of a given cross section (target isotope and reaction) and the

subsequent determination (As part of the process of evaluating nuclear data sets,

very accurate calculations of integral experiments are made. Zero power mockups
of reactors, with carefully recorded dimensions and inventories, are commonly

used. Monte Carlo calculations (to be discussed in the next section) of neutron

balance in the mockups are made with various data sets (e.g., cross-section

libraries) to determine a recommended set. See the CESWG website for references

to such experiments.) of a consensus set of parameters for an appropriate cross-

section model. These models and their “consensus” parameters are a large part of

the ENDF/B-VII.0 data files. Having the cross sections represented by an analytic

model also facilitates dealing with the temperature effect on resonance cross-

sections. that is, Doppler shift or broadening. The analytic process of averaging

a resonance cross section (i.e., its model), over the velocity distribution of the target

nuclei at a given temperature is similar to what was discussed above for reactions

initiated by neutrons in thermal energy range. The process is outlined by Duderstadt

and Hamilton using the single-level Breit Wigner formula as the resonance model.

The effect of increasing temperature is to reduce a resonance peak while broaden-

ing its width, thus increasing its G. To first order, the area under the resonance is

unchanged, which could led one to think that resonance “Doppler” broadening

is not an import effect in a reactor application. This is true if the density of the

resonance target nuclei is small (i.e., it is very dilute in the reactor), and thus its

presence does not change the energy dependence of the reactor’s neutron popula-

tion. However, in most reactor designs, resonance absorbers are concentrated in

localized reactor features (e.g., fuel elements, control rods) and there is significant

self-shielding at the resonance peak. That is, neutrons with the “peak” energy will

most likely be absorbed in the reactor “feature” irrespective of temperature-induced

changes in the resonance microscopic cross section. But the story can be different

on the wings of a resonance where the cross section is much smaller, and, thus, so is

the self-shielding. An increase in temperature of the “feature” can result in a net

increase in neutron absorption, with no change at the peak energy, but with

increases in the wings. This phenomena can aid in insuring a negative temperature
coefficient for a fission reactor design (Temperature coefficients are collective

reactor parameters that reflect how neutron balance is impacted by temperature

change through feedback mechanisms, for example, Doppler broadening (or

narrowing) of resonances, and moderator density changes. Reactor control will be

discussed in Sect. Fission Reactor Performance.). A negative temperature coeffi-

cient is a crucial reactor design safety requirement.

Dealing with temperature in producing resonance cross sections for design

calculations is handled in a manner similar to the process for thermal energy

range cross sections discussed above. The ENDF resonance cross-section models

and appropriate material temperatures are input to NJOY, and the output are the

broadened cross sections in the model format. How these cross sections are used in

design calculations is addressed in the next section.
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As noted at the start of this section, gamma ray (photon) cross sections are

important in fission reactor design as they are required for the full treatment of

energy deposition throughout a reactor (in its fuel bearing core and supporting

structures). In the order of importance with increasing gamma energy, the

mechanisms of attenuation are the photo electric effect (g,e�), Compton scattering

(g,g*), and pair production (g, e�eþ). The photoelectric effect removes a g when its
energy, hu, can eject an atomic electron. Its cross section is approximately propor-

tional to Z4/(hu)3, and has discontinuities in energy as the ionization energy of

various atomic electron shells are achieved. For higher g energies, Compton

scattering interactions with atomic electrons can be treated as effectively free

electron collisions. Conserving momentum and energy relativistically, one can

derive expressions for energy loss and change in direction for initiating gs as

a function of their incident energy. The magnitude of the cross section is propor-

tional to Z. When g energies reach a threshold of 1.022 MeV (2 � mec
2) and are in

the field of a target nucleus, pair production of an electron and positron is possible.

The magnitude of the pair production cross section is proportional to Z2. Of course,

in tracking the g population in a reactor, one recognizes that annihilation of a

positron will produce two 0.51 MeV g’s. So pair production can be viewed as

a form of inelastic scattering event. Cross sections for these three processes are

tabulated in ENDF/B files, and they are described at a thorough but accessible level

in the classic text by Robley D. Evans “The Atomic Nucleus.”

An example plot of these cross sections for Th232 is provided in Fig. 2.7.

Finally, there are other gamma reactions which can take place in a reactor, for

example (g,f) and (g,n) (the latter which we noted earlier as a source of delayed

neutrons). However, these are threshold reactions for relatively high-energy

gammas, and as shown in Table 2.3 the total energy available from fission from

fissile isotopes for gammas is limited: <8 MeV for prompt g’s, and, <6.5 MeV for

delayed g’s. Thus, these reactions are not important in determining the overall

distribution of gammas in a reactor design.

Neutron Distributions

With the material provided to this point, the primary problem of reactor theory can
be addressed: that of finding the neutron distribution in phase space (r,E,V), of

a reactor design, and subsequently the reactor’s power distribution, both throughout

the reactor design’s lifetime. The first task is to derive the equation for the neutron

density, N(r,E,V), the neutron transport equation, and auxiliary equations for the

atom densities, rj(r,t), of depleting (initial inventory) isotopes and important fission

products (Like reactor physics, reactor theory is a traditional term in the nuclear

engineering discipline. It refers to the study of the neutron transport equation and

the means of its solution.). A simple approach to deriving the transport equation is

to consider a balance relationship for N(r,E,V,t)dEdOdt for a time invariant

volume, V, in configuration space:
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dEdOdt
Z
v

ð@Nðr;E;O; tÞ=@tÞd3r ¼ �loss from flow out of V

þ # scattering into dE about E and dO aboutO

þ # produced by fissionþ # produced by other sources (2.44)

For the “flow” term, one defines the neutron angular current J(r,E,V,t) � vN(r,

E,V,t), where jJ(r,E,V,t)•n dsdEdOdtj is the no. of neutrons at r, with energies in dE
about E, traveling in dO aboutV,which cross an area ds with a unit normal vector n

in dt at t. And thus, net flow out of V, which has a non-reentrant surface S, is:

dEdOdt
Z

s

Jðr;E;O; tÞ � nds

¼ dEdOdt
Z
v

v � rNðr;E;O; tÞd3r; (2.45)

where Gauss’ Theorem is applied to transform the surface integral to a volume

integral.

The “reactions” in V are simply:

dEdOdt
Z
v

vSTðr;E; tÞNðr;E;O; tÞd3r; (2.46)
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Fig. 2.7 Thorium cross section for the photo electric effect (g,e), for Compton scattering (g,g‘),
and pair production (g, e + e�) [32]
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where ST(r,E,t) is the total macroscopic cross section in V. All scattering cross

sections included in ST have been integrated over final energies and directions.

Scattering into V is:

dEdOdt
Z
v

d3r

Z1
0

dE0
Z

dO0

n0Ssðr; t;E0 ! E;O0 ! OÞNðr;E0;O0; tÞ (2.47)

where Ss is the double differential macroscopic scattering cross section in V (see

the definition Eq. 2.65 for an example of a double differential microscopic scatter-
ing cross section).

The direct fission source into V is:

dEdOdt
Z
v

d3r

Z1
0

dE0
Z

dO00 X
i

vpiðE0 ! EÞ

Sfiðr;E0; tÞv0Nðr;E0;O; tÞ=4p; (2.48)

where npi (E0 ! E) is the number of prompt neutrons emitted in dE about E by

a fission of isotope i initiated by neutrons in dE0 about E0: the macroscopic fission

cross section for isotope “i” is ri(r,t)sfi(E
0).

