
Chapter 2
Semantics of First-Order Languages

In the last chapter, we presented syntactical notions pertaining to first-order theories.
However, in general, mathematical theories are not developed syntactically. In this
chapter, we give the semantics of first-order languages to connect the syntactical
description of a theory with the setting in which a mathematical theory is generally
developed. This chapter should also be seen as the beginning of a branch of logic
called model theory, which can be thought of as the general study of mathematical
structures. Some important notions from model theory, for example, the downward
Löwenheim–Skolem theorem, types, homogeneous structures, and definability, are
introduced here.

Recall that instead of beginning with the syntactical object group theory, in
practice, one begins by defining a group as a nonempty set G with a specified
element e and a binary operation · : G × G → G satisfying the following three
conditions:

1. For every a, b, c in G,

a · (b · c) = (a ·b) · c.
2. For every a ∈ G,

a · e = e ·a = a.

3. For every a ∈ G, there is a b ∈ G such that

a ·b = b ·a = e.

Thus a group consists of a nonempty set G with “interpretations” or “meanings”
of the nonlogical symbols · (a binary function symbol) and e (a constant symbol)
such that all the axioms of group theory are “satisfied.” Further, a statement in the
language of group theory is called a theorem if it is satisfied in all groups. Thus, to
give the connection we are looking for, first we should define the interpretation or
the structure of a language L as a nonempty set A together with the interpretations
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16 2 Semantics of First-Order Languages

or meanings of all the nonlogical symbols of L. This is known as the semantics of L.
Then the models of a theory T are those structures of the language for T in which
all axioms are true.

2.1 Structures of First-Order Languages

A structure or an interpretation of a first-order language L consists of (a) a nonempty
set M (called the universe of the structure), (b) for each constant symbol c of L, a
fixed element cM ∈ M, (c) for each n-ary function symbol f of L, an n-ary map
fM : Mn → M, and (d) for each n-ary relation symbol p of L, an n-ary relation
pM ⊂ Mn on M. The interpretation of “=” is always taken to be the equality relation
in M.

Any group is a structure of the language of group theory; the usual set of real
numbers with the usual 0, 1, +, ·, and < is a structure for the language of the theory
of ordered fields. Note that which statement is true in a structure and which is not is
irrelevant in the definition of a structure. For instance, the set of all natural numbers
N= {0,1,2, . . .} as the universe, 0 as the interpretation of e, and + the interpretation
of · is a structure of the language of group theory even though it is not a group.

Example 2.1.1. Let N be the set of all natural numbers, and let 0, 1, +, ·, and <
have the usual meanings. Further, let S(n) = n+ 1, n ∈ N. This is a structure of
the language of the theory N defined in Chap. 1. This structure will be called the
standard structure of N.

Let L be an extension of L′ and M a structure of L. By ignoring the interpretations
of those nonlogical symbols of L that are not symbols of L′, we get a structure M′ of
L′. We call M′ the restriction of M to L′ and denote it by M|L′. In this case we shall
also call M an expansion of M′ to L.

Recall that all variable-free terms can be obtained starting from constant symbols
and iterating function symbols on them. Thus, we shall define the interpretation or
meaning tM of each variable-free term t of L in M by induction on the rank of t. The
interpretation of a constant symbol c is already given by the structure, namely cM .
If t1, . . . , tn are variable-free terms whose interpretations have been defined and if f
is an n-ary function symbol of L, then we define

( f t1 · · · tn)M = fM((t1)M, . . . ,(tn)M).

By induction on the rank of terms, it is easy to see that we have defined tM for each
variable-free term t of L.

Example 2.1.2. Let L be the language of the theory of rings with identity. For each
positive integer m, let m denote the term obtained by “adding” 1 to itself m times.
Let P(x) be a polynomial expression whose coefficients are of the form m, i.e., P(x)
is a term of the form

m0 +m1x+ · · ·+mnxn,



2.2 Truth in a Structure 17

where x is a variable. Let R be a ring with identity. Then the interpretation of m in R
is the element m ∈ R obtained by adding the multiplicative identity of R to itself m
times, and for any variable-free term t, the interpretation of Px[t] in R is the element

P(tR) = m0 +m1tR +m2t2
R + · · ·+mntn

R

of R.

2.2 Truth in a Structure

In this section, we shall define when a formula of L is true and when it is false in a
structure of L. Note that if we have a structure of L with universe M and we would
like to know whether there is an element a ∈ M satisfying a formula ϕ [x], then we
have a bit of a problem because ϕ is a syntactical object and elements of M are not.
To circumvent this problem, given a structure of L with universe M, we first describe
an extension LM of the language L.

Given L and a structure of L with universe M, let LM be the first-order language
obtained from L by adding a new constant symbol ia for each a ∈ M. The symbol ia
is called the name of a. We regard M itself as the expansion of M to LM by setting
the interpretation of ia to be a for each a ∈ M.

We are now in a position to define when a formula of L is true or valid or
satisfiable in the structure M. To achieve this, we define the notion of the truth of
a closed formula or a sentence of LM in the structure M. The definition is based on
the well-known intended meaning of the logical connectives ∨ and ¬ and that of the
existential quantifier ∃. The notion of truth will be defined by defining a function
from the set of all closed formulas of LM to the set {T,F} (T for true and F for false)
satisfying some conditions. This will be done by induction on the rank of sentences
of LM . If a sentence takes the value T , we shall say that the sentence is true or valid
in M; otherwise, it is said to be false in M.

Recall that formulas have been defined inductively starting from atomic formulas
and iterating ¬, ∨, and ∃ on them. A variable-free atomic formula is of the form
pt1 · · · tn, where p is an n-ary relation symbol (including =) and t1, . . . , tn are
variable-free terms. We say that pt1 · · · tn is true in the structure if

pM((t1)M, . . . ,(tn)M)

holds, i.e.,

((t1)M, . . . ,(tn)M) ∈ pM ⊂ Mn.

Otherwise, we say that pt1 · · · tn is false in the structure. A sentence ¬A is true if and
only if A is false. A sentence A∨B is true if either A is true or B is true. Finally, a
sentence ∃vA is true if Av[ia] is true for some a ∈ M. We say that a formula A of LM

is true in the structure if its closure is true in the structure. If a formula A of L is true
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in a structure M of L, we also say that A is valid in the structure and write M |= A.
If A is not valid in M, then we write M �|= A.

Note that if A and B are closed formulas, then

M |= ¬A ⇔ M �|= A

and

M |= A∨B ⇔ M |= A or M |= B.

Exercise 2.2.1. Give an example of a formula (necessarily not closed) of the lan-
guage of the theory N that is not true and whose negation is not true in the standard
structure N of N. Similarly, give examples of formulas A and B of the language of
the theory N such that A∨B is valid in the standard structure N but neither A nor B
is valid in N.

Exercise 2.2.2. Show the following:

1. A sentence A∧B is valid in a structure if and only if both A and B are valid in the
structure.

2. A sentence of the form ∀vϕ [v] is valid in a structure with universe M if and only
if for each a ∈ M the sentence ϕv[ia] of LM is valid in the structure.

3. A sentence of the form A → B is valid in a structure if and only if either A is false
or B is true in the structure.

4. A sentence of the form A ↔ B is valid in a structure if and only if either both A
and B are valid or both are not valid in the structure.

