Chapter 2
Queueing Models for Healthcare Operations

Diwakar Gupta

1 Introduction

Queues form when entities that request service, typically referred to as customers,
arrive at a service facility and cannot be served immediately upon arrival. In health-
care delivery systems, patients are typically the customers and either outpatient
clinics or diagnostic imaging centers or hospitals are the service facilities. There are
also many atypical examples of customers and service facilities, as shown below.

Customers Service facility

Diagnostic images Radiology department

Doctors’ notes Coding department (for billing purposes)
Prescriptions Mail-order pharmacy

Transplant candidates Organ procurement organization

A service facility may consist of one or more service stations where customers
are served. Further, each service station may consist of one or more servers. For
example, the processing of diagnostic images may require two types of servers—
radiologists who read the images and transcribers who input radiologists’ dictated
notes into patient charts. Servers are often grouped by their expertise to form service
stations, although other configurations (e.g., multiple specialty teams of doctors
and nurses) are also prevalent. A common feature of the vast majority of queueing
models is that customers are discrete, and the number of customers waiting in the
service facility is integer valued.
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Queues are ubiquitous, particularly in healthcare delivery systems. At the same
time, queues are undesirable because delay in receiving needed services can
cause prolonged discomfort and economic loss when patients are unable to work
and possible worsening of their medical conditions that can increase subsequent
treatment costs and poor health outcomes. In extreme cases, long queues can delay
diagnosis and/or treatment to the extent that death occurs while a patient waits. For
example, there is a severe shortage of organs in the USA and many patients die
while waiting for suitable organs for transplant.

Given the negative consequences of queues in healthcare delivery systems, the
following questions naturally arise. Why do queues form? Why must customers wait
to be served? Which features of system design affect queueing and by how much?
What trade-offs must be considered by a service system architect when choosing
system parameters? This chapter attempts to provide answers to questions such
as these.

Although queues have existed as far back as historical records are available,
mathematical study of queues, called queueing theory, has been around since the
early 1900s. Works on the theory and applications of queueing systems have grown
exponentially since the early 1950s. It is neither possible nor the intent to provide
a summary of this vast body of literature in this chapter. For that, there are many
excellent books, both at the introductory and advanced levels—see, for example,
Bhat (2008), Cohen (1969), Cox and Smith (1961), Gross and Harris (1985), Morse
(1958), Newell (1982), Takacs (1962) and Wolff (1989). A review of papers that
attempts to tackle real queueing problems can be found in Worthington (2009).
This chapter provides a review of a few basic queueing models and discusses their
implications for healthcare operations management.

Borrowing terminology from the queueing literature, we shall henceforth use the
terms queueing system and service facility interchangeably. A queueing system has
the following elements:

1. Servicestations or workstations, their configuration, and routing protocols that
determine flow of customers from one station to another.

2. Number of servers at each station.

3. Service protocol at each station—a commonly used protocol is first in first out
(FIFO) because it is deemed to be fair (Larson 1987). However, it is not at all
uncommon to give higher priority to certain types of customers (often referred to
as classes in the queueing literature). For example, patients whose condition is
deemed critical by medical professionals generally bypass queues.

4. Service time distribution by customer class, server, and station.

5. Arrival process—the distributions of inter-arrival times, number of arrivals at
each arrival epoch, and arrival location.

6. Size of waiting room at each station. When waiting room is limited, either
customers are turned away or congestion at a downstream station causes blocking
at an upstream station.



2 Queueing Models for Healthcare Operations 21

7. Protocols governing server absences and distributions of server vacations.
Vacation refers to a period of time when a server is not available, which could
happen for a whole host of reasons including activities such as attending to other
tasks and taking a break.

Suppose we observe arrivals and departures from a queueing system that starts
empty. The system may consist of an arbitrary number of stations with an arbitrary
number and configuration of servers at each station, customer classes, service
protocols, and sizes of waiting rooms. We treat the entire system as a black box.
An arrival to this system is either turned away on account of a full waiting room or
the arrival enters the system. The stream of arrivals that enter the queueing system is
characterized by arrival times a; < ap <--- <a; <---, where a; denotes the arrival
epoch of the jth arrival in sequence, and corresponding service times (s1,...,8;,...).
Each customer is served either as soon as it arrives or according to some service
protocol. Given this basic setup, queueing models are frequently used to characterize
the following stochastic processes:

N, (t) = number of customers in queue at epoch , (2.1)

N(#) = number of customers in the queueing system at epoch 7. 2.2)

Clearly, N(r) = N,(t)+ the number of customers receiving service at time . Simi-
larly, for the jth customer, the quantities of interest are:

W; = time in queue of the jth customer, (2.3)

Dj = W;+§; = total delay of the jth customer. (24)

Note that S; in the above expression denotes the random service time of the jth
customer. For queueing systems with finite waiting rooms, we are also interested in
the probability that an arrival is turned away.

The purpose of mathematical models of queues is to obtain closed-form or
recursive formulae that allow system designers to calculate performance metrics
such as average queue length, average waiting time, and the proportion of customers
turned away. We say that mathematical models are tractable when closed-form or
recursive formulae can be obtained, and in such cases the resulting expressions for
the performance metrics are referred to as “analytical results.” Note that it is always
possible to write equations that describe how the number of customers in each queue
in the queueing system of interest changes over time. Such equations can be used
to simulate a queueing system’s performance. In this chapter, the simulation-based
results are also referred to as numerical solutions.

