Chapter 2

Fission Reactor Physics

Michael Natelson
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Fissile isotopes are fissionable by the capture of neutrons of any
energy, but are especially easily fissioned by the capture of slow
neutrons, for example, U233, U235, Pu239, and Pu®*'.

Fertile isotopes may be transmuted into fissile isotopes by neutron
capture. The naturally occurring fertile isotopes are Th**? and U?*%.
A critical fission reactor is in a steady state, with its neutron
population sustained by a chain reaction.

Reactivity is a dimensionless parameter, which characterizes how
far from critical a fission reactor is. If zero, the reactor is critical; if
positive, the reactor is supercritical and its neutron population is
increasing; if negative, the reactor is subcritical.

A microscopic cross section is a parameter, with dimensions of
area, that is a measure of the probability of a particular reaction
resulting from an incident particle on a target nucleus. The mac-
roscopic cross section for this “particular” reaction is the micro-
scopic cross section times the number density of the target
nucleus.
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Definition of Subject

At the end of the nineteenth century and through the first half of the twentieth
century, revolutionary discoveries were made in physics, and the laws of physics
and our understanding of them were greatly expanded. In addition, tragic historical
events led to an unprecedented concentration of intellectual talent and economic
resources (the Manhattan Project) that allowed the new physics to be applied to the
engineering of nuclear (fission) reactors. This entry will describe the advances in
physics, which are key to fission reactor design, and how they enable this engineer-
ing practice.

Introduction

In 1900, Lord Kelvin (William Thomson) reportedly told the British Association
for the Advancement of Science that “there is nothing new to be discovered in
physics now. All that remains is more and more precise measurements.” Whether
he actually said this or not, it is reasonable to believe that many scientists and
engineers of his day would have concurred. Newton’s definitions and laws of
mechanics and optics had long been successfully applied. Maxwell’s equations,
Ohm’s law, etc. seemed to describe electricity and magnetism. Boltzmann and
Gibbs had provided the foundations of statistical mechanics and thermodynamics.
And chemists had been busy developing atomic theory, identifying 92 elements, the
laws of chemical combination, the weights and sizes of atoms and molecules, and
the periodic system.

With hindsight it is clear, however, that in 1900 there were many intriguing
questions outstanding in the physical sciences, and there was an historically large
cohort of scientists, being produced by the major universities of the day, ready to
address them. The questions (and their resolutions) of prime importance to “fission
reactor physics” are:

1. Does a theory of relativity apply to Maxwell’s equations, and is there a unique
frame of reference (ether) for the propagation of light?

2. Why are the heaviest naturally occurring elements unstable, giving off various
forms of “radiation” and transmuting to different elements?

3. What does the quantization of electromagnetic radiation (required to describe
black body radiation energy spectra and the photoelectric effect) mean to the
laws of physics on the atomic scale?

The resolution of each of these questions will be discussed in this entry, as they are
the starting points for the accumulation of knowledge needed to characterize
the workings of fission reactors.

Clearly, Einstein’s Theory of Relativity addressing question (1), and its identifi-
cation of mass as a form of energy (1905) would, excuse the bad pun, energize
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the whole effort. Already in 1914, H. G. Wells in his novel “The World Set Free”
envisioned industrial atomic energy and atomic bombs used in a catastrophic
world war.

At the end of the nineteenth century, electrochemists looking for heavy elements
(heavier than lead and bismuth) found that “radiation” was given off by the
materials they were investigating. Becqueral (1896) observed vy rays (penetrating
electromagnetic radiation similar to x-rays) from uranium salts. The Curies
(1898) observed o and [ rays from polonium and radium. Rutherford showed that
the positively charged as were doubly ionized helium atoms. The Bs are negatively
charged electrons, the same particles as the cathode rays that Thomson
characterized and named (1897). These “radiations” proved to be key tools for
determining the structure of atoms. The o particle was shown by Rutherford
(1911) and his coworkers to scatter from gold foil in a manner inconsistent with
the atomic model of the day, Thomson’s raisins (electrons) in the pudding (positive
charge medium) model. To explain the o scattering results, an atom’s positive
charge and its mass, minus that of its electrons, needed to be concentrated in a small
nucleus (radius ~10712 cm), with its electrons distributed over a much larger
volume (radius ~10~® cm), that of the whole atom. Niels Bohr, inspired by
Rutherford’s work, took to determining the distribution of atomic electrons.
His success, building off Question (3) above, led to quantum mechanics.
A complete model for the atom, however, still required an explanation for the
mass of the nucleus. Again bombardment of various atoms (elements) with o
particles led to the answer. Chadwick (1932) proved that the “rays” produced by
as striking beryllium nuclei were neutral particles with mass slightly greater than
the hydrogen nucleus, the proton. These neutral particles are the neutrons that had
been hypothesized by Rutherford 12 years earlier. Heisenberg (1932) produced
a detailed model of the atomic nucleus where the mass number A is the total number
of elementary particles, protons plus neutrons, making up a nucleus, and the nuclear
charge is Z, the number of protons. Thus, there can be various isotopes for a given
element, more than one A for a given Z.

The discovery of the neutron marked the start of furious activity, culminating in
the operation of the first fission reactor only 10 years later. Leo Szilard in 1933
recognized that a neutral neutron with modest kinetic energy could penetrate an
atomic nucleus and cause a reaction releasing nuclear (mass) energy, and if, as part
of the “reaction,” additional neutrons were produced, a chain reaction could result.
Szilard produced a patent for a reactor based on this idea and assigned it to the
British Government in 1936 (before fission was discovered). In 1934, Fermi was
using neutron bombardment (with neutrons of various energies) to produce nuclear
transformations in many elements. Of special interest was the production of trans-
uranic elements, Z greater than 92. Fermi won the 1938 Nobel Prize for this work.
However, unknown at the time, he had also fissioned uranium. This was determined
by electrochemical analysis of the products of neutron bombardment of uranium
by Hahn and Strassmann. Subsequently, the process was identified as fission by
Meitner and Frisch. Bohr recognized that the ease with which low energy neutrons
could cause fission of uranium was due to the existence of the naturally occurring,
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but low atom percent (0.72%), isotope 92U235 [1] (Various notations have been used
to designate a particular isotope, for example, for uranium with mass number (A)
235; 4,U?*, U235, and 335 U. The latter is in common use today. For ease of
composition and for consistency with most of the references used in this entry the
older standard, A as a right superscript, is used.). He and Wheeler, from their
Theory of Fission [2], also recognized that the not yet produced isotope g4Pu®*’,
would also be readily fissioned by slow neutrons [3]. This was in early 1939. Bohr
still did not think production of a fission bomb to be feasible.

Leo Szilard was, however, not deterred. He persuaded his friend Albert Einstein
to write President Roosevelt (8/2/1939), urging government support of fission
research and the stock piling of uranium. This ultimately led to the Manhattan
Project. In 1940, Seaborg and McMillan synthesized the readily fissionable isotope
of plutonium, ¢4Pu®°, which is produced by neutron capture in the dominant
uranium isotope ¢,U>**. Wheeler credited Louis Turner [3] with pointing out that
kilogram quantities of o4Pu”*® could be produced in a large fission chain reaction
reactor. Fermi and Szilard [4] designed and built the prototype for such a reactor,
a “pile” of graphite blocks containing an array of natural uranium pellets. It was
constructed in a squash court under a grand stand of the University of Chicago’s
Stagg Field, and went critical (sustained a chain reaction) on December 2, 1942.
The Manhattan Project built large reactors of this type for weapons material
production, and also successfully pursued means of enriching uranium in g,U**.
Enriched uranium allows more compact, higher power density, reactor designs.

The Manhattan Project brought together extraordinary scientific and engineering
talent, and immense resources to produce the weapons that ended the Second World
War. It also provided the foundation for all fission reactor development that has
followed. The subsequent advances in “physics,” which have contributed to this
development, are principally:

1. The full understanding of the interaction of neutrons with nuclei: scattering
(elastic and inelastic), and capture (simple absorption, transmutation, and fis-
sion), including measuring the parameters that characterize the probabilities of
these “interactions”

2. The formulation of methods to solve the neutron transport (Boltzmann) equation,
which governs the behavior of the dilute “gas” of neutrons in a fission reactor

This entry will discuss the topics, pre- and post-Manhattan Project, which
encompass the physics of fission reactors.

Mass—Energy Relationship

In his initial paper [5] on the theory of relativity, Einstein confronted the problem of
guaranteeing that the laws of electromagnetism (Maxwell’s equations) apply in all
inertial reference frames, just as the laws of mechanics do. In an inertial reference
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frame, an object, which is at rest, remains at rest and an object traveling with
a particular velocity will maintain that velocity. Einstein asserted that there is no
preferred reference frame (like stationary ether in space, as postulated years
earlier), and that the speed of light c, in vacuum, 2.998 x 10% m/s, is the same in
all inertial reference frames. From these assertions, FEinstein derived
transformations for various variables in the laws of physics from one inertial
reference frame to another. This solved the “electromagnetism” problem and
provided a firm grounding (theory) for phenomena observed when velocities
approach the speed of light. For examples of the latter, see Kaplan, “Nuclear
Physics” on the charge-to-mass ratio of the electron as a function velocity, and
Mermin, “It’s About Time,” on the half-life of unstable particles as a function of
their velocity. Our interest here is specifically on the relationship between mass and
energy resulting from the special (not applying to gravity) theory of relativity. What
is meant by the ubiquitous formula.

E = Mc?? 2.1

For application to fission, an inelastic collision between two particles will be
treated for relativistic conditions. The approach presented by Mermin in “It’s About
Time” will be used.

In an elastic collision, total momentum, P = py+ p,, mass, M = m; + m,, and
kinetic energy, K = k; + k, are all conserved, where the mass, m, is an inherent
property of a particle and is a measure of how it resists a change in its velocity. In an
inelastic collision, only total momentum, P needs to be conserved. It needs to be
conserved, however, in all inertial frames of reference. For relativistic conditions,
one defines a particle’s momentum (a vector [in bold face]) as

p=mu/(l—u/c?)"?, (2.2)

where u is the particle velocity. As is required for consistency between relativistic
and nonrelativistic laws of mechanics, Eq. 2.2 is effectively the nonrelativ-
istic definition of momentum for the particle speed, u << ¢. Now to find p/, the
particle momentum, in a frame moving with velocity v relative to the frame in
which the particle has velocity u, one applies the relativistic translation law for
velocities:

u=(u—v)/(1—uv/c?). (2.3)

Substituting for u’ in the expression for p’ (Eq. 2.2 with p and u primed), one
obtains the relativistic translation law for momentum

P =(p—pv)/(1—v/2)'", 2.4)

where

pOZm/(l _u2/C2)1/2' 2.5)
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Now, if total momentum is to be conserved in our two-particle inelastic collision
in both the primed and unprimed frames, then P° = p% + p°, must also be
conserved. Again, using the relativistic translation law for velocities (Eq. 2.3) and
the definition p° (Eq. 2.5), we find that

PV =" —pv/c?)/(1 = v? /D)2, (2.6)

And so for the fotal quantities we want to be conserved we have
P'=(P—P%)/(1-v*/c*)"?* and 2.7)
PY = (P* —Pv/c?) /(1 — v /c*)' /2, (2.8)

Examining these expressions, it is clear that if P and P are not changed after an
inelastic (or elastic) collision, then neither is P’ and P

In the limit of the speed u being much smaller than c, the difference between p°
and m, (p0 —m), approaches mu?/2c2. This result leads to a definition of relativistic
kinetic energy, k, for a particle

k = p’c? — mc?, (2.9)

which has the required property of reducing to the nonrelativistic form, mu?/2, in
the limit of u much smaller than c.

Returning to our two-particle inelastic collision, as P is conserved so is P °c? and
thus from Eq. 2.9

AMc? = AK, (2.10)

where AM is the change in the masses of the inputs and outputs of the collision
participants, and AK is the change in the kinetic energies of these “inputs and
outputs.” Thus, Eq. 2.10 provides insight into the meaning of “E = Mc*” for the
fission process. For n + 9,U*** — fission products + 202.7 MeV (the AK of Eq. 2.10
in unit of millions of electron volts) the percent change in mass can be estimated by
dividing 202.7 MeV by the energy equivalents of the inputs (i.e., 236 amu, where
1 amu =931.141 MeV). The result is ~0.1%, which may not appear to be large until
one makes a comparison with a chemical reaction. For example, O, + C — CO, +
4.1 eV. A similar calculation indicates a 1 x 10~%% conversion of mass to kinetic
energy. Since one could not measure such a small change in total input and output
masses in chemical reactants, it is not surprising that the full impact of “E = Mc*”
had to await demonstration in a nuclear reaction like fission. However, as will be
discussed in the next three sections, the large energy release in fission, while
conforming to Eq. 2.10, is due to the strength of the forces that hold a nucleus
together and the charge repulsion forces that will accelerate two smaller nuclei as
they are formed in the fissioning of a larger “parent” nucleus.
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Heavy Elements

The “heavy elements” of particular importance to fission reactors are the radioac-
tive nuclei, which are characterized by systematic chains of decay. In nature, there
are three chains (series). In a given series, each nucleus has a mass number, A,
governed by a simple formula with the variable the integer n (see Table 2.1), and is
identified with its longest lived isotope, that is, Thorium, Uranium, and Actinium
(U235 had not been discovered when the 4n + 3 series was identified). These longest
half-lives are not surprisingly comparable to the age of the earth, 4.5 x 10° years.
Half-life is one of three related parameters of radioactive decay processes, Ty, A,
and 7. The fundamental equation of radioactive decay is

— dN(t)/dt = AN(1), 2.11)

where A is the decay constant, and N(t) is the number of decaying nuclei at time t.
The solution of Eq. 2.11 is

N(t) = N(0)e ™. (2.12)
The time when an original inventory of decaying nuclei, N(0), is halved is
Ty, =In2/h = 0.693/A. (2.13)
And as the decay process is statistical the mean life-time, t, of a decaying
nucleus is

r = (1/N(0)) / N(O)Me ™ dt = 1/1, (2.14)
0

the reciprocal of the decay constant.