Exercise 2.2.3. Let A[v1, . . . ,vn] be a formula and t1, . . . , tn be variable-free terms
of L. Show that the formulas

∀v1 · · ·∀vnA → A[t1, . . . , tn]

and

A[t1, . . . , tn]→∃v1 · · ·∃vnA

are valid in all structures of L.

2.3 Models and Elementary Classes

A model of a first-order theory T is a structure of L(T ) with universe M in which
all nonlogical axioms of T are valid. For instance, any group is a model of group
theory. On the other hand, the set N of natural numbers, together with the usual 0
and + as the interpretations of e and · respectively, is definitely a structure for the
language of group theory but not a model of group theory.
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Example 2.3.1. Show that the set of all natural numbers

N= {0,1, . . .}

with the usual meanings of S (the successor function), +, ·, and < is a model of the
theory N and also of Peano arithmetic. This model will be called the standard model
of N or of Peano arithmetic.

A formula A of T that is true in all models of T is called valid in T . One writes
T |= A if A is valid in T . If A is not valid in some model of T , we shall write T �|= A.

Exercise 2.3.2. Let L be an extension of L′, M a structure of L, and M′ the
restriction of M to L′. Note that M and M′ have the same individuals. Use the same
constant as a name for an individual in M and M′. Show that a statement of L′

M′ is
valid in M′ if and only if it is valid in M.

Let M be a structure of L and Th(M) the set of all sentences of L that are true in
M. Then T h(M) is called the Theory of M.

A class M of structures of a language L is called elementary if there is a theory
T with language L such that elements of M are precisely the models of T . Thus,
the classes of infinite sets, dense linearly ordered sets with no first element and no
last element, groups, rings, fields, ordered fields, etc., are elementary classes in the
corresponding languages.

A field K is called algebraically closed if every nonconstant polynomial P(X) ∈
K[X ] has a root in K. Let L be the language of rings. For each n ≥ 1, let An denote
the formula

∀v0 · · ·∀vn∃vn+1(v0 + v1 · vn+1 + · · ·+ vn · vn
n+1 = 0).

Then the class of all algebraically closed fields is elementary, axiomatized by
axioms of fields and {An : n≥ 1}. ACF will denote the theory of algebraically closed
fields, ACF(0) that of algebraically closed fields of characteristic 0, and ACF(p) that
of algebraically closed fields of characteristic p, p being a prime.

Exercise 2.3.3. (i) Show that a ring with an identity has more than one element
if and only if 0 �= 1.

(ii) Show that every algebraically closed field is infinite.
(iii) Show that if K is a nontrivial ordered field, then 0 < 1.
(iv) Show that every nontrivial ordered field is of characteristic 0.
(v) Show that every nontrivial ordered field is order-dense.

(vi) Show that if K is an ordered field, then −1 cannot be written as a sum of
squares of finitely many elements in K.

(vii) Show that an algebraically closed field is not orderable, i.e., there is no linear
order < on the field making it into an ordered field.

Henceforth, we assume that if R is a ring with identity, then 0 �= 1.
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Example 2.3.4. Let (R,0,1,+, ·) be a commutative ring with identity. The theory of
left R-modules has as its language an extension of abelian groups (with a constant
symbol 0′, a binary function symbol +′), and, for each r ∈ R, a unary function
symbol r·. Its axioms are those of abelian groups and the following sentences:

(1)
∀x(1 · x = x).

(2)
∀x∀y(r · (x+′ y) = r · x+′ r · y).

(3)
∀x((r+ s) · x = r · x+′ s · x).

(4)
∀x(r · (s · x) = (r · s) · x).

Models of the theory of left R-modules are called left R-modules. If, moreover, R
is a field, then they are called vector spaces over R.

Let G be an abelian group. For any element x ∈ G, let nx denote the term

x+ · · ·+ x
︸ ︷︷ ︸

n times

.

We call a group G divisible if for every n ≥ 1 and every x ∈ G there exists a y ∈ G
such that ny = x. Call G torsion-free if for every x ∈ G, x �= 0, and for every n ≥ 1,
nx �= 0. Let 0 �= x ∈ G, and let there exist a positive integer n such nx = 0. We call
the least such n the order of x in G.

Exercise 2.3.5. 1. Show that the class of divisible groups and that of torsion-free
groups are elementary.

2. Show that every nontrivial ordered abelian group is torsion-free.
3. Let n > 1 be an integer. Show that the class of all nontrivial groups G such that

every nonzero element in G is of order n is elementary. Also show that such an n
must be prime.

4. Let G be a torsion-free, divisible abelian group. For any x ∈ G and n > 1, show
that there is a unique y ∈ G such that ny = x. (Subsequently, we shall denote this
y by x/n.)

The theories of divisible abelian groups and ordered divisible abelian groups will
be denoted by DAG and ODAG, respectively.

Remark 2.3.6. For any rational number p/q, q > 0 relatively prime to p, define
(p/q)x= p(x/q). This makes G a vector space over the field Q of rationals. Further,
if G is uncountable and B is a basis of G as a vector space over Q, then B and G are
of the same cardinality.
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At this stage it is not possible to give examples of nonelementary classes. For
instance, it will be proved later that the class of all finite sets is not elementary.
Several more examples will be given later.

2.4 Embeddings and Isomorphisms

In this section we introduce notions analogous to subgroups of a group, isomor-
phisms of rings, isomorphic fields, etc. in the general context of first-order logic.

In the rest of this section, unless otherwise stated, M and N will denote structures
of a fixed first-order language L.

For the sake of brevity, a sequence (a1, . . . ,an) ∈ Nn will sometimes be denoted
by a and (ia1 , . . . , ian) by ia. Further, for any map α : N → M, α(a) will stand for the
sequence (α(a1), . . . ,α(an)).

An embedding of N into M is a one-to-one map α : N → M satisfying the
following conditions:

(1) For every constant symbol c of L,

α(cN) = cM.

(2) For every n-ary function symbol f of L and every a ∈ Nn,

α( fN(a)) = fM(α(a)).

(2) For every n-ary relation symbol p of L and every a ∈ Nn,

pN(a)⇔ pM(α(a)),

i.e.,

a ∈ pN ⇔ α(a) ∈ pM.

If, moreover, α : N → M is a surjection, we call α : N → M an isomorphism. In
this case, M and N are called isomorphic structures. An automorphism of M is an
isomorphism from M onto itself.

If N ⊂ M and the inclusion map N ↪→ M is an embedding, then N is called a
substructure of M.

Remark 2.4.1. Let N be a subset of a structure M such that for each constant symbol
c, cM ∈ N, and for every function symbol f , N is closed under fM . We then make N
a substructure of M by setting

(i) For every constant symbol c of L,

cN = cM;
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(ii) For every n-ary relation symbol p,

pN = pM ∩Nn,

the restriction of pM to N; and
(iii) For every n-ary function symbol f ,

fN = fM |Nn,

the restriction of fM to Nn.

Example 2.4.2. Let L be the language of group theory. If H is a subgroup of a group
G, then H is a substructure of G. If G and H are groups, then a group isomorphism
α : G → H is an isomorphism from the structure G to the structure H.

Note that if G is a group and H ⊂ G a substructure, then H need not be a
subgroup. It is just a subset of G that contains the identity of the group G and is
closed under the group operation. For instance, N ⊂ Z, the group of all integers, is
a substructure but not a subgroup of Z. Similarly, a substructure R′ of a ring R with
identity is a subset of R containing 0 and 1 and closed under + and ·, but it may not
be a subring.