The delayed neutron source into V is:

dEdOdt
X
j

XdjðEÞ lj
4p

Z
v

Cjðr; tÞd3r; (2.49)

where Χdj(E)/4p is the probability that the decay of delayed neutron precursor “j”

will produce a neutron in dE about E and dO about O, and where lj and Cj

are, respectively, the decay constant (see the beginning of section “Heavy

Elements”) and isotope density of precursor “j”.

And, finally any source of neutrons in V not produced by a neutron reaction is

given by:

dEdOdt
Z
v

d3rSðr;E; tÞ=4p; (2.50)

where S could characterize a source (e.g., Plutonium(238)-Beryllium(a,n) or

Califonium-252 (spontaneous fission)) included in a reactor design to aid in reactor

start-up or Smight account for decay processes yielding neutrons due to the presence

of depleted fuel incorporated from another design.

2 Fission Reactor Physics 35



Now, if the terms on the right side of the “balance relationship,” equation

Eq. 2.44, are moved to the left side, and dEdOdt and the integral operation
R
v

d3r

is factored out of all the terms, then as the right side is now zero and the small

volume V is arbitrary, the collection of expressions under the integral must equal

zero. The resulting equation is the Neutron Transport (or Boltzmann) Equation:

@

@t
Nðr;E;O; tÞ¼�v�rNðr;E;O; tÞ�vSTðr;E; tÞNðr;E;O; tÞ

þ
Z1
0

dE0
Z

dO0v0Ssðr; t;E0 !E;O0 !OÞNðr;E0;O0; tÞ

þ
Z1
0

dE0
Z

dO0v0
X
i

vpiðE0 !EÞSfiðr;E0; tÞNðr;E0;O0; tÞ=4p

þ
X
j

XdjðEÞldjCjðr; tÞ=4pþSðr;E;O; tÞ: (2.51)

The conditions for solutions of this partial-differential-integral equation are the

continuity condition:

N(r + aV,E,O,t) must be a continuous function of a for r + aV in the reactor,

and the

boundary condition:

N(rs,E,V,t) = 0, for V•n < 0, where n is an outward unit vector normal to a non-

reentrant surface chosen to define the extent of the reactor.

The auxiliary equations for number densities of delayed neutron precursors,

Cj(r,t), and fission product poisons, depleting fissile isotopes, and burnable poisons,
ri(r,t)s, are simply defined as movement of these isotopes in space can be ignored.

Burnable poisons are elements with large neutron absorption cross sections (e.g.,

Boron, Hafnium, Cadmium, Erbium, Gadolinium) that can be included in reactor

designs to maintain neutron balance over design lifetime.

• For delayed neutron precursors:

@

@t
Ciðr; tÞ ¼ �li Ciðr; tÞ þ

Z1
0

dE0
Z

dO0 X
j

xijn
0Sfjðr;E0; tÞNðr;E0;O0tÞ; (2.52)

where xij is the expected number of precursors of type i produced by fission of

isotope j.

• For fission product poisons (e.g., Xenon-135 and its precursors Telirium-135 and

Iodine-135, and Samarium-149 and its precursors Neodimium-149 and Prome-

thium-149):
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@

@t
riðr; tÞ ¼�liriðr; tÞ þ lj!irjðr; tÞ

�
Z1
0

dE0
Z

dO0riðr; tÞsciðE0Þv0Nðr;E0;O0; tÞ

þ
Z1
0

dE0
Z

dO0 X
k

gikðE0Þ
X
fk

ðr;E0; tÞn0Nðr;E0;O0; tÞ; (2.53)

where gik(E) is the expected number of poison (or poison precursor) nuclei

produced by fission of isotope k induced by neutrons of energy E.

• For fissile fuel and burnable poison isotopes:

@

@t
riðr; tÞ ¼ �

Z1
0

dE0
Z

dO0riðr; tÞsaiðE0Þn0Nðr;E0;O0; tÞ; (2.54)

where the subscript “a” as applied to sa
i conventionally refers to capture plus

fission for fissile isotopes. For reactor designs containing fertile isotopes, equa-

tion Eq. 2.54 will have a source term reflecting the transmutation process leading

to the fissile isotope “i” (see Fig. 2.1). Additional “auxiliary” equations may be

needed to deal with transmutation of one isotope of a burnable poison to another,

which has a significant neutron capture cross section (for example Hafnium,

which has four naturally occurring isotopes).

Solving these “auxiliary” equations, irrespective of their number, is not

a calculational challenge, given one knows the neutron density, N(r.E,V,t), as

they are ordinary differential equations. Obviously, solving the neutron transport

equation (Eq. 2.51) for N(r,E,V,t) is another matter. There are several features of

fission reactors, however, that make this task more tractable. First, the density

of neutrons needed to produce as much power as can be removed/transferred from

various reactor types to do useful work is very small, �107–109 #/cm3, where as

the density of nuclei is many orders of magnitude larger �1023 #/cm3. Therefore,

the neutrons can be viewed as a very dilute gas in the matrix of a reactor’s nuclei,

and thus neutron–neutron collisions can be ignored (they have not been accounted

for in Eq. 2.51) (Another neutron behavior that can be ignored in formulating the

transport equation is the finite lifetime of a free neutron. Its mean-life is�11.5 min.

But, as will be discussed in the next section, the lifetime of neutron in a reactor is

measured in milliseconds.). Second, in the primary nuclear design calculations,

where it is determined if a trial configuration, loading and geometry, of

fuel, structure, moderator, coolant, control elements, and poisons, can sustain

neutron balance through out the reactors lifetime objective, the time variable “t”

in Eq. 2.51 can be treated in a much simplified manner. Given the initial

conditions of a trial reactor configuration, it is a good assumption that the atom
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densities in the various macroscopic cross sections in Eq. 2.51 can be treated as

nearly constant for a significant time interval, Dt
minutes. With this assumption,

and no neutron–neutron collisions, Eq. 2.51 is linear in N(r,E,V,t) during Dt, and
solution methods for Eq. 2.51 are greatly simplified. In addition, for the interval,

Dt, Eq. 2.51 can be treated as a time-independent equation. For a primary
nuclear design calculation, one ignores the source term S(r,E,t) (its importance

to the start-up problem will be addressed in the next section) and Eq. 2.51

becomes a linear homogeneous eigenvalue problem:

vO � r � N r;E;Oð Þ þ nST r;Eð ÞN r;E;Oð Þ

� v

Z1
0

dE0
Z

dO0n0Ss r;E
0 ! E;O0 ! Oð ÞN r;E0; O0ð Þ

¼ 1

k

Z1
0

dE0
Z

dO0n0
X
j

Sfj r;E
0ð Þ

npjðE0 ! EÞ þ
X
j

XdiðEÞxij
( )

Nðr;E0;O0Þ=4p; (2.55)

where 1/k is the eigenvalue. It has been customary to use the inverse of “k” as the

eigenvalue and to refer to k as the multiplication factor. Note that if Eq. 2.55 is

integrated over the reactor volume and E and V, then k is equal to the ratio of

neutron production to neutron loss, this is the origin of its designation as

a “multiplication factor.” A further simplification in Eq. 2.55 arising from the

assumption of “time independence” during Dt, is that delayed neutron production

can just be added to prompt neutron production. As indicated, previously delayed

neutrons, though less than a percent of total neutron yield in a fission, are critical to

transient reactor behavior, and, therefore, control system design, to be covered in

the next section.