With the search for transuranic elements through the bombardment of the
heaviest natural elements, primarily with neutrons, a fourth decay series was
identified, the Neptunium (A = 4n + 1) series whose radioactive members are not
found in nature (see Table 2.1).

Table 2.1 Heavy element decay series

Final stable Longest lived Longest half-life

Series name Type nucleus nucleus (years)
Thorium 4n* Pb208 Th?*? 1.41 x 10'°
Uranium 4n +2 Pb20° U8 447 x 10°
Actinium 4n+3 pb>"’ (O 7.04 x 10
Neptunium, not in nature 4n + 1 Bi*® Np*¥’ 2.14 x 10°

n is an integer
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Of the “heavy elements,” the isotope U?* is key to fission reactor design. It is the
only naturally occurring isotope which readily fissions when bombarded with
neutrons of all energies. While its atomic percent abundance, 0.72%, is small, it
is large enough to support chain reactions in reactors where neutrons born in fission
are slowed down (moderated) by graphite (carbon) or by heavy water (deuterium
oxide). When Uranium is enriched in U**° (~3-5%), it can fuel reactor designs
where ordinary water moderates fission neutrons (today’s pressurized water and
boiling water reactors). Having U**° available as a reactor fuel makes it possible to
exploit the two abundant fertile “heavy elements,” U® and Th**?. The term
“fertile” refers to the fact that when these elements absorb a neutron they can be
transmuted to fissile isotopes (Pu**” and U respectively), which like U** readily
fission when bombarded by neutrons of all energies. The transmutation processes
are shown in Fig. 2.1. It is important to note that only one neutron capture is
required in each of these transmutations. In a reactor design, neutron economy is the
key to maintain a chain reaction and, as will be discussed in the section on Future
Directions, expending one neutron with a reasonable probability of obtaining an
additional fissile nucleus is a winner.

The heavy element radioactive decay series are also important to safety in fission
reactor design. Each of the decay processes, o and 3~ emissions and associated vs, is
favorable to energy release. So any heavy elements, particularly transuranics, in
areactor’s fuel system will contribute to the decay heat load that must be dissipated
when a reactor shuts down. As will be discussed in the next section, the major short-
term contributors to decay heat are fission products. A power reactor that shuts down
following a sustained run at full rating will initially produce ~7% of that rating from
decay heat, even if the chain reaction and nearly all fissioning has ceased.

For a full discussion of the radioactive decay series and the particulars of o, 7,
B* and y emission, see Kaplan, and Krane, “Introductory Nuclear Physics.”

Fission and Its Products

As noted in the “Introduction,” fission was discovered accidentally during the
search for transuranic elements. This work by Fermi and others was part of an
extensive effort to understand the atomic nucleus and to duplicate the great success
of quantum mechanics and the Pauli exclusion principle in providing a fully



2 Fission Reactor Physics 15

T T T T T 1
Fe 89y 140
35
™ 20Ne T ede e l Cfd Hipr 180 N
0000
_120 l". o OF ..oor..l." “.l. [ZOQBi i
l,._19|: SAs 100pMo 126 Sorteet o,
4, —14N Te 160p) L
He y 197
® ol A 238
S *%Be
D
R - _
2
. 06| j
g s
>
()]
s -
I
[y
e 2H —
0 | | | | | | |
0 100 200

Mass number A

Fig. 2.2 Binding energy per nucleon (Krane)

predictive Theory of atomic electron structure. A comparable theory for the nucleus
has not been developed, but several models (e.g., shell and liquid drop) provide
insight into the trends and correlations found in the data provided by the extensive
experimentation performed on the nuclei of the various elements and their isotopes.

Measurements of atomic mass (m(XA)), and the mass of the electron, proton, and
neutron, yields the binding energy, B, of a nucleus, ZXA, the work (energy) required
to disassemble a nucleus into its neutrons and protons:

B = {Zm, + Nm, — (m(X*) — Zm,) }¢?, (2.15)

where Z is the atomic number (the number of protons) and N = A — Z is the number
on neutrons. (The binding energy of atomic electrons is ignored as negligible
compared to the other factors in Eq. 2.15.)

Plotting the ratio of measured binding energies B to corresponding mass number
A (Fig. 2.2) immediately makes evident the potential of energy release from fission
of heavy element. Note the B/A versus A “curve” has a flat maximum in the
middling A range ~50 — ~150, and falls off (decreases) as A increases. Thus,
there is a potential energy excess if a heavy element (isotope) can be disassembled
and reassembled as two mid-range isotopes (preserving total A, Z, and N). (The
behavior of the B/A curve for light elements shows the potential energy release
from fusion.) Obviously fission (nor fusion) does not take occur “naturally” on earth
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today (There is convincing evidence that a naturally occurring chain reaction
took place in a uranium deposit in Gabon about 2 x 10° years ago, when the
abundance of U*** would have been ~3%, high enough for a water-moderated
“reactor” to operate. The higher earlier abundance is due to the shorter half-life of
U?¥ (7.0 x 10® y) relative to that of U**® (4.4 x 10” y). See Krane for an excellent
discussion of the Gabon reactor). The remainder of this section is devoted to
particular requirements for fission to take place and to the discussion of the
resulting fission products and their energies.

Insights provided by examining binding energies, and by additional experiments to
determine nucleon—nucleon forces have led to the Shell and Liquid Drop models of the
nucleus. Features of these models are incorporated in the semiempirical mass formula
(Eq. 2.16). While a thorough discussion of the nuclear models is beyond the scope of
this entry (see Kaplan or Krane), the mass formula provides key information on fission,
energy release, and the relative likelihood for various nuclei.

In the semiempirical mass formula, the binding energy has five terms, which will
be discussed below.

m(zX*) = Zm, + Nm, — [By + B; + B, + B3 + B4]/c’. (2.16)

By = a,A is the volume energy. Note in Fig. 2.2 that B/A saturates, thus By has
a linear dependence on A. The attractive nuclear forces between nucleons (n—n, n—p
and p—p) are all equal and short range, smaller than the radius of the nucleus, r =
10A"? where ry ~1.2 x 10~ "% cm. If the range were larger, there would be attraction
between each nucleon pair and By would depend on A(A — 1).

B, = —aSAZ/ 3 is the negative surface decrement. As the nucleon—nucleon forces
are “short range,” neutrons and protons on the surface of a nucleus are less tightly
bound.

B, = —aCZ(Z—l)/A” 3, is the coulomb repulsion decrement. While the nuclear
forces are strong enough to overcome coulomb forces, the protons in the nucleus do
repel and reduce binding energy. Assuming a uniform distribution of protons in
a liquid drop model of a spherical nucleus, an electrostatics calculation yields the
dependence of B, the number of proton pair, Z(Z—1), and a measure of their
spacing, A"

B3 = —a,IN-ZIIN-ZI/A, is the neutron—proton population asymmetry decrement.
As nuclei become heavier, more neutrons than protons are needed to overcome
coulomb repulsion. However, as the shell model of the nucleus demonstrates when
nucleons, neutrons and/or protons, are added to form heavier elements and their
isotopes, they fill shells of successively higher energy and are thus less tightly
bound. This is analogous to the case of atomic electrons. Neutrons and protons have
half-integral spin like the electrons, and therefore no two neutrons (or protons) can
occupy the same state in a nucleus in conformance with the Pauli exclusion
principle. So B3 is negative and proportional to the neutron excess and the fraction
of the nucleus the excess represents.



2 Fission Reactor Physics 17

Table 2.2 Heavy nuclei fission

E., Excitation E,, Activation
Target nucleus Compound nucleus energy (MeV) energy (MeV)
u*? [U*4 6.6 4.6
U (U9 6.4 5.3
pu?®’ [Pu®*] 6.4 4.0
u>® (U] 49 55
Th>*? [Th?*] 5.1 6.5

B,= +8A "3 for even Z even N nuclei, = 0 for odd A nuclei, = —8A > for odd
Z odd N nuclei, is the pairing energy. As nucleons are added and fill shells, they are
more tightly bound as spin up and spin down pairs. B, is important in determining
the relative binding of isotopes of a given element and their propensity to fission.

A set of parameters for B which best fit the B/A curve (Fig. 2.2) is provided by
Krane; a, = 15.5 MeV, a, = 16.8 MeV, a, = 0.72 MeV, a, = 23 MeV, and 6 = 34 MeV.

The potential for, and magnitude of, energy release from fission, whether as
spontaneous decay or induced by particle or gamma ray capture, can be assessed
with the semiempirical mass formula. As for an estimate of the magnitude of energy
release, the B/A curve, as noted earlier, can be used directly. For example, the B/A
for U% is ~7.6 MeV. If it fissioned into two approximately equal mass nuclei (A =
119), their B/A would be ~8.5 MeV when in a ground state, and being more tightly
bound than their parent (U**®) 214 MeV (= 2 x 119 x 8.5 — 238 x 7.6) will be
available through conservation of energy as kinetic energy of the daughter nuclei
and of other fission products (neutrons, Bs, ys, and neutrinos). That this energy is
available does not mean that there is a significant probability that fission occurs.
In this example, which represents spontaneous fission of U***, one finds in nature
that this mode of U?*® decay competes poorly with o decay (Spontaneous fission is
a significant mode of decay for some transuranic isotopes found in depleted reactor
fuel, particularly Pu**® and Pu®*')). For fission fragments, daughter nuclei, to
separate in spontaneous or induced fission, a potential barrier must be overcome.
The height of the barrier relative to the ground state of a fission parent nucleus is
called the fission activation energy (E,). It can be estimated with the liquid drop
model by calculating the change in the parent nucleus binding energy (B; and B,)
between the ground-state spherical configuration and a volume-conserving dumb-
bell configuration (ref. [2] and [6]). Table 2.2 contains values of E, for the
compound nuclei formed by neutron capture in the fissile and fertile isotopes of
primary interest in reactor design. These are compared with the excitation energy
(E.) provided in forming the compound nucleus.

E. = [(m(zX*) + m,) — m(zX )] (2.17)
Note that E,, does not include any kinetic energy contribution from the captured

neutron. For the fertile target nuclei (U238 and Th*? 2), E. < E, and neutron kinetic
energy will be required to overcome or quantum mechanically penetrate (with high
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Fig. 2.3 Fission yields: (a) for U?* from fast and thermal neutrons, (b) for U*** and PU*** from
thermal neutrons [33]

probability) the potential barrier to fission. For the fissile targets, E. > E, and thus
“slow” neutrons can initiate fission.

The high values of E. for the fissile targets are due to the positive “pairing”
contribution, By, to the binding energy of the compound nucleus ground states. Note
92U23 4 92U23 6 and 94Pu240 are all even Z even N nuclei and the corresponding target
nuclei are even Z odd N. So, the second term in Eq. 2.17 is decreased by S(A + 1) /%,
and By is zero in the first term. Thus, an increase in E, relative to the result if pairing
isignored is achieved. For fertile targets (even Z even N), roles are reversed. It is the
first term in Eq. 2.17 that is decreased and B, is zero in the last term. Thus, E, is lower
than if pairing is ignored.

The semiempirical mass formula and the shell and liquid drop models are limited
in predicting the fission process. This is best illustrated by the mass distribution of
the major fission fragments (see Fig. 2.3). In the vast majority of cases, fission
yields two unstable (having excess neutrons) nuclei, but not of equal mass, as in the
example above used to estimate the energy available from spontaneous fission
of U*®. The two humped curves in Fig. 2.3 are not predicted by nuclear models.
To quote Krane, “surprisingly, a convincing explanation for this mass distribution
has not been found.”

From the nuclear models, it is not surprising that free (prompt) neutrons are
emitted in fission as the daughter nuclei are so rich in neutrons, but the prediction
of their number (~2.5 on average) and energy spectrum (the mean ~2 MeV, see
Fig. 2.4) are still an active area of study. The decay chains of the neutron-rich,
excited daughter nuclei (fission fragments) are well predicted, including the
release of (delayed) neutrons when in some cases neutron decay competes
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Fig. 2.4 Prompt neutron energy spectra where P{E’) is the probability per unit energy [32]

successfully with B-decay. The delayed neutrons are a small fraction of the total
neutron emission (0.64% for thermal fission of U?*), but as will be discussed in
section “Fission Reactor Performance”, they are important to reactor control.

Total energy release from the various neutron-induced fissions of interest in
reactor design is remarkably consistent with the simple spontaneous U**® fission
calculation made above. Of course, the constituents are different, as displayed
in Table 2.3.

In a reactor design, the total energy values in Table 2.3 are not used. First, the
contribution from neutrinos is subtracted, as their range before collision is well
beyond reactor boundaries. Then, the energy release per fission from neutron
captures which produce Ps and ys is added. The magnitude of this release is
design-dependent as it is a function of the materials used, and the neutron capture
rate in these materials. For plant energy balance studies, using 200 MeV/fission is
satisfactory.