It will be convenient to have the substructures of a group be a subgroup and
those of a ring be its subrings. Thus, henceforth we shall take the following as the
definition of the theory of rings. Its language is the extension of the language of
rings as defined earlier and one more binary function symbol −. Its axioms are the
axioms of the rings and the following statement:

∀x∀y∀z(x− y = z ↔ x = y+ z).

Similarly, henceforth the language of groups is augmented with a binary function
symbol − and the preceding axiom.

Substructures of a field F are subrings D of F satisfying

∀x∀y(x · y = 0 → (x = 0∨ y = 0)).

Such commutative rings with identity are called integral domains.

Exercise 2.4.3. Show that if K is a field, then the ring of polynomials K[X1, · · · ,Xn]
is an integral domain.

(Hint: Let P(X1, · · · ,Xn) ·Q(X1, · · · ,Xn) = 0 and P �= 0. This means that not all
coefficients of P are zero and all coefficients of P ·Q are zero. By a suitable inductive
argument, show that all the coefficients of Q are 0. Also note that this result is true
for all integral domains K.)

We now proceed to study the notion of embeddings, isomorphisms, etc. in
complete generality. This general study, which is more in the spirit of logic, will
turn out to be very useful.
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Proposition 2.4.4. Let α : N → M be an embedding and t[v1, . . . ,vn] a term of L,
and let a ∈ Nn. Then

α(t[ia]N) = t[iα(a)]M.

Proof. We prove the result by induction on the rank of t. If t is a variable vi, then
both terms equal α(ai). If t is a constant c, then the term on the left is α(cN) and
that on the right is cM. They are equal because α is an embedding.

Now assume that the result is true for t1, . . . , tk and t is the term f (t1, . . . , tk). Then

α(t[ia]N) = α( fN(t1[ia]N , . . . , tk[ia]N))
= fM(α(t1[ia]N), . . . ,α(tk[ia]N))
= fM(t1[iα(a)]M, . . . , tk[iα(a)]M)

= t[iα(a)]M.

The first equality holds by the definition of t[ia]N , the second equality holds
because α is an embedding, the third equality holds by the induction hypothesis,
and the fourth equality holds by the definition of t[iα(a)]M .

The proof is complete. �

Proposition 2.4.5. Let α : N → M be an embedding and ϕ [v1, . . . ,vn] an open
formula of L, and let a ∈ Nn. Then

N |= ϕ [ia]⇔ M |= ϕ [iα(a)]. (*)

Proof. Recall that the set of all open formulas is the smallest class of formulas that
contains all atomic formulas and is closed under ¬ and ∨. Thus, the result will
be proved if we show that the set of formulas ϕ satisfying (∗) contains all atomic
formulas and is closed under ¬ and ∨.

By the definition of the truth in a structure, the definition of embedding, and
Proposition 2.4.4, (∗) holds for formulas of the form t = s as well as for atomic
formulas of the form p(t1, . . . , tn).

Now assume that ϕ is the formula ¬ψ and the result is true for ψ . Then

N |= ϕ [ia] ⇔ N �|= ψ [ia]
⇔ M �|= ψ [iα(a)]

⇔ M |= ϕ [iα(a)].

The first and last equivalences hold because the formulas ψ [ia] and ψ [iα(a)] are
closed; the second equivalence holds by the induction hypothesis.

The case ϕ of the form ψ ∨η is dealt with similarly:

N |= ϕ [ia] ⇔ N |= ψ [ia] or N |= η [ia]
⇔ M |= ψ [iα(a)] or M |= η [iα(a)]

⇔ M |= ϕ [iα(a)].

The proof is complete. �
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Exercise 2.4.6. Let α : N → M be a map such that for every atomic ϕ [v1, . . . ,vn]
and every a ∈ Nn,

N |= ϕ [ia]⇔ M |= ϕ [iα(a)].

Show that ϕ is an embedding.

(Hint: To show that for any constant symbol c, α(cN) = cM, let the formula ϕ [x]
be c = x and consider ϕ [icN ]; to show that for a,b ∈ N, α(a) = α(b) implies a = b,
let ϕ [x,y] be the formula x = y and consider ϕ [ia, ib], etc.)

Our next result gives a method to build an extension of a structure. Let M be a
structure of a first-order language L. We define the atomic diagram , or simply the
diagram of M, denoted by Diag(M), by

Diag(M) = {ϕ [ia] : a ∈ M,M |= ϕ [ia],ϕ an atomic formula of L}.

Proposition 2.4.7. If N |= Diag(M), then M has an embedding into N.

Proof. For a ∈ M, take α(a) = (ia)N . By Exercise 2.4.6, α : M → N is an
embedding. �

Theorem 2.4.8. Let α : N → M be an isomorphism and ϕ [v1, . . . ,vn] a formula of
LN. Then for every a ∈ Nn,

N |= ϕ [ia]⇔ M |= ϕ [iα(a)]. (**)

In particular, for every sentence ϕ of L, N |= ϕ if and only if M |= ϕ .

Proof. Since an isomorphism is an embedding, by the arguments contained in the
proof of Proposition 2.4.5, the set of all formulas ϕ satisfying (∗∗) contains all
atomic formulas and is closed under ¬ and ∨.

Let ϕ [v1, . . . ,vn] be a formula of the form ∃vψ , with v different from each of the
vi. Suppose (∗∗) holds for ψ and all (a,a1, . . . ,an) ∈ Nn+1. To complete the proof,
we now have only to show that (∗∗) holds for ϕ and every a ∈ Nn. Thus, we take
any a ∈ Nn. Then

N |= ϕ [ia] ⇔ N |= ψ [ia, ia] for some a ∈ N
⇔ M |= ψ [iα(a), iα(a)] for some a ∈ N
⇔ M |= ψ [ib, iα(a)] for some b ∈ M
⇔ M |= ϕ [iα(a)].

The first equivalence holds by the definition of validity in N, the second
equivalence holds by the induction hypothesis, the third equivalence holds because
α is surjective, and the last equivalence holds by the definition of validity in M.

The proof is complete. �

An embedding α : N →M is called an elementary embedding if for every formula

ϕ [v1, . . . ,vn] and every a ∈ Nn,

N |= ϕ [ia]⇔ M |= ϕ [iα(a)].
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If N ⊂ M and the inclusion N ↪→ M is an elementary embedding, then we say that N
is an elementary substructure of M or that M is an elementary extension of N. The
structures N and M are called elementarily equivalent if for every closed formula ϕ ,

N |= ϕ ⇔ M |= ϕ .

We write N ≡M if N and M are elementarily equivalent. Clearly,≡ is an equivalence
relation on the class of all structures of L.

Below we present a method to build an elementary extension of a structure. Let
M be a structure of a first-order language L. We define the elementary diagram of
M, denoted by Diagel(M), by

Diagel(M) = {ϕ [ia] : a ∈ M,M |= ϕ [ia], ϕ a formula of L}.

As before, we have the following result.

Proposition 2.4.9. If N |=Diagel(M), then M has an elementary embedding into N.