Before proceeding with the solution methods for Eq. 2.55, a description of how

the primary nuclear design calculation proceeds is required for a basic understand-

ing of reactor design, and to provide perspective on the utility of the various

solution methods for the transport equation. Assuming the solution method chosen

has yielded a ki and Ni (r,E,V) for the initial time interval, Dti where i = 1, then one

proceeds to check design requirements, and make needed modifications to the

reactor’s initial trial configuration. In general, this is an iterative process including

other disciplines (i.e., heat transfer and fluid flow, structural analysis). If k 6¼ 1,

inventories of fuel/poisons or the positioning of control elements will need to be

altered to achieve neutron balance (Control elements (sometimes generically called

control rods) are structures incorporating highly neutron absorbing isotopes. They

have a dual role in fission reactor design: (1) assuring criticality (a controlled steady

state chain reaction) throughout a reactor’s design lifetime, i.e., compensating

for potential excess neutron production from the initial fissile loading which must
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be large enough to accommodate depletion; and (2) providing safe shut down

(termination of the chain reaction) of the reactor in case of an accident condition

or during a planned interruption of normal operations (e.g., for plant maintenance or

refueling). The same “structures” could accomplish both functions or there could be

separate structures (sometimes referred to as “shim” and “shutdown” rods respec-

tively).). The power distribution throughout the reactor must then be determined.

As N(r,E,V) is the solution to a homogeneous equation, its absolute magnitude is

undetermined, but a normalization factor, p, can be established from the total

thermal power rating, P(MWth), requirement of the design, that is from:

P ¼ p

Z
RVol:

d3r

Z1
0

dE

Z
dOv

X
j

Ej Sfjðr;EÞNðr;E;OÞ; (2.56)

where ej is the energy release per fission of isotope j (see Table 2.3). Now given

pN(r,E,V), one can calculate the power distribution throughout the reactor

PðrÞ ¼ p

Z1
0

dE

Z
dOv

X
j

EjSfjðr;EÞNðr;E;OÞ; (2.57)

and determine peak powers in fuel elements, and average and peak heat fluxes into

coolant channels. Thus, fuel element and heat removal system limits can be

checked. If there are violations, the trial configuration must be altered and new

results for k and N(r,E,V) found. From the power distribution and subsequent

thermal analysis, one can also verify the temperatures that were assumed for the

trial configuration, that is, the temperatures that were needed to define thermal

scattering cross sections and Doppler broadened resonance cross sections. Finally,

when all conditions are met for the first time interval, Dti, where i = 1, the auxiliary
equations (Eq. 2.53 and Eq. 2.54) can be solved to update inventories of fuel and

poisons for the next time interval, Dt2. For a thermal reactor design, where the

fission product poisons Samarium-149 and Xenon-135, are important, initial time

intervals should be short (minutes) until equilibrium levels of these isotopes are

achieved (�hours). Subsequent time intervals can be many hours. From this brief

description of the primary nuclear design process, it should be clear that having

accurate and efficient solution methods for the time-independent neutron transport

equation is key to achieving a successful design.

There are two basic approaches to solving the time independent neutron trans-

port equation, Eq. 2.55; the probabilistic-statistical Monte Carlo simulation method

[14] where individual neutrons are traced through their life experience in a reactor,

and analytic methods where the variables, r, E, and (sometimes) V, are made

discrete, thus transforming Eq. 2.55 into a matrix equation.

Monte Carlo simulation is in principle well suited for this application because

the neutron density is low so the transport equation can be treated as linear. Thus,
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each “experiment,” that is, neutron history, is independent of all others. Initially,

a neutron is started at a randomly selected reactor location and with a randomly

selected direction, V. Its initial energy is selected by treating a typical prompt

neutron energy spectrum as a probability distribution:

PðEÞdE ¼ vpðEÞdE
� ZEmax

Emin

dEvpðEÞ; (2.58)

which is then “sampled” with a random number between 0 and 1. In Monte Carlo

computer programs [15, 16] a sequence of random numbers is generated with an

algorithm. To provide an example of “sampling,” note that in this case, given

a random number n, the “sampled” starting energy E is found by simply solving

the transcendental equation:

n ¼
ZE

Emin

dE0P E0ð ÞforE: (2.59)

Now having a speed and direction, one can “sample” (with a new random

number) the probability that the neutron travels a distance x before having

a collision, using equation Eq. 2.20. As this probability depends on the total

macroscopic cross section, ST(r,E), one must keep track of material boundaries.

An initial sampling will be for the distance from the starting point of the neutron to

the first material boundary it could cross. If the initial sampling results in the

boundary being crossed, then there is a new ST and a second sampling is performed

to determine if another boundary is crossed. Eventually, either the neutron leaves

the reactor or the location of the first collision is established. As the total cross

section is the sum of capture, scattering, and possibly fission macroscopic cross

sections for the various isotopes present, one can treat the relative magnitudes of the

components of the sum as a probability distribution, which when “sampled” leads

to the next step in our neutron’s history. If capture is the result, the history ends, just

as it would end if the neutron leaked (escaped) from the reactor. Either capture or

leakage is recorded as a “loss.” If fission is the result, the history also ends, but the

number of neutrons produced (1, 2, or 3) in the fission of the “selected” isotope j,

and the fission location are recorded. The number of fission neutrons is determined

by “sampling” the probability distribution for fission yield of isotope j. The mean of

the distribution njðEÞ includes delayed neutrons. The number of neutrons produced

by a “history” is counted as “production.” If scattering is the result of the collision

then the double differential macroscopic cross section is treated as probability

distribution and “sampled” to provide a new energy and direction for the neutron.

Then, the process of tracking to either escape or the next collision is repeated. Thus,

the “history” proceeds until it ends as either “loss” or “production”, if “production”

a starting point for a subsequent “history” and a location for energy deposition are

also provided.
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There are various strategies for carrying out Monte Carlo calculations and the

evaluation of the statistical nature of the results. A standard approach, in outline, is to

run successive groups of “histories” (thousands). Discard the first few groups, which

are used to establish a reasonable fission neutron spatial source distribution, and then

find the mean and standard deviations of the desired calculational results from the

subsequent groups. It is most economical to get good statistics for the eigenvalue k,

themultiplication factor, which is just “production” over “loss,” quantities which are

accumulated over the whole reactor. Energy deposition, that is, power distribution,

results are much more costly. Hundreds of groups with millions of histories per

group would be required to give good statistics (a five percent 95% confidence

interval) for the number of fissions in small reactor volumes (e.g., a 1 cm length of a

typical PWR fuel element which has a volume of 0.7 cm3, out of a reactor volume of

32.8 � 106 cm3 (for a 3,400 MWth rating)). From this discussion, one can see why,

as mentioned in section Cross Sections, Monte Carlo calculations of mock-up

experiments are widely used in cross-section data set evaluations, where the results

of interest are changes in k, the multiplication factor. Even with the tremendous

advances in computing capability which have been made to date, Monte Carlo

simulation is not as yet themain linemethod for primary nuclear design calculations.

But, as will be seen in the following description of analytic methods, it can greatly

aid in improving the accuracy of the analytic methods.

When the analytic approach of making the neutron density’s variables r, E andO
discrete is applied, so as to make the computational errors in solving the transport

equation comparable to an exhaustive Monte Carlo simulation, the computer

resource requirements will challenge today’s largest machines (peak speeds

of �2.3 � 1015 flops (floating point operations per second) [17]).