In the vast majority of cases, analytical results are possible only for limiting
behavior (called steady state) of the above-mentioned performance metrics and in
particular for time-average or customer-average metrics, when such averages exist.
Specifically, steady-state analogs of Nq(t), N(t), Wi;, and D; are obtained when
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either  — oo or j — oo and the limiting random variables exist. Loosely speaking,
steady-state performance refers to the performance of a system with time-stationary
parameters that has been in operation for a sufficiently long time such that time ¢
no longer affects the distributions of number in system, number in different queues,
waiting times, and total delay. In contrast, transient queues arise when either system
parameters are not time-stationary (therefore a steady state does not exist) or the
queueing system does not remain in operation long enough to reach a steady state.
If the purpose of the analysis is to obtain performance measures related to transient
queues, then that often requires numerical analysis. Many healthcare facilities, such
as outpatient clinics, are open for a fixed amount of time during the day and
experience time-varying customer arrival patterns. Emergency departments, on the
other hand, have demand that varies by the time of day, day of week, and month to
month. In such instances, a steady-state may not exist. Still, analysis of steady state
behavior can provide useful guidelines for making operational decisions.

Queueing systems in healthcare operations are complex. An example of patient
flows through various units of a particular hospital is shown in Fig.2.1. In this
diagram, “outl” denotes the point of entry into the hospital and “out2” denotes the
departure point. Ovals represent service stations, each of which is either an inpatient
unit or a service department. The numbers shown in the ovals are ward numbers for
inpatient units. The rest of the labels can be explained as follows. CL denotes the
cath lab, DA refers to direct admits, ED is the emergency department, IR is the
interventional radiology department, and PACU is the postanesthesia care unit. The
numbers on the connecting arcs are the annual percent of patients that flow in and
out of each service station, and arrows show the direction of flow. Each service
station provides service to multiple customer classes with different service time
distributions (referred to as lengths of stay among inpatient units), different service
protocols, and different number of resources (e.g., beds, nurses, and physicians).

Queueing models for systems such as those shown in Fig.2.1 are intractable
unless one makes a number of simplifying assumptions. For these reasons, queueing
systems as complex as those shown in Fig.2.1 are not typically analyzed with the
help of mathematical models. Instead, discrete-event simulation, where a computer
samples values from different probability distributions to schedule events such as
patient arrivals or service completions and keeps track of relevant statistics, is used
to analyze such systems and obtain performance metrics. Discrete-event simulation
techniques are discussed in Chapter 3 of this book. We focus on relatively simpler
models that are tractable and provide useful insights for healthcare operations
managers.

The organization of the rest of this chapter is as follows. Basic notation and
terminology is introduced in Sect.2. Single-station models are presented in two
sections: Sect. 3 considers models in which there is a single server at each station,
whereas Sect.4 allows multiple servers. Basic results for queueing networks are
presented in Sect. 5, and priority queues are discussed in Sect. 6. We conclude the
chapter in Sect. 7.
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Fig. 2.1 Patient flows through a general hospital

2 Basics

Let Ny := limy e Ny (1), N :=lim; e N(t), W := lim 0 Wj, and D :=lim;_,.. D;
denote steady-state distributions of quantities introduced earlier. It is assumed that
such limits hold with probability 1. Additionally, we define

L = E[N], (2.5)

L, = E[N,], (2.6)
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w = E[W], and 2.7
d = E[D] (2.8)

as time or customer averages. We also define A(#) = the number of customer arrivals
during (0,7] and A = lim, . A(¢)/t as the mean arrival rate. Then, a key result in
queueing theory, known as Little’s law, is the following relationship:

L=Aw. 2.9)

Little’s law is extremely useful for carrying out rough-cut capacity calculations.
Consider the following example. Suppose that an emergency department (ED) of a
hospital receives on average 50 new patients in each 24 h period. Of the 50 patients,
22 are discharged after examination and treatment in the ED. The remaining 28
are admitted to the hospital as inpatients for further observation and treatment. The
average length of inpatient stay is 3 days. Given this information, Little’s law allows
us to estimate that on average 84 inpatient beds would be needed to serve the needs
of patients that are admitted via the ED. This comes from observing that w = 3 days,
A = 28 inpatients per day, and therefore, L = Aw = 84. Very few assumptions are
made when arriving at this result. For example, Little’s law remains valid regardless
of the priority of service of arriving patients and differences in their service times in
the ED.

Single-station queueing systems are often referred to by their four-part shorthand
notation A/B/m/K, where A and B describe the inter-arrival and service time
distributions, m € {1,...,} is the number of servers, and K > m is the size of the
waiting room including customers in service. The fourth descriptor K is omitted
if there is no limit on the size of the queue. Typical values of A and B are as
follows: M for exponential, D for deterministic, E; for Erlang with k phases, PH
for phase type, GI for general independent, and G for general. In this notation,
M/G/2/20 refers to a queueing system consisting of two servers at a single
station, exponential inter-arrival times, general service times, and a waiting room
capacity of 20.

Literature on queueing systems can be broadly divided into two categories: (1)
models that focus on steady-state behavior, that is, stationary distributions N, N,
D, and W, and (2) models that attempt to characterize transient behavior, that is
time-dependent distributions of the number of customers and their waiting times.
As mentioned earlier, the vast majority of analytical results pertain to steady-state
behavior. Queueing models may be further classified into single- or multiple-
station (network) models and those with single or multiple customer classes. In the
remainder of this chapter, we provide a summary of key results pertaining to steady-
state performance evaluation of single station (with single and multiple servers) and
network models. In both types of models, we assume that there is a single customer
class. Models with multiple customer classes and service priority are discussed
briefly in Sect. 6.
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3 Single-Station, Single-Server Models

Single-server queueing models with infinite queues are the workhorses of queueing
theory, and among this class of models, the most commonly studied models are the
M/M/1, M/G/1, and GI/G/1 models. The popularity of the first two models in
this list is in part due to the fact that they are mathematically tractable, which in turn
comes from the presence of Markovian property (the M in the model descriptor),
and in part from the fact that exponential distribution is a good fit for customer inter-
arrival times in many real systems. We describe key results for each of these systems
below. Details of analyses that lead to these results can be found in one of several
queueing theory books cited earlier. All of these models assume independent and
identically distributed inter-arrival and service times. We use the following notation
for reporting the key results:

p(n)=P(N=n), n=0,1,..., the probability distribution of number in system
Fs(x) = P(S < x), x >0, the CDF of service time distribution