Remark 2.4.10. By Theorem 2.4.8, two structures N and M are elementarily
equivalent if they are isomorphic. Later on in the book we shall show that any
two algebraically closed fields of characteristic 0 are elementarily equivalent. But

the field Q
alg

of algebraic numbers and the field C of complex numbers are
two algebraically closed fields of characteristic 0 that are not even of the same
cardinality. Hence, elementarily equivalent structures need not be isomorphic. Later
in these pages we shall show that an elementary embedding α : N → M need not
be surjective.

Theorem 2.4.11. Let N be a substructure of M. Then N is an elementary substruc-
ture of M if and only if for every formula ϕ [v,v1, . . . ,vn] and for every a ∈ Nn, if
there is a b ∈ M satisfying

M |= ϕ [ib, ia],

then there is a b ∈ N satisfying

M |= ϕ [ib, ia].

Proof. Let N be an elementary substructure of M. Take a formula ϕ [v,v1, . . . ,vn].
Let a ∈ Nn, and suppose there is a b ∈ M satisfying M |= ϕ [ib, ia]. This means that
M |= ∃vϕ [v, ia]. Since N is an elementary substructure of M, we have N |= ∃vϕ [v, ia].
Thus, there is a b∈ N satisfying N |= ϕ [ib, ia]. Since N is an elementary substructure
of M, M |= ϕ [ib, ia].

We prove the if part of the result by showing that for every formula ψ [v1, . . . ,vn]
and for every a ∈ Nn,

N |= ψ [ia]⇔ M |= ψ [ia]. (*)
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We shall prove (∗) by induction on the rank of ψ . By Proposition 2.4.5, (∗) is true
for all atomic formulas. Arguing as in the proof of that proposition, we can show
that if (∗) is true for ϕ , then it is true for ¬ϕ , and if ϕ and ψ satisfy (∗), then so
does ϕ ∨ψ .

Now assume that ϕ [v1, . . . ,vn] is a formula of the form ∃vψ [v,v1, . . . ,vn] and (∗)
holds for ψ and every (a,a1, . . . ,an) ∈ Nn+1. Take a ∈ Nn.

Suppose N |=ϕ [ia]. Then there is a b∈N such that N |=ψ [ib, ia]. By the induction
hypothesis, M |= ψ [ib, ia]. Thus, M |= ϕ [ia].

Now assume that M |= ϕ [ia]. So there is a b ∈ M such that M |= ψ [ib, ia]. By our
assumptions, there is a b ∈ N such that M |= ψ [ib, ia]. By the induction hypothesis,
N |= ψ [ib, ia]. Thus, N |= ϕ [ia]. �


2.5 Some Examples

Let L(<) be a language with only one binary relation symbol <.

Proposition 2.5.1. If (M,<) is a countable linearly ordered set, then there is an
embedding α : M → Q, where Q is the set of all rational numbers with usual
ordering.

Proof. Let r0,r1, . . . be an enumeration of M such that the ri are distinct. We define
α(rn) by induction on n. Set α(r0) = 0. Suppose n> 0, and α : {ri ∈ M : i< n}→Q

has been defined so that it is order-preserving. Since Q is a dense linearly ordered set
with no first element and no last element, there is a α(rn) ∈Q such that α : {ri ∈ M :
i ≤ n}→Q is order-preserving. Thus we have defined an embedding α : M →Q.

�

Theorem 2.5.2. Any two countable models Q1 and Q2 of DLO are isomorphic.

Proof. Let {rn} and {sm} be enumerations of Q1 and Q2, respectively. Set n0 = 0
and m0 = 0. Suppose for some i, n0, . . . ,n2i and m0, . . . ,m2i have been defined so
that the map f defined by

f (rn j ) = smj , 0 ≤ j ≤ 2i,

is injective and order-preserving. Now let m2i+1 be the first natural number k such
that sk is different from each smj , j ≤ 2i. Show that there is a natural number l such
that rl is different from each rn j , j ≤ 2i, and the extension of f sending rl to sm2i+1

is order-preserving. Set n2i+1 to be the first such l. Thus, the map f (rn j ) = smj ,
j ≤ 2i+1, is injective and order-preserving. Now define n2i+2 to be the first natural
number l such that rl is different from each rn j , j ≤ 2i+1. Again, observe that there
is a natural number k such that sk is different from each smj , j ≤ 2i+ 1, and the
extension of the preceding map by defining f (rn2i+2) = sk is order-preserving. Set
s2i+2 to be the least such k. It is easily checked that f : Q1 →Q2 is an isomorphism.

�
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Remark 2.5.3. The method of the foregoing proof is fairly common and will be
repeated several times. It is known as the back-and-forth argument.

Exercise 2.5.4. Let A ⊂Q be finite and f : A →Q be an order-preserving, one-to-
one map. Show that there is an order-preserving bijection g : Q→Q extending f .

Proposition 2.5.5. Two divisible torsion-free abelian uncountable groups G1 and
G2 are isomorphic if and only if they are of the same cardinality.

Proof. We need to prove the if part only. Since the Gi are uncountable and of the
same cardinality, they are of the same dimension as vector spaces overQ. Hence, G1

and G2 are isomorphic as vector spaces over Q. In particular, they are isomorphic
as groups. �

Corollary 2.5.6. The additive groups of real and complex numbers are isomorphic.

Exercise 2.5.7. Show that the theory of divisible, torsion-free abelian groups has
exactly ℵ0-many nonisomorphic countable models such that any other countable
model is isomorphic to one of these models.

Proposition 2.5.8. Let D be an integral domain. Then there is a field F and an
embedding q : D→ F such that for every field K and every embedding r : D→ K,
there is a unique embedding s : F→K such that s◦ q = r.

We give only a sketch of the proof. The routine verifications are left to the reader
as an exercise.

Proof. Set

E = {(a,b) ∈D×D : b �= 0}.
We define an equivalence relation ∼ on E by

(a,b)∼ (c,d)⇔ a ·d = b · c
and set

F= E/∼ =
{a

b
: (a,b) ∈ E

}

,

the set of all ∼-equivalence classes, i.e., a
b denotes the equivalence class containing

(a,b). We define

0 =
0
1
,1 =

1
1
,

a
b
+

c
d
=

ad+ bc
bd

,

a
b
− c

d
=

ad− bc
bd

and
a
b
· c

d
=

ac
bd

.

It is easily checked that these are well defined and make F a field.
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Now define q : D→ F by

q(a) =
a
1
,a ∈D.

Then q : D→ F is an embedding.
Given any embedding r of D into a field K, define s : F→K by

s(
a
b
) = r(a) · r(b)−1,

a
b
∈ F. �


It is easy to verify that if q′ : D → F
′ is another such pair, then there is an

isomorphism h : F′ → F such that h ◦ q′ = q. In particular, F is unique up to
isomorphism. Such an F is called the quotient field of D.

Example 2.5.9. The field of rational numbers Q is the quotient field of the ring of
integers Z.

Example 2.5.10. If K[X1, · · · ,Xn] is the ring of polynomials over a field K, then its
quotient field is denoted by K(X1, · · · ,Xn). Its elements are called rational functions
over K. As described previously, its elements can be thought of as the formal
quotients of two polynomials.

Similar results are true for torsion-free abelian groups and ordered abelian
groups.

Proposition 2.5.11. Let H be a torsion-free abelian group. Then there is a torsion-
free, divisible abelian group G and an embedding α : H → G such that for every
torsion-free, divisible abelian group G′ and every embedding β : H → G′, there is a
unique embedding γ : G → G′ such that β = γ ◦α .