This can be demonstrated with the large PWR used in theMonte Carlo discussion:

First, a spatial mesh of 65.6� 106 points would result, assuming quarter core radial

symmetry, and from using a 1 � 1 � 2 cm3 cell for averaging cross sections. (The

mesh may need to be finer for highly absorbing features, e.g., fixed poisons, control

elements, and can be courser in homogeneous regions.) Second, the energy variable
can be treated with a multigroup approximation where the energy range, 0.0 ! 10

MeV is divided into intervals (groups), for example, 24 for thermal neutrons, 0.0!
0.625 eV, and 57 for the rest of the range, with most of these groups allotted to

epithermal neutrons, E = 0.625 eV ! 0.1 MeV where there is a concentration of

explicit resonance cross sections (see Table 2.6). A weight function fg (r,E),

normalized for E to unity, is required for each interval, g. These can be calculated

with infinite medium problems representing various portions of the reactor; homoge-

neous problems with no spatial variables, or an infinite repeating array of cells (e.g.,

a fuel element and surrounding coolant) with radial spatial variables, but no axial, z,

dependence. The power of themultigroup approximation is that it is insensitive to the

choice of weight functions and thus simplifying assumptions can bemade in selecting

and solving the “infinite medium” problems to generate the fg’s.Finally, the direction
variable, V, can be dealt with through a discrete ordinate approximation [18]. The

unit sphere is divided into segments, the surface areas of which sum to 4p, and
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a direction vectorVn is assigned to each segment. The segment surface areas act as

weight functions when the transport equation is integrated over a segment to yield an

equation for the neutron density going in the directionVn. There are various schemes

for selecting ordinates and weights, the most widely known is the Sn method. All

methods, however, can produce ray effects if “n” is too small [19]. The channeling of

neutrons into a few restricted directions can produce anomalous results in reactor

designs with localized neutron source regions, that is, where fissile and fertile fuel

predominate in different regions (commonly referred to as seed-blanket designs).

For a “highly accurate” treatment, one should let n = 16 in each octant, for a total of

128 ordinates. So for the “large PWRexample,” the number of unknowns to be solved

for in the discretized time-independent transport equation is 170� 109 (=16.4� 106

(spatial mesh points) � 81 (energy groups) � 128 (ordinates)). This is clearly

a formidable calculational problem. If we view the analytic approach described

here as transforming Eq. 2.55 into a matrix eigenvalue equation, then the simplest

solution method of matrix inversion would involve matrices of a billion by a billion.

Hence, an iterative method is required [20]. Much effort in reactor theory has been
devoted to this problem, and to simplifying the analytic approach. Iterative methods

for solvingmatrix equations are beyond the scope of this entry, but to understand how

fission reactor design is actually carried out, a description of analytic approach

simplifications is needed.

The direction variable, V, received the earliest attention. Because the neutron

population in a reactor can be viewed as a dilute gas, it was natural to assume that

the variation of the neutron density in space could be approximated by r• D(r,E,t)r
vN(r,E,t) (from Fick’s Law of diffusion). When the transport equation, Eq. 2.51, is

integrated over V and the first term on the right-hand side is replaced by the Fick’s

Law expression, the result is the time-dependent neutron diffusion equation. Equa-

tion 55 can be treated analogously to yield the time-independent neutron diffusion

equation. In either case, the limitations of the diffusion approximation only become

apparent in trying to define the diffusion coefficient D(r,E,t) (see Henry, Nuclear-

Reactor Analysis). The most commonly used expression is

Dðr;E; tÞ � 1= 3 Stðr;E; tÞ � m0Ssðr;E; tÞ½ �f g; (2.60)

where m0 is the average of the average cosine of the scattering angle (in the

laboratory coordinate system) of each isotope making up Ss(r,E,t). This definition

(Eq. 2.60) arises from a low-order spherical harmonics expansion of N(r,E,V,t) in

the neutron transport equation. Spherical harmonics are a complete orthonormal set

of special functions on the unit sphere defined by O (the unit vector which is at

angle y from the z axis and projects in the x–y plane at angle j from the x axis);

Ym
l ðOÞ ¼ Hm

l P
m
l ðmÞeim’ for l ¼ 0; 1; 2; 3:::::

m ¼ �l 	 m 	 l;
(2.61)
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where Hm
l ¼ ð2lþ1Þðl�mÞ!

4pðlþmÞ!dm
h i1=2

; Pml ðmÞ ¼ sinmðmÞ dm

dmm PlðmÞ is the associated Legendre
Polynomial, PlðmÞ ¼ 1

2ll!
dl

dml ðm2 � 1Þl is the Legendre Polynomial and m = cosy. The

spherical harmonics are normalized by the relationship:

Z2p
0

d’

Z1
�1

dm Ym
l ðm;’ÞYm0

l 0 ðm;’Þ ¼ dmm0dll 0 ; (2.62)

where Ym
l is the complex conjugate of Ym

l and the Kronecker deltas, d, are 1 for

m = m’ and l = l’ and 0 otherwise.

The “low-order” spherical harmonics expansion, which yields the diffusion

approximation, is for l = 0 and 1 (also referred to as the P1 approximation). The

four functions in the expansion are:

Y0
0 ¼ ð1=4pÞ1=2;Y�1

1 ¼ ð3=4pÞ1=2 sin ye�i’;

Y0
1 ¼ ð3=4pÞ1=2m and Y1

1 ¼ �ð3=4pÞ1=2 sin ye�i’:
(2.63)

In a Cartesian coordinate system, the expansion coefficients (for simplicity of

notation the time-independent case will be treated) are N(x,y,z,E), the neutron

density and N�1
1 (x,y,z,E), N1

1 (x,y,z,E) and N0
1 (x,y,z,E), which when multiplied

by v (the speed corresponding to E) are the neutron currents in the x, y, and

z directions. Before applying the P1 expansion to Eq. 2.55, one needs to note that

the double differential scattering cross section, Ss(E’ ! E,V’ ! V) in reactor

applications (where neutron polarization and Bragg scattering can be ignored)

depends on V’•V. Then, given the addition theorem for spherical harmonics,

P1ðO0 �OÞ ¼
Xl

m¼�l

ðl�mÞ!
ðlþmÞ!P

m
l ðmÞPml ðm0Þeimð’�’0Þ; (2.64)

Ss(r,E’! E,V’•V) can be expanded in terms of associated Legendre polynomials.

This is done in two steps: first the double differential scattering cross section

is expressed as an expansion in ordinary Legendre polynomials (which are

a complete orthogonal set of functions)

Ssðr;E0 !E;O0 �OÞ¼Ss ðr;EÞ
X1
l¼0

ð2lþ1Þ
4p

F1ðr;E0 !EÞP1ðO0 �OÞ;
(2.65)

and then Eq. 2.64 is substituted for Pl(V’•V). (It should be remembered that Ss is

a macroscopic cross section, and a more complete notation would show a sum

over contributions from each isotope present in d3r about r.)
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Now when the P1 expansion for N(x,y,z,E,m,j) is inserted in Eq. 2.55 and the

resulting equation is, in turn, multiplied by the complex conjugate of each of

the four spherical harmonics functions of the P1 expansion (Eq. 2.63), and

integrated over m (�1 ! 1) and j (0 ! 2p), four equations result: The first is

@

@x
vN�1

1 ðx; y; z;EÞ þ @

@y
vN1

1ðx; y; z;EÞ

þ @

@z
vN0

1ðx; y; z;EÞ ¼ �vSTðx; y; z;EÞNðx; y; x;EÞ

þ
Z10Mev

0

dE0v0Ssðx; y; z;E0ÞF0ðE0 ! EÞNðx; y; z;E0Þ

þ ðthe fission term in Eq:55 with Nðr;E0;O0Þ
replaced with Nðx; y; z;E0ÞÞ: (2.66)