1/E[S], the mean service rate
= A/u, the server utilization rate
Fy (x) = P(W <x), x > 0, the probability distribution of customer wait time
Fp(x) = P(D < x), x > 0, the probability distribution of customer delay
F*(s) = [y e **dF(x), s > 0, the Laplace-Stieltjes transform (LST) of CDF F ()
P(z) =X 2" p(n), the z-transform or probability generating function of p(n)

EII

When waiting room is infinite and p > 1, queues can continue to grow over time.
If p > 1, this happens because for each unit of time that the server is available, the
average amount of work brought by new arrivals exceeds 1 unit. If p = 1, queues
can still continue to grow because randomness in inter-arrival and service times can
cause periods of server idling and the server can never make up for the lost work
time. Note that in this instance, for each unit of time that the server is available,
the average amount of work brought by new arrivals is exactly 1 unit. The effect
of periods of idleness is cumulative and queues continue to grow. In such cases,
stationary distributions of N and W do not exist. Therefore, we henceforth assume
p < 1 in all models with infinite waiting room. Finally, we need to specify the
service protocol in order to calculate the waiting time distribution. Throughout this
section and in Sects. 4 and 5, we assume the first-in-first-out (FIFO) protocol.

3.1 Models with Infinite Waiting Room

In this section, we discuss M/M /1, M/G/1, and GI/G/1 queueing models.
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The M/M/1 Model

In healthcare settings, the M/M /1 model may prove to be useful either because
it fits reality well or because it serves as a reasonable approximation for first-pass
analysis. For example, it may be a reasonable choice for modeling walk-in clinics,
pharmacy operations, and patient check-in and registration services at hospitals.
Similarly, even in situations where customer arrival and service rates vary over time,
M /M /1 models may be used to estimate capacity requirements to keep peak-period
congestion within tolerable limits.

The following distributions and mean performance metrics can be calculated for
M /M /1 queues from either Chapman—Kolmogorov equations, or an analysis of the
embedded Markov chain at customer arrival and/or departure epochs:

p(n)=(1—p)p", n=0,1,..., (2.10)
E[N] = %, @2.11)
Fp(x)=1—e *1-P)X x>0, (2.12)
E[D] = ﬁ,and (2.13)
E[W] = ﬁ. (2.14)

The analysis also utilizes an important property called PASTA—Poisson arrivals
see time averages. Loosely speaking, this property ensures that if system state were
observed at moments that coincide with Poisson arrivals, then system properties
calculated from these observations are also time average system properties. The
PASTA property greatly simplifies the analysis of Markovian queues.

Another important property of M/M/1 queues is that the distribution of the
number of departures from such queues is also Poisson with parameter A. It should
be clear from the law of conservation of entities that the mean departure rate must
equal the mean arrival rate. It is interesting to find that the distribution of departures
is also identical to the distribution of arrivals. This property leads to a class of
tractable queueing network models called Jackson networks (see Sect. 5).

From expressions (2.11), (2.13), and (2.14), we observe that the expected number
in the system, the expected delay, and the expected waiting time are highly sensitive
to the server utilization rate. In particular, all three quantities are increasing in p
at an increasing rate, and as p — 1, all three quantities — o. This helps explain
the fundamental trade-off in queueing systems design. When service times and/or
inter-arrival times are random, higher server utilization (efficiency) comes at the
cost of increased congestion and customer waiting. High utilization rate may not
be economical in situations where waiting cost is very high, and conversely, excess
capacity may not be economical when resource cost is significantly higher than
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waiting cost. Upon knowing the cost of customer waiting and the cost of providing
service resources, designers can find the economic balance between congestion and
efficiency.

The M/G/1 Model

In many healthcare settings, it is not appropriate to assume exponentially distributed
service times. For example, service times for flu shots, lab services (blood draws),
and magnetic resonance imaging (MRI) may not vary much from one patient
to another. In the case of surgery practices, it is often found that the lognormal
distribution provides a good fit for surgery durations. In such cases, service times
may be better modeled by a distribution other than exponential, and the M/G/1
model may be more appropriate for calculating queue length and waiting time
statistics. For the M /G /1 model, the following results have been established:

(1-p)z—-1DF (A —A2)

P(z) = —EG-i) (2.15)
E[N] = ;L(zlE—_[bZ])er, (2.16)
Fp(s) = s(_l)?(’l))_ﬂ;iﬂ((?)), (2.17)
E[D] = ;Ef—&g;])—i—E[S], (2.18)
EW] = %' (2.19)

Higher moments of the distribution of the number in system and customer delay
can be obtained by differentiating P(z) and F};(s). Also, distributions of N and D can
be computed numerically by utilizing recent developments in the area of numerical
inversions of transforms (see, e.g., Abate and Whitt 1992). However, closed-form
expressions for the distribution of N and D are difficult to obtain except for some
specific service time distributions.

Expressions (2.16), (2.18), and (2.19) can be recast by expressing E[Sz] in terms
of C2, the squared coefficient of variation of service times. Note that the squared
coefficient of variation of a random variable is the ratio of its variance to square of
its mean. In particular, the expected waiting time expression for M/G/1 queues is

1+C?
Ew] = LUEE)
2u(1-p)
Upon comparing expressions (2.14) and (2.19), one can better understand the
effect of service time variability. When CS2 = 1, we recover the expected waiting



28 D. Gupta

time in M/M/1 queues given in (2.14). All other parameters of the queueing
system remaining unchanged, the mean waiting time increases linearly in C? at rate
p/(2u(1— p)). This means that the negative effect of C? on customer waiting time
is magnified nonlinearly as p increases.