Proof. Set

E = {(h,n) : h ∈ H,n > 0}.
Define an equivalence relation ∼ on E by

(h,n)∼ (h′,n′)⇔ n′h = nh′.

Let h
n denote the equivalence class containing (h,n) ∈ E , and set

G = E/∼ =

{

h
n

: (h,n) ∈ E

}

,

0 =
0
1
,

h
n
+

h′

n′
=

n′h+ nh′

nn′
,
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and

α(h) =
h
1
,h ∈ H.

Then these are well defined and make G a group with α : H → G an embedding.
Now given a torsion-free, divisible abelian group G′ and an embedding β : H → G′,
define γ : G → G′ by

γ
(

h
n

)

=
β (h)

n
,

h
n
∈ G,

where β (h)
n is the unique element g of G′ such that ng′ = β (h). �


The group G obtained above is unique up to isomorphism and is called the
divisible hull of H.

Proposition 2.5.12. Let H be an ordered abelian group. Then there is a divisible,
ordered abelian group G and an embedding α : H → G such that for every divisible,
ordered abelian group G′ and every embedding β : H → G′ there is a unique
embedding γ : G → G′ such that β = γ ◦α .

Proof. Let < denote the ordering on H. Recall that every ordered abelian group is
torsion-free. We proceed as in the proof of Proposition 2.5.11 and define

h
n
<

h′

n′
⇔ n′h < nh′. �


The ordered abelian group G is unique up to isomorphism and is called an
ordered divisible hull of H.

A ring R is called orderable if there is a linear order < on R such that for every
x,y,z ∈ R the following conditions are satisfied.

1. 0 < x and 0 < y imply 0 < x · y.
2. x < y implies x+ z < y+ z.

Let D be an ordered integral domain and K its quotient field. Note that every
element of K can be expressed in the form c

d ∈K with d > 0.

Proposition 2.5.13. Let D be an ordered integral domain and K its quotient field.
For a

b ,
c
d ∈K with b,d > 0, define

a
b
<

c
d
⇔ a ·d < b · c

and

α(a) =
a
1
, a ∈ D.

This makes the quotient field K an ordered field with α : D → K an order-
preserving embedding. Further, for every ordered fieldF and every order-preserving
embedding β : D→ F, there is a unique order-preserving embedding γ :K→ F such
that γ ◦α = β .

Its entirely trivial proof is left to the reader as an exercise.
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2.6 Homogeneous Structures

Let M and N be structures for a language L and A ⊂ M. A map f : A → N is called
partial elementary if for every formula ϕ [x] and every a ∈ A,

M |= ϕ [ia]⇔ N |= ϕ [i f (a)].

Note that a partial elementary map must be injective. Also, if f is partial elementary,
then so is f−1.

Remark 2.6.1. If A = /0 ⊂ M, then f : A → N (the empty function) is partial
elementary if and only if M and N are elementarily equivalent. In particular, if
for some A ⊂ M there is a partial elementary map f : A → N, then M and N are
necessarily elementarily equivalent.

Let κ be an infinite cardinal. We call M κ-homogeneous if for all A ⊂ M of
cardinality less than κ , for all partial elementary maps f : A → M, and for all
a ∈ M, there is a partial elementary map g : A∪ {a} → M extending f . We call
M homogeneous if it is |M|-homogeneous, where |M| denotes the cardinality of M.
We call a theory T homogeneous if all its models are homogeneous.

Example 2.6.2. The linearly ordered set of rationals Q is homogeneous. Let A ⊂Q

be finite and f : A→Q a partial elementary. Then f is an order-preserving injection.
In a slight modification of the argument contained in the proof of Theorem 2.5.2,
we see that there is an order-preserving bijection g : Q→Q extending f . Thus, for
every formula ϕ [x] and every a ∈ Q,

Q |= ϕ [ia]⇔Q |= ϕ [ig(a)].

Our contention now follows.

Following the back-and-forth argument, we have the following theorem.

Theorem 2.6.3. Let M be a countable homogeneous structure of a language L, and
let A ⊂ M be finite. Then every partial elementary map f : A → M can be extended
to an automorphism of M.

Proof. Fix an enumeration {xn} of the elements of M. Set f−1 = f . We shall define
a sequence { fn} of finite partial elementary maps such that for every n, fn+1 extends
fn and xn belongs to the domain as well as to the range of fn.

Assume fn is defined. If xn+1 ∈ domain( fn), then set g = fn. If xn+1 �∈
domain( fn), then, by homogeneity, there is a partial elementary g : domain( fn)∪
{xn+1} → M. Now, if xn+1 ∈ range(g), then we set fn+1 = g. Otherwise, we take
fn+1 to be the inverse of a partial elementary map h : range(g)∪ {xn+1} → M
extending g−1, which exists by the homogeneity of M.

The map f∞ = ∪n fn is an automorphism of M extending f . �
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Using the method of transfinite induction we can easily see that this result can be
extended to all homogeneous structures as follows.

Theorem 2.6.4. Let M be a homogeneous structure of a language L and A ⊂ M of
cardinality less than that of M. Then every partial elementary map f : A → M can
be extended to an automorphism of M.

Proof. We assume that |M|> ℵ0. Enumerate M \A = {aα : α < |M|}, and set f0 =
f . By transfinite induction, for each α < |M|, we define a partial elementary map
fα : A∪{aβ : β < α} such that for β < α < |M|, fα extends fβ .

Suppose fα : A∪{aβ : β < α} → M has been defined and is partial elementary.
Since |A ∪ {aβ : β < α}| < |M|, by homogeneity, there is a partial elementary
extension fα+1 : A∪{aβ : β ≤ α} → M of fα .

If α is a limit ordinal and fβ , β < α , have been defined, then we take fα =
∪β<α fβ . Finally, g =∪α<|M| fα : M → M is a partial elementary map that extends f .

�

Let M be a structure for a language L and a ∈ Mn. We define

t pM(a) = {ϕ [x] : M |= ϕ [ia]}

and call it a complete n-type realized by a. Types play a very important role in model
theory. t pM(a) may be thought of as the set of all properties ϕ [x] satisfied by a.

Theorem 2.6.5. Let M be a homogeneous structure for a language L and a,b∈Mn.
Then t pM(a) = t pM(b) if and only if there is an automorphism α : M → M with
α(a) = b.

Proof. Observe that t pM(a) = t pM(b) if and only if the map a → b is partial
elementary and use Theorem 2.6.4. �


Using the back-and-forth argument, we get the following proposition.

Proposition 2.6.6. Let M and N be countable homogeneous structures for a
language L such that for every k ≥ 1,

{t pM(a) : a ∈ Mk}= {t pN(b) : b ∈ Nk}.

Then M and N are isomorphic.

Proof. Fix enumerations {ak} and {bk} of M and N, respectively.
Set a′0 = a0, and consider t pM(a′0). By our hypothesis, there is a b ∈ N such that

t pM(a′o) = t pN(b). Let b′0 be the first such b in the preceding enumeration of N.
Now let b′1 be the first element in the enumeration of N different from b′0.