The remaining three equations are of the same form, one is provided here:

1

3
v
@

@z
Nðx; y; x;EÞ þ vSTðx; y; z;EÞN0

1ðx; y; z;EÞ

¼
Z10Mev

0

dE0vSsðx; y; z;E0ÞF1ðE0 ! EÞN0
1ðx; y; z;E0Þ (2.67)

With these four coupled partial-differential-integral equations, there is still

considerable computational complexity. To get to the standard neutron diffusion

equation, one additional approximation is made:

F1ðE0 ! EÞ ffi dðE0 � EÞmðE0Þ; (2.68)

wheremðE0Þ is the average cosine of the scattering angle in the laboratory coordinate
system, and energy loss (or gain) in the non-isotropic component of scattering is

ignored. Substituting Eq. 2.68 in Eq. 2.67, the relationship between N0
1 and N is a

simple partial differential equation:

N0
1ðx;y;z;EÞ¼� 1

3ðST ðx;y;x;EÞ�mðEÞSSðx;y;z;EÞÞ
@

@z
Nðx;y;z;EÞ; (2.69)

containing the diffusion coefficient D(r,E) (see the definition Eq. 2.60). Given the

equations of the same form as Eq. 2.69 forN1
1 andN

�1
1 , and substituting all three into

the left-hand side of Eq. 2.66. The left-hand side becomes the standard Fick’s Law

expression:

�r � Dðr;EÞrNðr;EÞ ¼ :::: (2.70)
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As noted above, this derivation of the diffusion approximation reveals its

limitations. The ability of some combination of four low-order spherical harmonic

functions, Eq. 2.63, to describe the true angular distribution of the neutron density

throughout a reactor will be limited to regions where the distribution is nearly

isotropic, that is away from boundaries and highly absorbing features (control

elements and fixed poisons). To address these limitations, special boundary

conditions are used, and subsidiary calculations (to be discussed below) are made

to provide “fitted” cross sections for highly absorbing features.

To make the diffusion approximation an efficient design tool, additional

simplifications have been developed. The differencing of the energy variable as

described above for “multigroups” can be extended to a “few group” approxima-

tion. Again, weight functions are generated using accurate solutions to small region

“cell” problems, which model repeating features of a reactor. But here the weight

functions are applied over much larger energy ranges, three or four to cover the

energy range of 0 to 10 MeV. Furthermore, one accepts the error associated with

the weight functions not perfectly representing the spatial variation of neutron

density energy dependence.

The use of “cell problem” auxiliary calculations can be extended. As the core,

the central fuel bearing region, of most reactor designs is made up of collections of

mostly fuel elements, and possibly some fixed poison and movable control

elements, assembled into modules. One can perform highly accurate (e.g., Monte

Carlo or multigroup, fine spatial mess, discrete ordinate) calculations for two-

dimensional (radial) repeating arrays representations of a core’s various modules.

Then, for each module type, a series of corresponding few-group diffusion approx-

imation calculations can be carried out, in which key few group cross sections

are adjusted (“fitted”) to match reaction rates from the “highly accurate” reference

calculation. One can the use these fitted cross sections in a full core three-

dimensional few group diffusion calculation as part of the principle design process.
Of course, with depletion, as inventories of fuel, fission products, and poisons

are updated, fitting calculations will have to be repeated. This approach is particu-

larly suited to the design of thermal reactors, that is, PWRs and BWRs, where the

proper treatment of epi-thermal and thermal neutrons, including the effects of self-

shielding by fuel and poison inventories, is crucial.

In fast reactor design, where most fissions take place at energies above explicit

resonances (liquid metals or gasses are coolants, and fissile and fertile densities and

inventories are high (no effective moderators are present)) and the mean free path of

fission neutrons is large (�10 cm.), the treatment of fuel, structure and coolant as an

homogenized material, in formulating macroscopic cross sections, is a reasonable

assumption. Treatment of the energy variable is also simpler as up-scattering is not

important. As a result, multigroup, 3D discrete ordinate calculations can be used in

the principle design process for fast reactors.
Finally, returning to thermal reactor design, there is another analytic calcula-

tional approach, which is in wide use, that should be mentioned. The general

designation is Nodal Methods. There are a number of variations under this title

[21], but they all have as their starting point solving 2D module array problems.
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One needs to produce few group neutron distributions within each module. Each

module (or depending on symmetry each half or quarter module) will be a “node.”

Then coupling coefficients between nodes, both radially and axially, are generated.

(It is predominately in defining coupling coefficients that the various “methods”

differ.) The resulting nodal equations can be solved with modest computer

resources, but, to obtain power distributions and to update inventories the full

reactor neutron distribution must be constructed from the module solutions and

the weights found for each node. Nodal Methods have been found to be particularly

useful in applying the primary nuclear design process to evaluating refueling

options for commercial (large scale) PWRs and BWRs, where partially depleted

modules are relocated, “shuffled,” as new modules are added and fully depleted,

“spent” modules removed during periodic refuelings. The computational economy

of nodal methods also allows them to be applied to fully time-dependent problems,

particularly for accident analyses. The nature of these problems will be discussed in

the next section.

Fission Reactor Performance

In the previous section, the focus was the derivation of the neutron transport

equation, and how it is solved in carrying out the primary nuclear design process.
This quasi-static process involves a series of time-independent calculations of the

neutron density, N(r,E,V), and ultimately results in the configuration and

inventories (loadings) that meet design requirements for lifetime (total energy

production), and normal operation thermal performance (fuel element burn-up

within limits and sufficient coolant flow provided by the design pumping power

allocation). There are, however, additional design requirements that involve

transients, that is, N(r,E,V,t), which will be the subject here.

The simplest approach to treating transient reactor behavior is through a “point”

kinetics model. If one first multiplies the time-dependent transport equation,

Eq. 2.51, by a weight function, W(r,E,V), and integrates over the reactor volume,

energy (the full range, 0! 10 MeV), and direction (cos y from�1 to 1, j from 0 to

2p); and second, multiplies the time-dependent equation for each delayed neutron

precursor, Eq. 2.52 for Ci(r,t), by W(r,E,V)Xdi(E) and performs the same integra-

tion over reactor volume, energy, and direction, the results are the point kinetics

equations:

dTðtÞ
dt

� r� b
L

TðtÞ þ S
l

l�1
llClðtÞ þ QðtÞ (2.71)

dCjðtÞ
dt

¼ bj
L
TðtÞ � lj CjðtÞ for j ¼ 1; 2;:::I (2.72)
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where T(t) is an amplitude function;

TðtÞ �
Z

reactor

dV

Z10Mev

0

dE

Z
dOWðr;E;OÞ

Nðr;E;O; tÞ:
(2.73)

In formulating the expressions for the kinetics parameters, r(t), b(t), and L(t), it
is convenient to factor the neutron density into a product of “shape” and amplitude

functions. The shape function is;

Sðr;E; O; tÞ � Nðr;E; O; tÞ=TðtÞ: (2.74)

Now the weight function is defined over the same domain (space, energy, and

direction) as the neutron density, and thus from the definitions Eq. 2.73 and Eq. 2.74

the normalization of S and W follows:

Z
reactor

dV

Z10Mev

0

dE

Z
dOWðr;E;OÞSðr;E;O; tÞ¼1 for all t: (2.75)

In order for the point kinetics equations to provide accurate solutions for small

changes in reactor configuration, the weight function, W(r,E,V), is chosen to be the

solution the adjoint equation corresponding to the time-independent transport

equation, Eq. 2.55, for the reactor of interest adjusted to be critical (i.e., the

eigenvalue k = 1). In the adjoint of Eq. 2.55, the variable pairs (E,V) and (E’,V’)

are interchanged in the scattering and fission terms. The solution, N*(r,E,V), is

referred to as the adjoint neutron density or the importance function. The latter

name indicates the physical interpretation of N*. If the reactor described by

Eq. 2.55 is at zero power (no neutrons) and a neutron is inserted at r with velocity

v(E,V), the neutron level will increase to a steady-state value (remember the

reactor is still critical). This “level” per neutron added at (r,E,V) is N*(r,E,V).