The GI/G/1 Model

The GI/G/1 model requires the fewest assumptions about the shape of inter-arrival
and service time distributions among the three models we discuss in this section. As
such, it is useful in many settings. For example, in addition to examples mentioned
before, appointment systems for non-urgent office visits can be modeled as queues
in which clinics choose the inter-arrival time of patients. Queueing theory-based
approaches for modeling appointment systems utilize either D/M/1 or D/G/1
queueing models; see surveys of literature in Cayirli and Veral (2003) and Gupta
and Denton (2008). We present an application of such models for retail health clinics
later in this section.

Analysis of GI/G/1 queues requires solving Lindley’s integral equation (Lindley
1952). Closed-form solutions, which would be of interest to those interested in
the design of healthcare delivery systems, are difficult to obtain except for some
specific distributions of inter-arrival and service times. Therefore, many papers have
studied approximate methods. Common approaches fall into two categories—(1)
approximate either GI or G by a specific distribution leading to a tractable model
and (2) assume a structural form of the distribution of N and estimate its parameters.
In the first group of methods, commonly studied approximations include Erlang,
phase type, and generalized hyperexponential distributions (see, e.g., Neuts (1981,
1989), Li (1997) for details). In the sequel, we present an example of the second
approach because it requires knowledge of only the first two moments of inter-
arrival and service time distributions and provides greater insights into the key
drivers of congestion.

Suppose we can estimate the first two moments of the inter-arrival and service
time distributions, but the precise form of these distributions is unknown. In
particular, we assume knowledge of C? and C2, the squared coefficients of variation
of service and inter-arrival times. A variety of approximations have been proposed
for calculating the mean number in system in GI/G/1 queues given C> and CZ.
The following is an example of a commonly used expression (see Buzacott and
Shanthikumar 1993, p. 75):

_(PPAHC)N (C+pPCE
E[N]N(szcs2 i) ) TP (2.20)

It is easy to verify that when C2 = 1, the above expression reduces to the expression
we obtained in (2.16) for an M/G/1 system. From (2.20), one can also derive
expressions for mean waiting time and mean delay with the help of Little’s law.
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Fig. 2.2 Effect of C2 on expected delay. This figure shows that greater inter-arrival time variability
causes expected customer delay to increase much more rapidly when the server has a higher
workload (i.e., greater value of p)

The expression for E[N] in (2.20) shows that both inter-arrival and service time
variability contribute to the congestion in the system and that the effect of variability
is magnified by server utilization—the higher the utilization, the greater the effect
of variability on congestion. We illustrate the importance of this observation in
healthcare operations with the help of an example next.

Retail healthcare clinics, such as MinuteClinic, RediClinics, and Target Clinics,
promise to serve patients with routine diagnoses such as ear infections, flu, and
minor injuries in a short amount of time without requiring appointments. The
success of such clinics depends on providing timely service to a stream of customers
that arrive randomly. The study of GI/G/1 queueing model can help shine light
on the potential benefit to such service providers from reducing inter-arrival time
variability by broadcasting time-of-day-dependent estimated waiting times on the
web and other promotional media and encouraging customers to time their arrivals
when the clinics are not too busy. For example, Target Clinics advise potential
visitors about waiting times as follows: “... we are likely to be busiest before and
after the average work/school day (8—10 a.m. and 5-7:30 p.m.)” (see response to the
frequently asked question “How long will I have to wait to be seen?” at http://sites.
target.com/site/en/spot/clinic_faqs.jsp#4). Such practices have the effect of making
arrivals more uniform throughout the day, thereby reducing C2. The author obtained
data from a retail healthcare clinic chain and studied the effect of variability of
arrival pattern on customer waiting times. The results are shown in Fig. 2.2 for three
levels of server utilization commonly observed in the data at different clinics. This
analysis also shows that if inter-arrival time variability cannot be reduced, clinics
need to operate in a range where server utilization would be low in order to keep
waiting times from becoming very long.
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Without specifying the distributions of inter-arrival and service times, it is not
possible to obtain expressions for the distributions of N and D. Therefore, a variety
of approximations have been proposed in the literature. In one such approximation,
it is assumed that p(n) = ko™~ ! for n > 1, where k is a constant, and p(0) = (1 —p).
Note that this was the form of the distribution of number in the system in M /M /1
queues. From the requirement that total probability must equal 1, we obtain that
k = p(1 — o). Furthermore, o can be estimated by equating the calculated mean of
the approximate distribution, which equals p /(1 — o), with the approximate value
of E[N] calculated in (2.20). Details of the accuracy of this approximation can be
found in Buzacott and Shanthikumar (1993, Sect. 3.3.4).

3.2 Models with Finite Waiting Room

Overcrowding in urgent care clinics and emergency departments is quite common.
When waiting rooms become full, patients may leave without receiving service or
the service facility may temporarily stop accepting new arrivals. To model such
situations, we next consider models in which the maximum number of customers in
the system is restricted to K, including the customer in service. When the waiting
room limit is reached, one of two possibilities is typically modeled. Either additional
arrivals are discouraged until the waiting room is no longer full, or additional arrivals
continue to occur but depart immediately upon observing a full waiting room. The
latter is identified in the literature as the lost sales model. It turns out that whether
arrivals are discouraged or lost makes no difference when arrivals are Poisson.
However, the pattern of arrivals when waiting room limit is reached does matter for
queues with non-Poisson arrivals. We discuss each of the three basic models next
and provide two examples of the usefulness of the M/M/1/K model in healthcare
setting. Note that p < 1 is no longer required for stability of queues. Stability is
guaranteed because queue size cannot exceed the size of the waiting room K.