By our hypothesis, there exist a,a′ ∈ M such that t pM(a,a′) = t pN(b′0,b
′
1). In

particular, t pM(a) = t pN(b′0) = t pM(a′0). Thus, a → a′0 is partial elementary. Since
M is homogeneous, there is an a′′ ∈ M such that (a,a′) → (a′0,a

′′) is partial
elementary. Therefore, t pN(b′0,b

′
1) = t pM(a,a′) = t pM(a′0,a

′′). Since b′0 �= b′1, x �= y
is in t pN(b′0,b

′
1). This implies that a′0 �= a′′. We let a′1 denote the first such a′′ in the

enumeration of M.
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Now let a′2 be the first element in the enumeration of M not belonging to
{a′0,a

′
1}. By our hypothesis, there exist b,b′,b′′ ∈ N such that t pN(b,b′,b′′) =

t pM(a′0,a
′
1,a

′
2). In particular, t pN(b,b′)= t pM(a′0,a

′
1)= t pN(b′0,b

′
1). Thus, (b,b′)→

(b′0,b
′
1) is partial elementary. Since N is homogeneous, there exists a b′′′ ∈ N

such that (b,b′,b′′) → (b′0,b
′
1,b

′′′) is partial elementary. Hence, t pN(b′0,b
′
1,b

′′′) =
t pN(b,b′,b′′) = t pM(a′0,a

′
1,a

′
2). Since a′2 �∈ {a′0,a

′
1}, b′′′ �∈ {b′0,b

′
1}. Let b′2 be the

first such b′′′ in the enumeration of N.
Continuing this back-and-forth method, we shall get enumerations {a′k} and {b′k}

of M and N, respectively, such that for every k, (a′o, · · · ,a′k)→ (b′o, · · · ,b′k) is partial
elementary. Plainly, a′i → b′i defines an isomorphism from M to N. �


2.7 Downward Löwenheim–Skolem Theorem

In this section we present a method of constructing elementary substructures of
small cardinality. From this it will follow that if a countable theory has a model,
then it has a countable model. In particular, if there is a model of set theory, then
there is a countable model of set theory. This is an important result in set theory. In
Chap. 5, we will present a method to construct elementary extensions of arbitrarily
large cardinalities.

Theorem 2.7.1 (Downward Löwenheim–Skolem theorem). Let M be a struc-
ture of L and X ⊂ M. Suppose L has at most κ nonlogical symbols and κ an infinite
cardinal number. Then there is an elementary substructure N of M such that X ⊂ N
and the cardinality of N is at most max(κ , |X |), where |X | denotes the cardinality
of X.

Proof. Essentially, our N will be the smallest subset of M containing X satisfying
the following conditions:

(i) Each cM ∈ N, where c is a constant symbol of L.
(ii) The set N is closed under fM for every function symbol f of L.

(iii) Whenever a sentence of the form ∃vϕ is valid in M, there is an element a ∈ N
such that M |= ϕv[ia].

By induction on k, we shall define

N0 ⊂ N′
1 ⊂ N1 ⊂ . . .⊂ Nk ⊂ N′

k ⊂ Nk+1 ⊂ . . .⊂ M

such that each N′
k is a substructure of N and for every formula of the form

∃vϕ [v,v1, . . . ,vn] and every a ∈ N′n
k , if M |= ∃vϕ [v, ia], then there is a b ∈ Nk+1 such

that M |= ϕ [ib, ia]. Further, each Nk is of cardinality ≤ max(κ , |X |).
Let N0 be the smallest subset of M containing X that contains all cM and that is

closed under all fM . Note that |N0| ≤max(κ , |X |) and that N0 is a substructure of M.
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Suppose Nk has been defined such that |Nk| ≤ max(κ , |X |). Now we define N′
k

and Nk+1. Let N′
k be the smallest subset of M containing Nk that is closed under all

fM . Then |N′
k| ≤ max(κ , |X |).

Fix a formula of the form ϕ [v,v1, . . . ,vn]. Let ψ be the formula ∃vϕ . For every
a = (a1, . . . ,an) ∈ (N′

k)
n, whenever M |= ψ [ia], there is a b ∈ M such that M |=

ϕ [ib, ia]. Choose and fix one such b. Let Nk+1 be obtained from N′
k by adding all the

b thus chosen. Again note that |Nk+1| ≤ max(κ , |X |).
Set

N = ∪kNk.

Then:

(i) For every constant symbol c, cM ∈ N;
(ii) For every function symbol f , N is closed under fM ;

(iii) |N| ≤ max(κ , |X |) and X ⊂ N.

Thus, N is a substructure of M as in Remark 2.4.1.
Let ϕ [v1, . . . ,vn] be any formula and a ∈ Nn. Since N is a substructure of M,

by Theorem 2.4.11, the proof will be complete if we show that for every formula
ϕ [v,v1, . . . ,vn] and for every a ∈ Nn, if there is a b ∈ M satisfying M |= ϕ [ib, ia],
then there is a b ∈ N satisfying M |= ϕ [ib, ia]. Let ϕ [v,v1, . . . ,vn] be a formula, and
let a ∈ Nn and b ∈ M be such that M |= ϕ [ib, ia]. Since Nk ⊂ Nk+1 for all k, there
is a natural number p such that each ai ∈ Np. By the definition of Np+1, there is a
b ∈ Np+1 ⊂ N such that M |= ϕ [ib, ia]. �

Remark 2.7.2. In the foregoing proof we used an important axiom of set theory
called the axiom of choice.

Axiom of choice: If {Xi : i ∈ I} is a family of nonempty sets, then there is a map
f : I →∪i∈IXi such that f (i) ∈ Xi for all i ∈ I.

A function f satisfying the conclusion of the axiom of choice is called a choice
function for the family {Xi : i ∈ I}. The axiom of choice asserts only the existence
of a choice function – it gives no method to produce a choice function.

The theory obtained by adding the axiom of choice to the axioms of ZF is denoted
by ZFC.

Corollary 2.7.3. If a countable theory has a model, then it has a countable model.

Corollary 2.7.4. If ZF (or ZFC) has a model, then it has a countable model M.

Remark 2.7.5. This seemingly paradoxical result calls for an explanation. First, we
call a set x transitive if y ∈ x ⇒ y ⊂ x. In ZF, it can be shown that if M is a countable
model of ZF, then it has a countable transitive model. Thus, we assume that M is
countable and transitive.

Now, ZF proves that there is an uncountable set. Since M is a model of ZF, this
statement is true in the model M. In particular, there is a set x in M such that

M |= |x|> ℵ0.

Since M is transitive, x ⊂ M. But M itself is countable!
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In the real world V (a model of ZFC in the present case, assuming that it exists),
M is countable. Thus, in the real world there is a function f from N onto x. We have
not asserted that such an f ∈ M. And in our situation, no such f belongs to M. This
is not a contradiction at all.

Let (R,<) be a linearly ordered set and A ⊂ R. An element u of R is called an
upper bound of A if for every a ∈ A, a ≤ u, where x ≤ y means that either x < y
or x = y. If u is an upper bound of A and no v < u is an upper bound of A, then u
is called the least upper bound of A. A linearly ordered set R is called complete if
every nonempty subset A of R that has an upper bound has a least upper bound.

Proposition 2.7.6 (Cantor). Every complete, order-dense, linearly ordered set
(R,<) with more than one element is uncountable.

Proof. If possible, assume that R is countable. We shall arrive at a contradiction.
Fix an enumeration R = {rn} of R. Let x0 < y0 be two distinct points of R. Since
R is order-dense, there is a x ∈ R such that x0 < x < y0. Let n be the first integer
such that x0 < rn < y0. Set x1 = rn. Since R is order-dense, there is a y ∈ R such
that x1 < y < y0. Set y1 = rm, where m is the first natural number with x1 < rm < y0.
Assuming, x0 < · · · < xn < yn < · · · < y0 have been defined, set xn+1 to be the first
rl such that xn < rl < yn. Then take yn+1 to be the first rk such that xn+1 < rk < yn.