How N*, acting as a weight function, improves the point kinetics equations will be

discussed after r, b, and L are defined and their physical interpretation given. To

simplify notation, the scattering and fission integral operators in Eq. 2.51 are

represented by A and G:

A �
Z1
0

dE0
Z

dO0v0SSðr;E0 ! E;O0 ! OÞ�; (2.76)
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G �
Z1
0

dE0
Z

dO0v0
X
i

viðE0ÞSfiðr;E0Þ�; (2.77)

where ni(E’) is the total number of neutrons (prompt plus delayed) produced by

fission of isotope i induced by a neutron with energy E’. In reactor kinetics, delayed

neutron yields are expressed in terms of the ratio the number produced with a given

half-life (i.e., a member of “delayed group,” j, as noted previously, see Table 2.4) by

fission of isotope, i, to the total the total yield, ni. These ratios are represented as bij,
where normally j = 1,2 . . . 6.

The parameter r(t) is the reactivity of a reactor and is a measure of how far from

criticality (a steady-state chain reaction only from fission neutrons, no other neutron

sources present) the reactor is at time t. This can be seen from the expression for r(t)
that results from the derivation of Eq. 2.71 from the transport equation (where the

functional dependencies on r, E, V, and t are understood for ST, W, and S):

rðtÞ �

R
reactor

dV
R1
0

dE
R
dOW½ � vO � rS� vSTS

þ ASþ
X
i

XiðEÞGS�
R

reactor

dV
R1
0

dE
R
dOW

P
i

XiðEÞGS
; (2.78)

where Xi(E) is the total fission spectrum for isotope i:

XiðEÞ � Xi
pðEÞf1� big þ

X6
j¼1

XdjðEÞbij: (2.79)

Now note, if both the numerator and denominator of Eq. 2.78 are multiplied by

the amplitude function T(t), and W is taken as 1, then the numerator is the

total neutron production rate minus loss rate for the reactor. (When the first term

in the bracket in the numerator is integrated, and Gauss’ theorem is applied, it yields

the total neutron leakage rate from the reactor.) Similarly, the denominator is

the total neutron production rate. Reactivity is a dimensionless parameter whether

or not W is unity. If it is zero, the reactor is critical, if negative, subcritical and if

positive, supercritical.

bj in Eq. 2.72 is the effective delayed neutron fraction for the jth precursor group,
and b in Eq. 2.71 is the sum of the bj’s:
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bj �

R
reactor

dV
R1
0

dE
R
dOW

P
i

XiðEÞbijGS
R

reactor

dV
R1
0

dE
R
dOW

P
i

XiðEÞGS
: (2.80)

As with the expression for reactivity, multiplying the numerator and denomina-

tor of Eq. 2.80 by T(t) and letting W = 1, one sees that in this case bj is the fraction
of total fission neutrons produced in the reactor by precursor group j.

The parameter L is the prompt neutron lifetime and is defined as:

L �

R
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P
i

XiðEÞGS
: (2.81)

Again multiplying the numerator and denominator by T(t) and taking W = 1, one

sees that L equals the number of neutrons in the reactor divided by the rate of

neutron production by fission. If the reactor is critical, Eq. 2.81 has the same form as

the “fundamental equation of radioactive decay,” Eq. 2.11, and L can be thought of

as the “mean lifetime” of a neutron born into the reactor. In the point kinetics

equations, L is the mean prompt neutron lifetime, and the timing of the appearance

of delayed neutrons is treated explicitly through the behavior of their precursor,

Cj(t) j = 1,2 . . . . I (usually = 6).

The derivation of the point kinetics equations directly from the time-dependent

neutron transport equation has been presented here to provide perspective on

approximations that are normally made to make the generation of the point kinetics

parameters (r, b, and L) practical. If Eq. 2.51 and its auxiliary equations could be

readily solved for N(r,E,V,t), there would be no need for the point kinetics

equations. As it turns out, however, “practical” approximations follow from the

approaches described in the previous section for solving the time-independent

transport equation. Henry in Nuclear-Reactor Analysis derives the point kinetics

equations starting with the diffusion approximation (with energy a continuous

variable). One could just as well start with a few group diffusion approximation

which would provide a shape function (a vector) and from the adjoint of the few

group diffusion equation, a weight function (also a vector). The advantage of using

an adjoint weight function, irrespective of the approximation to the transport

equation one starts from, is in calculating reactivity, r(t). In transients of interest

in design, r(t) is the driver. It reflects changes in cross sections with time due to

variations in temperature (coolant density, Doppler effects) and configuration

(control rod motion). In whatever form Eq. 2.78 takes, given the neutron transport

approximation used, if a changing cross section is represented as a starting value

plus a time-varying small delta, dS(r,E,t), and the shape function is represented as

a time-independent function (e.g., from the initial neutron density of the reactor,
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the same problem that generates the adjoint) plus a time-dependent small delta,

dS(r,E,t), then the resulting calculation of r(t) will to first order in deltas only

depend on dS(t)‘s. Higher order terms can be ignored, and one does not need to

calculate a time-dependent shape function. This is a classic perturbation problem.

Henry (chapter 7) provides a detailed derivation.

The time dependence of bj(t) andL(t), Eq. 2.80 and Eq. 2.81, as used in the point
kinetics equations can be ignored in most applications. Measured values of b (and

the bij from which it is summed) can be used directly (Table 2.4). If adjoint

weighting is used, the b’s will be a bit larger than the physical b‘s in a thermal

reactor due to the increased “importance” of delayed neutrons with their lower

initial energies (relative to prompt neutrons). Prompt neutron lifetimes primarily

depend on the reactor type; for thermal reactors they are on the order of � 10�3 s,

and for fast reactors as short as 10�7 s. They can be measured in zero power reactor

mock-up experiments as ratios with b and r, or calculated directly from equation

Eq. 2.81 with the approximations for W and S used to obtain r. A highly accurate

calculation of L can be made with a Monte Carlo simulation where neutrons are

introduced from the prompt neutron energy spectrum with an S(t = 0) spatial

distribution. Each history would be timed and terminated with neutron absorption

(capture plus fission) or leakage. The “times” will yield the mean and standard

deviation of the prompt neutron lifetime.