The problem of decay heat was noted in the previous section. From Table 2.3, it
can be seen that fission product decay is the immediate concern when a chain
reaction is terminated. Assume full power from U**’ fissioning, when this ceases,
delayed ys and Bs are still being released. Thus, ~6.3% (=~ 100 x (6.26 + 6.43)/200)
of rated power, coming from fission product decay, must still be dissipated, along
with energy from the decay of transuranic elements present in the reactor, for a total
of ~7%.
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Over 800 fission fragment nuclei have been identified. Their decay must be
tracked to account for decay heat in reactor shut-down safety analysis and for
the proper handling and storage of spent fuel (where both energy release and
the nature of radiation fields must be known). One hundred and two of these
nuclei are delayed neutron precursors. To simplify reactor transient (kinetics)
calculations, the precursors are collected into six effective groups, where members
of a given group have similar decay constants (see Table 2.4).

The energy spectra for a given delayed group do not vary significantly with
fissioning isotope. The spectra are much softer (with lower mean energies, < 1
MeV) than for prompt neutrons [7]. This means that a delayed neutron in a thermal
reactor is more important than a prompt neutron. It is more likely to reach the low
energies (<0.625 eV) where most fission occurs. Delayed neutrons can also result from
other reactions, for example, photon capture (y,n) (The expression (a,b) is shorthand for
a nuclear reaction with an input particle “a” and output particle “b”, where the target
and product nuclei are understood.) and neutron activation (n,p) followed by neutron
decay of the product nucleus. If important to a particular reactor design, these delayed
neutrons can be included by modifying the effective delayed group structure.

The final aspect of the ~800 fission fragment nuclei that must be dealt with is
their impact on neutron balance. Each of them has a probability of capturing
neutrons and in some case of causing a transmutation into a nucleus with
a particularly large propensity for capturing neutrons. The nuclei of greatest
importance to neutron balance are listed in Table 2.5.

I'*% is important as it is the direct precursor of Xe ', an especially large absorber
of thermal neutrons. The next two isotopes in the table are precursors to a decay
chain with three large absorbers, Pml47, Sm149, and Sm''. The final five, with their
precursors in parentheses, are large absorbers, but not as sensitive to neutron energy
spectrum and power level and history as the others. Clearly, data for the 800 fission
fragments must be handled through large computer files [8]. For neutron balance,
the fission fragment isotopes, which are not treated explicitly (Table 2.5), can be
lumped into an effective fission product nucleus with a yield per fission and
probability for neutron capture. How one characterizes the probability of nuclear
reactions is the subject of the next section.

Cross Sections

The nuclear reactions of importance to fission reactor design are by definition
governed by the postulates of quantum mechanics (i.e., they are on the dimen-
sional scale of the nucleus). And, thus the results of the various reactions
are probabilistic in nature. The probability of a particular result is characterized
by a parameter, the microscopic cross section, ¢, with, not surprisingly, the
dimensions of area, and which is quoted in units of barns. The barn,
1072* cm?, is a reasonable measure as in some cases & is nearly the projected



M. Natelson

22

9100 Ly'e §e0’0 Ice 9200 L8'¢ €200 yi'e 9

810 191 €01°0 9Tl 8¢I°0 vl €L0°0 LTl S

06£°0 (430 80 °ee0 LOV'0 1eo L1€0 €0€°0 4

€LT'0 Yo 910 Yer'0 881°0 91T°0 LTT0 1€1°0 €

6CC0 66200 08C°0 11€0°0 €1T0 PLIEO0 YLT0 ree0o [4

0100 8C10°0 8¢0°0 6C10°0 8€0°0 <LTI00 980°0 86C10°0 I

L sy s SN ' S 'L douepunqy sy dnoin

EINGE RN | jueIsuo)) Aedog paokereg

Ny ez Ogee Ngee

¥800°0 €000 06000 Lv00°0 L

9100 $¥900°0 L910°0 ¥L00°0 =0

iz Mgz Ngez Ngez (A2Wd
P4

LTLl'e ILTe 99¢€9°C 8SLST AN T

1526'C YCL8'C 80CY'C Y68Y'C A9 €620°0

‘and 1T “ Mdgec “ Nger ‘A Neee H vonneN

Pa/'a = TA oouepunqe dATIR[AI Y],

[z€] Apreaur] sjoen PA ‘AN L PUR $ UamIdg "ASA L QA0QE PUB ‘AQJA $ PUB () US9M)aq SIISIAUS UOIINAU JUTJRT)IUT UOISSY I0J JUBISUOD
‘pIoIA pakerap 18103 ay) St Pa (O T[A-9/IANH) A31ous uonnaou Sureniur snsioa praik uonnau jdwoid ayy st YA “ejep uonnou pakefep pue Jdwold g e



2 Fission Reactor Physics 23

Table 2.5 Direct yield fractions ( x100) for isotopes in the most important fission product
chains [32]

Fissile or fertile isotope®

Fission Product 232Th B8y 25y B3y 2oy

1351 5.238 6.548 6.349 4.860 6.303
135%e 0.0403 0.0150 0.255 1.337 1.152
147Nd 3.08 2711 2271 1.775 2.073
149pm 0.825 1.765 1.089 0.769 1.261
Mo (*’Tc) 2.965 6.247 6.127 4.957 6.144
103Ru (1%3Rh) 0.164 6.336 3.137 1.707 6.991
1317 (131xe) 1.481 2.982 2.473 2.352 3.093
1331 (133¢y) 3.858 6.356 6.787 5.974 6.923
15ce (M3Nd) 6.619 4.834 5.972 5.881 4.561

The energy of the neutron initiating the fission is in the thermal range for >**U, 2**U, and **°Pu.
For #**Th and **®U, the yields are due to fissions initiated by neutrons with a spectrum of energies
typical of light water-moderated nuclear reactors.

area of a target nucleus, 4nR?, and R is ~10™'% cm. Thus, envisioning a target
foil of area, A, and thickness, dx (where dx is small enough to have negligible
shadowing of one nucleus by another in the target foil), the probability that an
incident particle in traveling a short distance (i.e., dx) will undergo a specific
reaction equals opAdx/A, where p is the density of target nuclei (#/cm”) in the
foil. It follows that to find the reaction rate in the foil we need the number of
impinging particles per second. Given the particles have a density N (#/cm?) and
are monoenergetic and monodirectional (normal to the face of the foil) with
speed v, the number impinging per second equals N -(vdt)- A/dt. So the total
reaction rate in the foil is (NVA)(podx), and the rate per cm? is vNpo. The
parameters that make up this specific rate have been reordered to reflect conven-
tional definitions in reactor physics (In the nuclear engineering discipline, reactor
physics refers to the portion of the field addressed in this entry):

VN = Wparticle flux, and (2.18)
po = Xmacroscopic cross section. (2.19)

The flux in our simple foil example is the number of particles per cm?” per second
crossing a plan parallel to the face of the foil. Given the more general representation
of particle density (which will be used in the next section):

N(r,E,Q,t)dr3dEdQ = no. of particles in dr® about r, with kinetic energies in dE
about E, and going in the solid angle dQ about the unit direction vector £ (see
Fig. 2.5), at time t; then the corresponding definition of flux, ¥(r,E,Q,t)dsdEdQ, is
the no. of particles with E in dE going in direction Q in dQ that pass through the
surface ds, which is located at r and is normal to €2, per unit time, at time t.

The macroscopic cross section is the probability that a particle undergoes
a reaction characterized by o, per unit path (for small paths, dx) traversed by the
particle in a homogenous material with target nucleus density, p. This definition
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@ Neutron

Fig. 2.5 The unit direction vector €2 associated with neutron velocity and the differential (small)
solid angle dQ which defines the range of directions

lends a special significance to 1/Zr, where X1 = por. o7 is the fotal microscopic
cross section, the sum of the os for all of the reactions that the initiating particle can
undergo with a given target isotope. So the change in flux, where ) is parallel to the
x axis of a target material sample, over a small interval dx in the sample is d¥ =
~¥Xrdx. And thus, P(x) = W(0) e >, where x is the distance into the “sample”
(which has its face in the y — z plane at x = 0). So, the probability of a reaction in dx
about x can be expressed as

P(x)dx = Zrdx e (¥(x)/¥(0)) = Tre >dx. (2.20)

And thus the mean free path of a particle in an incident beam (‘*¥'(0)) before being
removed from the beam in a homogeneous target is

x:/dxxP(x) =1/ 2.21)
0

or generally the mean free path is the average distance traveled between successive
interactions.

If a homogeneous material is made up of various nuclei (elements/isotopes,
indexed by j), then the macroscopic cross section for a reaction, i, is

¥ = Z p; e al. (2.22)
J
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The reactions of primary interest in fission reactor design are those initiated by
neutrons and gammas. Neutron cross sections are key to determining if a chain
reaction can be maintained, and that the neutron population can be controlled under
various transient conditions (e.g., start-ups and shutdowns, planned and accidental),
and, of course, the fission distribution in the reactor. Most of the resulting energy
release, from fission fragments, is deposited locally in the fuel elements of a given
design. However, gammas, from fission and neutron capture in reactor structures,
have large mean free paths, and their distribution and capture rates must be
determined, using gamma cross sections, to complete the knowledge of energy
deposition. The subsequent engineering problem is to assure that the reactor cooling
system can remove the deposited energy under normal and accident conditions.
Neutron and gamma cross sections are also required for the shield design of
a fission reactor.

Neutron reactions are characterized by their energy balance, the Q factor, as well
as microscopic cross sections. For the simple reaction (with the target at rest),

n+X — Y4y (2.23)
the energy balance is
(En + myc?) + Mxc® = (Ey + Myc?) + (Ey + myc?), (2.24)

and Q is defined as the difference in the kinetic energies of the inputs (here the
neutron) and the outputs:

Q =Ey + Ey —E, or = (Mx + my — My —my)c’. (2.25)

If Q is positive, the reaction is exothermic, if negative, endothermic. For an

endothermic reaction to go, for the microscopic cross section to be nonzero, enough

kinetic energy must be supplied by the neutron to excite a compound nucleus, X**',
so it will decay to Y + y. As momentum must be conserved,

m,v, = (Mx + m,)V, or V; = vym,/(Mx + m,), (2.26)

where V. is the velocity of the compound nucleus. Then, the neutron energy
supplied must be such that

—Q=m,v,%/2 — (Mx +m,)V.2/2 (2.27)
and the threshold energy, Eq,, for the reaction is
Eq = myvy?/2 = (= Q)(1 + m,/Mx). (2.28)

(n, 2n) is an example of an endothermic reaction whose cross sections will exhibit
an energy dependence of zero until the neutron energy E reaches an Ey,.
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The simplest, but very important, neutron reaction to be considered is a form of
elastic scattering (Q = 0), where collisions can be treated with classical mechanics as
hard sphere, billiard ball, interactions. For the energies of neutrons in fission reactors,
0-10 MeV, elastic scattering cross sections for most nuclei are constant and propor-
tional to the square of the nuclear radius, ~A2/3. Assuming the target nucleus to be at
rest and applying conservation of energy and momentum in the center of mass, CM,
coordinate system, one determines the probability that the final energy of the
scattered neutron, in the laboratory coordinate, LM, system, is E; in dE:

P(E; — E¢) = 1/(1 — a)E;, for «E; < Ef <FE;
= 0 otherwise, (2.29)

where o = ((A—1)/(A+1))2 and E; is the initial neutron energy. A is the mass
number of the target nucleus. And, scattering is assumed to be isotropic in the CM
coordinate system. This is a good assumption for the energy range of interest here,
and its basis will be discussed later in this section. A full derivation of Eq. 2.29 can
be found in Duderstadt and Hamilton, “Nuclear Reactor Analysis.” Examining P
(E;=Ey) one sees that a neutron scattering off a hydrogen nucleus (A = 1) can lose
all its energy (as o = 0). On average, it loses half its initial energy as

Ei
E= / dE¢E(P(E; — E¢) =E;(1 4+ )/2,and (2.30)
GCEi

Given P(E; — Ey) as in Eq. 2.29, one defines differential microscopic elastic
scattering cross sections, 0.J(E)P(E;—E)dE;, which are particularly useful in
determining how neutrons, born in fission, are slowed down in reactors designed
to take advantage of the large fission cross sections of fissile isotopes in what is
conventionally defined as the thermal neutron energy range, less than 0.625 eV. The
superscript “j” of c.¢ refers to the nuclei of the various moderators (hydrogen,
deuterium and carbon) that are employed in these thermal reactors.

Once neutrons have slowed to the thermal range the target nuclei can no longer

be assumed to be at rest. The interaction frequency will then be
lv—=V]o(lv—-V]p, (2.32)
where |v — V| is the relative speed of neutron and target. For elastic scattering, o(|v

—V|) is still nearly constant and an average cross section for thermal neutrons with
speed v (=(2E/m,)1/2) is

G(v) = (us/VP) / Vv — V|p(V), (2.33)
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where for many reactor applications the Maxwell-Boltzmann velocity distribution
for ideal gases in thermal equilibrium at absolute temperature, T, can be used to
represent the targets. Thus,

p(V) = p e (M/(27kT))*? exp(—MV? /2KT), (2.34)

where M is the mass of the target nucleus and k is the Boltzmann constant (8.6174
x 1073 eV/K, K is degrees Kelvin).

From Eq. 2.33, one sees that for v > V the average cross section is, as expected,
Ces. And, as the neutron speed decreases and approaches zero, the average cross
section goes as one over the neutron speed.