Since {xn} is bounded above, it has a least upper bound, say rp. Clearly, rp ≤ yn

for all n. But, by our construction, no rp can be the least upper bound of {xn}. This
contradiction proves our result. �


Here is an interesting corollary.

Corollary 2.7.7. Let L = L(<) be a language with only one nonlogical symbol,
a binary relation symbol. Then the class M of all complete, order-dense, linearly
ordered L(<)-structures with more than one point is not elementary.

Proof. Suppose T is a theory with language L(<) whose models are precisely the
structures in M. Clearly, T has a model. Since T is countable, T has a countable
model. But, by Cantor’s theorem, no structure in M is countable. �

Exercise 2.7.8. Show that the class of all complete ordered fields is not elementary.

2.8 Definability

In this section, we introduce the interesting and important notion of definability.
This gives rise to interesting questions and applications in mathematics, which
is very important from a logic point of view, too. For instance, this formed the
basis for Gödel’s model of constructible sets in which the axiom of choice and
the continuum hypothesis hold. This also plays an important role in decidability
questions pertaining to models.
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Throughout this section, unless otherwise stated, M will stand for a structure of
a language L.

For n ≥ 1, X ⊂ Mn is called definable (in the language L) if there is a formula
ϕ [v1, · · · ,vn,w1, · · · ,wm] of L and a b ∈ Mm such that

a ∈ X ⇔ M |= ϕ [ia, ib].

b is called the parameters. If the parameters come from a subset A of M, we call X
A-definable. Note that if X is definable, it is A-definable for some finite A ⊂ M. A
function f : Mk → Ml is called definable if its graph is definable. An element a ∈ M
is called A-definable if the singleton set {a} is A-definable.

Example 2.8.1. Let M be a structure for a language L. Then every finite D ⊂ Mn

is definable. To see this when n = 1, let D = {a1, · · · ,ak} ⊂ M. Then the formula
∨k

i=1(x = iai) defines D. The proof for n > 1 is left to the reader as an exercise.

Example 2.8.2. If c, f , and p are respectively constant, function, and relation
symbols of L, then their interpretations cM , fM , and pM are /0-definable. The formula
x = c defines cM , the formula y = f x1 · · ·xn defines fM , with f an n-ary function
symbol, whereas the formula py1 · · ·ym defines pM , with p an m-ary relation symbol.

Since formulas are described inductively, it is natural to expect an inductive
definition of definable sets, which we present in the next lemma. Its entirely routine
proof is left as an exercise for the reader. For a set M, a family of subsets of Mn,
n ≥ 1, will be called a pointclass.

Lemma 2.8.3. Let M be a structure of a language L. The pointclass of all
definable subsets of Mn, n ≥ 1, is the smallest pointclass D satisfying the following
conditions:

1. {cM}, pM and the graph of fM, c, p, and f respectively constant, relation, and
function symbols of L, belong to D.

2. The set {a ∈ Mn : ai = a j} ∈ D, 1 ≤ i < j ≤ n.
3. If A ⊂ Mn+m is in D and b ∈ Mm, then the section

Ab = {a ∈ Mn : (a,b) ∈ A} ∈ D.

4. If A,B ⊂ Mn are in D, then so are A∪B and Mn \A.
5. If A ⊂ Mn+1 is in D, then so is its projection

π(A) = {a ∈ Mn : ∃a ∈ M((a,a) ∈ A)}.

Exercise 2.8.4. 1. Show that the pointclass D of definable sets is closed under
finite intersections and under substitutions by definable functions, i.e., if A ⊂ Mn

is in D and f1, · · · , fn : Mm → M are definable, then so is the set B ⊂ Mm

defined by

a ∈ B ⇔ f (a) ∈ A.

In particular, if A is definable, then so is M×A.
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2. Show that if A ⊂ Mn+1 is definable, then so is its coprojection B ⊂ Mn defined by

a ∈ B ⇔∀a ∈ M((a,a) ∈ A).

3. Show that f = ( f1, · · · , fl) : Mk → Ml is definable if and only if each f1, · · · , fl is
definable.

4. Show that if f : Mk → Ml and g : Ml → Mm are definable, then so is their
composition g ◦ f : Mk → Mm.

5. For A ⊂ M, define the definable closure of A, denoted by dcl(A), by

dcl(A) = {x ∈ M : x A− definable}.

Show that A ⊂ dcl(A), A ⊂ B ⇒ dcl(A)⊂ dcl(B), and dcl(dcl(A)) = dcl(A).

Example 2.8.5. < is /0-definable in the ring of reals R. This follows from

x < y ⇔∃z(z �= 0∧ y = x+ z2).

Example 2.8.6. If L is the language of a ring without subtraction and R is a ring,
then the subtraction z = x− y is /0-definable in the language L:

z = x− y ↔ x = y+ z.

Example 2.8.7. Let F be a field and R = F[X1, · · · ,Xn] the ring of polynomials
over F. We regard F as the set of all polynomials of degree 0. Then F is an /0-
definable subset of the ring R. It is defined by

x ∈ F⇔ x = 0∨∃y(x · y = 1).

Example 2.8.8. It was proved by Lagrange that every positive integer is a sum of
squares of four integers. From this it follows that < is /0-definable in the ring Z:

x < y ⇔∃z1∃z2∃z3∃z4(z1 �= 0∧ y = x+ z2
1 + · · ·+ z2

4).

In particular, the set of all natural numbers is an /0-definable subset of Z.

It is known that if K is an algebraically closed field of characteristic 0, then the
ring R =K[X1, · · · ,Xn] of polynomials over K satisfies Fermat’s last theorem, i.e., if
n > 2, then the equation xn + yn = zn has no nontrivial solution in R, i.e., if (x,y,z)
is a solution, then x,y,z ∈K. (See [10], p. 194.) This implies the following:

Example 2.8.9. If K is an algebraically closed field of characteristic zero, then K is
an /0-definable subset of the field of rational functions K(X1, · · · ,Xn). For instance,
it is defined by the formula

f ∈K⇔∃g∃h( f = h3 = 1+ g3).
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Example 2.8.10. Let K be a field. A subset X of Kn is defined by an atomic formula
if and only if it is the set of all zeros (roots) of a polynomial over K.

We need a well-known result of Hilbert now. (See [10].) Let K be a field, and let
P ⊂K[X1, · · · ,Xn]. Define

V(P) = {a ∈K
n : f (a) = 0 for all f ∈ P}.

Sets of the form V(P) are called Zariski closed sets or affine algebraic varieties in
K

n. Note that if P ⊂ Q ⊂K[X1, · · · ,Xn], then V(Q)⊂ V(P).
Theorem 2.8.11 (Weak Hilbert Basis Theorem). If K is a field and V ⊂ K

n is
Zariski closed, then there is a finite P ⊂K[X1, · · · ,Xn] such that V =V (P).

It follows that Zariski closed sets V ⊂K
n are precisely the sets defined by finite

conjunctions of atomic formulas, i.e., by finitely many polynomial equations.