The M/M/1/K Model

The following results are well known for M/M/1/K queueing systems:

(I—p)p"
p(n) =4 T=pknl n=0,1,...,K, 2.21)
0 otherwise,
K+1
EN = 2 _(KxLp : (2.22)

1-p 1_pK+1

E[D] = E[N]/A. (2.23)
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The expected waiting time can be calculated from (2.23) and the fact that an
average customer spends E[S] in service. Upon comparing (2.22) and (2.23) to their
counterparts in (2.11) and (2.13), where the latter allow infinite waiting room, it
is easy to see that when all parameters of the two types of queueing systems are
identical, both the mean number in the system and the mean delay are smaller in
situations where waiting room is limited. This should not come as a surprise because
Ap(K) fraction of arrivals is not served when waiting room is limited.

The M/M/1/K model can be utilized to make capacity choices for emergency
departments. One capacity parameter concerns the number of medical staff, which
determines the service rate . A second parameter concerns the number of ED beds,
which determines the mean waiting time and the number of potential ED arrivals
turned away. The latter is sometimes called ambulance diversion. Both types of
capacities give rise to different fixed and operating expenses for the hospital. In
addition, there are different implications for patient wait times.

For a fixed level of medical staff, that is, fixed service rate, if a hospital increases
the number of ED beds, then this would result in greater mean waiting times
for patients, but fewer ambulance diversions. Longer wait times can increase a
hospital’s risk from possible adverse events (e.g., poorer health outcomes and even
deaths), and turning away more patients can lower a hospital’s revenue because of
reduced patient volume, giving rise to the trade-offs we discuss in detail below. Note
that the model presented in this chapter is a highly stylized model. EDs are served by
teams of multiple doctors and nurses working in parallel, diversions can be caused
by a whole host of reasons including lack of availability of inpatient beds, and a
variety of regulations may affect a hospital’s decision (ability) to go on ambulance
diversion. We smooth out such complexities in the discussion that follows.

For each fixed level of p, ED managers can develop trade-off curves between
ambulance diversions and mean patient waiting times to identify the right combi-
nation of capacity parameters, as shown in Fig.2.3. In this example, it is assumed
that if patients are diverted on account of all ED beds being full, then they are able
to find appropriate care at other hospitals located in geographical proximity to the
hospital in question. If this were not the case, then a network model with strategic
capacity choices by administrators of different hospitals will be required (Deo and
Gurvich 2011). We do not discuss such models as they are beyond the scope of this
chapter.

We consider an ED processing rate of ten patients per hour and two different
peak-load scenarios, one with average patient arrival rate of 9 per hour and the
other with average patient arrival rate of 9.9 per hour. These scenarios give rise to
p = 0.9 and 0.99, respectively. Figure 2.3 shows that adding more beds (increasing
K) increases delay, but reduces the average number of patients turned away, which
is denoted as “loss” in Fig.2.3b. Whereas E[D] increases almost linearly in K,
the benefit of having more beds in terms of reduction in expected loss exhibits
diminishing returns. That is, each additional bed serves to reduce the expected
number of patients turned away by a smaller amount. Service effectiveness can be
improved by using triage (prioritizing patients) to identify and serve more critical
patients first. We briefly discuss priority queues in Sect. 6.
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Fig. 2.3 Trade-offs in ED capacity choices

In yet another example, the M/M/1/K model can be used to perform first-cut

capacity calculations for physician panel sizes. A panel refers to the list of patients
who choose a particular primary care provider as their preferred provider. Suppose
a physician implements the Advanced Access approach to servingpatients (Chap. 8).
In this approach, patients are offered appointments on the day they call, eliminating
queues. The physician can serve on average K patients per day and arrival rate is AM
where M is the panel size and A is the incidence rate per patient. Assuming a national
average visit rate of 3.356 office visits per patient per year (Hsiao et al. 2010), and
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Table 2.1 Panel size (P) and service capacity (K)

K 16 17 18 19 20 21 22 23 24
P 1,208 1,296 1,386 1,463 1,540 1,617 1,701 1,779 1,857

260 working days per year (52 weeks, 5 days per week), we obtain A = 0.01291.
Suppose the physician is willing to accept the possibility that 5% of the patients who
call on any given day would not be accommodated that day, that is, the overflow
rate should not exceed 0.05. From the analysis of M /M /1/K model, above, we

(1 p)p¥
pK+l

to 0.05, we can calculate p and subsequently M because yt = K patients per day.
Upon performing these calculations, we obtain estimates of maximum panel sizes
for different values of K as shown in Table 2.1.

The modeling approach described above can be refined to include patient no-
shows and advance-book appointments (see, e.g., Green and Savin 2008; Robinson
and Chen 2010).

know that the overflow rate is simply p(K) =

Setting this quantity equal

The M/G/1/K Model

The classical analysis of M/G/1/K queues relies on the embedded Markov chain
observed at service completion epochs. This results in a series of equations relating
state probabilities, which can be solved numerically along with the normalization
equation (probabilities must sum to 1) to obtain the steady-state distribution of the
number in the system. Closed-form expressions are often difficult to obtain. An
alternative is to use the method of transforms, which was utilized in the section
dealing with M/G/1 queues. That method is also primarily a numerical approach.
Because our goal in this chapter is to shine light on the insights that queueing models
provide for healthcare operations managers, we focus on a subclass of M/G/1/K
queueing models in which p < 1. Recall that p < 1 is not required for the existence
of steady-state distributions of queue congestion and customer waiting times when
waiting rooms are finite.

Given p < 1, let pe.(n) and Poo(K) denote, respectively, the distribution of number
in system and the CCDF of this distribution at K in an M/G/1 queue. The subscript
“0o” emphasizes the fact that these quantities refer to the case in which there is no
limit on the size of the waiting room. Then, the distribution of N can be obtained as
follows (see Buzacott and Shanthikumar 1993, p. 109 for details):

=) oK,
p(n) = I =pha(K) (2.24)
(1-p)Pa(K)

TpRE) "
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Expected number in system and mean delay can be calculated from the above
expression. Remarkably, when p < 1, the distribution of number in system in
an M/G/1/K queueing system is proportional to the number in system in an
M/G/1 /oo system. The proportionality constant is ——~—— forn=0,1,...,K — 1,

1—pPu(K)
(1—p) —
and = pPa(K) forn=K.