For highly accurate calculations (As part of the process of evaluating nuclear
data sets, very accurate calculations of integral experiments are made. Zero power
mockups of reactors, with carefully recorded dimensions and inventories, are
commonly used. Monte Carlo calculations (to be discussed in the next section) of
neutron balance in the mockups are made with various data sets (e.g., cross-section
libraries) to determine a recommended set. See the CESWG web site for references
to such experiments.), more sophisticated treatments of scattering from moderator
structures (e.g., molecules in liquids, lattices for solids) are required. The excitation
of modes of vibration, and thus energy loss to phonons must be considered. This has
been a fertile field of development [9] and double differential scattering cross
sections for various moderators have been produced. They are of the form:

O'S(Ei — Ef7 Q,’ — Qf)dEfde = (1/4ﬂfkT)
(Et/E;)"exp(—B/2)0esS (o, B)dEcdQy, (2.35)

where

o = (E; + B¢ — 2(EE)"/*)Q; @ O /KT and
B = (E; + E¢) /KT. (2.36)

G.s 1s the scattering cross section of the bound “moderating” nucleus (e.g., proton,
deuteron, carbon). S(a.,P), the scattering law, embodies the physics of the influence
of the moderator structure on the scattering process. Various formulations of S(a, )
are tabulated as part of data files that document a!l the microscopic cross sections that
are used in fission reactor design. These files can be found on the web site of the
National Nuclear Data Center (currently, nndc.bnl.gov). The most widely used set is
ENDF/B, the latest (2009) version is VILO. In order, however, to produce the
differential scattering cross sections (Eq. 2.35) for design calculations, material
temperatures, T, must be identified and supplied with the corresponding ENDF
files to NJOY [10], a system of computer programs which produce microscopic
cross sections for use in various design programs (which will be discussed in the next
section).
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The remaining neutron reactions of interest all involve the formation of
a compound nucleus, which will be in an excited state, (XA”)*, and will subse-
quently decay, yielding y or y's (neutron capture), n (elastic neutron scattering), n+y
(inelastic scattering), two n’s (an (n,2n) reaction), p or o (charged particle produc-
tion) or fissioning. The probabilities of these various outcomes for a given isotope,
j» and incident neutron energy are characterized by the microscopic cross sections:
ch(E), st(E), Ginj(E), ngj(E), Gpj(E), qu(E), and ij(E). As noted above in the
discussion of Q factors, for endothermic reactions, Q < 0, cross sections will be
zero until a threshold value of E for the initiating neutron is reached. This is the case
for inelastic scattering, (n,2n) and some (n,o) and (n,p) reactions. There is similar
threshold behavior for fertile isotope fission cross sections (see Sect. Fission and Its
Products), which when the reactions “go” are exothermic. All neutron capture
reactions (n,y) are exothermic, and thus their cross sections are nonzero over the
full range of fission reactor neutron energies.

One can view the “compound nucleus reaction” cross sections as the product of
a cross section for compound nucleus formation, G¢ (neutron capture by the target
nucleus), times the probability of a particular decay mode of the excited compound
nucleus. Both factors of this “product” depend on the nature of the target and
compound nuclei, X* and X**!, and the energy available to excite the compound
nucleus, X2*!. The later is the sum of the reduced mass (i.e., center of mass) kinetic
energy of the initiating neutron:

Ec = E(Mx/(my + Mx)) = E(A/(1 + A)), 2.37)

where X* is assumed to be at rest and momentum is conserved; and the excitation
energy, E. (see Eq. 2.17), provided by adding a neutron to X*. E, is the binding
energy of the “added” neutron in the compound nucleus.

The magnitude of 6 depends on the structure of X*. First, if neutron number
N (=A-Z) is odd, oc is larger than its counterpart for neighboring isotopes with
even neutron numbers. The opposite is true for N even. This just reflects the binding
energy advantage of pairing half-integral spin Fermions in a nucleus (see the
discussion of B4 in Sect. Fission and Its Products). Second, for nuclei of various
A’s there are Magic Numbers for both Z and N (2, 8, 20, 50, 82 and 126) which can
be thought of as closing shells of protons and neutrons, analogous to atomic
electron shells. The reduction of G, for a magic number N nucleus, relative to its
N + 1 isotope neighbor’s G, is much larger than the pairing effect.

Excited compound nuclei have mean lifetimes, t (see Eq. 2.14) of as long as
107" s (Kaplan), much longer than the transit time for a neutron crossing a
target nucleus, ~2R/v. Given the nuclear diameter, 2R ~ 1072 ¢m, the transit
time for even a thermal neutron is ~10~ 7 s (The term thermal neutron refers to the
most probable energy of the neutrons in thermal equilibrium in a zero-power reactor
(e.g., a mockup). At 20°C, this is 0.023 eV, with a corresponding neutron speed of
2,200 M/s.). Thus, the standard assumption is that the decay of an excited com-
pound nucleus is independent of all but the input energy of the initiating neutron.
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Fig. 2.6 A typical neutron
capture cross section for an
isolated (single) resonance
whose width at half maximum
is I', the total level width. I,
is the partial width for gamma
ray emission from the excited
state (level). E, is the center
of mass (reduced mass)
energy of the initiating
neutron (Duderstadt)

Omax [~

Oy (E)

Y2 Omax [~

EC

The decay modes of a particular excited state, nuclear level, are characterized by
a level width

I' =h/(2nr1), (2.38)

with dimensions of energy (h is Planck’s constant, 4.135667 x 10~'> eV-s), which is
based on the Heisenberg uncertainty principle. In a quantum mechanical system
like our excited compound nucleus, knowledge of energy and time is governed by

AEAt ~ h/27. (2.39)

Thus, I" can be viewed as the uncertainty in energy of an excited state (level) of
a compound nucleus, and t a measure of the “uncertainty” of the lifetime of the
excited state. The microscopic neutron cross sections, which go through the com-
pound nucleus formation process, exhibit resonance behavior (peaking) when the
neutron energy and E. (the added neutron binding energy) produce or nearly
produce a well-defined excited state (i.e., having a small I'). See Fig. 2.6.

The level width I' can be thought of as the probability per unit time of decay of
an excited state and thus the sum of partial “widths” (probabilities per unit time) for
each mode of decay:

F=Ty+Th+ T+ 4+ T +1+ .., (2.40)
(where I, refers to elastic compound scattering and I'y,, refers to inelastic scatter-
ing, the rest being obvious).

Therefore, a “compound nucleus reaction” cross section near an isolated reso-
nance is

a(n,i) = oc(n)T;/T, for i = v,n, (ny),f,2n, p, etc. (2.41)
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The functional form of ¢ (n,i), its dependence on neutron energy, was derived
with the principles of quantum mechanics by Briet and Wigner [11] in 1935. Their
“formula” for this simple case is

o(n,i) = (32 /4n) T3/ [(E —Eo)? + (T/2)?], (2.42)

where A is the de Broglie wavelength of the neutron, h/(2m,, E)'2, and E, is the
energy of the resonance peak. Figure 2.6 is an illustration of this “form” for i = .

Breit and Wigner’ s most impressive derivation is more general than Eq. 2.42.

First, they considered neutron energies beyond what has been found pertinent to
fission reactors. When one accounts for conservation of angular momentum, the
initiating neutron has classically a magnitude of angular momentum |L| equal to pb,
where p is neutron momentum, (2m,E)"?, and b is the displacement of the neutron
path from a parallel axis running through the center of the target nucleus. In
a quantum mechanical treatment,

IL| = (I(l + 1))"/*h/27 where 1 =0,1,2,3, . .. (2.43)

Then, one can think of “b” as |L| (given by Eq. 2.43) divided by the neutron
momentum, p, and if there is going to be a significant probability of a reaction
with the target nucleus, “b” cannot be much larger than the target nucleus radius,
r A1/3(1.28 + 0.05) x 10~'* cm. For this to be true for a large nucleus, for
example, for U , and for nonzero angular momentum (e.g., / = 1), the neutron
would have to have kinetic energy > 6.6 MeV. For smaller nuclei the required
energy would be greater. Given the spectrum of neutrons in fission reactors, where
most neutrons are born at around 2 MeV (see Fig. 2.4), an assumption of zero
angular momentum (/ = 0) for the vast majority of reactions is good, and thus
equation Eq. 2.42 does not include a factor involving angular momentum or spin
quantum numbers. This assumption also means that decay products of an excited
compound nucleus will be released isotropically in the center-of-mass coordinate
system, which is reflected in the factor of 1/4m in Eq. 2.42 (the probability that the
decay product i (i =n, v, p) is released dQ about any ). The quantum mechanical
treatment of angular momentum also accounts for the statement made above that
“billiard ball” elastic scattering “can be assumed to be isotropic in the center of
coordinate system.” This direct elastic scattering is referred to as potential scatter-
ing so as to be differentiated from resonance (compound nucleus) elastic scattering,
that is, i = n in equation Eq. 2.42.

Second, Breit and Wigner recognized and treated interference between potential
and resonance elastic scattering. They found that the total elastic scattering cross
section dips at energies right below the resonance peak, E,.

Finally, as they were aware that there could be multiple possible excited states of
a compound nucleus they extended their “formula” to two resonances whose I's do
not over lap.
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Table 2.6 Types of neutron cross section for various target element/isotope masses pertinent to
fission reactor design

Slow Epithermal Fast
neutrons neutrons neutrons
E<1eV 1eV<E<0.1 MeV 0.1 MeV < E < 20 MeV

Separated resonances

Light -
nuclei B Potential scattering _
A<25 < . >
Resonance scattering, (n, 2n), (n, p)
Separated Overlapping  Continuum
resonances resonances | resonances
Intermediate < > >
nuclei Resonance scattering, radiative capture
25<A<80 -< >|
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Since Breit and Wigner’s original work, there has been great activity in measur-
ing cross sections, motivated principally the desire to understand the physics of the
nucleus. In the process, however, the basic parameters required for nuclear weapon
and reactor design were generated. The neutron cross sections for fission reactor
design are summarized in Table 2.6 [12].

In this table, the distinction is made between resonance cross sections with
different densities (spacing) of resonance peaks. With intermediate and heavier
nuclei the level structure grows more complex, and the number of possible excited
states of a compound nucleus greatly increases. With higher neutron energy more
finely spaced excited states can be reached and their level width, I"’s, increasingly
overlap until measurement cannot resolve individual resonances.

In parallel with the work of nuclear spectroscopy experimentalists, theoreticians
have built on Breit and Wigner’s work. Resonance cross-section models [13] are
key to creating Evaluated Nuclear Data Files. The Cross Section Evaluation Work-
ing Group, a cooperative effort of national laboratories, industry and universities in
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the United States and Canada (see nndc.bnl.gov), sponsors reviews of the various
measurements of a given cross section (target isotope and reaction) and the
subsequent determination (As part of the process of evaluating nuclear data sets,
very accurate calculations of integral experiments are made. Zero power mockups
of reactors, with carefully recorded dimensions and inventories, are commonly
used. Monte Carlo calculations (to be discussed in the next section) of neutron
balance in the mockups are made with various data sets (e.g., cross-section
libraries) to determine a recommended set. See the CESWG website for references
to such experiments.) of a consensus set of parameters for an appropriate cross-
section model. These models and their “consensus” parameters are a large part of
the ENDF/B-VIIL.O data files. Having the cross sections represented by an analytic
model also facilitates dealing with the temperature effect on resonance cross-
sections. that is, Doppler shift or broadening. The analytic process of averaging
aresonance cross section (i.e., its model), over the velocity distribution of the target
nuclei at a given temperature is similar to what was discussed above for reactions
initiated by neutrons in thermal energy range. The process is outlined by Duderstadt
and Hamilton using the single-level Breit Wigner formula as the resonance model.
The effect of increasing temperature is to reduce a resonance peak while broaden-
ing its width, thus increasing its I'. To first order, the area under the resonance is
unchanged, which could led one to think that resonance “Doppler” broadening
is not an import effect in a reactor application. This is true if the density of the
resonance target nuclei is small (i.e., it is very dilute in the reactor), and thus its
presence does not change the energy dependence of the reactor’s neutron popula-
tion. However, in most reactor designs, resonance absorbers are concentrated in
localized reactor features (e.g., fuel elements, control rods) and there is significant
self-shielding at the resonance peak. That is, neutrons with the “peak” energy will
most likely be absorbed in the reactor “feature” irrespective of temperature-induced
changes in the resonance microscopic cross section. But the story can be different
on the wings of a resonance where the cross section is much smaller, and, thus, so is
the self-shielding. An increase in temperature of the “feature” can result in a net
increase in neutron absorption, with no change at the peak energy, but with
increases in the wings. This phenomena can aid in insuring a negative temperature
coefficient for a fission reactor design (Temperature coefficients are collective
reactor parameters that reflect how neutron balance is impacted by temperature
change through feedback mechanisms, for example, Doppler broadening (or
narrowing) of resonances, and moderator density changes. Reactor control will be
discussed in Sect. Fission Reactor Performance.). A negative temperature coeffi-
cient is a crucial reactor design safety requirement.