One further note on reactivity, if a perturbation of a critical reactor configuration

can be viewed as nearly instantaneous, that is, a step change, then a good estimate

of reactivity addition or subtraction can be found by solving the eigenvalue (time

independent) problem for the perturbed reactor:

r ¼ 1� 1=k; (2.82)

and if the initial reactor configuration is subcritical then the reactivity addition from

a “step” perturbation can be found by performing two eigenvalue problems, the

perturbed case as before, and one for the initial subcritical configuration (ignoring

any nonfission source);

r ¼ 1=ko � 1=k; (2.83)

where ko (<1) is the initial subcritical eigenvalue. As reactivity is a dimensionless

ratio, it is often given as a percentage or in units of b (as defined by Eq. 2.80). In the

latter case, the “units” are traditionally dollars and cents. If r equals b, the reactivity
addition is 1 dollar; if r equals 0.5b the reactivity addition is 50 cents. If a dollar of

reactivity is added to a critical reactor, it is said to be prompt critical (critical on

prompt neutrons alone) and delayed neutrons will not mitigate the resulting tran-

sient, a condition obviously to be avoided.

The motivation for the description of point kinetics provided here is best

provided by Henry:
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“Since mean free paths are fairly long and since the lifetimes of neutrons in a reactor are

quite short, the effects of local perturbations on” N(r,E,V,t) “will quickly spread through-

out a reactor. The immediate consequences of perturbing a reactor locally (for example by

changing a control rod slightly) is thus a readjustment of the shape of the” neutron density.

In many cases this readjustment is slight and is completed in a few milliseconds; after that

the readjusted shape rises or falls as a whole depending on whether the initial perturbation

increases or decreases keff. For reactors in which transients proceed in this manner, merely

being able to predict the change in level of the neutron density “is sufficient to permit a very

accurate prediction of the consequences of perturbation.”

With today’s computer capabilities, solving point kinetics problems is not

a great challenge, even with time-dependent reactivity reflecting feedback from

power changes in the reactor. Henry and Duderstadt provide descriptions of

applicable calculational methods (development of which inspired great ingenuity

in the past). In any case, to quote Henry again, point kinetics solutions provide

“very accurate predictions of the consequences of (reactor) perturbations.” Thus,

their utility in assuring that a reactor design satisfies fundamental transient

requirements. Under normal operating conditions, a reactor must be inherently

stable, that is, self-limiting. Reactivity must be reduced with increased temperature;

that is, with reduced coolant density, increased mean thermal neutron energy, and

Doppler broadening of resonance cross sections. These phenomena are dependent

on reactor type. Clearly change in thermal neutron spectra is unimportant in a fast

reactor. However, if coolant density decrease results in voiding, reactivity will

dramatically decrease in a thermal reactor, but in a liquid metal cooled fast reactor

increased leakage must outweigh a higher energy neutron spectrum (and an

increased fission to capture ratio in fuel) to assure a negative reactivity effect.

Also movement of control rods must reduce reactivity when reactor shutdown is

desired. Some movable poisons, power shimming control rods, could be included in

a design to flatten (make more uniform) the power distribution throughout life.

(Power flattening can reduce coolant pumping power requirements. As coolant flow

must meet the heat removal needs of the hottest region of the reactor, minimizing

excess flow to cooler regions increases overall power plant efficiency.) But, one

must assure that the operating strategy for using such rods does not compromise the

speed of reactor shutdown when it is required to deal with an accident condition.

Point kinetics models can also aid in assessing Xenon override requirements for

thermal reactors. Xe135 with its extremely large thermal neutron capture cross

section (sc = 2.7 � 106 b at E = 0.023 eV, for comparison sf
U235 = 577 b at

0.023 eV) is the most important fission product poison. It is produced directly from

fission and by decay of its precursor I135 (which is a direct fission product and has

short-lived precursors, Sb135 ! Te135 ! I135). Both Xe135 and I135 have half-lives

measured in hours (T1/2
Xe = 9.14 h, T1/2

I = 6.58 h). So, a point kinetics reactor

model will show that when a reactor is started up, Xe135 and I135 build up to

equilibrium levels in about 30 h. Their levels, inventories, will depend on

power level, that is, neutron density, and the reactor design must have enough

excess reactivity (e.g., control rods that can be withdrawn, or for a PWR,

a soluble poison in the coolant whose concentration can be reduced) to
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“override” the negative reactivity perturbation of neutron capture by Xe135

(iodine neutron capture can be ignored). In addition, when a thermal reactor is

shut down, Xe135 builds up as loss by neutron absorption stops and decay of

I135 continues. The Xe135 inventory peaks in about 10 h to approximately three

times its equilibrium level and subsequently decays. It is back to its equilib-

rium level in � 40 h (see Fig. 2.8).

Clearly additional “excess reactivity” is required to deal with a post-shutdown

Xenon transient. Eventually, not being able to provide (and control) this excess

reactivity can limit the useful lifetime of a thermal reactor design. As a historical

aside, it was John Wheeler [3] who recognized the role that Xe135 and I135 could

play in the operation of a thermal reactor. He explained the initial difficulties in

operating the first plutonium production reactor at the Hanford Washington site.

While point kinetics can deal with most reactor design transient requirements,

there are instances where significant spatial effects must be accounted for. In the

normal operation of a large thermal reactor, there is the potential for spatial

oscillations of Xenon concentrations, and therefore neutron density and power.

These oscillations may not affect criticality and might only be observed by the

reactor instrumentation system’s ability to measure power distributions in core. The

period of these oscillations would be many hours and thus limits on coolant channel

performance and fuel temperature could be compromised for extended time

intervals. Space-time calculations of neutron density have to be carried out to

determine if a particular design has a propensity for these oscillations. If the design

is not inherently stable, its instrumentation must provide detection and an operating

I(t)

X(t)

I∞

X∞

t0
t

t0
t

Fig. 2.8 Schematic of I135

and Xe135 inventories

following an initial reactor

start-up and subsequent

shutdown after equilibrium

levels have been reached (i.e.,

at t0).(Duderstadt)
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strategy must be devised to suppress any oscillation initiation. With modern

computing capability, few group diffusion approximations to the time-dependent

transport equation, Eq. 2.51 (with explicit spatial mesh or nodal methods), can deal

with Xenon oscillation evaluations [22].

There are certain reactor plant accident scenarios, which also require space-time

calculations. To deal with these, nodal methods, as described in section “Neutron

Distributions”, have been incorporated in safety analysis programs (see for example

[23]), which model a full power plant; the reactor, its neutronics, fluid mechanics

and structural integrity; and the balance of the plant, instrumentation, coolant/

working fluid to power conversion, and safety systems (containment, emergency

coolant injection and power supply). There are two classes of accidents where

space–time effects in the reactor are important. First is “rod ejection,” where

a single control rod or group of control rods is rapidly withdrawn with a large

reactivity addition and neutron distribution change, in no way a small perturbation

in the point kinetics sense. Second is a “cold water accident” applicable to a PWR.

In this case, in a plant with multiple piping “loops” carrying coolant to the reactor, if

one of the loops is not functioning so that water in the loop has cooled below the

normal inlet temperature of the reactor, and the loop is reactivated (its pump turned

on and isolation valves (if any) opened), while the reactor is critical, there can be

large asymmetric reactivity insertion, again, this is not a small perturbation

problem.