The GI/G/1/K Model

The GI/G/1/K model is more difficult to analyze, except when inter-arrival and
service time distributions have some specific forms. Therefore, papers dealing with
the analysis of GI/G/1/K queueing systems propose a variety of approximations. A
useful approximation that imposes the relationship between M /M /1 and M /M /1/K
models onto the relationship between GI/G/1 and GI/G/1/K models is presented
in Buzacott and Shanthikumar (1993, pp. 110-116). We omit the details in the
interest of brevity.

4 Single-Station, Multiple-Server Models

In all of the examples mentioned in Sect. 3, for example, walk-in clinics, pharmacy
and lab services, and emergency departments, situations involving multiple servers
arise naturally. That is, service facilities in a healthcare setting often have multiple
servers taking care of customers who queue up for similar services. In this section,
we focus on queueing systems with unlimited waiting room, constant arrival rate
A, and m identical servers. Servers process one customer at a time, and each server
can process customers at rate ¢t when busy. In this case, the overall service rate is
a function of the number in system. In particular, if there are n customers in the
system, then u,, the state-dependent service rate is

{nu if0<n<m,
n:

mu otherwise.

(2.25)

The overall server utilization in this instance is p = mi, and stationary dis-

tributions of N, Ny, D, and W exist if p < 1. Because 1t is more difficult to
obtain closed-form expressions for performance metrics of multiple-server queueing
systems, we focus in this section on M/M/m models, that is, on situations in
which the inter-arrival and service times are exponentially distributed. For M /M /m
models, it can be shown that

pOL ity <m,
p(n) = - (2.26)
p(0) P p>m,
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Fig. 2.4 Comparison of
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Expressions for mean delay in the system shown in (2.13) and (2.28) can be
utilized to obtain a key result in the design of queueing systems—that combining
queues and pooling servers reduces system delay. To demonstrate this, we show an
example next in which three systems are compared. A schematic of these systems is
shown in Fig. 2.4. Systems are labeled A, B, and C. System A consists of m parallel
queues each served by a single server. When a customer arrives, it is routed by a
Markovian router that sends the customer to any one of the m queues with equal
probability 1/m. Each server’s processing rate is (. In system B, the queues are
combined into a single queue. Customers wait for the next available server upon
joining the queue. Each server’s processing rate is u. In system C, queues are
combined into a single queue, and the m servers are replaced by a super server
with a faster processing rate of mu. Note that the overall utilization rate remains
p = A/my in all three systems.

Choices similar to those depicted in Fig.2.4 can arise in a number of different
contexts in the healthcare setting. For example, the three configurations could
represent choices for setting up patient registration and check-in counters at a
hospital or clinic. System A represents a case in which each server specializes in
serving a particular type of patient arrivals. In system B, each server can serve any
arrival, and finally in system C, technology may be employed to assist a server,
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Expected Delay (E[D])
[e)]

Number of Servers (m)
—— System A -s-SystemB  -=- System C

Fig. 2.5 Effect of server/queue pooling

making that server faster. Alternatively, servers in systems A and B could represent
the choice between specialized and general-purpose beds in an inpatient unit. In
each example, the choice of configuration affects labor and capital costs as well
as patient wait times. Queueing models can help compare the impact of these
configurations on patient wait times.

In system A, an arbitrary arrival joins one of the m separate queues with equal
probability. Therefore, an arbitrary arrival’s expected delay (using (2.13)) can be
written as follows:

wyj—_p 1
E[DY] ,u(l—p)+u' (2.29)
The delay experienced by an arbitrary arrival in system B is as shown in (2.28).
Finally, in system C, the expected delay equals

©)=__P 1

E[D'\Y] mu(l—p)+mu' (2.30)

To compare the mean delay in the three systems, consider an example in which

m is systematically varied from 1 through 5 while keeping p = 0.9 fixed. This can
be achieved by setting ¢t = 1 and varying A as m varied. In particular, with u =1,
set A = mp to maintain a fixed p. Next, suppose we use the expressions derived
above to calculate mean delay and plot the values in Fig.2.5. Note that the delay
in system A remains invariant in m. This is expected because customer waiting
occurs in one of the m queues, each of which is independent of m. We observe
a significant improvement from combining queues, and a further improvement
(though much smaller) from creating a single faster server. Most of the benefits
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appear to come from combining queues. This example serves to highlight a general
principal for the design of healthcare service systems; namely, combining queues
improves efficiency.

A common reason for creating separate queues is that each queue is served
by a group of servers who possess special expertise to serve a particular type of
customers. Combining queues requires that servers be trained to serve all types
of customers. This can be expensive, and such considerations have motivated the
study of partial pooling arrangements. Reasons why combining queues is not always
beneficial can be found in Rothkopf and Rech (1987), and general principles of work
design and pooling have been discussed in Buzacott (1996) and Mandelbaum and
Reiman (1998).

Before closing this section, we briefly discuss the Erlang loss formula, which can
be used to calculate overflow probability in M /M /m/m systems. These are multiple-
server queueing systems in which K = m, that is, waiting room size equals the
number of servers. In such cases, a customer is lost if no server is available to serve
this customer immediately. Erlang loss formula is of great interest in telephony,
where it is used to calculate the number of telephone lines needed to accommodate
a desired fraction of incoming calls. Erlang loss, or the probability of finding all m
servers busy, is given by

pm
m)=————————. (2.31)
P = Sy P /)
Erlang loss formula has been used to model capacity requirements of EDs where
each ED bay (bed plus care team) is treated as a server.