Dealing with temperature in producing resonance cross sections for design
calculations is handled in a manner similar to the process for thermal energy
range cross sections discussed above. The ENDF resonance cross-section models
and appropriate material temperatures are input to NJOY, and the output are the
broadened cross sections in the model format. How these cross sections are used in
design calculations is addressed in the next section.
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As noted at the start of this section, gamma ray (photon) cross sections are
important in fission reactor design as they are required for the full treatment of
energy deposition throughout a reactor (in its fuel bearing core and supporting
structures). In the order of importance with increasing gamma energy, the
mechanisms of attenuation are the photo electric effect (y,e™), Compton scattering
(v,¥*), and pair production (y, e e ™). The photoelectric effect removes a y when its
energy, hv, can eject an atomic electron. Its cross section is approximately propor-
tional to Z*/(hv)*, and has discontinuities in energy as the ionization energy of
various atomic electron shells are achieved. For higher y energies, Compton
scattering interactions with atomic electrons can be treated as effectively free
electron collisions. Conserving momentum and energy relativistically, one can
derive expressions for energy loss and change in direction for initiating ys as
a function of their incident energy. The magnitude of the cross section is propor-
tional to Z. When 7 energies reach a threshold of 1.022 MeV (2 x mecz) and are in
the field of a target nucleus, pair production of an electron and positron is possible.
The magnitude of the pair production cross section is proportional to Z2. Of course,
in tracking the y population in a reactor, one recognizes that annihilation of a
positron will produce two 0.51 MeV vy’s. So pair production can be viewed as
a form of inelastic scattering event. Cross sections for these three processes are
tabulated in ENDF/B files, and they are described at a thorough but accessible level
in the classic text by Robley D. Evans “The Atomic Nucleus.”

An example plot of these cross sections for Th**? is provided in Fig. 2.7.

Finally, there are other gamma reactions which can take place in a reactor, for
example (7,f) and (y,n) (the latter which we noted earlier as a source of delayed
neutrons). However, these are threshold reactions for relatively high-energy
gammas, and as shown in Table 2.3 the total energy available from fission from
fissile isotopes for gammas is limited: <8 MeV for prompt y’s, and, <6.5 MeV for
delayed 7y’s. Thus, these reactions are not important in determining the overall
distribution of gammas in a reactor design.

Neutron Distributions

With the material provided to this point, the primary problem of reactor theory can
be addressed: that of finding the neutron distribution in phase space (r,E,€), of
areactor design, and subsequently the reactor’s power distribution, both throughout
the reactor design’s lifetime. The first task is to derive the equation for the neutron
density, N(r,E,€), the neutron transport equation, and auxiliary equations for the
atom densities, p;(r,t), of depleting (initial inventory) isotopes and important fission
products (Like reactor physics, reactor theory is a traditional term in the nuclear
engineering discipline. It refers to the study of the neutron transport equation and
the means of its solution.). A simple approach to deriving the transport equation is
to consider a balance relationship for N(r,E,Q,t)dEdQdt for a time invariant
volume, V, in configuration space:
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Fig. 2.7 Thorium cross section for the photo electric effect (y,e), for Compton scattering (y,y*),
and pair production (y, e + e¢7) [32]

dEdet/ (ON(r,E.Q,1)/0t)d*r = —loss from flow out of V
+ # scattering into dE about E and d Q about Q
+ # produced by fission + # produced by other sources (2.44)

For the “flow” term, one defines the neutron angular current J(r,E,Q,t) = vN(r,
E.Q,t), where |J(r,E,€2,t)en dsdEdQdt| is the no. of neutrons at r, with energies in dE
about E, traveling in dQ about €2, which cross an area ds with a unit normal vector n
in dt at t. And thus, net flow out of V, which has a non-reentrant surface S, is:

dEdet/ J(r,E,Q,t) e nds
N

= dEdQdt / ve VN(r,E, Q,t)d’r, (2.45)

v

where Gauss’ Theorem is applied to transform the surface integral to a volume
integral.
The “reactions” in V are simply:

dEdQdt / vEr(r, E, O)N(r, E, Q, t)d’r, (2.46)

Vv
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where XZ1(r,E,t) is the total macroscopic cross section in V. All scattering cross
sections included in 21 have been integrated over final energies and directions.
Scattering into V is:

dEdQdt / d*r / dE’ / oy’
v 0

VE(r,t,E' = EQ — Q)N(r,E Q1) (2.47)

where X is the double differential macroscopic scattering cross section in V (see
the definition Eq. 2.65 for an example of a double differential microscopic scatter-
ing cross section).

The direct fission source into V is:

dEdQdt / d*r / dE/ / dQ" Y “v(E' - E)
0 i

v

Z5(r, B 0V'N(r, E' Q1) /47, (2.48)

where vy,; (E' — E) is the number of prompt neutrons emitted in dE about E by
a fission of isotope i initiated by neutrons in dE’ about E’: the macroscopic fission
cross section for isotope “i” is p;(r,t)o5(E).

The delayed neutron source into V is:

A
dEdQdt > de(E)ﬁ / Cj(r,t)d’r, (2.49)
j

v

where Xgi(E)/4r is the probability that the decay of delayed neutron precursor “j”
will produce a neutron in dE about E and dQ about Q, and where 2; and C;
are, respectively, the decay constant (see the beginning of section “Heavy
Elements”) and isotope density of precursor “j”.

And, finally any source of neutrons in V not produced by a neutron reaction is

given by:

dEdQdt / d*rS(r,E,t)/4n, (2.50)

v

where S could characterize a source (e.g., Plutonium(238)-Beryllium(a,n) or
Califonium-252 (spontaneous fission)) included in a reactor design to aid in reactor
start-up or S might account for decay processes yielding neutrons due to the presence
of depleted fuel incorporated from another design.
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Now, if the terms on the right side of the “balance relationship,” equation
Eq. 2.44, are moved to the left side, and dEdQdt and the integral operation [ d’r

is factored out of all the terms, then as the right side is now zero and the small
volume V is arbitrary, the collection of expressions under the integral must equal
zero. The resulting equation is the Neutron Transport (or Boltzmann) Equation:

gN(r,E,Q,t) =—veVN(r,EQ t) —vZ;(r,E,t)N(r,E,Q,t)

[o.¢]
+ / dE/ / dQVE(r,t,E —E.Q — Q)N(r,E' Q1)
0

+ / dE' / AV v (E' — E)Zg (r, B, N(r, E' Q1) /4n

+Zde )24iC;(r,t) /4m +S(r,E,Q,1). (2.51)

The conditions for solutions of this partial-differential-integral equation are the
continuity condition:

N(r + o£2,E,Q.t) must be a continuous function of o for r + o€} in the reactor,
and the

boundary condition:

N(r,,E,Q,t) = 0, for Qen < 0, where n is an outward unit vector normal to a non-
reentrant surface chosen to define the extent of the reactor.

The auxiliary equations for number densities of delayed neutron precursors,
Ci(r,t), and fission product poisons, depleting fissile isotopes, and burnable poisons,
pi(r,t)s, are simply defined as movement of these isotopes in space can be ignored.
Burnable poisons are elements with large neutron absorption cross sections (e.g.,
Boron, Hafnium, Cadmium, Erbium, Gadolinium) that can be included in reactor
designs to maintain neutron balance over design lifetime.

» For delayed neutron precursors:

%Ci(r,t) = - Ci(l',t) + / dE//dQ, ZéijV/ij(r,E/,t)N(l’,E/,Qlt), (2.52)
0 j

where &;; is the expected number of precursors of type i produced by fission of
isotope j.

« For fission product poisons (e.g., Xenon-135 and its precursors Telirium-135 and
Iodine-135, and Samarium-149 and its precursors Neodimium-149 and Prome-
thium-149):
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0 )
api(ﬁ t) = _iipi(n 1)+ Aj—iPj (l’, t)

o0
—/dE'/dQ’pi(r,t)aci(E’)v'N(r,E',Q’,t)
0

o

- / dE’ / A "9 (BN (L EL0vN(r E' QY ), (2.53)
k fk

0

where v (E) is the expected number of poison (or poison precursor) nuclei
produced by fission of isotope k induced by neutrons of energy E.
» For fissile fuel and burnable poison isotopes:

g pi(rat) = / dE’ / dQ/pi(rvt)aa‘ (E,)V,N(I’,E/,Q/, t)7 (254)
0

[Pt}

where the subscript “a” as applied to &, conventionally refers to capture plus
fission for fissile isotopes. For reactor designs containing fertile isotopes, equa-
tion Eq. 2.54 will have a source term reflecting the transmutation process leading
to the fissile isotope “i” (see Fig. 2.1). Additional “auxiliary” equations may be
needed to deal with transmutation of one isotope of a burnable poison to another,
which has a significant neutron capture cross section (for example Hafnium,

which has four naturally occurring isotopes).

Solving these ‘“auxiliary” equations, irrespective of their number, is not
a calculational challenge, given one knows the neutron density, N(r.E,Q,t), as
they are ordinary differential equations. Obviously, solving the neutron transport
equation (Eq. 2.51) for N(r,E,€,t) is another matter. There are several features of
fission reactors, however, that make this task more tractable. First, the density
of neutrons needed to produce as much power as can be removed/transferred from
various reactor types to do useful work is very small, ~10’—10° #/cm’, where as
the density of nuclei is many orders of magnitude larger ~10%* #/cm?. Therefore,
the neutrons can be viewed as a very dilute gas in the matrix of a reactor’s nuclei,
and thus neutron—neutron collisions can be ignored (they have not been accounted
for in Eq. 2.51) (Another neutron behavior that can be ignored in formulating the
transport equation is the finite lifetime of a free neutron. Its mean-life is ~11.5 min.
But, as will be discussed in the next section, the lifetime of neutron in a reactor is
measured in milliseconds.). Second, in the primary nuclear design calculations,
where it is determined if a trial configuration, loading and geometry, of
fuel, structure, moderator, coolant, control elements, and poisons, can sustain
neutron balance through out the reactors lifetime objective, the time variable “t”
in Eq. 2.51 can be treated in a much simplified manner. Given the initial
conditions of a trial reactor configuration, it is a good assumption that the atom
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densities in the various macroscopic cross sections in Eq. 2.51 can be treated as
nearly constant for a significant time interval, At > minutes. With this assumption,
and no neutron—neutron collisions, Eq. 2.51 is linear in N(r,E,Q,t) during At, and
solution methods for Eq. 2.51 are greatly simplified. In addition, for the interval,
At, Eq. 2.51 can be treated as a time-independent equation. For a primary
nuclear design calculation, one ignores the source term S(r,E,t) (its importance
to the start-up problem will be addressed in the next section) and Eq. 2.51
becomes a linear homogeneous eigenvalue problem:

vQ eV -N(r,E,Q) + vZq(r, E)N(r,E,Q)

—v / dE’ / dQ'VE(r.E — EQ — QN(r,E, Q)

0
00

1
:E/dE’/dQ’v’Zij(r,E’)
J

0

{ij (E'—E)+ ) Xa(E); }N(r, E Q) /4r, (2.55)
i

where 1/k is the eigenvalue. It has been customary to use the inverse of “k” as the
eigenvalue and to refer to k as the multiplication factor. Note that if Eq. 2.55 is
integrated over the reactor volume and E and €, then k is equal to the ratio of
neutron production to neutron loss, this is the origin of its designation as
a “multiplication factor.” A further simplification in Eq. 2.55 arising from the
assumption of “time independence” during At, is that delayed neutron production
can just be added to prompt neutron production. As indicated, previously delayed
neutrons, though less than a percent of total neutron yield in a fission, are critical to
transient reactor behavior, and, therefore, control system design, to be covered in
the next section.

Before proceeding with the solution methods for Eq. 2.55, a description of how
the primary nuclear design calculation proceeds is required for a basic understand-
ing of reactor design, and to provide perspective on the utility of the various
solution methods for the transport equation. Assuming the solution method chosen
has yielded a k; and N; (r,E,Q) for the initial time interval, At; where i = 1, then one
proceeds to check design requirements, and make needed modifications to the
reactor’s initial trial configuration. In general, this is an iterative process including
other disciplines (i.e., heat transfer and fluid flow, structural analysis). If k # 1,
inventories of fuel/poisons or the positioning of control elements will need to be
altered to achieve neutron balance (Control elements (sometimes generically called
control rods) are structures incorporating highly neutron absorbing isotopes. They
have a dual role in fission reactor design: (1) assuring criticality (a controlled steady
state chain reaction) throughout a reactor’s design lifetime, i.e., compensating
for potential excess neutron production from the initial fissile loading which must
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be large enough to accommodate depletion; and (2) providing safe shut down
(termination of the chain reaction) of the reactor in case of an accident condition
or during a planned interruption of normal operations (e.g., for plant maintenance or
refueling). The same “structures” could accomplish both functions or there could be
separate structures (sometimes referred to as “shim” and “shutdown” rods respec-
tively).). The power distribution throughout the reactor must then be determined.
As N(r,E,Q) is the solution to a homogeneous equation, its absolute magnitude is
undetermined, but a normalization factor, p, can be established from the total
thermal power rating, P(IMWth), requirement of the design, that is from:

P=p / d’r / dE / dQv> "¢ Z5(r, E)N(r,EQ), (2.56)
J

RVol. 0

where ¢; is the energy release per fission of isotope j (see Table 2.3). Now given
pN(r,E,Q), one can calculate the power distribution throughout the reactor

P(r) =p / dE / dQv > " 6%;(r, E)N(r,EQ), (2.57)
0 J

and determine peak powers in fuel elements, and average and peak heat fluxes into
coolant channels. Thus, fuel element and heat removal system limits can be
checked. If there are violations, the trial configuration must be altered and new
results for k and N(r,E,€2) found. From the power distribution and subsequent
thermal analysis, one can also verify the temperatures that were assumed for the
trial configuration, that is, the temperatures that were needed to define thermal
scattering cross sections and Doppler broadened resonance cross sections. Finally,
when all conditions are met for the first time interval, At;, where i = 1, the auxiliary
equations (Eq. 2.53 and Eq. 2.54) can be solved to update inventories of fuel and
poisons for the next time interval, At,. For a thermal reactor design, where the
fission product poisons Samarium-149 and Xenon-135, are important, initial time
intervals should be short (minutes) until equilibrium levels of these isotopes are
achieved (~hours). Subsequent time intervals can be many hours. From this brief
description of the primary nuclear design process, it should be clear that having
accurate and efficient solution methods for the time-independent neutron transport
equation is key to achieving a successful design.