Finally, there is an additional aspect of reactor neutron time variation, which has

interesting Physics. The transport equation, derived in section “Neutron

Distributions”, is for the mean neutron density, N(r,E,V,t), but clearly as neutron

interactions and production, and fission product decay are inherently probabilistic,

there are fluctuations in the neutron population in a reactor (and as there are in

delayed neutron precursor populations). These fluctuations were recognized early

on in the Manhattan Project and are also referred to as neutron noise [24]. There are

several approaches to modeling of the phenomena. The most fundamental is based

on the derivation of the neutron transport equation from the quantum Liouville

equation (Osborn and Yip [25]). This derivation is extended to produce an equation

for the neutron doublet density, NNN(r,E,V,r’,E’,V’,t), the expected number of

neutrons in d3r about r, with energies in dE about E, going in the solid angle dO
aboutV times the expected number in d3r about r’, and so on for E’ andV’, where

as in the transport equation neutron–neutron collisions are ignored. Additional

equations for neutron–precursor and precursor–precursor doublet densities are

produced to complete the set of equations needed to solve for NNN. One also

needs equations for the “mean” (in Osborn’s nomenclature, singlet) neutron and

precursor densities, which were derived in section “Neutron Distributions”

(Eq. 2.51 and Eq. 2.52). Being able to solve for NNN is, however, not sufficient to

predict the results of neutron “noise” experiments in a reactor. Equations for

doublet and singlet densities for events (D) in detectors (e.g., pulse or continuous

currents in an ionization chamber) are also needed. With NDD and ND one can

predict variance to mean ratios of counts or the power spectral density of the current

in a single detector, and the cross power spectral density of currents in two detectors
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[26]. These experiments are usually performed in a reactor in a steady-state

condition (in the mean of course) at zero power, critical or slightly subcritical, to

obtain estimates of point kinetics parameters. These experiments have the advan-

tage of verifying expected kinetic performance without putting the reactor into a

transient. They are performed at low neutron levels because as power is increased

fluctuations become negligible relative to the mean. Detector noise measurements

(psd and cpsd) are sometimes made at power in operating reactors to monitor for

unplanned mechanical motion, or loose parts. Modeling for these measurements is

deterministic.

Fluctuations in neutron populations must be considered in developing initial

start-up procedures for a newly constructed reactor (In a reactor design which

incorporates fuel (including fission products and transuranics) from a previously

operated reactor, natural source levels will most likely be high enough to allow

“fluctuations” to be ignored.). The mean neutron density before start-up depends on

an external source of neutrons, S(r,E) (not from neutron reactions, Eq. 2.50) which,

as part of the design, could be adjacent or internal to the reactor. At start-up, the

reactor is subcritical (k < 1) and the mean neutron population, in a point reactor

sense, is N =LS(k/(1–k)). In outline, the steps to bring the reactor critical are to pull
control rods up (down in most BWR designs) from their fully inserted position so as

to insert some precalculated amount of reactivity and then wait for a new steady

neutron level to be achieved. The subcritical neutron level is monitored by the

reactor’s source range detectors. A power reactor is instrumented with detectors for

the full range of expected neutron levels. These pull-and-wait steps are repeated

until the reactor is slightly super critical, and thus the neutron level is observed to be

on a continuously increasing, but easily controlled, trajectory. A pull-and-wait

procedure needs to account for neutron level fluctuations because if the observed

level, due to a minimizing fluctuation, is below the expected (mean) level when the

reactor is actually close to its critical configuration, then the next “pull” might

produce an unacceptable rapidly increasing trajectory [27]. The simplest way to

avert a problem with a pull-and-wait procedure is to assure that the sources

provided in the design (In a reactor design which incorporates fuel (including

fission products and transuranics) from a previously operated reactor, natural source

levels will most likely be high enough to allow “fluctuations” to be ignored.)

are strong enough to render subcritical neutron fluctuations negligible. Of course,

one has to understand neutron level fluctuations to make this assessment [28].

Future Directions

Fission reactor development, since its inception, has progressed with advances in

computing capability. Early on, analog computers were used for transient analyses,

but digital computers have been the primary tool. Design codes have been adapted

to advancing digital technology; scalar processing, then vector processing and now
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massively parallel processing. This is an active field today and should continue to

be so, particularly as the drivers for improve computer technology are universal.

In section “Neutron Distributions” the two approaches to solving the neutron

transport equation, Monte Carlo simulation and analytic methods (differencing

variables and solving the resulting matrix equations) were described. Parallel

computing would appear to be well suited to Monte Carlo as independent histories

can be run on the various (1,000’s of) processors simultaneously. There is, of

course, the need to provide the reactor configuration (geometry, nuclide

inventories, and cross sections) and the Monte Carlo code itself to each processor

that runs a history. This challenge is being accepted with considerable success as

exemplified by the accomplishments of the Los Alamos National Laboratory group

working on the MCNP code [15] and the joint effort at the Knolls and Bettis Atomic

Power Laboratories on the MC21 code [29]. Advocates of the analytic approach

have, however, not accepted the ultimate triumph of Monte Carlo. This is clear in the

work of a group at the Argonne National Laboratory, which has modestly named

their multigroup, discrete ordinate code UNIC, for Ultimate Neutronic Investigation

Code [30]. They are demonstrating impressive results for fast reactor designs.

Competition in supercomputer development and in attendant codes for nuclear

reactor design bodes well for better products in the future.

Physicists in their efforts to understand the atomic nucleus have made myriad

measurements and only partially by design these have included the neutron and

gamma cross sections, and fission product yields (and their decay mechanisms)

needed for the development of fission reactors. Today, work on this reactor-related

data is focused on establishing well-founded uncertainty measures. The Cross

Section Evaluation Working Group of the National Nuclear Data Center refers to

this effort as covariance evaluation [31]. This is particularly appropriate, for as

discussed above, one expects calculational methods to improve with computer

power and code development. Thus, in assigning error bounds in design, the

uncertainty in basic data will become more important relative to the contribution

of calculational error (e.g., Monte Carlo statistics or differencing and convergence

error in analytic methods). More well-founded and hopefully smaller design error

bounds can obviously be taken advantage of in future reactor development. Improving

error bounds is also consistent with the approach to overall power plant safety analysis

being fostered by many of the world’s nuclear regulatory agencies. They favor best

estimate analyses plus the assignment of rigorously defined uncertainty factors for

various classes of accident conditions. Reactor design error is only a contributor to

a safety analysis “uncertainty factor,” but for power plant technology to advance,

“reactor design” must do its part.

Much of the research for a next generation of fission reactor power plants is

focused on higher operating temperatures. Today’s thermal reactor plants, PWRs,

BWRs, and CANDU (heavy water moderated) have outlet reactor coolant

temperatures, TH, of �600�F, and thus thermal (Rankine cycle) efficiencies in the

low 30%. Raising TH would increase cycle efficiency and lower fuel cost, and

provide high-temperature process heat (possibly for a catalytic hydrogen produc-

tion process). Higher operating temperatures in a water (or heavy water)
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environment present core and structural materials challenges. There likely will be

a need for additional resonance cross-section data for some additives (e.g., Manga-

nese and Chrome) to new high-temperature materials. Fast reactors (liquid metal or

gas cooled) operate at much higher temperatures than thermal reactors but also

require much higher fissile inventories to attain criticality. Experience with design

and operation of these reactors is limited (especially for gas cooled reactors)

compared to thermal reactors. Their future development with emphasis on the

burning of unwanted transuranics as well their traditional mission of efficient

conversion of fertile isotopes (U238 and Th232) to fissile isotopes (Pu239, Pu241

and U233) will stimulate some cross-section work. But, both thermal and fast reactor

development will most likely benefit more from advances in branches of physics

other than Nuclear, particularly Condensed Matter and Fluid Mechanics. The need

for nuclear power, both economic and environmental (if they can be separated?),

will drive fission reactor development. While Uranium and Thorium are abundant

in the earth’s crust, power demand will push reactor development to most effi-

ciently exploit the highest grade ores, which will likely lead to a mix of fast and

thermal reactors. In any case, physics as well as engineering will play key roles in

this development.
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