5 Network Models

Hospitals and specialized treatment facilities for particular medical conditions (e.g.,
cancer, cardiovascular, or neurological services) perform a range of services, each
with its own resources (servers) and queues. Such facilities are best modeled as
networks of queues. The simplest network model from the viewpoint of obtaining
analytical results is the multi-station (network) analog of the M/M/1 queueing
system with J service stations, each with a single server. Customers may arrive
either from outside or move from one station to another. Suppose server i’s service
rate is l;, customers are routed from station i to j according to probability 7;;, and
exogenous arrival rate at station 7 is %;. Then, the effective arrival rate at station i is

Li=v+ 2 Ajirii, foreach1 <i</J. (2.32)

1<j<J

Similarly, the server utilization rate is p; = A;/L;, for each i. A network is called
open if it allows exogenous arrivals and departures. Departures can be modeled by
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designating a particular station to serve as a sink, say station indexed J, such that
rji = 0 for all i. Similarly, a network is called closed if no customers can enter or
leave the network. In this case % = 0 and there is no sink.

The state of the number in different stations of a network is a vector n =
(n1,...,ny). Let pi(n;) denote the distribution of number in system of a M/M/1
queue with parameters A; and ;. Then, a key result in the analysis of Markovian
open networks is that the stationary distribution p(n) has a product form. In
particular,

p(n) = pi(n1) x p2(n2)--- x ps(ny), (2.33)

where p;(n;) = (1 — p;)p/"". Networks for which the distribution of number in the
system has a product form are also called product-form or Jackson networks (see
Jackson (1954, 1957)). The product-form structure remains intact when there are m;
servers at each station, that is, we have a network of M/M/m;, 1 <i < J, queues.
Because of the existence of a product form, the results from the analysis of M /M /1
and M /M /m queues can be applied directly to such networks. For example,

pi
2.34
Z - pl ( )

2 (2.35)
1-— p,

Queueing network models have been studied extensively (Walrand 1988), and
there are numerous manufacturing applications of these models (Buzacott and Shan-
thikumar 1993). Many of these models are not directly applicable to health systems
design. Each model is specific to a particular type of system (e.g., transfer lines with
limited buffer) and typically requires either special techniques or approximations to
derive system performance measures. Therefore, we focus only on papers that utilize
queueing network methodology for modeling healthcare operations.

Whereas there are many attempts to represent networks of healthcare facilities
as networks of queues, these networks are typically not analyzed using queueing-
theoretic approaches. Instead, a common approach is to use computer simulation
to obtain performance metrics of interest; for examples, see Taylor and Keown
(1980), Harper and Shahani (2002), and Feck et al. (1980). Papers that use an
analytic approach include Hershey et al. (1981) and Weiss and McClain (1987).
Hershey et al. (1981) present a methodology for estimating expected utilization and
service level for a class of capacity-constrained service network facilities operating
in a stochastic environment. In this paper, queues are not allowed to form, that is,
waiting room size equals the number of servers at each facility, and the authors use
the Erlang loss formula to approximate the probability of overflow. They show that
their calculation is exact for two cases and recommend its use as an approximation
in the general case.

Weiss and McClain (1987) model the transition of care from acute to extended
care (e.g., a nursing home or community care center). Inadequate capacity at
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downstream service facilities can lead to extra wait in the acute care facility, which
is often referred to as “administrative days.” The authors use a queueing-analytic
approach to describe the process by which patients await placement. They model
the situation using a state-dependent placement rate for patients backed up in the
acute care facility. Using data from seven hospitals in New York State, the study
also derives policy implications.

6 Priority Queues

There are many variants of the basic models described in the preceding sections.
These may consider different types of service priority (Jaiswal 1968; Takagi 1986,
1990, 1994; Gupta and Gunalay 1997), server vacations (Tian and Zhang 2006), and
bulk arrivals and batch service (Chaudhry and Templeton 1986). The literature on
each of these topics is vast. In this section, we discuss an assortment of results from
priority queues and discuss their implications for healthcare operations.

Suppose in a single-server queueing system, there are k customer classes, indexed
by /=1,..., k. Type ¢ customers arrive according to an independent Poisson process
with rate A (), and their service time distribution is S, An arrival observes N’ type-
¢ customers in the system upon arrival. Therefore, the total expected work in the
system at an arbitrary arrival epoch is ¥5_ EINOIE[SY] — 3k IAOE([(5(D)2,
where the second term is the amount of work already completed on the customer in
service, if any. After some simplification and using Little’s law, the total expected
work can be expressed as Y¢_, pVE[D)] — 3X_, %A(Z)E[(S([))z], where p(¥) =
AOE [S([)]. If the service protocol is work conserving, that is, it neither creates nor
destroys work, then the expected total work must be constant. This immediately
implies that

k
D pYE[DY] = constant (2.36)
(=1

because ¥f_; 1A (DE[(S))?] is independent of service protocol. The queue is stable
so long as 2’,5:1 p(Z> < 1, which we assume throughout this section.

The above relationship establishes an important property of priority queues.
When service protocol is work conserving, a particular priority scheme may
affect delays experienced by different customer classes, but reduction in the
expected delay of one customer class is realized at the expense of increase in
the expected delay of another class. The work conservation principle is violated
when switching from one customer class to another requires setup or switchover
time, and/or some amount of work is lost if service of one customer type is
preempted by a higher priority customer. Because switchover or setup times are
common when a server attends to customers with different service requirements,
pseudo work conservation laws have been derived for queues with switchover
times and certain service protocols, for example, cyclic priority (see Takagi 1986,
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1990, 1994; Gupta and Gunalay 1997). Although queues with switchover times are
not work conserving, the amount of additional work created by certain switching
protocols can be fully characterized. The expected total work in the system is then
the sum of two components—work associated with customer arrivals, which is
independent of service protocol, and work associated with switching regime, which
is dictated by the priority scheme. For this reason, such queues are said to satisfy
pseudo conservation laws.