There are two basic approaches to solving the time independent neutron trans-
port equation, Eq. 2.55; the probabilistic-statistical Monte Carlo simulation method
[14] where individual neutrons are traced through their life experience in a reactor,
and analytic methods where the variables, r, E, and (sometimes) 2, are made
discrete, thus transforming Eq. 2.55 into a matrix equation.

Monte Carlo simulation is in principle well suited for this application because
the neutron density is low so the transport equation can be treated as linear. Thus,
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each “experiment,” that is, neutron history, is independent of all others. Initially,
a neutron is started at a randomly selected reactor location and with a randomly
selected direction, €. Its initial energy is selected by treating a typical prompt
neutron energy spectrum as a probability distribution:

Enmax
P(E)dE = v, (E)dE / / dEv,(E), (2.58)

Emin

which is then “sampled” with a random number between 0 and 1. In Monte Carlo
computer programs [15, 16] a sequence of random numbers is generated with an
algorithm. To provide an example of “sampling,” note that in this case, given
a random number 7, the “sampled” starting energy E is found by simply solving
the transcendental equation:

E
n= / dE'P(E)forE. (2.59)

Emin

Now having a speed and direction, one can “sample” (with a new random
number) the probability that the neutron travels a distance x before having
a collision, using equation Eq. 2.20. As this probability depends on the total
macroscopic cross section, X1(r,E), one must keep track of material boundaries.
An initial sampling will be for the distance from the starting point of the neutron to
the first material boundary it could cross. If the initial sampling results in the
boundary being crossed, then there is a new Xt and a second sampling is performed
to determine if another boundary is crossed. Eventually, either the neutron leaves
the reactor or the location of the first collision is established. As the total cross
section is the sum of capture, scattering, and possibly fission macroscopic cross
sections for the various isotopes present, one can treat the relative magnitudes of the
components of the sum as a probability distribution, which when “sampled” leads
to the next step in our neutron’s history. If capture is the result, the history ends, just
as it would end if the neutron leaked (escaped) from the reactor. Either capture or
leakage is recorded as a “loss.” If fission is the result, the history also ends, but the
number of neutrons produced (1, 2, or 3) in the fission of the “selected” isotope j,
and the fission location are recorded. The number of fission neutrons is determined
by “sampling” the probability distribution for fission yield of isotope j. The mean of
the distribution ¥;(E) includes delayed neutrons. The number of neutrons produced
by a “history” is counted as “production.” If scattering is the result of the collision
then the double differential macroscopic cross section is treated as probability
distribution and “sampled” to provide a new energy and direction for the neutron.
Then, the process of tracking to either escape or the next collision is repeated. Thus,
the “history” proceeds until it ends as either “loss” or “production”, if “production”
a starting point for a subsequent “history”” and a location for energy deposition are
also provided.
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There are various strategies for carrying out Monte Carlo calculations and the
evaluation of the statistical nature of the results. A standard approach, in outline, is to
run successive groups of “histories” (thousands). Discard the first few groups, which
are used to establish a reasonable fission neutron spatial source distribution, and then
find the mean and standard deviations of the desired calculational results from the
subsequent groups. It is most economical to get good statistics for the eigenvalue k,
the multiplication factor, which is just “production” over “loss,” quantities which are
accumulated over the whole reactor. Energy deposition, that is, power distribution,
results are much more costly. Hundreds of groups with millions of histories per
group would be required to give good statistics (a five percent 95% confidence
interval) for the number of fissions in small reactor volumes (e.g., a 1 cm length of a
typical PWR fuel element which has a volume of 0.7 cm?, out of a reactor volume of
32.8 x 10°cm?® (for a 3,400 MWth rating)). From this discussion, one can see why,
as mentioned in section Cross Sections, Monte Carlo calculations of mock-up
experiments are widely used in cross-section data set evaluations, where the results
of interest are changes in k, the multiplication factor. Even with the tremendous
advances in computing capability which have been made to date, Monte Carlo
simulation is not as yet the main line method for primary nuclear design calculations.
But, as will be seen in the following description of analytic methods, it can greatly
aid in improving the accuracy of the analytic methods.

When the analytic approach of making the neutron density’s variables r, E and Q
discrete is applied, so as to make the computational errors in solving the transport
equation comparable to an exhaustive Monte Carlo simulation, the computer
resource requirements will challenge today’s largest machines (peak speeds
of ~2.3 x 10" flops (floating point operations per second) [17]).

This can be demonstrated with the large PWR used in the Monte Carlo discussion:
First, a spatial mesh of 65.6 x 10° points would result, assuming quarter core radial
symmetry, and from using a 1 x 1 x 2 cm? cell for averaging cross sections. (The
mesh may need to be finer for highly absorbing features, e.g., fixed poisons, control
elements, and can be courser in homogeneous regions.) Second, the energy variable
can be treated with a multigroup approximation where the energy range, 0.0 — 10
MeV is divided into intervals (groups), for example, 24 for thermal neutrons, 0.0 —
0.625 eV, and 57 for the rest of the range, with most of these groups allotted to
epithermal neutrons, E = 0.625 eV — 0.1 MeV where there is a concentration of
explicit resonance cross sections (see Table 2.6). A weight function f, (r,E),
normalized for E to unity, is required for each interval, g. These can be calculated
with infinite medium problems representing various portions of the reactor; homoge-
neous problems with no spatial variables, or an infinite repeating array of cells (e.g.,
a fuel element and surrounding coolant) with radial spatial variables, but no axial, z,
dependence. The power of the multigroup approximation is that it is insensitive to the
choice of weight functions and thus simplifying assumptions can be made in selecting
and solving the “infinite medium” problems to generate the f,’s. Finally, the direction
variable, €, can be dealt with through a discrete ordinate approximation [18]. The
unit sphere is divided into segments, the surface areas of which sum to 4w, and
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a direction vector €}, is assigned to each segment. The segment surface areas act as
weight functions when the transport equation is integrated over a segment to yield an
equation for the neutron density going in the direction 2,,. There are various schemes
for selecting ordinates and weights, the most widely known is the S, method. All
methods, however, can produce ray effects if “n” is too small [19]. The channeling of
neutrons into a few restricted directions can produce anomalous results in reactor
designs with localized neutron source regions, that is, where fissile and fertile fuel
predominate in different regions (commonly referred to as seed-blanket designs).
For a “highly accurate” treatment, one should let n = 16 in each octant, for a total of
128 ordinates. So for the “large PWR example,” the number of unknowns to be solved
for in the discretized time-independent transport equation is 170 x 10° (=16.4 x 10°
(spatial mesh points) x 81 (energy groups) x 128 (ordinates)). This is clearly
a formidable calculational problem. If we view the analytic approach described
here as transforming Eq. 2.55 into a matrix eigenvalue equation, then the simplest
solution method of matrix inversion would involve matrices of a billion by a billion.
Hence, an iterative method is required [20]. Much effort in reactor theory has been
devoted to this problem, and to simplifying the analytic approach. Iterative methods
for solving matrix equations are beyond the scope of this entry, but to understand how
fission reactor design is actually carried out, a description of analytic approach
simplifications is needed.

The direction variable, €2, received the earliest attention. Because the neutron
population in a reactor can be viewed as a dilute gas, it was natural to assume that
the variation of the neutron density in space could be approximated by Ve D(r,E,t)V
vN(r,E,t) (from Fick’s Law of diffusion). When the transport equation, Eq. 2.51, is
integrated over £ and the first term on the right-hand side is replaced by the Fick’s
Law expression, the result is the time-dependent neutron diffusion equation. Equa-
tion 55 can be treated analogously to yield the time-independent neutron diffusion
equation. In either case, the limitations of the diffusion approximation only become
apparent in trying to define the diffusion coefficient D(r,E.t) (see Henry, Nuclear-
Reactor Analysis). The most commonly used expression is

D(r,E,t) = 1/{3[Z(r,E, t) — GZ(r, E, )]}, (2.60)

where 11, is the average of the average cosine of the scattering angle (in the
laboratory coordinate system) of each isotope making up X(r,E,t). This definition
(Eq. 2.60) arises from a low-order spherical harmonics expansion of N(r,E,€).t) in
the neutron transport equation. Spherical harmonics are a complete orthonormal set
of special functions on the unit sphere defined by Q (the unit vector which is at
angle 0 from the z axis and projects in the x—y plane at angle ¢ from the x axis);

Y'(Q) = H'P]"(n)e™ for [ =0,1,2,3.....

(2.61)
m=—-/<m</
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m [ a=—m Y2 Sms oy oy am , ,
where H" = m » P"(w) = sin™ () g Pi(u) is the associated Legendre

Polynomial, P;(u) = 55 dﬂ, (,u —1)"is the Legendre Polynomial and p = cos6. The

spherical harmonics are normalized by the relationship:

2n

1
/dga/d ,( P) = Omm' 0y, (2.62)
0 -

where Y_}n is the complex conjugate of Y}" and the Kronecker deltas, J, are 1 for
m=m’ and / = /" and O otherwise.

The “low-order” spherical harmonics expansion, which yields the diffusion
approximation, is for / = 0 and 1 (also referred to as the P1 approximation). The
four functions in the expansion are:

Y0 = (1/4m)"2, Y = (3/4n)"?sin 6%,

2.63
Y0 = (3/4n)"u and Y} = —(3/4m)"/? sin Oe 4. 263
In a Cartesian coordinate system, the expansion coefficients (for simplicity of
notation the time-independent case will be treated) are N(X,y,z,E), the neutron
density and Nfl x,y,z,E), Nl1 (x,y,z,E) and N? (x,y,z,E), which when multiplied
by v (the speed corresponding to E) are the neutron currents in the x, y, and
z directions. Before applying the P1 expansion to Eq. 2.55, one needs to note that
the double differential scattering cross section, X4(E’ — E,£)’ — €) in reactor
applications (where neutron polarization and Bragg scattering can be ignored)
depends on €2’+€). Then, given the addition theorem for spherical harmonics,

) L (I—m)! o
P (Q eQ) = Elﬁpr(u)mﬂ (i)™=, (2.64)

2(r,E” — E, ’+Q) can be expanded in terms of associated Legendre polynomials.
This is done in two steps: first the double differential scattering cross section
is expressed as an expansion in ordinary Legendre polynomials (which are
a complete orthogonal set of functions)

< (214 1)
= 4n (2.65)
F] (P7E/ — E)Pl (9/09)7

Z(r,E' - E,Q ¢Q) =% (r,E)

and then Eq. 2.64 is substituted for P;(£2’+€2). (It should be remembered that X is
a macroscopic cross section, and a more complete notation would show a sum
over contributions from each isotope present in d°r about r.)
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Now when the P1 expansion for N(x,y,z,E,11,) is inserted in Eq. 2.55 and the
resulting equation is, in turn, multiplied by the complex conjugate of each of
the four spherical harmonics functions of the P1 expansion (Eq. 2.63), and
integrated over L (—1 — 1) and @ (0 — 2n), four equations result: The first is

DN (53,2, E) + N (5., E)
y

19)

9 0
—&—Ele(x,y,z, E) = —vZr(x,y,z,E)N(x,y,X,E)

10Mev
+ / dEV'Z(x,y,2,E)Fo(E' — E)N(x,y,7,E')

0

+ (the fission term in Eq.55 with N(r, E’,Q)

replaced with N(x,y,z,E)). (2.66)

The remaining three equations are of the same form, one is provided here:

gva_N(X7 Yy, X, E) + VZT(Xa y,z, E) N(l)(xv Yy, z, E)
Z
10Mev
= / dE'vE(x,y,z,E)F|(E' — E)NJ(x,y,z,E) (2.67)
0

With these four coupled partial-differential-integral equations, there is still
considerable computational complexity. To get to the standard neutron diffusion
equation, one additional approximation is made:

Fi(E' — E) 2 6(E' — E)u(E)), (2.68)

where (E') is the average cosine of the scattering angle in the laboratory coordinate
system, and energy loss (or gain) in the non-isotropic component of scattering is
ignored. Substituting Eq. 2.68 in Eq. 2.67, the relationship between N? and N is a
simple partial differential equation:

1 0
NY E)=— —N E :
I(X’y’z, ) 3(2T (xaan7E) _M(E)ZS(X7YaZaE)) Oz (X,Y7Z7 )7 (2 69)

containing the diffusion coefficient D(r,E) (see the definition Eq. 2.60). Given the

equations of the same form as Eq. 2.69 forN { and Nl’l, and substituting all three into
the left-hand side of Eq. 2.66. The left-hand side becomes the standard Fick’s Law
expression:

—VeD(r,E)VN(r,E) = .... (2.70)
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As noted above, this derivation of the diffusion approximation reveals its
limitations. The ability of some combination of four low-order spherical harmonic
functions, Eq. 2.63, to describe the true angular distribution of the neutron density
throughout a reactor will be limited to regions where the distribution is nearly
isotropic, that is away from boundaries and highly absorbing features (control
elements and fixed poisons). To address these limitations, special boundary
conditions are used, and subsidiary calculations (to be discussed below) are made
to provide “fitted” cross sections for highly absorbing features.