Exercise 2.8.12. Readers familiar with topology should show that Zariski closed
subsets of Kn are the family of all closed subsets of a topology on K

n. This topology
is called the Zariski topology.

Example 2.8.13. Let K be a field, and let Mm×n(K) denote the set of all m × n
matrices over K. We identify Mm×n(K) with K

mn in a canonical way. We shall
follow the usual convention and write Mn(K) in place of Mn×n(K). Show the
following:

1. The determinant function A → |A|, A ∈ Mn(K) (i.e., its graph) is /0-definable.
2. The set of all n× n nonsingular matrices GLn(K) is /0-definable. In fact, it is

defined by the negation of a polynomial equation.
3. Show that the matrix multiplication Mm×n(K)× Mn×k(K) → Mm×k(K) is /0-

definable.

A family A of subsets of a set X is called an algebra of sets on X if it contains
X and is closed under complementations and finite unions. Sets belonging to the
algebra of subsets of Kn generated by affine algebraic varieties V ⊂ K

n are called
constructible sets.

Exercise 2.8.14. A subset C ⊂ K
n is constructible if and only if it is defined by an

open formula.

Example 2.8.15. Let D ⊂ R
n be definable. Then its closure

D = {a ∈R
n : ∀ε(ε > 0 →∃b ∈ D(

n

∑
i=1

(ai − bi)
2 < ε))}

is definable.
If ϕ [y, ic], c ∈ R, defines D, then the formula

∀x(x > 0 →∃y(ϕ [y, ic]∧∑(x2
i − y2

i )< x))

defines the closure of D.
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Proposition 2.8.16. Let D ⊂ Mn be A-definable and f : M → M an automorphism
of M such that f (a) = a for all a ∈ A. Then D = f (D). In particular, f fixes all
A-definable points.

Proof. Let ϕ [x, ia], with ai in A, define D. For every any b ∈ Mn, we have

b ∈ D ⇔ M |= ϕ [ib, ia]
⇔ M |= ϕ [i f (b), i f (a)]

⇔ M |= ϕ [i f (b), ia]

⇔ f (b) ∈ D.

The second equivalence holds because f is an automorphism of M. The first and
last equivalences hold because ϕ [x, ia] defines D. Our proof is complete. �


It is well known that for every finite sequence a of complex numbers there
is a real number r and a complex number s (not in R) such that there is a field
isomorphism f : C→C fixing each a and mapping r to s. Thus we get the following
interesting result.

Proposition 2.8.17. The set of all real numbers R is not a definable subset of the
field of complex numbers C.

Later we shall prove that the set of all rational numbers Q is not a definable
subset of the field of real numbers. In a remarkable result (see [4] for an excellent
account of this) using deep results on diophantine equations, Julia Robinson proved
the following theorem.

Theorem 2.8.18 (J. Robinson). The set of all integers is an /0-definable subset of
the ring of rational numbers Q.

The importance of these results for decision problems will be explained now.
Let M be a structure of L and N ⊂ M a substructure. Suppose ϕ [x, ia] defines N.

For any formula ψ we define its relativization to N, denoted by ψN , by induction on
the rank of ψ as follows: if ψ is atomic, then ψN is ψ . Further,

(¬ψ)N = ¬ψN ,(ψ ∨η)N = ψN ∨ηN

and

(∃yψ)N = ∃y(ϕ [y, ia]∧ψN).

We may think of ψN as the relativization of ψ to N.

Proposition 2.8.19. Let N be a definable substructure of M. Then for every formula
ψ [x0, · · · ,xn−1] and every b ∈ Nn,

N |= ψ [ib]⇔ M |= ψN [ib].
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Proof. We prove the result by induction on ψ . The result is clearly true for atomic
ψ and is true for ¬ψ (ψ ∨η) if it is true for ψ (resp. for ψ and η).

Now suppose the result is true for ψ [x,x0, · · · ,xn−1] and every c ∈ Nn+1 and
η [x0, · · · ,xn−1] = ∃xψ . Take any b ∈ Nn.

Suppose M |= ηN [ib]. Then there is a b ∈ M such that M |= ϕ [ib, ia] as well as
M |=ψN [ib, ib]. Since ϕ defines N, b∈N. By the induction hypothesis, N |=ψ [ib, ib].
Thus, N |= η [ib].

Now assume that b ∈ Nn and N |= η [ib]. Thus, there is a b ∈ N such that
N |= ψ [ib, ib]. By the induction hypothesis, M |= ψN [ib, ib]. Since ϕ defines N,
M |= ϕ [ib, ia]. This proves that M |= ψN [ib]. �

Remark 2.8.20. Suppose M is such that there is an algorithm to decide if a statement
of LM is true in M or not. Such a structure is called decidable. Otherwise it is called
undecidable. (The concept of an algorithm will be defined later in the book.) The
last result tells us that if N ⊂ M is definable and M decidable, then N is decidable.
Equivalently, if N is undecidable, so is M. It was proved by Tarski that R as an
ordered field and C are decidable. It was proved by Gödel that N is undecidable in
the language of the ordered ring. Julia Robinson’s result implies that the ordered
field of rationals is undecidable. These things will be dealt with in more detail later.

Suppose M is a structure of L and fM : Mn → M definable, defined by, say,
ϕ [y,x, ia]. Let L′ be the expansion of L obtained by introducing an n-ary function
symbol f . We regard M as a structure of L′ by interpreting f by fM . For any formula
ψ of L′, let ψ f be the formula of L obtained from ψ by replacing each subformula
of ψ of the form η [· · · f t · · · ] by the formula ∃u(u = f t ∧η [· · ·u · · · ]), where u is
a variable not occurring in ψ , and then by replacing each subformula of the form
t = f (s) by ϕ [t,s, ia]. If necessary, new variables should be used so that the essential
nature of the formula ϕ is not changed. Then

Proposition 2.8.21.
M |= ψ ⇔ M |= ψ f .

Its entirely trivial proof is left as an exercise. This result implies that if a set is
definable by a formula of L′, it is definable by a formula of L. A similar result is true
for definable relations on M.

Let L and L′ be first-order languages, M an L-structure, and N an L′-structure.
We say that N is interpretable in M if there are a structure N′ ⊂ Mk (for some k)
of L′ with N′ and interpretations of all nonlogical symbols of L in N′ definable by
formulas of L so that N and N′ are isomorphic.

Example 2.8.22. If K is a field, then the group GLn(K) is interpretable in the
field K.

Let GL+
n (R) denote the set of all n× n-real matrices with determinant positive,

O(n) the set of all orthonormal n×n-real matrices, and SO(n) the subgroup of O(n)
of matrices of determinant 1. Similarly, let U(n) denote the set of all unitary matrices
over C and SU(n) the subgroup of U(n) of determinant 1.
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Let K be a field. A linear algebraic group overK is a subgroup G of GLn(K) such
that G and the graph of the matrix multiplication on G are affine algebraic varieties.
In general, an algebraic group over K is a group G that is an affine algebraic variety
overK, and the group operation · : G×G→ G (more precisely, its graph) is an affine
algebraic variety, i.e., definable by polynomial equations.

Example 2.8.23. The groups GL+
n (R), O(n), and SO(n) are interpretable in the field

of reals. Moreover, O(n) and SO(n) are linear algebraic groups over R. The groups
U(n) and SU(n) are algebraic over C and interpretable in the field of complex
numbers C.



http://www.springer.com/978-1-4614-5746-6