In healthcare applications, one finds examples of both preemptive and non-
preemptive priority. For example, ED physicians often serve the most critical
patients preemptively in order to save lives. In the outpatient setting, specialists
reserve certain appointment slots for high-priority patients, but once a low-priority
patient books an appointment, he or she is rarely preempted during service. In
many situations, service protocols may not be work conserving because priority
rules may increase service providers’ walking time to reach patients located in
different inpatient units. Finally, service protocol may be static or dynamic. In a
static protocol, each customer class has a fixed priority, and its members receive a
strictly higher priority over all lower-ranked classes. In contrast, in dynamic priority
protocols, customers of a particular class may be higher ranked at one time and
lower ranked at another. A common dynamic priority protocol is one in which
customers of each class form a separate queue, the server moves from one queue to
another, and when serving a particular queue, all customers of that class (previously
waiting or new arrivals) have higher priority. Such a queueing protocol is observed
in healthcare operations when a physician travels to different community-based
clinics on different days of week.

Next, we provide some basic results that allow an operations manager to quickly
calculate mean delay experienced by customers of different classes in a system with
a single server, Poisson arrivals, and work-conserving, non-preemptive, and static-
priority service protocol. Suppose customers classes are arranged in the order of
priority, that is, class-1 customers have the highest priority, followed by class 2,
and so on until class k. Then, an arbitrary class-1 customer waits only for class-
1 customers already in the queue when it arrives. Moreover, because of PASTA
property, we have

E 2
EwW)] :E[Nq(1>]E[S(1)]+¥, (2.37)
where AEz[Sz] =35, %l(aE [(8©)?] is the amount of work remaining to ctz)mplete
the service of the customer in service. Introducing new notation wy = AEZ[S ], A=
(1)
>r_ A9, and p, =Y/, p¥), and using the fact that E[W ()] = E%) ], we can
rearrange (2.37) to obtain
A0
ENM) = 220 (2.38)
(I=p1)

Consider next an arbitrary class-2 arrival. This customer will be served only after
all earlier-arriving class-1 and class-2 customers are served, which causes an initial
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delay of E[NJV|E[SW] + E[NS”|E[S®)] 4 w. In addition, it must also wait until all
those type-1 customers who arrive during E [ngl)]E S+ E [ngz)]E [S®] +wo, and
additional class-1 arrivals during the service time of those, and so on, are served. It
turns out that the corresponding delay has mean duration

(1/(1—py)) {E {Nq(l)} E[sV)+E {Nq(z)} E[s?)] +w0}.

That is, E[ 2] = ( /(1 —pl)){E[Nq(l)]E[S(l)] —i—E[Nq(z)]E[S(z)] +wo}. Upon using
E[N (2) ] = A@E[W®)] and simplifying, we obtain
(2)
@7 _ A%wg
E |N, = 2.39
[ ! } (1=p1)(1—=p2) (239
Continuing in the same fashion, we obtain for £ = 1,... k,
(0)
© A wo
EIN,’| =
Na'] (1=pe—1)(1=py)
(0) 2
AAE[S?] (2.40)

S 2(1—per)(1—py)’

where pg = 0. Note the similarity between the above expression and the mean
number in the queue for M/G/1 systems, where the latter can be calculated from
(2.16).

Suppose wy is the cost of making a type-¢ customer wait for service. What is
an optimal priority rule that minimizes total waiting cost? This question has been
addressed in the queueing literature, and it has been shown that class priority should
be proportional to w, that is priority index should be such that wyt; > wotp >

- > wiMg. This means that customers with higher waiting cost per unit time
and shorter mean processing time should be given higher priority. If all customer
classes have the same per-unit time waiting cost, then customers with shorter mean
processing time would be processed first. This is also called the shortest-processing-
time-first rule.

7 Concluding Remarks

Many types of healthcare service systems are characterized by random demand
(in timing and type of services required); time-varying and uncertain availability
of service resources due to preferred work patterns, work rules, and planned or
unplanned absences; and service protocols that assign different priorities to different
customer classes (e.g., urgent versus nonurgent patients). These are precisely the
types of environments in which queueing theory can be brought to bear to obtain
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useful insights for system design and for developing operating principles for service
delivery systems. It is no surprise that queueing theory has been used extensively
in healthcare operations. The following is a list of key topic areas and some recent
papers on each of these topics:

1. Capacity calculations (matching supply and demand)

(a) Panel size determination—See the discussion in Sect. 3.2, Green and Savin
(2008), Robinson and Chen (2010), Gupta and Wang (2011).

(b) ED beds—See the discussion in Sect.3.2, Deo and Gurvich (2011) and
references therein.

(c) Network capacity—See Hershey et al. (1981) and Weiss and McClain
(1987).

(d) Nurse staffing—See Yankovic and Green (2011) and references therein.

2. Scheduling arrivals (appointment systems)—See Gupta and Denton (2008) for a
review of queueing-analytic approaches

3. Priority queues (allocation of organs to transplant candidates)—See Su and
Zenios (2004) and references therein.

Some of the above-mentioned problems were not discussed in this chapter because
of the specialized institutional background necessary to introduce the key operations
management challenges.

Notwithstanding the success of queueing models for addressing important ques-
tions in the delivery of healthcare services, there remain significant opportunities for
new models and analytic tools. For example, hospitals can benefit from insightful
network models of patient flow (recall Fig.2.1). Hospitals have limited capacity
within each inpatient unit, which leads to blocking at upstream units. This situation
may be resolved by keeping patients longer in some units, placing patients in less-
than-ideal units, transferring patients to other hospitals, or refusing admissions.
Such decisions can affect lengths of stay and health outcomes (Rincon et al. 2011;
Sinuff et al. 2004). Clearly, hospitals could benefit from knowing the performance
implications of such practices and having access to models that allow them to factor
nursing units’ flexibility into capacity calculations. In the manufacturing setting,
there are numerous dynamic job shop models that address similar problems; see, for
example, Chap.7 in Buzacott and Shanthikumar (1993). However, the number of
similar models for hospital operations is quite limited and represents an opportunity
for future research.
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