To make the diffusion approximation an efficient design tool, additional
simplifications have been developed. The differencing of the energy variable as
described above for “multigroups” can be extended to a “few group” approxima-
tion. Again, weight functions are generated using accurate solutions to small region
“cell” problems, which model repeating features of a reactor. But here the weight
functions are applied over much larger energy ranges, three or four to cover the
energy range of 0 to 10 MeV. Furthermore, one accepts the error associated with
the weight functions not perfectly representing the spatial variation of neutron
density energy dependence.

The use of “cell problem” auxiliary calculations can be extended. As the core,
the central fuel bearing region, of most reactor designs is made up of collections of
mostly fuel elements, and possibly some fixed poison and movable control
elements, assembled into modules. One can perform highly accurate (e.g., Monte
Carlo or multigroup, fine spatial mess, discrete ordinate) calculations for two-
dimensional (radial) repeating arrays representations of a core’s various modules.
Then, for each module type, a series of corresponding few-group diffusion approx-
imation calculations can be carried out, in which key few group cross sections
are adjusted (“fitted”) to match reaction rates from the “highly accurate” reference
calculation. One can the use these fitted cross sections in a full core three-
dimensional few group diffusion calculation as part of the principle design process.

Of course, with depletion, as inventories of fuel, fission products, and poisons
are updated, fitting calculations will have to be repeated. This approach is particu-
larly suited to the design of thermal reactors, that is, PWRs and BWRs, where the
proper treatment of epi-thermal and thermal neutrons, including the effects of self-
shielding by fuel and poison inventories, is crucial.

In fast reactor design, where most fissions take place at energies above explicit
resonances (liquid metals or gasses are coolants, and fissile and fertile densities and
inventories are high (no effective moderators are present)) and the mean free path of
fission neutrons is large (~10 cm.), the treatment of fuel, structure and coolant as an
homogenized material, in formulating macroscopic cross sections, is a reasonable
assumption. Treatment of the energy variable is also simpler as up-scattering is not
important. As a result, multigroup, 3D discrete ordinate calculations can be used in
the principle design process for fast reactors.

Finally, returning to thermal reactor design, there is another analytic calcula-
tional approach, which is in wide use, that should be mentioned. The general
designation is Nodal Methods. There are a number of variations under this title
[21], but they all have as their starting point solving 2D module array problems.
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One needs to produce few group neutron distributions within each module. Each
module (or depending on symmetry each half or quarter module) will be a “node.”
Then coupling coefficients between nodes, both radially and axially, are generated.
(It is predominately in defining coupling coefficients that the various “methods”
differ.) The resulting nodal equations can be solved with modest computer
resources, but, to obtain power distributions and to update inventories the full
reactor neutron distribution must be constructed from the module solutions and
the weights found for each node. Nodal Methods have been found to be particularly
useful in applying the primary nuclear design process to evaluating refueling
options for commercial (large scale) PWRs and BWRs, where partially depleted
modules are relocated, “shuffled,” as new modules are added and fully depleted,
“spent” modules removed during periodic refuelings. The computational economy
of nodal methods also allows them to be applied to fully time-dependent problems,
particularly for accident analyses. The nature of these problems will be discussed in
the next section.

Fission Reactor Performance

In the previous section, the focus was the derivation of the neutron transport
equation, and how it is solved in carrying out the primary nuclear design process.
This quasi-static process involves a series of time-independent calculations of the
neutron density, N(r,E,Q), and ultimately results in the configuration and
inventories (loadings) that meet design requirements for lifetime (total energy
production), and normal operation thermal performance (fuel element burn-up
within limits and sufficient coolant flow provided by the design pumping power
allocation). There are, however, additional design requirements that involve
transients, that is, N(r,E,Q,t), which will be the subject here.

The simplest approach to treating transient reactor behavior is through a “point”
kinetics model. If one first multiplies the time-dependent transport equation,
Eq. 2.51, by a weight function, W(r,E,{2), and integrates over the reactor volume,
energy (the full range, 0 — 10 MeV), and direction (cos 6 from—1 to 1, ¢ from O to
2m); and second, multiplies the time-dependent equation for each delayed neutron
precursor, Eq. 2.52 for Ci(r,t), by W(r,E,Q)X4(E) and performs the same integra-
tion over reactor volume, energy, and direction, the results are the point kinetics
equations:

dT() p—8 !
dci(vy B .
(it( ) AT(0) = 4 C(0) for j=1,2,..1 (2.72)
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where T(t) is an amplitude function;

10Mev

T(t) = / dV/ dE/dQW(r,E,Q)
0

reactor

(2.73)
N(r,E, Q).

In formulating the expressions for the kinetics parameters, p(t), B(t), and A(t), it
is convenient to factor the neutron density into a product of “shape” and amplitude
functions. The shape function is;

S(r,E, Q,t) = N(r,E, Q,t)/T(t). (2.74)

Now the weight function is defined over the same domain (space, energy, and
direction) as the neutron density, and thus from the definitions Eq. 2.73 and Eq. 2.74
the normalization of S and W follows:

10Mev
dav / dE/dQW(nE,Q)S(r,E,Q,t):1 forallt. (2.75)

reactor 0

In order for the point kinetics equations to provide accurate solutions for small
changes in reactor configuration, the weight function, W(r,E,Q), is chosen to be the
solution the adjoint equation corresponding to the time-independent transport
equation, Eq. 2.55, for the reactor of interest adjusted to be critical (i.e., the
eigenvalue k = 1). In the adjoint of Eq. 2.55, the variable pairs (E,€) and (E’,£2’)
are interchanged in the scattering and fission terms. The solution, N*(r,E,QQ), is
referred to as the adjoint neutron density or the importance function. The latter
name indicates the physical interpretation of N*. If the reactor described by
Eq. 2.55 is at zero power (no neutrons) and a neutron is inserted at r with velocity
v(E,Q), the neutron level will increase to a steady-state value (remember the
reactor is still critical). This “level” per neutron added at (r,E,€) is N*(r,E,{2).
How N*, acting as a weight function, improves the point kinetics equations will be
discussed after p, B, and A are defined and their physical interpretation given. To
simplify notation, the scattering and fission integral operators in Eq. 2.51 are
represented by A and G:

A= / dE/ / dQVEs(r,E = E,Q — Q)e, (2.76)
0
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G= / dE’ / dQV > " vi(E)Z(r, E)e, (2.77)
0 i

where Vv;(E’) is the total number of neutrons (prompt plus delayed) produced by
fission of isotope i induced by a neutron with energy E’. In reactor kinetics, delayed
neutron yields are expressed in terms of the ratio the number produced with a given
half-life (i.e., a member of “delayed group,” j, as noted previously, see Table 2.4) by
fission of isotope, i, to the total the total yield, v;. These ratios are represented as ﬁ%,
where normally j=1,2 ... 6.

The parameter p(t) is the reactivity of a reactor and is a measure of how far from
criticality (a steady-state chain reaction only from fission neutrons, no other neutron
sources present) the reactor is at time t. This can be seen from the expression for p(t)
that results from the derivation of Eq. 2.71 from the transport equation (where the
functional dependencies on r, E, ), and t are understood for X1, W, and S):

[ dV [dE [dOW[ — vQ e VS — vES
reactor 0
+AS+ ) X(E)GS]
p(t) = L : 7 (2.78)
[ dV [dE [dQW Y X'(E)GS

reactor 0

where X'(E) is the total fission spectrum for isotope i:
X{(E) = XLEN{1 - B} + > Xg(E)B. (2.79)
=1

Now note, if both the numerator and denominator of Eq. 2.78 are multiplied by
the amplitude function T(t), and W is taken as 1, then the numerator is the
total neutron production rate minus loss rate for the reactor. (When the first term
in the bracket in the numerator is integrated, and Gauss’ theorem is applied, it yields
the total neutron leakage rate from the reactor.) Similarly, the denominator is
the total neutron production rate. Reactivity is a dimensionless parameter whether
or not W is unity. If it is zero, the reactor is critical, if negative, subcritical and if
positive, supercritical.

B;in Eq. 2.72 is the effective delayed neutron fraction for the jth precursor group,
and B in Eq. 2.71 is the sum of the Bj’s:
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[ dvode Jdow > X(E)BiGS

ﬁj = reactor ()oo i ' . (280)
[ dV [dE [dQW " X!(E)GS
reactor 0 i

As with the expression for reactivity, multiplying the numerator and denomina-
tor of Eq. 2.80 by T(t) and letting W = 1, one sees that in this case ; is the fraction
of total fission neutrons produced in the reactor by precursor group j.

The parameter A is the prompt neutron lifetime and is defined as:

[ dv [dE [dOWS

A= 0 : (2.81)
[ dV [dE [dQW Y X/(E)GS
reactor 0 i

Again multiplying the numerator and denominator by T(t) and taking W = 1, one
sees that A equals the number of neutrons in the reactor divided by the rate of
neutron production by fission. If the reactor is critical, Eq. 2.81 has the same form as
the “fundamental equation of radioactive decay,” Eq. 2.11, and A can be thought of
as the “mean lifetime” of a neutron born into the reactor. In the point kinetics
equations, A is the mean prompt neutron lifetime, and the timing of the appearance
of delayed neutrons is treated explicitly through the behavior of their precursor,
CG®j=12....1(usually =6).

The derivation of the point kinetics equations directly from the time-dependent
neutron transport equation has been presented here to provide perspective on
approximations that are normally made to make the generation of the point kinetics
parameters (p, B, and A) practical. If Eq. 2.51 and its auxiliary equations could be
readily solved for N(r,E,Q,t), there would be no need for the point kinetics
equations. As it turns out, however, “practical” approximations follow from the
approaches described in the previous section for solving the time-independent
transport equation. Henry in Nuclear-Reactor Analysis derives the point kinetics
equations starting with the diffusion approximation (with energy a continuous
variable). One could just as well start with a few group diffusion approximation
which would provide a shape function (a vector) and from the adjoint of the few
group diffusion equation, a weight function (also a vector). The advantage of using
an adjoint weight function, irrespective of the approximation to the transport
equation one starts from, is in calculating reactivity, p(t). In transients of interest
in design, p(t) is the driver. It reflects changes in cross sections with time due to
variations in temperature (coolant density, Doppler effects) and configuration
(control rod motion). In whatever form Eq. 2.78 takes, given the neutron transport
approximation used, if a changing cross section is represented as a starting value
plus a time-varying small delta, 6x(r,E.t), and the shape function is represented as
a time-independent function (e.g., from the initial neutron density of the reactor,
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the same problem that generates the adjoint) plus a time-dependent small delta,
OS(r,E,t), then the resulting calculation of p(t) will to first order in deltas only
depend on 0x(t)‘s. Higher order terms can be ignored, and one does not need to
calculate a time-dependent shape function. This is a classic perturbation problem.
Henry (chapter 7) provides a detailed derivation.

The time dependence of B;(t) and A(t), Eq. 2.80 and Eq. 2.81, as used in the point
kinetics equations can be ignored in most applications. Measured values of B (and
the ﬁJ‘ from which it is summed) can be used directly (Table 2.4). If adjoint
weighting is used, the B’s will be a bit larger than the physical B‘s in a thermal
reactor due to the increased “importance” of delayed neutrons with their lower
initial energies (relative to prompt neutrons). Prompt neutron lifetimes primarily
depend on the reactor type; for thermal reactors they are on the order of ~ 107 s,
and for fast reactors as short as 10~ s. They can be measured in zero power reactor
mock-up experiments as ratios with § and p, or calculated directly from equation
Eq. 2.81 with the approximations for W and S used to obtain p. A highly accurate
calculation of A can be made with a Monte Carlo simulation where neutrons are
introduced from the prompt neutron energy spectrum with an S(t = 0) spatial
distribution. Each history would be timed and terminated with neutron absorption
(capture plus fission) or leakage. The “times” will yield the mean and standard
deviation of the prompt neutron lifetime.

One further note on reactivity, if a perturbation of a critical reactor configuration
can be viewed as nearly instantaneous, that is, a step change, then a good estimate
of reactivity addition or subtraction can be found by solving the eigenvalue (time
independent) problem for the perturbed reactor:

p=1-1/k, (2.82)

and if the initial reactor configuration is subcritical then the reactivity addition from
a “step” perturbation can be found by performing two eigenvalue problems, the
perturbed case as before, and one for the initial subcritical configuration (ignoring
any nonfission source);

p=1/ko — 1/k, (2.83)

where k, (<1) is the initial subcritical eigenvalue. As reactivity is a dimensionless
ratio, it is often given as a percentage or in units of 3 (as defined by Eq. 2.80). In the
latter case, the “units” are traditionally dollars and cents. If p equals B, the reactivity
addition is 1 dollar; if p equals 0.5f the reactivity addition is 50 cents. If a dollar of
reactivity is added to a critical reactor, it is said to be prompt critical (critical on
prompt neutrons alone) and delayed neutrons will not mitigate the resulting tran-
sient, a condition obviously to be avoided.

The motivation for the description of point kinetics provided here is best
provided by Henry:
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“Since mean free paths are fairly long and since the lifetimes of neutrons in a reactor are
quite short, the effects of local perturbations on” N(r,E,Q,t) “will quickly spread through-
out a reactor. The immediate consequences of perturbing a reactor locally (for example by
changing a control rod slightly) is thus a readjustment of the shape of the” neutron density.
In many cases this readjustment is slight and is completed in a few milliseconds; after that
the readjusted shape rises or falls as a whole depending on whether the initial perturbation
increases or decreases k.¢. For reactors in which transients proceed in this manner, merely
being able to predict the change in /evel of the neutron density “is sufficient to permit a very
accurate prediction of the consequences of perturbation.”

With today’s computer capabilities, solving point kinetics problems is not
a great challenge, even with time-dependent reactivity reflecting feedback from
power changes in the reactor. Henry and Duderstadt provide descriptions of
applicable calculational methods (development of which inspired great ingenuity
in the past). In any case, to quote Henry again, point kinetics solutions provide
“very accurate predictions of the consequences of (reactor) perturbations.” Thus,
their utility in assuring that a reactor design satisfies fundamental transient
requirements. Under normal operating conditions, a reactor must be inherently
stable, that is, self-limiting. Reactivity must be reduced with increased temperature;
that is, with reduced coolant density, increased mean thermal neutron energy, and
Doppler broadening of resonance cross sections. These phenomena are dependent
on reactor type. Clearly change in thermal neutron spectra is unimportant in a fast
reactor. However, if coolant density decrease results in voiding, reactivity will
dramatically decrease in a thermal reactor, but in a liquid metal cooled fast reactor
increased leakage must outweigh a higher energy neutron spectrum (and an
increased fission to capture ratio in fuel) to assure a negative reactivity effect.
Also movement of control rods must reduce reactivity when reactor shutdown is
desired. Some movable poisons, power shimming control rods, could be included in
a design to flatten (make more uniform) the power distribution throughout life.
(Power flattening can reduce coolant pumping power requirements. As coolant flow
must meet the heat removal needs of the hottest region of the reactor, minimizing
excess flow to cooler regions increases overall power plant efficiency.) But, one
must assure that the operating strategy for using such rods does not compromise the
speed of reactor shutdown when it is required to deal with an accident condition.

Point kinetics models can also aid in assessing Xenon override requirements for
thermal reactors. Xe'®> with its extremely large thermal neutron capture cross
section (o, = 2.7 x 10° b at E = 0.023 eV, for comparison o¢U?* = 577 b at
0.023 eV) is the most important fission product poison. It is produced directly from
fission and by decay of its precursor I'*> (which is a direct fission product and has
short-lived precursors, Sb'* — Te'® — 1135). Both Xe'?® and I'* have half-lives
measured in hours (T1/2Xe =9.14 h, TUZI = 6.58 h). So, a point kinetics reactor
model will show that when a reactor is started up, Xe'>> and I'*° build up to
equilibrium levels in about 30 h. Their levels, inventories, will depend on
power level, that is, neutron density, and the reactor design must have enough
excess reactivity (e.g., control rods that can be withdrawn, or for a PWR,
a soluble poison in the coolant whose concentration can be reduced) to
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Fig. 2.8 Schematic of I'*®

and Xe'*® inventories

following an initial reactor I(t)
start-up and subsequent

shutdown after equilibrium 1
levels have been reached (i.e.,
at ty).(Duderstadt)

X(t)

“override” the negative reactivity perturbation of neutron capture by Xe'?’

(iodine neutron capture can be ignored). In addition, when a thermal reactor is
shut down, Xe'* builds up as loss by neutron absorption stops and decay of
I'*3 continues. The Xe'* inventory peaks in about 10 h to approximately three
times its equilibrium level and subsequently decays. It is back to its equilib-
rium level in ~ 40 h (see Fig. 2.8).

Clearly additional “excess reactivity” is required to deal with a post-shutdown
Xenon transient. Eventually, not being able to provide (and control) this excess
reactivity can limit the useful lifetime of a thermal reactor design. As a historical
aside, it was John Wheeler [3] who recognized the role that Xe!'* and I'* could
play in the operation of a thermal reactor. He explained the initial difficulties in
operating the first plutonium production reactor at the Hanford Washington site.

While point kinetics can deal with most reactor design transient requirements,
there are instances where significant spatial effects must be accounted for. In the
normal operation of a large thermal reactor, there is the potential for spatial
oscillations of Xenon concentrations, and therefore neutron density and power.
These oscillations may not affect criticality and might only be observed by the
reactor instrumentation system’s ability to measure power distributions in core. The
period of these oscillations would be many hours and thus limits on coolant channel
performance and fuel temperature could be compromised for extended time
intervals. Space-time calculations of neutron density have to be carried out to
determine if a particular design has a propensity for these oscillations. If the design
is not inherently stable, its instrumentation must provide detection and an operating
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strategy must be devised to suppress any oscillation initiation. With modern
computing capability, few group diffusion approximations to the time-dependent
transport equation, Eq. 2.51 (with explicit spatial mesh or nodal methods), can deal
with Xenon oscillation evaluations [22].

There are certain reactor plant accident scenarios, which also require space-time
calculations. To deal with these, nodal methods, as described in section “Neutron
Distributions”, have been incorporated in safety analysis programs (see for example
[23]), which model a full power plant; the reactor, its neutronics, fluid mechanics
and structural integrity; and the balance of the plant, instrumentation, coolant/
working fluid to power conversion, and safety systems (containment, emergency
coolant injection and power supply). There are two classes of accidents where
space—time effects in the reactor are important. First is “rod ejection,” where
a single control rod or group of control rods is rapidly withdrawn with a large
reactivity addition and neutron distribution change, in no way a small perturbation
in the point kinetics sense. Second is a “cold water accident” applicable to a PWR.
In this case, in a plant with multiple piping “loops” carrying coolant to the reactor, if
one of the loops is not functioning so that water in the loop has cooled below the
normal inlet temperature of the reactor, and the loop is reactivated (its pump turned
on and isolation valves (if any) opened), while the reactor is critical, there can be
large asymmetric reactivity insertion, again, this is not a small perturbation
problem.

Finally, there is an additional aspect of reactor neutron time variation, which has
interesting Physics. The transport equation, derived in section ‘“Neutron
Distributions”, is for the mean neutron density, N(r,E,{),t), but clearly as neutron
interactions and production, and fission product decay are inherently probabilistic,
there are fluctuations in the neutron population in a reactor (and as there are in
delayed neutron precursor populations). These fluctuations were recognized early
on in the Manhattan Project and are also referred to as neutron noise [24]. There are
several approaches to modeling of the phenomena. The most fundamental is based
on the derivation of the neutron transport equation from the quantum Liouville
equation (Osborn and Yip [25]). This derivation is extended to produce an equation
for the neutron doublet density, NNN(r,E,.Q,r’,E’,Q’,t), the expected number of
neutrons in d’r about r, with energies in dE about E, going in the solid angle dQ
about  times the expected number in d®r about r’, and so on for E’ and €)’, where
as in the transport equation neutron—neutron collisions are ignored. Additional
equations for neutron—precursor and precursor—precursor doublet densities are
produced to complete the set of equations needed to solve for N™N. One also
needs equations for the “mean” (in Osborn’s nomenclature, singlet) neutron and
precursor densities, which were derived in section “Neutron Distributions”
(Eq. 2.51 and Eq. 2.52). Being able to solve for N~ is, however, not sufficient to
predict the results of neutron “noise” experiments in a reactor. Equations for
doublet and singlet densities for events (D) in detectors (e.g., pulse or continuous
currents in an ionization chamber) are also needed. With NPP and N® one can
predict variance to mean ratios of counts or the power spectral density of the current
in a single detector, and the cross power spectral density of currents in two detectors
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[26]. These experiments are usually performed in a reactor in a steady-state
condition (in the mean of course) at zero power, critical or slightly subcritical, to
obtain estimates of point kinetics parameters. These experiments have the advan-
tage of verifying expected kinetic performance without putting the reactor into a
transient. They are performed at low neutron levels because as power is increased
fluctuations become negligible relative to the mean. Detector noise measurements
(psd and cpsd) are sometimes made at power in operating reactors to monitor for
unplanned mechanical motion, or loose parts. Modeling for these measurements is
deterministic.

Fluctuations in neutron populations must be considered in developing initial
start-up procedures for a newly constructed reactor (In a reactor design which
incorporates fuel (including fission products and transuranics) from a previously
operated reactor, natural source levels will most likely be high enough to allow
“fluctuations” to be ignored.). The mean neutron density before start-up depends on
an external source of neutrons, S(r,E) (not from neutron reactions, Eq. 2.50) which,
as part of the design, could be adjacent or internal to the reactor. At start-up, the
reactor is subcritical (k < 1) and the mean neutron population, in a point reactor
sense, is N = AS(k/(1-k)). In outline, the steps to bring the reactor critical are to pull
control rods up (down in most BWR designs) from their fully inserted position so as
to insert some precalculated amount of reactivity and then wait for a new steady
neutron level to be achieved. The subcritical neutron level is monitored by the
reactor’s source range detectors. A power reactor is instrumented with detectors for
the full range of expected neutron levels. These pull-and-wait steps are repeated
until the reactor is slightly super critical, and thus the neutron level is observed to be
on a continuously increasing, but easily controlled, trajectory. A pull-and-wait
procedure needs to account for neutron level fluctuations because if the observed
level, due to a minimizing fluctuation, is below the expected (mean) level when the
reactor is actually close to its critical configuration, then the next “pull” might
produce an unacceptable rapidly increasing trajectory [27]. The simplest way to
avert a problem with a pull-and-wait procedure is to assure that the sources
provided in the design (In a reactor design which incorporates fuel (including
fission products and transuranics) from a previously operated reactor, natural source
levels will most likely be high enough to allow “fluctuations” to be ignored.)
are strong enough to render subcritical neutron fluctuations negligible. Of course,
one has to understand neutron level fluctuations to make this assessment [28].

Future Directions

Fission reactor development, since its inception, has progressed with advances in
computing capability. Early on, analog computers were used for transient analyses,
but digital computers have been the primary tool. Design codes have been adapted
to advancing digital technology; scalar processing, then vector processing and now
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massively parallel processing. This is an active field today and should continue to
be so, particularly as the drivers for improve computer technology are universal.
In section “Neutron Distributions” the two approaches to solving the neutron
transport equation, Monte Carlo simulation and analytic methods (differencing
variables and solving the resulting matrix equations) were described. Parallel
computing would appear to be well suited to Monte Carlo as independent histories
can be run on the various (1,000’s of) processors simultaneously. There is, of
course, the need to provide the reactor configuration (geometry, nuclide
inventories, and cross sections) and the Monte Carlo code itself to each processor
that runs a history. This challenge is being accepted with considerable success as
exemplified by the accomplishments of the Los Alamos National Laboratory group
working on the MCNP code [15] and the joint effort at the Knolls and Bettis Atomic
Power Laboratories on the MC21 code [29]. Advocates of the analytic approach
have, however, not accepted the ultimate triumph of Monte Carlo. This is clear in the
work of a group at the Argonne National Laboratory, which has modestly named
their multigroup, discrete ordinate code UNIC, for Ultimate Neutronic Investigation
Code [30]. They are demonstrating impressive results for fast reactor designs.
Competition in supercomputer development and in attendant codes for nuclear
reactor design bodes well for better products in the future.

Physicists in their efforts to understand the atomic nucleus have made myriad
measurements and only partially by design these have included the neutron and
gamma cross sections, and fission product yields (and their decay mechanisms)
needed for the development of fission reactors. Today, work on this reactor-related
data is focused on establishing well-founded uncertainty measures. The Cross
Section Evaluation Working Group of the National Nuclear Data Center refers to
this effort as covariance evaluation [31]. This is particularly appropriate, for as
discussed above, one expects calculational methods to improve with computer
power and code development. Thus, in assigning error bounds in design, the
uncertainty in basic data will become more important relative to the contribution
of calculational error (e.g., Monte Carlo statistics or differencing and convergence
error in analytic methods). More well-founded and hopefully smaller design error
bounds can obviously be taken advantage of in future reactor development. Improving
error bounds is also consistent with the approach to overall power plant safety analysis
being fostered by many of the world’s nuclear regulatory agencies. They favor best
estimate analyses plus the assignment of rigorously defined uncertainty factors for
various classes of accident conditions. Reactor design error is only a contributor to
a safety analysis “uncertainty factor,” but for power plant technology to advance,
“reactor design” must do its part.

Much of the research for a next generation of fission reactor power plants is
focused on higher operating temperatures. Today’s thermal reactor plants, PWRs,
BWRs, and CANDU (heavy water moderated) have outlet reactor coolant
temperatures, Ty, of ~600°F, and thus thermal (Rankine cycle) efficiencies in the
low 30%. Raising Ty would increase cycle efficiency and lower fuel cost, and
provide high-temperature process heat (possibly for a catalytic hydrogen produc-
tion process). Higher operating temperatures in a water (or heavy water)
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environment present core and structural materials challenges. There likely will be
a need for additional resonance cross-section data for some additives (e.g., Manga-
nese and Chrome) to new high-temperature materials. Fast reactors (liquid metal or
gas cooled) operate at much higher temperatures than thermal reactors but also
require much higher fissile inventories to attain criticality. Experience with design
and operation of these reactors is limited (especially for gas cooled reactors)
compared to thermal reactors. Their future development with emphasis on the
burning of unwanted transuranics as well their traditional mission of efficient
conversion of fertile isotopes (U23 8 and Th232) to fissile isotopes (Pu23 °, pu**!
and U233) will stimulate some cross-section work. But, both thermal and fast reactor
development will most likely benefit more from advances in branches of physics
other than Nuclear, particularly Condensed Matter and Fluid Mechanics. The need
for nuclear power, both economic and environmental (if they can be separated?),
will drive fission reactor development. While Uranium and Thorium are abundant
in the earth’s crust, power demand will push reactor development to most effi-
ciently exploit the highest grade ores, which will likely lead to a mix of fast and
thermal reactors. In any case, physics as well as engineering will play key roles in
this development.
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